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The mixing between the chiral condensate and the density in hot and dense quantum chromodynamics
(QCD) matter is familiar. We show that the mixing relevant for the ground state is considerably more
extensive, and in particular also involves gluonic degrees of freedom. As a result, the Hessian of the QCD
effective action is non-Hermitian, but retains a symmetry under combined charge and complex conjugation.
This can lead to complex-conjugate pairs of eigenvalues of this Hessian, signaling regimes with spatially
modulated correlations. Furthermore, based on the analytic structure of the quark determinant at a chiral
critical point, we demonstrate that the corresponding massless critical mode is composed of the chiral
condensate, the density and the Polyakov loops. Due to an avoided crossing, the critical mode turns out to
be disconnected from the chiral condensate in vacuum. We present general arguments for all these features
and illustrate them through explicit model calculations.
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I. INTRODUCTION

It is by now well established that quantum chromody-
namics (QCD) features a chiral crossover at small baryon
chemical potential [1–3]. Model studies suggest that this
crossover might turn into a critical end point (CEP) at
larger chemical potential, where the transition is of second
order [4,5]. This expectation is supported by recent results
of functional continuum methods, which have established
that the chiral crossover becomes steeper as the chemical
potential is increased [6–10]. Assuming that no other
phases emerge, these works indeed predict a CEP roughly
around temperatures T ≈ 100 MeV and baryon chemical
potentials μB ≈ 600 MeV.
However, most studies that find a CEP assume a

homogeneous ground state. Model studies that do not make
this assumption tend to find inhomogeneous or crystalline
phases with spatial modulations [5,11]. A precursor for such
phases, a moat regime where the particle energy is mini-
mized at nonzero momentum [12–14], has recently been
discovered in QCD in Ref. [7] in the vicinity of the CEP.
This is a strong indication that, for example, either an
inhomogeneous phase [11], a liquid crystal [15,16] or
a quantum pion liquid [12] could exists at large density.

The latter two possibilities arise from fluctuation-induced
instabilities. In any case, these phases could potentially
wash-out the CEP, replacing it with a Lifshitz point, or a
Lifshitz regime [17]. This is also relevant for heavy-ion
collisions, where a moat regime might leave observable
signatures [13,18,19].
In order to understand the phase structure, the relevant

degrees of freedom need to be identified correctly. To this
end, it is important to take into account any mixing that
affects the ground state properties of the system. For
example, the ground state of nuclear matter is character-
ized, among other things, by a non-vanishing chiral
condensate hψ̄ψi and the quark/baryon number density
hψ̄γ0ψi. These can be identified with the condensates of
“mesons” in the isoscalar-scalar channel and the temporal
component in the isoscalar-vector channel, σ and ω0. It is
well known that the chiral condensate and the density mix
in dense QCD matter, see, e.g., Refs. [20,21]. Mixing
means that there is a nonzero linear coupling ∼σω0. Hence,
the relevant degree of freedom characterizing the chiral
properties of the system is not the σ-meson itself, but a
mixture of σ and ω0.
This has far-reaching consequences. The potential exist-

ence of a CEP has motivated experimental searches with
ultrarelativistic heavy-ion collisions [22–24]. Many of
these searches rely on the sensitivity of fluctuations in
net-baryon multiplicities on the critical physics in the
vicinity of the CEP [25–28]. A nonmonotonic beam-energy
dependence has been proposed as a signature of a CEP in
these works. Although it is now known that this is not a
smoking gun since this behavior can also arise from a steep
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crossover [29], there is little doubt that a system created in a
heavy-ion collision is affected by critical physics if it
evolves close enough to a CEP. Most notably, critical long-
range correlations lead to equilibration times that exceed
the timescales related to the expansion and cooling of
matter in a heavy-ion collision [30,31]. Due to this critical
slowing down, the system will fall out of equilibrium. In
addition to the symmetries and the dimensionality of the
system which determine the static universal properties,
additional conserved charges and hydrodynamic modes
need to be taken into account in order to describe the
resulting dynamic universal behavior near the CEP [31–33].
This is affected by mixing.
Without mixing, the CEP is signaled by a massless

spacelike mode in the σ channel [34]. Since the order
parameter is not conserved, this leads to so-called Model
A dynamics [32]. Taking into account the dynamics of
the coupled dissipative and diffusive fluctuations of the
mixture between the chiral order parameter and conserved
baryon density in an otherwise static medium, it has been
shown that only one hydrodynamic mode is provided by
the slow diffusive fluctuations of the latter [33], leading to
the dynamic universality class of Model B [32]. If the
motion of the medium is considered as well, coupling this
mode to the energy-momentum tensor, from the potentially
four additional hydrodynamic modes, only the two trans-
verse components of the conserved momentum density
lead to additional slow modes. Nontrivial reversible mode-
mode couplings between these hydrodynamic modes then
put the QCD CEP in the dynamic universality class of
Model H [33], which is that of a liquid-gas transition in a
pure fluid [32].
Furthermore, it has been demonstrated in Ref. [35] that

the combination of σ − ω0 mixing and the short-distance
repulsion of nucleons induced by ω0-exchange leads to a
non-Hermitian meson mass matrix at finite density, where
the symmetry under charge conjugation, C, is broken.
However, QCD retains a symmetry under CK transforma-
tions, whereK is complex conjugation, and the eigenvalues
of the mass matrix can come in complex-conjugate pairs. If
this happens, correlations show spatial modulations, much
like in a moat regime. The CK-symmetry of finite-density
QCD has been argued to be a form of PT , and the
implications for the phase structure of various systems
has been discussed in Refs. [35–40].
Since mixing clearly plays an important role for QCD

matter, a detailed and systematic understanding of the
effects relevant for the phase structure is important. To this
end, we present a general strategy to study mixing in dense
QCD matter based on the functional quark determinant of
the path integral. The aforementioned σ − ω0-mixing
naturally arises from this approach at finite density away
from the chiral limit. However, the underlying mechanism
is more general, and in particular applies whenever a field
or composite operator couples to the quarks in a way

similar to the chemical potential. Interestingly, this is also
the case for the Polyakov loop Φ and its conjugate Φ̄,
which is used as an order parameter for confinement in the
pure gauge theory and serves as a measure for nontrivial
electric gluon correlations in finite temperature QCD as
well [41]. The confined ground state of nuclear matter at
finite density is hence also characterized by nontrivial Φ
and Φ̄. Their mixing with the chiral condensate has been
noted previously [42], but its consequences have not been
explored yet.
We systematically investigate the mixing induced by

fluctuations around the ground state of nuclear matter,
which is characterized by the chiral condensate, the baryon
number density and the Polyakov loops. We explore the
physical implications based on both, general arguments and
explicit model calculations. From the discussion above we
expect the resulting Hessian to be non-Hermitian, facili-
tating in particular the existence of spatially modulated
regimes in the phase diagram. Furthermore, we employ
arguments based on the analytic structure of the free energy
at the CEP to clarify the nature of the critical mode.
Possible implications on the critical dynamics are beyond
the scope of our present work.
This paper is organized as follows. In Secs. II A and II B

we derive the medium-induced mixing in QCD and the
resulting Hessian using a saddle point expansion of the
quark determinant. We then discuss the possible implica-
tions for the critical mode and the phase structure in
Secs. III A and III B. To illustrate our general arguments,
we study different Polyakov–quark-meson models, which
effectively capture basic features of the QCD phase
transition, in Sec. IV. In Sec. IVA we study the basic
model with mean-fields for the chiral condensate and the
Polyakov loops, and in Sec. IV B we add vector repulsion
and vacuum fluctuations. We present a summary of our
findings and a brief outlook in Sec. V.

