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Parton distribution functions play a pivotal role in hadron collider phenomenology. They are non-
perturbative quantities extracted from fits to available data, and their scale dependence is dictated by the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations. In this article, we discuss machine-
assisted strategies to efficiently compute parton distribution functions (PDFs) explicitly incorporating
the scale dependence. Analytical approximations to the PDFs as functions of x and Q?, including up to
next-to-leading-order effects in quantum chromodynamics, are obtained. The methodology is tested by
reproducing the HERAPDF2.0 set and implementing the analytical expressions in benchmarking codes. It is
found that the computational time cost of evaluating the distributions is reduced by ~50%, while the

precision of the simulations stays well under control.
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I. INTRODUCTION

Breaking the precision frontier in particle physics is a
challenging task. The tiny discrepancies among experi-
ments and theoretical predictions might hide new phenom-
ena, and this forces theoreticians to refine as much as
possible their methodologies to produce accurate simula-
tions of particle collisions. Even if a plethora of powerful
methods are available (see, e.g., Ref. [1]), most of them
require enormous computing resources to achieve the
intended precision. In this direction, the purpose of this
investigation is to reduce the resource consumption
of higher-order calculations for perturbative quantum
field theory while keeping the precision achieved by the
most advanced theoretical results. This will allow us to
provide fast and reliable results, and also to reduce the
environmental impact associated with high-energy
research [2].

Most of the current higher-order cross-section simula-
tions rely on the factorization theorem [3—-5]—i.e., splitting
the whole calculation into perturbative and nonperturbative

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2024/110(3)/036019(12)

036019-1

sectors. The process-dependent perturbative contribution is
given in terms of well-defined analytical functions (or
highly efficient numerical representations of them). The
universal, nonperturbative part, encoded in parton distri-
bution functions (PDFs), cannot be computed from first
principles: only their evolution with the factorization scale
chosen can be calculated via the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) [6] evolution equations.
The determination of the PDFs is, instead, achieved by
performing global fits to existing data. For practical
implementations, the outcomes of these fits are given as
tables in the relevant kinematic variables with a function
that interpolates over them. The interpolation requires us to
perform several evaluations, and the routines are written to
be as fast as possible to allow for the efficient computation
of physical observables. However, some cross sections
might require a very large number of trials (and running
time) to achieve relevant precision, due to the nature of
the process. Thus, it is worth exploring the possibility of
reducing the CPU/GPU time required by providing an
alternative form for the PDFs. Therefore, in this work, we
aim to determine an analytical functional form for a set of
known PDFs, by approximating their (x, Q%) behavior. A
different, global alternative would be to identify approx-
imations to closed analytic solutions of DGLAP equations,
a highly nontrivial problem in the context of coupled
integrodifferential equations [7].

Published by the American Physical Society


https://orcid.org/0000-0002-4403-5841
https://orcid.org/0000-0002-2825-9837
https://orcid.org/0000-0003-1516-6524
https://orcid.org/0000-0003-4765-7440
https://orcid.org/0000-0002-2756-9550
https://ror.org/05g1mh260
https://ror.org/017xch102
https://ror.org/02f40zc51
https://ror.org/01eezs655
https://ror.org/02p0gd045
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.036019&domain=pdf&date_stamp=2024-08-29
https://doi.org/10.1103/PhysRevD.110.036019
https://doi.org/10.1103/PhysRevD.110.036019
https://doi.org/10.1103/PhysRevD.110.036019
https://doi.org/10.1103/PhysRevD.110.036019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

S. A. OCHOA-OREGON et al.

PHYS. REV. D 110, 036019 (2024)

To achieve this ambitious objective, we profit from
artificial intelligence, machine learning, and similar tools
implemented within Mathematica built-in functions. By
using machine-assisted techniques, we identify suitable
functional dependencies to accurately describe the PDF
sets. Our thesis is that, avoiding the interpolation over
the grids, it will drastically reduce the time required to
perform the simulations/computations. Furthermore, the
PDFs would then be written in terms of a few parameters,
reducing the storage required for them. Also, having access
to analytic formulas for PDFs will allow us to calculate
their derivatives, both in x and Q, which are relevant for
performing the matching of F, in the threshold regions.

Throughout this work, we focus on the set of collinear
proton PDFs extracted by the xFitter Collaboration,
HERAPDF2.0 [8]. We would like to highlight that our
methodology is applicable to any PDF set, independently
of the order at which it is calculated: if the PDF set exists,
it is possible to find an analytic approximation with the
techniques explained in this article. For this reason, we
stress that our study does not replace, in any way, the need
of performing global fits. On the contrary, it is only by
having the PDF sets already determined that we can search
a posteriori for a functional form. Our analytic approx-
imations to a PDF set constitute a first proof of concept, and
we show that it has successfully passed several physically
motivated quality checks.