II. INDUCED MIXING

A. Saddle-point approximation

We start by discussing how mixing through linear
couplings in QCD at finite chemical potential arises.
Our focus is on the relevant ground-state properties of
dense nuclear matter. To this end, we note that funda-
mental interactions in QCD give rise to a Yukawa-type
interaction between quarks and ω mesons, ψ̄γμωμψ . This
interaction arises from the resonance of a four-quark
interaction in the isoscalar vector channel, ðψ̄γμψÞ2 and
can be derived from first principles using, e.g., dynamical
hadronization [7,43–51]. For the present argument, we
focus on the coupling between the quarks and ω0,

ihωψ̄γ0ω0ψ ; ð1Þ

HAENSCH, RENNECKE, and VON SMEKAL PHYS. REV. D 110, 036018 (2024)

036018-2



where hω is the relevant Yukawa coupling. Although this
restriction is not necessary for the following arguments,
we assume a repulsive vector interaction, so ihω has to be
imaginary. This assumption is supported by nuclear matter
phenomenology [52]. ω0 couples to the quark density in
the same way as the quark chemical potential. Its equa-
tions of motion (EoM) can have nontrivial solutions in
QCD, i.e. ω0 can acquire a vacuum expectation value
(VEV). This VEV is necessarily related to the quark
density nq, so that

−iω̄0 ¼ hω0i ∼ nq: ð2Þ

We note that ω̄0 is purely imaginary. Furthermore, we
introduce a scalar field, σ, whose VEV is directly related to
the chiral condensate,

σ̄ ∼ hψ̄ψi: ð3Þ

It couples to the quarks through a Yukawa interaction,

hσψ̄σψ : ð4Þ

Chiral symmetry dictates that other fields, in particular
pseudo-scalars, couple to the quarks in a similar way. But
the details are irrelevant for the present discussion. The
Dirac operator at finite chemical potential has the follow-
ing form then

M ¼ γμDμ þmþ hσσ þ γ0ðμþ ihωω0Þ; ð5Þ

where m is the current quark mass and the covariant
derivative in the fundamental representation is

Dμ ¼ ∂μ − igAμ; ð6Þ

with Aμ ¼ Aa
μTa with the SUðNcÞ generators Ta,

a ¼ 1;…; N2
c − 1. For now it is sufficient to work in

Euclidean space. The logarithm of the functional deter-
minant of M determines the contribution of quarks to the
effective action, i.e. the generating functional of one-
particle irreducible diagrams. We are interested in finite
temperature and density, where this determinant can be
worked out by standard means of thermal field theory, see,
e.g., Ref. [53]. It reads in the Matsubara formalism

ln detM ¼ T
X
n∈Z

Z
p
tr lnMðνn; pÞ; ð7Þ

with the operator

Mðνn; pÞ ¼ iγ0ðνn − gA0 þ hωω0 − iμÞ
þ iγjðpj − gAjÞ þmþ hσσ: ð8Þ

νn ¼ πTð2nþ 1Þ are the fermionic Matsubara frequen-
cies. The trace in this expression is over color-, flavor- and
spinor-indices.
In a thermal medium the temporal gluon fields can have a

nonzero VEV Ā0 ¼ hA0i which is directly related to
nontrivial VEV of the Polyakov loop [41]. Owing to the
invariance under background gauge transformations, the
background field can always be rotated into the Cartan
subalgebra of the gauge group where it is diagonal
diagonal,

Ā0 ¼ Āð3Þ
0 T3 þ Āð8Þ

0 T8; ð9Þ

with Ta ¼ λa
2
and the Gell-Mann matrices λa. In contrast,

we can assume that the spatial gluon field has no VEV. On
such a background, the quark propagator is given by

Gψ ðνn;pÞ ¼
−iγ0ðνn − gĀ0 − iμ̄Þ − iγjpj þmq

ðνn − gĀ0 − iμ̄Þ2 þ p2 þm2
q

; ð10Þ

where this is understood to be a diagonal matrix in color
space with the diagonal elements of the gauge field back-
ground Ā0. We defined the constituent quark mass

mq ¼ mþ hσσ̄; ð11Þ

and the effective chemical potential

μ̄ ¼ μþ ihωω̄0: ð12Þ

To see how mixing arises, it is instructive to consider a
diagrammatic expansion first. To this end, we define the
vertices

Γψ̄ϕiψ ¼ δM
δϕið0Þ

����
EoM

: ð13Þ

Since we are interested in the soft modes relevant for
criticality, we can restrict our analysis to zero momentum
exchange. Hence, the functional derivatives are carried out
at zero momentum and the delta distributions are omitted in
favor of explicitly enforcing momentum conservation for
all diagrams. The direct coupling between any two fields or
operators ϕi and ϕj at zero momentum exchange generated
from the quark determinant is then given by

Γϕiϕj
¼ δ2 ln detM

δϕið0Þδϕjð0Þ
����
EoM

¼ T
X
n∈Z

Z
p
trΓψ̄ϕiψGψ ðνn;pÞΓψ̄ϕjψGψðνn;pÞ: ð14Þ

From this expression we already see that certain linear
couplings cannot be generated. This includes a mixing of
the spatial gluons and the chiral condensate, ΓσAj

¼ 0: With
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the vertices Γψ̄σψ ¼ hσ , Γψ̄Aa
jψ

¼ −igTaγj and the propa-

gator in Eq. (10) it is evident that either the color or the
spinor trace in Eq. (14) vanishes. The same reasoning leads
to the absence of mixing between the ω0 and spatial gluon
fields. Also the coupling between the chiral condensate and
pions, Γσπ , vanishes since scalars cannot be transformed
into pseudoscalars by quark exchange. Lastly, the mixing
with spatial isoscalar vector mesons, Γσωi

, can only occur at
finite spatial momentum exchange.
In contrast, fields that couple to quarks similar to a

chemical potential with a vertex ∼γ0 can mix with the chiral
condensate at vanishing spatial momentum. After the
spinor trace, the integrand of Eq. (14) then is proportional
to ðνn − gĀ0 − iμ̄Þ, which can lead to mixing in a medium.
Since the mixing we are considering here involves

composite operators, a saddle point approximation is most
convenient to extract the relevant linear couplings. It is
sufficient to consider the contributions to the effective
action from the quark determinant that arise from fluctua-
tions δσ, δω0 and δA0 around the background fields σ̄, ω̄0

and Ā0. To leading order, the quark determinant then is

T
V
ln detM̄ ¼ −2TNf

Z
p

n
ln
h
1þ NcΦe−ðEpðσ̄Þ−μ̄Þ=T

þ NcΦ̄e−2ðEpðσ̄Þ−μ̄Þ=T þ e−3ðEpðσ̄Þ−μ̄Þ=T
i

þ ln
h
1þ NcΦ̄e−ðEpðσ̄Þþμ̄Þ=T

þ NcΦe−2ðEpðσ̄Þþμ̄Þ=T þ e−3ðEpðσ̄Þþμ̄Þ=T
io

;

ð15Þ

where V is the spatial volume. We neglected a vacuum
contribution as it is irrelevant for our argument. Instead of
the components of Ā0, it can be advantageous to use the
temporal Wilson line,

PðxÞ ¼ P exp
�
ig
Z

β

0

dx0A0ðx0;xÞ
�
; ð16Þ

where x0 is the Euclidean (imaginary) time coordinate and
P denotes path ordering. The Polyakov loops are defined as