This work is organized as follows: In Sec. II, we present
our proposed analytical model for a set of collinear,
unpolarized proton PDFs, using HERAPDF2.0 as a baseline.
The methodology used to determine the functional form
is explained in detail in Sec. IIl. Our results and their
comparison with the baseline PDFs can be found in Sec. IV.
In Sec. V, we carefully quantify the errors induced by our
analytic approximations and check the validity of the sum
rules. There, we also check the time required to run
benchmarking codes using both the available PDF grids
and our a posteriori analytical PDFs. We conclude by
summarizing our findings in Sec. VI.

II. STARTING HYPOTHESIS

Traditionally, proton PDFs [9] are determined by pro-
posing a functional form in Bjorken x for the parton
densities (or a linear combination of them) at some chosen
initial scale Q3. Giving values to the parameters involved
and evolving the PDFs to the experimental scales Q2 using
the DGLAP equations, one obtains the distributions that,
convoluted with the partonic cross sections, are compared
with data. By repeating the procedure until an adequate
description is achieved (according to some chosen criteria),
the best-fit parameters are determined. This is the case of
many sets of proton and nuclear PDFs (e.g., [10-16]) and
fragmentation functions (e.g., [17,18]). Another possibility
that does not use a proposed parametrization but rather

relies on neural networks is also employed by the NNPDF
Collaboration (see, e.g., Ref. [19] and references within).

Regarding the parametric form of the distributions, they
are usually chosen to be an Euler beta function, with some
extra flexibility given by a multiplicative polynomial or
exponential. Schematically,

fi(x. QF) = Nax (1 = x)PiP(x, ¢;), (1)

where x is, in the Breit frame, the fraction of momentum of
the proton carried by the parton; 7 indicates a parton flavor
or a combination of them (selected to do the evolution);
and P(x,c;;) is some function of x with coefficients c;;.
This form is flexible enough that very different shapes can
be achieved by varying the parameters. After the best fit is
found, tables in x and Q” are made available (in modern
times, through LHAPDF [20,21]), with fast interpolating
routines.

To determine an analytical expression for the collinear
proton PDFs, which we test with the HERAPDF2.0 set at next-
to-leading-order (NLO) accuracy in QCD, we propose that
the Q? dependence of the PDFs is given by an extension of
Eq. (1), with each parameter acquiring a Q> dependence. In
other words, we start from the assumption that

fi(x, 0?) = N;(Q¥)x%(2)(1 — x)Ai(Q")
x P(x, Cij(Qz))’ (2)

with P being, e.g., a polynomial in x. The aim of our work
is to determine these functions using machine learning
(ML) methods, and to explore to what extent the Q2
dependence can be reproduced with these functional forms.

III. METHODOLOGY

In order to obtain the coefficients from Eq. (2), we
performed a two-step fitting procedure. First, we fixed a
PDF set within the LHAPDF framework: in our study, it was
HERAPDF2.0_NLO_EIG, obtained by the xFitter group, which
uses solely data from the HERA collider. Then, we
generated a grid of O(5000) random points in {x, O} with
x€[107%,0.65] and Q € [Qwmin, 1000], evaluating the cor-
responding PDF in these points. The range in x was chosen
in accordance with the recommendations in Ref. [8]. For
the gluon and light quarks, we set Oy, = Qo = 1.37 GeV,
while we used Oy, = 1.5 GeV and Oy, = 4.5 GeV for
the charm and bottom quarks, respectively.

Regarding the parametrization, we draw inspiration from
Ref. [8], where at the initial scale Qy, the authors proposed

i (x) = Ay 6 (1= 2 (14 B, ). (3)
xd, (x) = Ag, 1P (1 = x)%, (4)

xU(x) = AgxBr(1 — x)Cv(1 + Dyx?), (5)
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xD(x) = ApxBr(1 — x)Cp, (6)

x5(x) = foxD(x) (7)

for the valence and sea distributions of light quarks (u, d,
and s), and

xg(x) = AgxBa(1 = x)% —A;xB (1-x)% (8)
for the gluon. In these formulas, we are using f; = 0.4 at
Qp and s =5, as well as

U=a, D=d+5. 9)

When the scales probed are above the production threshold
of a heavy quark, said quark will be radiatively produced
and thus have a nonzero distribution (unless intrinsic heavy
flavors are considered, which is beyond the scope of the
present work). In particular, in HERAPDF2.0, the optimized
general mass variable-flavor-number scheme RTOPT was
used to treat charm and bottom PDFs [22]. Due to its
radiative nature, the gluon has a noticeable impact in the
determination of sea- and heavy-quark distributions.

Motivated by this, we proposed functional forms like
Eq. (2) to fit u,(x, Q%) and d,(x, Q*), while we relied on
gluon-like sums of Euler beta functions—i.e., Eq. (8)—for
the remaining distributions. To perform a quantitative study
of the goodness of the approximation, we used the so-called
integral error, defined according to

1[fY™(x, 0%), 0*] = I[fI™**(x, 0), Q%]
I[fIPRA(x, 0%). 0] ’
(10)

Ai(QZ) =

with fML and fHERA being the PDFs corresponding to the
flavor i obtained with our analytic approximation (ML-
PDF from here onwards) and with the HERAPDF2.0 set,
respectively. The integration operator I[f, Q%] is given by

1.0 = [ drfn0) (i)

We would like to highlight that this definition of the error is
suitable to control the validity of the sum rules. Also, since
the PDFs contribute to the hadronic cross section through a
convolution with the partonic cross section, we observe that
the integral error successfully provides an error estimation
for the physical observables. Both tests are discussed
extensively in Sec. V.
Besides this error definition, we explored additional
estimators, such as the error shape,
) i (5. 0%)

e

where {x;},_; y is a partition of x&[107* 1]. This
definition is particularly sensitive to fluctuations or oscil-
lations around the original PDF, and it leads to a noticeable
overestimation of the error. For example, we found typical
error shapes of O(10%—-50%) for a large range of Q values,
in spite of percent- and even subpercent-level deviations of
the sum rules and other physical observables (see Sec. V).
For this reason, we consider the integral error as a more
reliable estimator.

IV. RESULTS

In this section, we explicitly report the expressions for
the analytic approximations to all the PDF flavors provided
by HERAPDF2.0 at NLO. We fitted the u,, @, d,, d, g, s, c,
and b distributions following the functional forms proposed
in each of the following subsections. For each value
of O, we extracted the coefficients {A;, B;, ...}, performing
a fit in x with the Mathematica built-in function Non-
linearModelFit [23].

Then, we performed a second fit to determine the Q
dependence of these coefficients. In this step, we relied on
machine-assisted techniques that provide suitable func-
tional forms to build the Ansdtze. In particular, we made use
of the Mathematica built-in routine FindFormula to gen-
erate an approximation to the coefficients {A;, B;, ...} as
functions of Q. Then, we used these approximations to
propose an Ansatz for each coefficient, including similar
expressions to those found by FindFormula. The functions
obtained after this two-step fitting procedure, together with
the full set of analytic ML-PDFs, are publicly available in
an ancillary file uploaded to the Zenodo repository [24].
Given that the final number of parameters is quite large, we
refrain from presenting in the manuscript a table with the
fitted parameters and functional forms.

A. Gluon distribution

To obtain an approximation to the gluon distribution, we
proposed a functional form inspired by Eq. (8). Concretely,
we used

xg(x. Q%) = f1(x. Q%) = O(xc, —0)f2(x. Q). (13)
with f;, for i =1, 2, as given in Eq. (1). In this way, for
values of x below the threshold x¢ 4, Eq. (13) offers more
flexibility to fit the PDF, in a fully analogous way to that
used in Ref. [8].

Furthermore, we noticed that the Q dependence in the
coefficient varies significantly in the whole Q range
considered (i.e., from Q, to 1000 GeV). Hence, we split
the analysis into four separate regions:

Ry = {0y < 0<25GeV}, (14)

R, ={2.5GeV < Q <5GeV}, (15)
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Ry = {5 GeV < Q < 150 GeV}, (16)

Ry = {150 GeV < Q < 1000 GeV}, (17)

which we determined by examining the Q behavior of the
gluon density. Consequently, we defined

xg(x, Q%) = A, (Q)xBs @) (1 = x)()
— O(x¢, — X)AL(Q?)xPi(Q)
X (1 - X)C;/(Qz) (18)

for Q €R;, and

xg(x, 02) = A,(Q*)xP(Q)(1 — x)(2")
~ B, — DAy (0O
x (1 _x)CL(QZ)[l 4 Dlg(Q2)x2] (19)

for Q € {R,.R;. R, }, together with x¢ , = 0.1. Again, this
last value was fixed by an exploratory procedure.

We emphasize that, since the analysis was done inde-
pendently for each region, the functions {A,(Q?),
B,(0%),C,(0%)} and {A}(Q?), B,(Q?). C;(0%). Dy(0%)}
in Eq. (19) have different behaviors in R,, R3, and Rj.

In Fig. 1, we show our analytic ML-PDF approximation
to xg(x, Q%) with respect to the corresponding gluon PDF
from HERAPDF2.0_NLO_EIG at 10 GeV (blue), 100 GeV
(green), and 1000 GeV (orange). Even if small fluctuations
occur at low x, the overall agreement is very good.
Furthermore, the agreement remains when choosing differ-
ent values of Q, thanks to splitting the analysis into four
regions.

1.0
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FIG. 1. Comparison between our analytic ML-PDF approxi-
mation (dashed lines) and HERAPDF2.0 (solid dots) for gluon
distributions, at three different values of Q. Notice that the gluon
PDFs are multiplied by a factor of 0.05 in order to better
appreciate the differences among them at different scales.