Φ ¼ 1

Nc
htrPi; Φ̄ ¼ 1

Nc
htrP†i: ð17Þ

For details see, e.g., Ref. [41]. The color trace on the A0

background in the Cartan subalgebra leads to the Polyakov
loops in Eq. (15). Due to charge conjugation symmetry
breaking, one has Φ ≠ Φ̄ at finite chemical potential.
By replacing ϕ̄ → ϕ̄þ δϕ with ϕ ¼ ðσ;Φ; Φ̄;ω0Þ, tak-

ing derivatives with respect to δϕ and δϕ̃, where
ϕ̃ ¼ ðσ; Φ̄;Φ;ω0Þ, and then setting the fluctuating fields

to zero, we can extract all the linear couplings between
these operators at zero momentum exchange.
Treating the fluctuations requires some caution here. For

the saddle point approximation to be well defined, fluctua-
tions must be in the direction of the steepest descent of the
effective action. Put differently, the fluctuations δϕ have to
be along the stable Lefshetz thimble connected to ϕ̄ in field
space, see, e.g., [54,55]. The chiral condensate determines
the constituent quark masses, so it is real. The scalar field
fluctuations around it must be real as well. Similarly, a real
free energy requires the Polyakov loops to be real for real
chemical potentials. Note that the underlying eigenvalues
of the gluon background field need to be complex in this
case, see [36,56–58] for related discussions. Regarding the
vector meson, we have argued that the background field ω̄0

needs to be pure imaginary in order for the density to be
real. Since ω0 acts like a chemical potential, the effective
action stays real for fluctuations δω0 in either imaginary or
real direction. Inspection of the quark determinant in
Eq. (15) reveals that the dual (or unstable) thimble related
to ω̄0 is along the imaginary axis, while the stable thimble
goes through ω̄0 parallel to the real axis, cf. also Ref. [59].
Thus, we need to consider fluctuations of ω0 in real
direction around an imaginary background.
Proceeding with the saddle point approximation, we find

for the mixing between the chiral condensate and ω0,

Γσω0
¼ −4NfT

X
n∈Z

Z
p
trc

ðνn − gĀ0 − iμ̄Þihωhσmq

½ðνn − gĀ0 − iμ̄Þ2 þ p2 þm2
q�2

¼ −4iNfNchωhσmq

Z
p

∂

∂E2
p

�
NFðEpÞ − N̄FðEpÞ

�
;

ð18Þ

where trc denotes the color trace. We have furthermore
introduced the modified distribution functions

NFðEÞ ¼
1

Nc
trcnFðE − μ̄þ iĀ0Þ

¼ 1þ 2Φ̄eðE−μ̄Þ=T þΦe2ðE−μ̄Þ=T

1þ NcΦ̄eðE−μ̄Þ=T þ NcΦe2ðE−μ̄Þ=T þ e3ðE−μ̄Þ=T
;

N̄FðEÞ ¼
1

Nc
trcnFðEþ μ̄ − iĀ0Þ

¼ 1þ 2ΦeðEþμ̄Þ=T þ Φ̄e2ðEþμ̄Þ=T

1þ NcΦeðEþμ̄Þ=T þ NcΦ̄e2ðEþμ̄Þ=T þ e3ðEþμ̄Þ=T ;

ð19Þ

where nFðxÞ ¼ ðex=T þ 1Þ−1 is the Fermi-Dirac distribu-
tion, and we have defined the quark energy Ep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q

q
. At μ̄ ¼ 0, the Polyakov loop and antiloop

are identical, Φ ¼ Φ̄, and Γσω0
vanishes for all temper-

atures. At T ¼ 0, this can already be inferred from the first
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line in Eq. (18) which then becomes an odd function of
frequency for μ ¼ 0. At finite density the degeneracy
between Φ and Φ̄ is lifted and we conclude that
Γσω0

≠ 0, if μ ≠ 0. As a consequence of the repulsive
nature of the vector interaction, this coupling is imaginary.
We will comment on the physical consequences of this in
the next section. That such a mixing arises from the quark
determinant in the presence of scalar and vector interaction
channels has already been noted in Ref. [21] in the context
of the NJL model. Its presence in nuclear matter has been
recognized even earlier, e.g., in Ref. [20].
Next, we investigate the linear coupling between the

Polyakov loops and the chiral condensate, ΓσΦ and ΓσΦ̄.
This is related to fluctuations of A0. Because the quark
propagator in Eq. (10) is diagonal in color, only temporal
gluons with nonzero diagonal elements can contribute.
Without loss of generality, we can therefore assume that A0

stays in the Cartan subalgebra, and consider fluctuations in
the Polyakov loops for simplicity instead. These lead to

ΓσΦ ¼ 2NfNchσmq

Z
p

1

Ep

n
e2ðEp−μ̄Þ=TKðΦ; Φ̄Þ

×
h
NFðEpÞ − NcNFðEpÞ2

i
þ eðEpþμ̄Þ=TKðΦ̄;ΦÞ

h
2N̄FðEpÞ − NcN̄FðEpÞ2

io
;

ð20Þ

where we have defined

KðΦ; Φ̄Þ ¼ 1

1þ 2Φ̄eðEp−μ̄Þ=T þΦe2ðEp−μ̄Þ=T : ð21Þ

The corresponding coupling between the antiloop and the
chiral condensate is analogously given by

ΓσΦ̄ ¼ 2NfNchσmq

Z
p

1

Ep

n
e2ðEp−μ̄Þ=TKðΦ; Φ̄Þ

×
h
2NFðEpÞ − NcNFðEpÞ2

i
þ eðEpþμ̄Þ=TKðΦ̄;ΦÞ

h
N̄FðEpÞ − NcN̄FðEpÞ2

io
:

ð22Þ

This shows that chiral condensate and temporal gluon fields
mix at finite temperature. The argument is sufficiently
general to apply to QCD. Note that the two mixing terms
in (20) and (22) are different at finite μ.
The linear couplings to the chiral condensate are propor-

tional to the quark mass. Thus, the in-mediummixing of the
chiral condensate with other modes vanishes in the chiral
limit. This follows directly from chiral symmetry.
We also find a nontrivial mixing between ω0 and the

Polyakov loops,

Γω0Φ ¼ −2iNfNchω

Z
p

n
eðEp−μ̄Þ=TKðΦ; Φ̄Þ

×
h
NFðEpÞ − NcNFðEpÞ2

i
− e2ðEpþμ̄Þ=TKðΦ̄;ΦÞ

h
2N̄FðEpÞ − NcN̄FðEpÞ2

io
;

ð23Þ

and

Γω0Φ̄ ¼ −2iNfNchω

Z
p

n
e2ðEp−μ̄Þ=TKðΦ; Φ̄Þ

×
h
2NFðEpÞ − NcNFðEpÞ2

i
− eðEpþμ̄Þ=TKðΦ̄;ΦÞ

h
N̄FðEpÞ − NcN̄FðEpÞ2

io
:

ð24Þ

Note that these two couplings are pure imaginary and
unequal at finite μ as well.
Finally, there are “off-diagonal” couplings between the

Polyakov loops themselves as well,

ΓΦΦ ¼ 2NfN2
cT
Z
p

n
e4ðEp−μ̄Þ=TKðΦ; Φ̄Þ2NFðEpÞ2

þ e2ðEpþμ̄Þ=TKðΦ̄;ΦÞ2N̄FðEpÞ2
o
; ð25Þ

and

ΓΦ̄ Φ̄ ¼ 2NfN2
cT
Z
p

n
e2ðEp−μ̄Þ=TKðΦ; Φ̄Þ2NFðEpÞ2

þ e4ðEpþμ̄Þ=TKðΦ̄;ΦÞ2N̄FðEpÞ2
o
: ð26Þ

Again, these two couplings are identical at μ ¼ 0, but this
degeneracy is lifted at nonzero μ. This exhausts all mixing
terms considered here.
The diagonal elements of the two-point function, Γσσ ,

Γω0ω0
and ΓΦΦ̄, are also nontrivial and we list them here for

completeness

Γσσ ¼ 2NfNch2σ

Z
p

�	
1

Ep
−
m2

q

E3
p
þm2

q

E2
p

∂

∂Ep




×
h
NFðEpÞ þ N̄FðEpÞ

i�
;

Γω0ω0
¼ −2NfNch2ω

Z
p

∂

∂Ep

h
NFðEpÞ þ N̄FðEpÞ

i
;