B. Down-quark distributions
In this case, the optimal fit was achieved by considering
d, and d distributions. Therefore, we wrote
xdy (5, 02) = Ag (@) @)1 = x)Cul@)
x [L+ Dy, (0%)x* + E4 (0%)x*

v

+ Fy ( 0%)x%], (20)
xd(x, Q%) = Aa(QZ)xB;AQz)(l _x)C;AQZ)

=Bz = x)A (@) @)(1 - 1))

x (14 D5(Q%)x* + E5(Q%)x"], (1)
with x. 7 = 0.04. We deemed this value to be the best
choice to describe the PDFs by repeating the procedure for

arange of x. ; and selecting the optimal. Then, the d-quark
distribution can be recovered by computing

d(x. Q%) = d,(x.0) +d(x.Q%).  (22)

In Fig. 2, we present a comparison between our analytic
ML-PDF approximations to xd,(x, Q%) (upper plot) and
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FIG. 2. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xd,
(upper plot) and xd (lower plot), at three different values of Q.
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xd(x, Q%) (lower plot) and the HERAPDF2.0_NLO_EIG PDF
set. We appreciate a very good agreement for different
values of Q.

C. Up-quark distributions
The optimal fit was found by considering u, and u
distributions. To this end, we proposed
ity (3, 02) = Ay, (Q%) e (@) (1 = 2)Cu@)
x[1+ D, (Q*)x + E, (Q*)x*
+F,,(0°)x° + G, (0*)x* + H, (0*)x]
(23)
to approximate u,, while a slightly more complicated

Ansatz was used for . In that case, we split the analysis
into two regions:

Ry = {0y < 0 <10 GeV}, (24)
R, = {10 GeV < Q <1000 GeV}. (25)
Then, we defined

xit(x, Q%) = Az (Q%)xPe(2) (1 — x)Ca(Q”)
x [1+ D (Q%)x + Ez(Q%)x*
+ Fa(0*)x* + G (0%)x* + Hy (0%)x°]
for Q €R;, and

xii(x, 0%) = Ay (Q)xB(@)(1 — x) @)
X [1 + Dz(0%)x + E;(0?)x%)
- O(xcs — x)A%(Q2)xBZ—,<Q2)
x (1= x)G(@)[1 + DL(Q*)x*]  (26)

for Q € R,. Here, we used the cut x5 = 0.01, inspired by
the gluon PDF parametrization defined by HERAPDE. After
fitting these two distributions, we can define

u(x, 0%) = a(x, Q%) + u,(x, Q°) (27)

and obtain the u-quark distribution.

We show the comparison between our analytic ML-PDF
approximations to xu,(x, Q%) (upper plot) and xii(x, Q%)
(lower plot) with respect to the HERAPDF2.0_NLO_EIG PDF
set in Fig. 3. Again, the agreement is excellent for the
complete range of Q considered in this analysis.

D. Strange-quark distribution

For the strange quark, we took the usual assumption that
s =y, a common choice for PDFs at NLO that is also

T T T
0.7F =+ ML-PDF ]

e HERAPDF20
0.6 F
RedbN
05 F /”"\, \
. 7 AN
C_B; 0.4 /7 \ \
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23 Z, [
- Q = 10GeV 2 o *.\‘.‘
02f @ =100GeV P2 X
= 1000 GeV A W
% '
0.1F ﬁt(/ % ]
e 8 . . 3
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x
10 . . .
'\‘ b —- ML-PDF
\ \ ® HERAPDF20
08 F \ A}
\‘ ¥
A \
\, \
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2 04f . &
‘b.‘§
Q = 10GeV E
02 Q =100GeV \
= 1000 GeV s
.
. . L e
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xT
FIG. 3. Comparison between our analytic ML-PDF approx-

imations (dashed lines) and HERAPDF2.0 (solid dots), for xu,
(upper plot) and xuz (lower plot), at three different values of Q.

imposed for charm and bottom PDFs. After unsuccessfully
trying several functional forms based on Euler beta
functions, we noticed that the behaviors below and above
Q0 = 4.5 GeV were slightly different. Thus, we used this
threshold and split the Q analysis into two regions:

R, = {4.5 GeV < 0 <1000 GeV}. (29)
We defined

xs(x, Q%) = AS(Qz)xBx(Qz)(l _ x)CS(QZ)
— O(xcs(Ry) — x)AL(QY)xBHQ)
x (1 —x)€(@) (30)

and

xs(x, 0%) = A(Q?)xP()(1 — x) (@)
- ®(xC,S (Rz) —_ x)Aé(QZ)xB;(QZ)
x (1 _x>C§(Q2)[1 + DL(0%)x?, (31)
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FIG. 4. Comparison between our analytic ML-PDF strange
distribution approximation (dashed lines) and HERAPDF2.0 (solid
dots). We considered three different values of Q.

where xc (R;) = 0.25 and xc4(R,) = 0.1 in R| and R,,
respectively. Once again, these values were determined by
exploring a range of values and choosing the best ones (i.e.,
the ones that gave a smaller value for the integral error).

In Fig. 4, we show our analytic ML-PDF approximation
to xs(x, Q) (dashed lines) with respect to the correspond-
ing strange PDF from HERAPDF2.0_NLO_EIG (solid dots).
At low x (i.e., below 1073), our fit slightly undershoots the
prediction from HERAPDE. Still, the agreement is very good
for x > 1073, and in particular, for different values of Q.

E. Charm-quark distribution

As mentioned above, we considered the heavy quarks as
generated radiatively by the gluons, and thus fixed their
distributions to zero when the scale is below their respective
production threshold. Above it, in the case of the charm
quark, we split the analysis into two different regions in Q.
Explicitly, we considered

R, = {1.47 GeV < Q <3 GeV}, (32)

R, = {3 GeV < Q < 1000 GeV}, (33)

since mP*® = 1.47 GeV according to the HERAPDF2.0 fit

including NLO QCD corrections [25]. Thus, we defined

xc(x, Q%) = A (Q¥)xB@) (1 = x)C(@)[1 + D (0?)x?]
— O(xco(Ry) — x)AL(Q?)xPe(2)
x (1 _x)CQ(QZ)[l + D.(0%)x?] (34)

and

‘\‘ ' L} = ML-PDF
\ \ e HERAPDF20
08 F p! \
> \
>, \
hY
— 06 \ \
A |
g \ »
S 04 \'K \.\
. 2
Q =10GeV . .,
02 @ =100GeV \."o,\
= 1000 GeV \\,~\\

. .
107 1073 1072 107!
X

FIG. 5. Comparison between our analytic ML-PDF charm
distribution approximation (dashed lines) and HERAPDF2.0 (solid
dots). We considered three different values of Q.

xe(x, Q%) = A (Q%)xP(@)(1 — x) (@)
X (14 De(Q)x + Eo Q7))
— O(xc.c(Ry) = X)AL(Q?)xB:(Q)

x (1= x)“@(1 + D(Q*)+?) (35)

where xc .(R;) = 0.1 and x¢.(R,) = 0.05 in R, and R,
respectively.

We present a comparison between our analytic ML-PDF
approximation to xc(x, Q?) (dashed lines) versus the values
provided by HERAPDF2.0_NLO_EIG (solid dots) in Fig. 5. The
agreement is impressive, both in x and in Q.

F. Bottom-quark distribution

Finally, we studied the bottom-quark distribution.
Similarly to the case of the charm quark, we started the
fitting for values of Q above the mass of the bottom—i.e.,
0 > 4.5 GeV. We noticed that the quality of our fit
significantly increased if we divided the Q range into
two regions:

Ry = {45 GeV < Q0 <15 GeV}, (36)

R, = {15 GeV < Q <1000 GeV}. (37)
As we did for the other flavors, we then proposed

xb(x, Q%) = Ab(Qz)bi(Qz)(l - x)Ch(Qz)[l + D, (0?)x?]
- G)(Xc,b(Rl) - X>AZ(Q2>XB;’(Q2>
x (1= x)%Q)[1 + D}, (0% (38)

and
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FIG. 6. Comparison between our analytic bottom ML-PDF
approximation (dashed lines) and HERAPDF2.0 (solid dots). We
considered three different values of Q.

xb(x, Q%) = A,(Q)xB Q) (1 — x)C(2)
X [1 4+ Dy (Q%)x + E,(0?)x?]
— O (xcp(Ry) — x)A}(Q)x5(2)
x (1=x) SO+ D), (39)

where xc,(R;) = 0.1 and x¢;(R,) = 0.05 in R; and R,,
respectively.

As for the other flavors, in Fig. 6, we show our analytic
ML-PDF approximation to xb(x,Q?) (dashed lines)
with respect to the corresponding bottom PDF from
HERAPDF2.0_NLO_EIG (solid dots). The agreement is very
good for different values of Q, from 10 to 500 GeV. Even if
some discrepancies arise for x < 5 x 107, we can state that

our formulas globally provide a reliable approximation to
the bottom PDF.

V. EFFICIENCY AND QUALITY BENCHMARKS

In this section, we discuss quantitatively the quality of
the ML-PDF approximations found in Sec. IV and compare
the time required to compute some chosen observables.