ΓΦΦ̄ ¼ 2NfN2
cT
Z
p

n
e3ðEp−μ̄Þ=TKðΦ; Φ̄Þ2NFðEpÞ2

þ e3ðEpþμ̄Þ=TKðΦ̄;ΦÞ2N̄FðEpÞ2
o
: ð27Þ
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In summary, we have shown that QCD in a dense medium
features a mixing of the chiral condensate, the quark density
and the Polyakov loops. Hence, the physical degrees of
freedom have to be mixtures of these (composite) fields.
The physical relevance of this observation is discussed in
the remainder of this work.
As discussed above, the VEVof ω0 is directly related to

the density of the system, see Eq. (2). Thus, with Γσω0
in

Eq. (18) we have provided a microscopic derivation of the
mixing between the chiral condensate and the density. The
relevance of this mixing for the physics of the QCD critical
point has previously been discussed based on phenomeno-
logical arguments [33,60]. Our analysis shows that this
might not be the whole story, however, as further linear
couplings to the chiral condensate emerge in QCD.
The mixing with the Polyakov loops is particularly

interesting. Φ and Φ̄ are related to the (exponential of)
the free energy of single, static quarks and antiquarks in the
system. Hence, their admixture to the chiral condensate links
confinement and chiral symmetry breaking. Furthermore,
the temporal gluon field can be viewed as a Lagrange
multiplier to enforces Gauss’s law in QCD. The mixing with
the density therefore leads to the familiar contribution of the
quarks to the color charge density. The mixing with σ shows
that the chiral condensate also contributes to this charge
density.
In-medium mixing in QCD is of course well known. For

example the mixing between the vector and axial vector
mesons due to interactions with pions in the heat bath [61]
ρ − ω mixing [62], or the mixing between different
Goldstone bosons at large baryon-, isospin-, and strangeness
chemical potentials [63]. In addition, our discussion is
limited to the case of two degenerate quark flavors applied
to critical physics. Following the same line of reasoning as
above, it is straightforward to see that in general mixing in
QCD is considerably more extensive. For example, taking
into account the strange quark gives rise to additional
mixing with the strange chiral condensate, or, in terms of
mesons, a combination of f0ð500Þ and f0ð980Þ. At finite
spatial momentum, also the spatial components of ωμ

contribute. If flavor symmetries are relaxed, e.g., through
different chemical potentials, and also excited states are
taken into account, the mixing proliferates further.

B. Induced Hessian

We have derived the medium induced mixing in terms
of fundamental objects in QCD. But while the chiral
condensate and the quark density can be identified with
the vacuum expectation values of mesonic operators, the
Polyakov loop itself cannot be interpreted as some sort of
field. However, since it is the trace of an exponential of an
SUðNcÞmatrix, cf. Eqs. (16) and (17), we may express it in
terms of the eigenvalues θc of this matrix,

Φ ¼ 1

Nc

XNc

c¼1

heigθc=Ti: ð28Þ

The eigenvalues obey
P

c θc ¼ 0, so there are Nc − 1

independent eigenvalues. We use the following parametri-
zation for QCD,

θ1 ¼
a3
2
þ a8
2
ffiffiffi
3

p ; θ2 ¼−
a3
2
þ a8
2
ffiffiffi
3

p ; θ3 ¼−
a8ffiffiffi
3

p ; ð29Þ

which leads to

Φ ¼ 1

3
e

ia8
2
ffiffi
3

p
T

�
2 cos

	
a3
2T



þ e−

3ia8
2
ffiffi
3

p
T

�
;

Φ̄ ¼ 1

3
e

−ia8
2
ffiffi
3

p
T

�
2 cos

	
a3
2T



þ e

3ia8
2
ffiffi
3

p
T

�
: ð30Þ

This parametrization can be motivated by using that the
Polyakov loop is related to a nonvanishing temporal gluon
background field Ā0. This field can be rotated into the
Cartan subalgebra, see Eq. (9), and we can identify the

components of Ā0 with our parameters, gĀð3Þ
0 ¼ a3 and

gĀð8Þ
0 ¼ a8. Hence, a3 and a8 can loosely be interpeted as

eigenvalues of a temporal gluon background field. As has
been noted previously, real Polyakov loops require a purely
imaginary a8 at finite density [36,56–58]. We emphasize
that the Polyakov loop is not the same as the exponential of
Ā0, although both are linked to the confinig properties of
QCD and can serve as order parameters for confinement in
the pure gauge theory [64].
Most importantly, the parametrization Eq. (30) provides

a natural way to express the Polyakov loops in terms of
field-like variables a3 and a8. We can use this to define the
Hessian, or mass matrix, of the QCD effective action,

H ¼ ðΓϕiϕj
Þ; ð31Þ

which is understood to be a 4 × 4 matrix with ϕ ¼
ðσ; a3; a8;ω0Þ. The entries involving a3 and a8 are directly
related to the couplings involving Φ and Φ̄ via

Γϕia3=8 ¼
	

∂Φ
∂a3=8



ΓϕiΦ þ

	
∂Φ̄
∂a3=8



ΓϕiΦ̄: ð32Þ

With this, the Hessian in Eq. (31) is, to leading order in the
saddle point approximation, determined by the linear
couplings derived in Sec. II A. It follows from the analysis
of the previous section that H has nonzero off-diagonal
elements in a medium. This implies that diagonalization is
required and the physical degrees of freedom are linear
combinations of these fields.
The nontrivial mixing found here is directly related to the

breaking of charge conjugation symmetry, C, at finite
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density. Since ω0 is a component of a vector field, under
charge conjugation it transforms as Cω0 ¼ −ω0. Because
gauge fields transform as CAμ ¼ −At

μ, under C the param-
eter a8 changes sign

1 andΦ and Φ̄ are exchanged. Nonzero
Γσω0

, Γω0Φ and Γω0Φ̄ therefore break C-symmetry, reflecting
the C-symmetry breaking at finite density. C symmetry
breaking also leads to Φ ≠ Φ̄. For the mixing terms this
implies ΓσΦ ≠ ΓσΦ̄, Γω0Φ ≠ Γω0Φ̄ and ΓΦΦ ≠ ΓΦ̄ Φ̄. This
also implies that a8 in Eq. (30) must be nonzero and
imaginary at finite density, because the Polyakov loops are
real. Hence, all off-diagonal terms of the Hessian in
Eq. (31) involving either a repulsive ω0 or a8 are purely
imaginary at finite density and change sign under C.
This shows that the Hessian becomes non-Hermitian if

charge conjugation symmetry is broken. However, complex
conjugation K exchanges Φ and Φ̄ by definition. The
Polyakov loops therefore transform into themselves under
CK. Since all couplings with either a single ω0 or a single
a8 are imaginary, they change sign under K. Putting all this
together, we see that the system retains an antilinear CK
symmetry at finite density [37]. We will get back to this
point in the next section.

III. MIXING AND THE PHASE STRUCTURE

In-medium mixing can have large effects on the phase
structure. We show that, first, it changes the nature of the
soft modes that govern the system near second-order phase
transitions. Second, the resulting “weaker” (as compared to
Hermiticity) CK symmetry of the Hessian can give rise to
spatially modulated regimes.

A. Criticality

If the order parameter is known, like the chiral con-
densate σ̄ for the chiral phase transition, the second-order
critical point can be identified, e.g., through the divergence
of the slope of σ̄ðTÞ. While this is sufficient to locate the
critical point, it says nothing about its nature. In order to
identify the critical modes, we use that, following the work
of Lee and Yang, a branch point of the thermodynamic
potential Ω̄ðμÞ, where we omit other arguments such as T
since they are irrelevant here, is expected to pinch the real
chemical potential axis at the CEP [65,66]. This branch
point is called the Yang-Lee edge singularity (YLE). Away
from the phase transition, e.g., at small μ in QCD, the YLE
is the singularity in the complex μ plane closest to the real μ
axis. In QCD, we identify the YLE as follows: We assume
that the effective potential ΩðϕÞ is continuously differ-
entiable and the EoM,

∂ΩðϕÞ
∂ϕi

����
ϕi¼ϕ̄i

¼ 0; ð33Þ

has solutions for all positive T and complex μ. The effective
potential evaluated on the solution of the EoM defines the
thermodynamic potential,

Ω̄ðμÞ ¼ Ωðϕ̄ðμÞÞ: ð34Þ

The implicit function theorem states that Eq. (33) can
locally be inverted to give unique continuously differ-
entiable functions ϕ̄iðμÞ as long as the Hessian