In order to estimate the discrepancies between our
analytic ML-PDFs and the original HERAPDF2.0 distribu-
tions in a phenomenologically relevant way, we rely on our
definition of integral error given in Eq. (10). In Fig. 7, we
show that the integral error for almost all the distributions
G.e., u,, d,, u, d, ¢, b, and g) is below 0.5% in the
0 €0y, 1000 GeV] range. For the strange-quark PDF, we
appreciate a larger deviation at higher values of Q, reaching
up to 1.5% error for Q ~ 1000 GeV. Although it is not
present in the plots, we want to highlight that the integral
error for u and d is also well under control, being below the
percent level for the whole range of Q values explored. This
is expected from Egs. (22) and (27), propagating the errors
shown in Fig. 7.
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FIG. 7. Integral error for our analytic ML-PDF approximations

with respect to HERAPDF distributions. In the upper plot, we show
up- and down-quark distributions, while s, ¢, b, and gluon PDFs
are presented in the lower plot.

As we explained in Sec. III, the integral error is expected
to provide a more reliable estimation on the impact of using
our ML-PDFs instead of the original PDF set in a physical
calculation. Still, for the sake of completeness, we present
here an analysis of the approximation error as a function
of x. For this purpose, we sample with an exponential
distribution the range Q€[10 GeV, 1000 GeV| using
N = 50,000 random points. Then, we define

5 L[, fiT(x0))
Ai(x) = N ; ’

=2t Y=y
FiERA (x, 0F)

(40)

as an estimator of the error in x. This definition is similar to
the error shape mentioned in Sec. 111, and it corresponds to
an average of the relative errors as a function of x. In Fig. 8,
we show the results for up and down quarks (upper plot),
for strange, charm, and bottom quarks, and for the gluon
(lower plot). For u,, d,, it and d quarks, A is below 10%
for x€[107%,0.3]. Similarly, for the other quark flavors,
the error is below 20% in x €[1073,0.3]. For the gluon,
the error is slightly larger, O(10%-25%) in the central
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FIG. 8. Estimation of the error as a function of x, averaged over

0 €[10 GeV, 1000 GeV] for our analytic ML-PDF approxima-
tions with respect to HERAPDF2.0 distributions. In the upper plot,
we show up- and down-quark distributions, while s, ¢, b, and
gluon PDFs are presented in the lower plot.

x region. All the distributions tend to increase their average
relative error for x > 0.3-0.4, since the PDFs decrease a
couple of orders of magnitude for larger values of x. Also,
the valence distributions show this behavior in the low-x
region. In both cases, small absolute discrepancies translate
into large relative fluctuations. This effect is shadowed in
the definition of integral error, because the contributions of
the PDFs in those regions are rather small.

Another important observation is the presence of oscil-
lations in the relative error in the region x = 0.05-0.1,
particularly for distributions that made use of a gluon-like
functional form. This behavior is due to the matching
of two Euler beta functions around x. = O(0.1), which
originates a fluctuation, since they have different signs. In
fact, this justifies the reduced integral error, because these
fluctuations around the original PDF cancel at integrand
level.

Regarding the time needed for the use of the ML-PDFs
and LHAPDF, we found a significant difference between
simply calling the distributions and actually implementing
them in a cross-section calculation. The results presented in
the rest of this section were obtained using a desktop PC

TABLE L

Comparison of the time (in seconds) required to

compute Npgins evaluations of HERAPDF2.0 within the LHAPDF

framework, and our ML-PDF analytic approximation.

N points LHAPDEF (S) ML-PDFs (s) Gain(%)
103 3.76 x 1072 2.92 x 1074 99.22
10* 420 x 1072 2.50 x 1073 94.05
105 8.94 x 1072 2.50 x 1072 72.10
100 0.56 0.25 55.46
107 5.25 2.50 52.49
108 52.04 24.92 52.11

with a 16-core Intel i7-13700 processor. It is important to
remark that nothing has been parallelized.

A. Run-time

We start by presenting, in Table I, the run-time difference
when performing a call to our PDFs and LHAPDF, for sets of
points in the (x, Q) space. As we can appreciate, for
Npoints < 10>, the gain is quite substantial. This is due to
the fact that calling LHAPDF has an overhead time for
loading and reading the grid, which albeit small, dominates
the total run-time when one evaluates a small number of
points. Therefore, if we were interested in evaluating a
handful of points we would be wise in choosing our
ML-PDFs over LHAPDE. As we move to larger number
of points Nin ~ 10°, the weight of this overhead starts to
dilute, and once we pass the mark Npini ~ 10, we reach a
region where we are essentially comparing only the
execution time of interpolation versus evaluation. In the
last column, we display the time gain percentage, defined as

cain(%) = 100 x 1TCLHAPDE ~ UMCppoE 4y
timey yappr
A negative gain would mean that the interpolation is faster
than the direct evaluation. As can be seen from the table, the
gain seems to approach a plateau around 50% (i.e., our ML-
PDF are 2 times faster than LHAPDF), which is quite sizable.
From these numbers it appears that, for a code requiring
Monte Carlo integration, it would be beneficial to use
something akin to our ML-PDFs. We further investigate
this in the next subsection.