HðμÞ ¼
	

∂
2Ω

∂ϕi∂ϕj


����
ϕi¼ϕ̄i

ð35Þ

is invertible. Conversely, if HðμÞ has at least one vanishing
eigenvalue at μYLE ∈C, then ϕ̄iðμÞ is not differentiable at
μYLE. In presence of a branch cut, this singularity corre-
sponds to the branch point. Thus, the YLE is identified as
the (complex) chemical potential, μYLE, where at least one
of the eigenvalues of the Hessian becomes zero.
The mixing discussed in the previous section gives rise

to a nontrivial Hessian which, for two degenerate quark
flavors at vanishing momentum, is a 4 × 4matrix. Since we
have shown that the off-diagonal entries are in general
nonzero in the medium, it follows that neither the chiral
condensate σ ∼ hψ̄ψi alone, nor a linear combination
between only the condensate and the baryon density
∼ω0 can be the true critical mode of the CEP in QCD.
It should rather be a mixture of the σ field, the conserved
isoscalar density ω0, and the Polyakov loops here repre-
senting the nontrivial electric gluon correlations at finite
temperature in QCD.
Since the couplings ΓσΦ and ΓσΦ̄, or, equivalently, Γσa3

and Γσa8 , are nonzero also at μ ¼ 0 as long as T > 0 and
mq > 0, cf. Eqs. (20) and (22), also the potential critical
mode of the chiral transition at small quark mass has an
admixture of the Polyakov loop. This is, of course, only
relevant if there is a second order transition at nonzero
quark mass.2 If the second order transition happens to be at
zero current quark mass, the mixing vanishes.
The response of the system to changes in external

parameters, such as T, μ or the current quark mass m, is
characterized by the susceptibilities. They inherit the
singular behavior at the CEP from the YLE. To see this,
we note that ifΩðϕÞ is the effective potential and we denote
X ¼ ðT; μ; mÞ, the EoM leads to

∂ϕ̄i

∂Xa
¼ −H−1

ij
∂
2Ω

∂ϕj∂Xa

����
EoM

: ð36Þ

Using this relation, we can derive for the static suscep-
tibilities,

1Note that the Polyakov loops are even functions of a3.

2The nature of the chiral phase transition toward the chiral limit
is not entirely settled yet, e.g., see [67–70] for recent discussions.
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χab ¼
d2Ω̄

dXadXb
; ð37Þ

the identity

χab ¼
∂
2Ω̄

∂Xa∂Xb
þ ∂

2Ω
∂Xa∂ϕi

H−1
ij

∂
2Ω

∂ϕj∂Xb

����
EoM

; ð38Þ

see also, e.g., Refs. [58,71,72]. The susceptibilities diverge
at the CEP as a result of the YLE, because detH ¼ 0 at the
YLE and H−1 ∼ ðdetHÞ−1. Since the susceptibilities are
only sensitive to detH, not the individual eigenvalues, they
in general cannot reveal the nature of the critical mode.
However, in the vicinity of a second-order transition

universality entails that the system can be described solely
in terms of the soft modes of the system. The critical modes
are a crucial, and in the static case the only, part of these
modes. As mentioned above, their nature determines the
universal properties of the system.

B. Modulations and instabilities

In addition to the physics near critical points, we have
already seen that mixing leads to a non-Hermitian Hessian.
This has important consequences for the eigenvalues. As
noted above, in this case an antilinear CK symmetry
remains. The Hessian and its complex conjugate then obey
the relation

H ¼ CH�C; ð39Þ

where C is a diagonal matrix with entries −1 for the
components corresponding to the fields that lead to
imaginary mixing and þ1 everywhere else. In the notation
of Eq. (31), we have

C ¼ diagð1;−1; 1;−1Þ: ð40Þ

This relation implies that H and H� have the same set of
eigenvalues. The eigenvalues of the Hessian are therefore
either real or come in complex conjugate pairs. This can be
induced by the competition between repulsive and attractive
bosonic interactions or the lifted degeneracy between the
Polyakov loopΦ and its conjugate Φ̄ at nonzero real baryon
chemical potential [35–39]. The former can be deduced
from the imaginary mixing Γσω0

≠ 0 in Eq. (18), and the
latter from ΓσΦ ≠ ΓσΦ̄ and ΓΦΦ ≠ ΓΦ̄ Φ̄, cf. Eqs. (20), (22),
(25), and (26). A combination of these effects emerge in the
mixing Γω0Φ ≠ Γω0Φ̄ ≠ 0 in Eqs. (23) and (24). All this
arises from the breaking of charge conjugation symmetry
at μ > 0.
The Hessian discussed here corresponds to the static self-

energy corrections at zero momentum. Hence, taking only
these corrections into account, the scalar part of the inverse
static propagator matrix is

hϕð0;pÞϕð0; 0Þi−1 ∼ G−1
ϕ ðpÞ ¼ p2 þH; ð41Þ

where H the n × n Hessian matrix of the multifield ϕ. The
static propagator of the eigenmodes χi to the eigenvalue of
the Hessian Hi is

G−1
χ ðpÞ ¼ p2 þ diagðH1;…; HnÞ: ð42Þ

Since we have shown that the eigenvaluesHi can in general
be complex, the propagator of an eigenmode at large spatial
separation r is

GχiðrÞ !
r→∞ ∼ e−Re½Hi�r sinðIm½Hi�rÞ: ð43Þ

Hence, complex eigenvalues lead to spatial modulations in
particle correlations. The imaginary part determines the
wave number of this modulation. Following our discussion,
we expect this to occur at finite density, leading to so-called
complex or patterned regimes in the phase diagram [39,40].
They are separated from regimes with real eigenvalues by
disorder lines [73,74].
In addition to the identification of spatial modulations,

the eigenvalues of the Hessian can also be used to test the
stability of the ground state, which we assumed to be
homogeneous here. To see this, note that one-loop correc-
tions to the free energy from fluctuations described by Gϕ

in Eq. (41) are given by ∼ ln detðp2 þHÞ. If the determi-
nant becomes negative, the free energy becomes complex
and the system is unstable [75]. The stability of the ground
state can hence be tested by studying the poles of the
propagator in p2. They can be read off from the zeros of the
equation

detðp2 þHÞ ¼ 0: ð44Þ

This is a characteristic equation of H with solutions
p2
i ¼ −Hi, where i ¼ 1;…; n and Hi are the eigenvalues

of H. We can therefore directly use the eigenvalues of the
Hessian to perform a stability analysis. Since this does not
take into account momentum-dependent self-energy cor-
rections, such an analysis cannot detect all possible
instabilities, cf., e.g., [11,76–80]. However, owing to the
nontrivial structure of the Hessian in the presence of
mixing, certain instabilities can readily be detected. This
idea of doing a stability analysis based on mixing has been
put forward in Refs. [39,40].
If the eigenvalues are either real and positive or, as

discussed above, complex, the system remains stable. The
former case corresponds to ordinary screening and the latter
to spatially modulated correlations in a system with a
homogeneous ground state.3 In both cases, the free energy
is real for any real spatial momentum.

3A stable homogeneous phase with spatial modulations has
also been discussion in Refs. [12,81], where it has been dubbed a
quantum-pion liquid.
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Instabilities occur if at least one eigenvalue is negative.
Then the static Euclidean propagator has a pole at p2

i > 0

and the determinant in Eq. (44) is negative for some p2 ≤ 0.
This typically entails that an inhomogeneous ground state
with a wave number related to the pole position is favored.
Following Ref. [40], these instabilities can be classified
further: If there is an even number of negative eigenvalues,
the propagator is positive at p2 ¼ 0 but negative at nonzero
momentum. Thus, the system is stable against homo-
geneous fluctuations, but has an inhomogeneous instability.
For an odd number of negative eigenvalues, the propagator
is already negative at p2 ¼ 0 and the system is unstable
against both homogeneous and inhomogeneous fluctua-
tions. These two cases have been called patterned and
unstable in Ref. [40], respectively.

IV. MODEL STUDIES

In order to understand the mixing in QCD and illustrate
its physical consequences in more detail, it is instructive to
do explicit calculations. To this end, we use well-established
low-energy models based on the coupling between quarks,
mesons and gluon background fields. We first employ a
standard Polyakov–quark-meson (PQM) model as the
simplest example of the main effects in Sec. IVA, and
then consider a more complete model, which in addition
features the repulsive vector interaction in Sec. IV B.
PQM models are widely used as they describe various

features of QCD at low energies, especially regarding
thermodynamics and the phase structure, see [41] and
references therein.