B. Validity of the sum rules

One important physically motivated cross-check of our
analytic ML-PDFs is the sum rules. For any energy scale Q,
the sum rules are given by

$,(0?) = [ dx i, (x, 0%) = 2. (42)

52(0%) = /O Ldrd,(x.0?) = 1 (43)
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for the up and down valence quarks, and

/0 Ll 0) P 0 =0 (44)

for all other quarks. Also, the PDFs must fulfill the
condition that the total momenta carried by the constituent
partons equal the momentum of the hadron. This is encoded
in the momentum sum rule

509 = [ ldxxlg(x,Qz)Jr S o) =1,
i€{q.q}
(45)

where the sum is carried out over all the active flavors of
quarks. These constraints are often imposed when perform-
ing the PDF extraction from fits to experimental data. In the
case of HERAPDF2.0, Eq. (44) is automatically fulfilled by
construction (no g — g distinction for sea quarks), and this
also holds for our analytic ML-PDFs.

In Fig. 9, we compare the results of Egs. (42) and (43) for
HERAPDF2.0 (blue) and our analytic ML-PDFs (orange) with
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FIG. 9. Sum rules for up (upper) and down (lower) valence
distributions, as a function of Q. We show the values calculated
with HERAPDF2.0 (blue) and our analytic ML-PDF (orange), and
also the theoretical exact value (green).
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FIG. 10. Total momentum conservation rule, as a function of Q.
We show the values calculated with HERAPDF2.0 (blue) and our
analytic ML-PDF (orange), and also the theoretical exact
value (green).

respect to the theoretical value (green line). In both cases,
we consider Q € [10 GeV, 1000 GeV], and we find that our
analytic ML-PDF leads to results closer to the theoretical
value. Concretely, for up valence quarks, we get deviations
of O(0.1%) for ML-PDFs and O(0.2%) for HERAPDF2.0,
showing a trend for the latter to depart from the theoretical
value in the high-Q region. Similarly, for down valence
distributions, the predictions obtained with ML-PDFs oscil-
late around 1 within a band of O(0.2%), while HERAPDF2.0
deviates more than (0(0.3%) for higher Q values.

Finally, in Fig. 10, we show the results of computing
Eq. (45) with our analytic ML-PDFs (orange) and
HERAPDF2.0 (blue). In this case, HERAPDF2.0 better
approaches the theoretical value, with discrepancies smaller
than 0(0.5%). The predictions obtained with our analytic
ML-PDFs show deviations of O(0.6%) below 60 GeV,
reaching up to O(1.5%) for Q ~ 500 GeV. This behavior is
driven by gluon PDF, since this parton carries more than
45% of proton momentum and our fit shows an increasing
error for large Q (see Figs. 7 and 8). In any case, as we
emphasized in the Introduction, this constitutes a first proof
of concept, and we can claim that our ML-PDFs success-
fully passed all the cross-checks with percent-level (and
even subpercent-level) precision.

C. Impact in physical observables

Here, we discuss the impact of using our analytic
approximations to the PDFs in two realistic cross-section
calculations.

We start by considering pion production in unpolarized
proton-proton collisions at /S, =7 TeV in the central
rapidity region (|”| < 0.5). These simulations make use of
a sequential code based on Ref. [26], modified to use the
needed PDFs and fragmentation functions (FFs). The
Monte-Carlo integrator is VEGAS, with 10° points, while
the FF set used is DEHSS2014 [27], and all factorization and
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FIG. 11. Upper plot: differential cross section for the process

p+ p — m as a function of py, including up to NLO QCD
corrections. We run the simulation using our analytic ML-PDFs
(dots) and LHAPDF with HERAPDF2.0 (solid). Lower plot: ratio
between the two cross sections. The discrepancies in the results
are well below 2%, which is even less than the error introduced by
scale variations (not included in this plots).

renormalization scales have been taken to be equal to the
transverse momentum of the pion (denoted p7). In the
upper plot of Fig. 11, we present the p; spectrum using our
ML-PDFs (black dots) and HERAPDF2.0 (red line), while the
lower plot depicts the ratio between those two quantities.
The (light blue) uncertainty band in the lower plot comes
from the Hessian set of theoretical uncertainties of
HERAPDF2.0; it is also present (but hardly noticeable) in
the upper plot. From the lower panel, we can appreciate that
the difference between the two simulations is well below
2%, and it mostly stays within the PDF uncertainty bands.
This is much smaller than the typical perturbative error of
NLO QCD calculations [generally larger than O(20%)].
Regarding the CPU time, it took 10 minutes, 28 seconds
using LHAPDF and 9 minutes, 19 seconds with our ML-
PDFs, running on the same system described before. From
Table I, and considering the number of iterations used, one
would expect a much larger gain. The outcome of this run
serves to emphasize that the matter is far more subtle. It is
worth highlighting that this reduction in the computational
time is only due to our optimized ML-PDF, since all the
other ingredients of the calculation remain the same in both
simulations.
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FIG. 12. Upper plot: differential cross-section for the process
p + p — y + x as a function of the transverse momentum of the
pion (p7), including up to NLO QCD corrections. We run the
simulation using our analytic ML-PDFs (dots) and LHAPDF with
HERAPDF2.0 (solid). Lower plot: ratio between the two cross
sections.