A. Polyakov–quark-meson model

Since the admixture of the Polyakov loops in the critical
mode is perhaps the most surprising finding of this work,
we first study a two-flavor PQMmodel which describes the
low-energy dynamics of quarks, σ, pions and the Polyakov
loops. The Euclidean action of this simple PQM model is

SPQM ¼
Z

β

0

dx0

Z
d3x

�
ψ̄ ½γμ∂μ þ γ0ðμþ iA0Þ�ψ

þ hσ
2
ψ̄ðσ þ iγ5π · τÞψ þ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπÞ2

þ Vðσ;πÞ þUðΦ; Φ̄Þ
�
; ð45Þ

where x0 is imaginary time, β ¼ 1=T and τ are the Pauli
matrices. Quarks and mesons are coupled with the Yukawa
coupling h. The meson effective potential,

Vðσ;πÞ ¼ λ

4
ðσ2 þ π2 − ν2Þ2 − jσ; ð46Þ

consists of a chiral Oð4Þ-symmetric part ∼λ and a current j
that explicitly breaks this symmetry down to Oð3Þ. The

latter reflects the finite current quark mass and, conse-
quently, a nonzero pion mass in the phase with sponta-
neously broken chiral symmetry, j ¼ fπm2

π , with pion mass
and decay constant mπ and fπ .
For the Polyakov-loop potential UðΦ; Φ̄Þ, we use a

simple Zð3Þ center-symmetric polynomial,

1

T4
UðΦ; Φ̄Þ ¼ −

b2ðTÞ
2

ΦΦ̄ −
b3
3
ðΦ3 þ Φ̄3Þ þ b4

4
ðΦΦ̄Þ2;

ð47Þ

with the following Ansatz for the temperature dependent
coefficient

b2ðTÞ ¼
X3
n¼0

an

	
T0

T



n
: ð48Þ

This parametrization of the potential has been established
in [82], where the parameters were fixed to reproduce the
thermodynamics of the pure gauge theory. In particular,
T0 ¼ 270 MeV is the corresponding critical temperature of
the first-order deconfinement phase transition in SUð3Þ
pure Yang-Mills theory.
The free energy functional of the PQM model is

F ¼ ln
Z

Dϕexpf−SPQM½ϕ�g

¼ ln
Z

DðA0;σ;πÞ exp
�
−
Z
x

�
1

2
ð∂μσÞ2 þ

1

2
ð∂μπÞ2

þVðσ;πÞ þUðΦ; Φ̄Þ
�
þ ln detMðA0;σ;πÞ

�
; ð49Þ

with ϕ ¼ ðψ ; ψ̄ ; A0; σ;πÞ. We have integrated out the
quarks in the second line, which gives rise to the functional
determinant of the Dirac operator,

MðA0;σ;πÞ¼ γμ∂μþ γ0ðμþ iA0Þþ
hσ
2
ðσþ iγ5π · τÞ: ð50Þ

In mean-field approximation, with the gluon background in
the Cartan subalgebra and assuming a homogeneous VEV
ϕ̄ ¼ ð0; 0; Ā0; σ̄; 0Þ, the effective potential Ω ¼ −TF=V
becomes

Ωðσ;Φ; Φ̄Þ ¼ VðσÞþUðΦ;Φ̄Þ−T
V
ln detMðA0;σÞ: ð51Þ

The functional determinant is identical to the one in
Eq. (15) with the replacement μ̄ → μ, since our model
does not have vector mesons.
We fix the free parameters of the model as follows. The

pion decay constant fπ ¼ 93 MeV is identified with σ̄. We
choose the explicit symmetry breaking such that in vacuum
mπ ¼ 138 MeV. This fixes the value of the source j.
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The constituent quark mass in vacuum is set to
mq ¼ 1

2
hσfπ ¼ 300 MeV, which fixes hσ. The remaining

model parameters are related to the physical quantities as
follows: ν2 ¼ f2π −m2

π=λ and λ ¼ ðm2
σ −m2

πÞ=ð2f2πÞ. We
choose mσ ¼ 600 MeV, so the remaining parameters are
fixed. We emphasize that the latter two relations are strictly
mean-field and only valid because we neglect the vacuum
contribution of the quark determinant. Using dimensional
regularization, this contribution renormalizes the quartic
meson coupling in vacuum with a term ∼ϕ4 lnðϕÞ.
However, since this term has no influence on the mixing,
it is irrelevant for our qualitative discussion here. It will be
taken into account for completeness in the next section.
The mixing between σ and the Polyakov loops is

identical to the one in Eqs. (20) and (22), as it is solely
induced by the quark determinant in the PQM. The PQM
has the Hessian

HPQM ¼

0
B@

Ωσσ Ωσa3 Ωσa8

Ωσa3 Ωa3a3 Ωa3a8

Ωσa8 Ωa3a8 Ωa8a8

1
CA; ð52Þ

with the entries Ωϕiϕj
¼ ∂

2Ω
∂ϕi∂ϕj

jEoM ¼ Γϕiϕj
given in

Sec. II A. The conversion from Φ, Φ̄ to a3, a8 is done
using Eqs. (30) and (32). Since Ωσa8 and Ωa3a8 are
imaginary at μ ≠ 0, HPQM is not Hermitian, but CK
symmetric. Thus, complex eigenvalues are allowed as
long as they come in conjugate pairs. The existence of a
disorder line is therefore possible in this model, cf. [36]
and the discussion in Sec. III B.
We focus on the static properties of the model. In order to

identify the critical mode, it is important to clarify what the
relevant mass is. For a general Euclidean propagator
Gχðp0;pÞ of a scalar field χ, we can define two masses

(i) Pole mass: G−1
χ ðimpole; 0Þ ¼ 0.

(ii) Screening mass: G−1
χ ð0; imscrp̂Þ ¼ 0.

The former is the mass of the particle that is relevant, e.g., for
scattering processes. It represents the pole in the propagator
of a stable particle at timelike momenta. The latter formally
corresponds to a pole in the propagator at the spatial
momentum variable p2 ¼ −m2

scr and determines the large-
distance behavior of the correlations in spatial directions. In
fact [83], the screening mass

mscr ¼ 1=ξ ð53Þ

is the inverse correlation length ξ defined via

lim
jx1−x2j→∞

hχðt;x1Þχðt;x2Þi ∼ e−r=ξ; ð54Þ

with r ¼ jx1 − x2j. If χ is the critical mode, then its
correlation length diverges at the CEP. Conversely, its
screening mass vanishes. In this case, the order of the limits

of temporal and spatial momenta going to zero is crucial.
From the definition of the screening mass follows that at the
CEP, if χ is the critical mode,

lim
jpj→0

lim
p0→0

G−1
χ ðp0;pÞ ¼ 0: ð55Þ

Due to Landau damping in a thermal medium, these limits in
general do not commute [84]. In order to extract the
screening mass of the critical mode, the p0 → 0 limit has
to be taken first. This entails that we can extract the
screening mass in Euclidean space, as it occurs for spacelike
momenta. We can express the inverse propagator at p0 ¼ 0
as the sum of the tree-level contribution and self-energy
corrections Πðp0;p2Þ,

G−1
χ ð0;pÞ ¼ p2 þm2

χ þ Πð0;p2Þ; ð56Þ

where we assumed symmetry of the system under spatial
rotations. For the critical mode it is therefore sufficient to
consider the renormalized mass

m̄2
χ ¼ m2

χ þ lim
jpj→0

Πð0;p2Þ; ð57Þ

as it coincides with the screening mass at the CEP. This
mass is also known as the curavture mass. This means that
we can directly study the Hessian H in Eq. (31). From
the comparison between Eqs. (43) and (54) follows that the
curvature mass of the critical mode is given by the
eigenvalue of H whose real part vanishes at the CEP.
Moreover, from our discussion in Sec. III A follows that
the imaginary part of the eigenvalue has to vanish as well,
as otherwise there would not be an edge singularity. We
note that the vicinity of the CEP m̄χ is expected to be very
close to the screening mass.
To proceed, we solve the EoM for the effective potential

in Eq. (51). By evaluating the second derivatives of the
effective potential on the solutions ϕ̄ðT; μÞ we obtain the
Hessian in Eq. (52). We identify the CEP through the YLE,
i.e. through a vanishing eigenvalue of the Hessian at real
chemical potential. With the parameters discussed above,
we find

ðTCEP; μB;CEPÞjPQM ≈ ð189; 493.5Þ MeV; ð58Þ

where μB ¼ 3μ is the baryon chemical potential.
In Fig. 1 we show the three eigenvaluesH1,H2 andH3 at

μB ¼ μB;CEP as a function of T. Their lengthy explicit
expressions are not illuminating and hence not shown here.
The first eigenvalue, H1, coincides with the naive scalar
meson (curvature) mass, m2

σ ¼ Ωσσ, in vacuum. It is non-
zero, also at the CEP. The eigenvalues H2 and H3 are
associated with Ωa3a3 and Ωa8a8 in vacuum. We find
extended regions around the CEP where the real parts of
these eigenvalues, shown in the left plot of Fig. 1, are

HAENSCH, RENNECKE, and VON SMEKAL PHYS. REV. D 110, 036018 (2024)

036018-10



degenerate. In these regions they have imaginary parts with
opposite signs but equal magnitude, see the right plot of
Fig. 1. This is an explicit realization of the possibility of the
CK-symmetric Hessian to have complex conjugate pairs of
eigenvalues, H2 ¼ H�

3. Thus, matter is in the complex
regime discussed in Sec. III B.
Furthermore,H3 shows a sharp drop at the CEP. In order

to see the behavior near the CEP more clearly, we zoom in
on H3 in its vicinity in Fig. 2. We also show m2

σ in this
region for comparison. Importantly, we observe that m2

σ

does not vanish at the CEP. Thus, the naive scalar meson is
not the critical mode. Its true nature is a mixture of the
scalar meson and the Polyakov loops, or, loosely speaking,
the eigenvalues of a temporal gluon background field. This
is clearly demonstrated by the vanishing of H3 at the CEP.
We conclude that neither the curvature mass nor the
screening mass of the sigma meson vanish at the CEP,
but m̄2

χ ¼ H3 does.
This confirms through an explicit example the general

argument given in Sec. III A: In the presence of mixing, the
YLE manifests itself in the eigenvalues of the resulting

Hessian. As a consequence, the critical mode must be a
mixture of the involved fields/operators, which are the
scalar meson and the Polyakov loops in the PQM.
The intricate structure of the eigenvalues shown in Fig. 1

can be understood from an avoided crossing. To illustrate
this, consider a non-Hermitian submatrix of the full
Hessian, e.g.,

HðsubÞ ¼
 

Ωσσ iΩ̄σa8

iΩ̄σa8 Ωa8a8

!
; ð59Þ

where Ω̄σa8 is real. The eigenvalues of H
ðsubÞ are given by

HðsubÞ
� ¼Ωσσ þΩa8a8

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩσσ −Ωa8a8Þ2 − 4Ω̄2

σa8

q
: ð60Þ

From their difference,

HðsubÞ
þ −HðsubÞ

− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩσσ −Ωa8a8Þ2 − 4Ω̄2

σa8

q
; ð61Þ

it is obvious that eitherHðsubÞ
þ is always larger thanHðsubÞ

− , or
their real values degenerate and they get imaginary parts of
equal magnitude and opposite sign. The latter is facilitated
by the non-Hermitian Hessian. In any case, the real parts of
the eigenvalues never cross. This is a generalization of the
avoided crossing known from conventional quantum phys-
ics. We emphasize that this is a consequence of mixing.
Eigenvalues of the mass matrix are allowed to cross if the
corresponding modes do not mix, either because there is no
mixing at all or because the Hessian becomes block-
diagonal. However, it follows from our general analysis
and we have also explicitly confirmed that at finite T and μ
all entries of the Hessian are nonzero.
Avoided crossing also explains why the critical mode,

H3, does not coincide with the pure σ-mode, i.e. eigenvalue
that degenerates with m2

σ in the absence of mixing, H1. We
see from Fig. 1 that H1 would have to cross the other

FIG. 1. Eigenvalues H1,H2 and H3 of the Hessian of the PQM model at the critical chemical potential as functions of T. The real and
imaginary parts of these eigenvalues are shown in the left and right plot respectively.

FIG. 2. Scalar meson mass (dashed) and the eigenvalue H3 of
the Hessian (solid) as functions of T close to the CEP. While
the scalar meson mass stays finite at the CEP, the eigenvalue
vanishes.
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eigenvalues in order to become critical. This is forbidden
here. Note that this is specifically due to the mixing
between the chiral condensate and the Polyakov loops.
It is also interesting to observe that the complex phase

appears to be interrupted by the CEP. As seen in Fig. 1, H3

is complex right before and after the CEP, but real in its
immediate vicinity. The degeneracy of the real parts
appears to be lifted exactly where the crossing of eigen-
values is avoided. This indicates that a CEP and the
complex phase are mutually exclusive. This follows from
our discussion of Sec. III A, since the edge singularity
requires a vanishing eigenvalue, including its imaginary
part. This is also intuitively clear. In the complex phase, the
correlation functions associated with the complex eigen-
values show exponentially damped oscillatory behavior at
large distances, cf. Eq. (43). The real part of the eigenvalue
determines the inverse correlation length, while the wave
number of the oscillation is given by the imaginary part. At
the CEP the correlation length diverges. If this were to
happen in the complex phase, the correlation function
would be an oscillatory function with infinite range. This is
characteristic for an inhomogeneous phase and therefore
contradicts the assumption of homogeneous solutions of
the EoM that has been made to find the CEP in the first
place. So either an ordinary CEP exists without spatial
modulations, or there are spatial modulations at the
location of the CEP and its nature is changed, possibly
to a Lifshitz point [85] or a Lifshitz regime [17].
We emphasize that the fact that only one real eigenvalue

vanishes here implies that the CEP still belongs to the
universality class of the 3d Ising model. So while the nature
of the critical mode of the QCD critical point is different
than expected, its static universality is unchanged. We
expect that this conclusion does not change in the realistic
case, where the ω0 is added to the mix as well. This is
verified next.

B. Polyakov–quark-meson model with vector repulsion

As we have explicitly demonstrated in Sec. II A there is
also a medium-induced mixing to the isoscalar density ω0

in the vector channel. We therefore add a repulsive vector
interaction to the PQM of the previous section for com-
pleteness. This is achieved by adding the following
corrections to the effective action shown in Eq. (45),

ΔS ¼
Z

β

0

dx0

Z
d3x

�
ihωψ̄γ0ω0ψ þ 1

2
m2

ωω
2
0

�
; ð62Þ

so that the effective action of the PQM with a repulsive
vector interaction (PQMV) is

SPQMv
¼ SPQM þ ΔS: ð63Þ

This is the minimal extension of the PQM to capture the
mean-field effects of ω0. It can be derived from microscopic

interactions by performing a Hubbard-Stratonovich trans-
formation of an effective, pointlike four-quark interaction in
the repulsive temporal vector channel ∼ðψ̄γ0ψÞ2. Of course,
higher-order vector self-couplings and interactions between
σ and ω0 are also possible, but irrelevant for the present
analysis. The thermodynamics of a similar model with an
attractive ω0 interaction has been studied in [86].
Using that ω0 condenses at nonzero density, the resulting

effective potential is

Ωðσ;ω0;Φ; Φ̄Þ ¼ VðσÞ þ 1

2
m2

ωω
2
0 þUðΦ; Φ̄Þ

−
T
V
½ln detMðA0; σ;ω0Þ

þ ln detMvacðσÞ�: ð64Þ

The thermal part of the quark determinant is now identical
to the one obtained from the leading order saddle
point approximation in Eq. (15). In the spirit of a more
complete model, we also take the renormalized vacuum
contribution of the quark determinant into account.
Following, e.g., [87,88], and using that the ω0 mean field
acts like a chemical potential, it reads after dimensional
regularization and minimal subtraction of the divergent
piece,