In the second example, we turned to a simulation that
required a significantly larger amount of trials to reach a
stable output. We tested our ML-PDFs with the calcula-
tion of p+ p —y+x including up to NLO QCD
effects [28,29] at /S, = 13 TeV. We consider the central
rapidity region, ||, || < 2.5, imposing p% €[30 GeV,
1500 GeV]. We used the same FFs as before, and we
took the renormalization and factorization scales to be
equal to

pr+ pj
p=——"r

. (46)

In this case, we chose to run 108 points, both in order to be
in what we expect (from Table I) to be a very low time-gain
region and because the observable requires a large number
of points to produce physical results. We show the outcome
in Fig. 12. As before, the upper plot presents the cross
section, while the lower plot demonstrates the ratio between
the two computations. Given the p; range explored, there
are some oscillations of the output associated with stat-
istical fluctuations. In fact, using 107 points gave unphys-
ical results for some p; values. We can then say that this
observable would greatly benefit from using a higher
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TABLE II. Comparison of the time (in seconds) required to
compute two observables using LHAPDF and ML-PDFs. See text
for details.

Obs LHAPDF (s)  ML-PDFs (s)  Gain(%)
ptpoa 628.320 558.854 11.06
p+poy+n 12452273 8671.827 30.36

number of points. For our purpose, 10® points is enough. In
the pr <10 GeV region, which dominates the cross
section, the differences are within 5% and are feasible
for further reduction. The runtime for LHAPDF was
207.5 minutes, or almost 3.45 hours, while the ML-PDF
run took 144.5 minutes, or more than a full hour less. We
summarize the runtime of the cross sections in Table II.
This gain is much larger than in the previous test, and far
more than expected from the table. Also, we notice that the
predictions obtained with our ML-PDFs are compatible
with the propagation of errors of HERAPDF2.0 into the
observable (light blue band).

To conclude, the results of these two realistic calcula-
tions clearly support the potential of our ML-PDFs to
reduce the computational cost of the simulations, keeping
under control the uncertainties of the approximation.

VI. CONCLUSIONS

In this work, we provide an analytic approximation to
PDFs using machine-assisted techniques to adjust both
their x and Q dependence. Our starting hypothesis was the
assumption that the x dependence could be reproduced by
Eulerian-like functions, while all the Q dependence is
embodied within the coefficients.

By doing so, we obtain a reliable approximation to
HERAPDF2.0, taking into consideration up to NLO QCD
corrections. We show that the integral error is under control
for an ample range of x and Q values. In fact, our ML-PDFs
were tested for Q € [Q,, 1000 GeV], presenting (for most
of the distributions) deviations with respect to HERAPDF2.0
below the percent level. It is important to highlight that this
is comparable with the error of the PDF sets themselves,
and far smaller than the uncertainties introduced by trun-
cating the perturbative expansion of observables in QCD.
In fact, we find that the error induced by the ML-PDF
in p+p-nis O(1%), while for p+ p -y +x, it is
O(5%) [30]. These errors are much smaller than the
O(20%-50%)—or even larger—uncertainties arising from
scale variations. Furthermore, we found a non-negligible
reduction of the runtime: O(11%) for p + p — x, and
O(30%) for p+p -y + x.

To conclude, we want to emphasize that the strategy
explained in this article is fully applicable to any PDF set,
and even to FFs, at any perturbative order (NLO, NNLO,
and beyond), due to the fact that we made no assumptions
about the order at which DGLAP evolution is truncated.
The only required ingredient is a previously existent PDF,
extracted from data, to be used as input in our formalism.
Our only hypothesis is that the Q dependence is fully
embodied within the coefficients {A, B, ...} described in
Sec. IV. Following this approach, we can avoid using
interpolation methods to evaluate the distributions and
speed up the calculation of PDFs (and, eventually, FFs),
because we obtain a fit that already embodied the evolution
in an analytically approximated way. This not only brings a
reduction of the CPU time, but also leads to a reduction of
the CO, footprint and points toward more efficient and
sustainable practices in high-energy physics (HEP) [2]. For
this reason, further developments to obtain analytic approx-
imations to PDFs/FFs are expected, and this work can be
considered as a first proof of concept, paving the way for
future improvements. As a final remark, we want to stress
that our approach does not replace the PDF extractions from
data; in fact, they constitute an essential input and the basis
for ML-PDF determinations such as the one presented here.
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