T
V
ln det MvacðσÞ ¼ NfNc

h4σσ4

28π2
ln

	
h2σσ2

4Λ2



: ð65Þ

Λ is the renormalization scale. This contribution renorm-
alizes the quartic meson coupling λ in Eq. (46) and as such
affects the EoM of σ and the scalar and pseudoscalar meson
masses. This affects the parameters of the bosonic potential,
for which we now choose ν ¼ 107 MeV and λ ¼ 20. This
yields fπ ¼ 93.3 MeV and mσ ¼ 477.7 MeV. In addition,
we fix the ω mass parameter as commonly done to mω ¼
782 MeV and set the vector Yukawa coupling to hω ¼ 1.
We note, however, that the only independent new param-
eter from the vector interaction is the ratiomω=hω, and that
this parameter is not really related to the mass of the
physical isoscalar vector meson. We refer to [89] for a
related discussion. All other parameters are unchanged
from above. We furthermore note that the vacuum fluc-
tuations move the CEP to significantly smaller T and larger
μB. We counteract this effect to some extent by choosing a
smaller mσ as compared to the previous section. The
resulting CEP is then at

ðTCEP; μB;CEPÞjPQMV
≈ ð60.1; 906Þ MeV: ð66Þ

The Hessian is a 4 × 4 matrix,
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HPQMV
¼

0
BBBB@

Ωσσ Ωσa3 Ωσa8 Ωσω0

Ωσa3 Ωa3a3 Ωa3a8 Ωa3ω0

Ωσa8 Ωa3a8 Ωa8a8 Ωa8ω0

Ωσω0
Ωa3ω0

Ωa8ω0
Ωω0ω0

1
CCCCA: ð67Þ

Contributions of the quark determinant to its entries are
given by the expressions in Sec. II A plus a corresponding
second derivative of the vacuum term in Eq. (65). The
contributions from the purely bosonic part of the effective
potential can be read off from Eqs. (46), (47), and (62).
Again, the conversion from Polyakov loops to Ā0 eigen-
values is done by Eqs. (30) and (32).
We repeat the analysis of the eigenvalues of the Hessian

near the CEP of this model as in the previous section. The
results for the four eigenvalues of HPQMV

at the critical
chemical potential are shown in Fig. 3. The eigenvaluesH1,
H2, H3 and H4 are associated with Ωσσ , Ωa3a3 , Ωa8a8 and
Ωω0ω0

in the absence of mixing. In the small region around
the CEP shown here, all eigenvalues are real and there is no
complex regime.
As for the PQM in the previous section, we again find

that the critical mode is associated with H3, not as naively
expected with H1. Also here this is a result of avoided
crossing. We compareH3 to the σ curvature mass in the left
plot of Fig. 3. Due to in-medium mixing, they are not the
same. Analogous to the above, we find that the critical
mode is a mixture of σ, ω0 and the Polyakov loops.
We can use the (in general complex) eigenvector vn to

the eigenvalue Hn of the Hessian to quantify this mixture.
To this end, note that the Hessian is in the basis defined by
ϕ ¼ ðσ; a3; a8;ω0Þ. We can therefore use the normalized
modulus of the components of the eigenvectors,

v̂in ¼
jvinjP
ijvinj

; ð68Þ

to read-off the mixing from

v̂inϕi ¼ v̂1nσ þ v̂2na3 þ v̂3na8 þ v̂4nω0: ð69Þ

At the CEP we find

v̂3ðTCEP; μB;CEPÞ ≈ ð0.807; 0.082; 0.003; 0.108Þ; ð70Þ

which means that about 80% of the critical mode stems
from the chiral condensate and the rest from the density and
the Polyakov loops in roughly equal parts. This remarkable
given that the critical mode is associated to the eigen-
value H3.
From the left plot of the left plot of Fig. 3 it is also

apparent that the naive curvature mass Ωσσ is in general
unphysical, as it becomes negative close to the CEP. Note
that this does not entail that σ-like fluctuations are unstable,
as these cannot be considered separately in the presence of
mixing. A similar observation has been made in models for
nuclear matter with a repulsive vector interaction [35]. We
emphasize that the CEP is signaled by the diverging
susceptibility in Eq. (38). This is triggered by the vanishing
of (at least) one eigenvalue of the Hessian. Some zero entry
in the Hessian alone, e.g.,Ωσσ ¼ 0 as seen in the left plot of
Fig. 3, is of no physical meaning in the presence of mixing.
We also compare the eigenvalue H4 in the right plot to

the naive ω curvature mass, m2
ω ¼ Ωω0ω0

. Around the CEP
about 80% of H4 stems from the density and 11% from the
chiral condensate, explaining the difference between this
eigenvalue and m2

ω.
Away from the CEP, also this model features a complex

regime. This is demonstrated in Fig. 4, where we show the
real and imaginary parts of the eigenvalues at T ¼ TCEP and
various baryon chemical potentials. Avoided crossing is
again clearly seen in the real parts. The real parts ofH2 and
H3 are degenerate between μB ≈ 230–810 MeV, with
opposite imaginary parts. In contrast to the PQM, the
complex regime does not arise in the immediate vicinity of
the CEP. However, the avoided crossing between H1, H2

andH3 is what appears to take the system out of this regime
also here.
The exact location of the complex regime is certainly

model-dependent. But, together with Refs. [35–40], our
results provide further evidence that this is a generic feature
of systems with CK symmetric Hessians.

FIG. 3. Eigenvalues H1, H2, H3 and H4 of the Hessian of the PQMV at the critical chemical potential as functions of T. The second
eigenvalue is compared to the naive σ meson mass (dashed blue line in the left plot) and the fourth eigenvalue to the naive ωmeson mass
(dashed gray line in the right plot). Without mixing, i.e. in vacuum, H1 corresponds to the squared σ meson mass, H4 to the squared ω
mass and H2 and H3 to temporal gluon correlations at zero momentum.
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V. CONCLUSION

We have shown that the breaking of charge conjugation
symmetry in a dense medium leads to an intricate mixing
that directly affects qualitative features of QCD matter at
and around the critical point. Repulsive mixing between
the chiral condensate, the density and the Polyakov loops
gives rise to a non-Hermitian Hessian. This is induced
in particular by a repulsive vector interaction and the
lifted degeneracy between the expectation values of the
Polyakov loop and its conjugate at finite density. However,
the system retains a residual CK symmetry and the Hessian
can either have purely real eigenvalues or they come in
complex conjugate pairs. The former occur in ordinary
homogeneous phases, while the latter give rise to a
patterned regime where correlations show spatial modu-
lations as in a liquid.
Since the critical point is a Yang-Lee edge singularity,

the critical mode can be identified by the eigenmodes to the
vanishing eigenvalues of the static Hessian. It is hence a
mixture of chiral condensate, the density and the Polyakov
loops. In particular the admixture of the Polyakov loops,
which are related to the free energy of single quarks, has
been overlooked so far. Furthermore, the mixing leads to
an avoided crossing of the eigenvalues of the Hessian. The
critical mode is therefore in general not connected to
the chiral condensate in vacuum if there are lower-lying
eigenmodes in the system.
We found that a patterned regime with complex-con-

jugate eigenvalues and an ordinary CEP are mutually
exclusive. If the critical mode would have spatially modu-
lated correlations with infinite range, the system would be
in an inhomogeneous phase. Formally, this follows from
the requirement that both real and imaginary part of the
eigenvalue of the Hessian vanish for the critical mode at
the CEP.
We have studied the static eigenmodes near the CEP in

different variations of the PQM model which exhibit these
features in mean-field approximation. This allowed us to
illustrate the physical consequences of medium-induced

mixing using phenomenologically successful low-energy
models of QCD. An exhaustive study of the parameter
dependence and the full phase structure of these models in
the presence of mixing is deferred to future work. However,
we emphasize that due to the substantial mixing, the
complex regime in the phase diagram of these models
seems to be a robust feature.
In addition to complex eigenvalues of the Hessian,

spatial modulations can arise from other features of the
self-energies of particles. For example, particles can be in a
moat regime, where they have minimal energy at nonzero
momentum [7,12,14,18]. Or there can be an instability
toward the formation of an inhomogeneous phase [11].
Note that the latter is a special case of the moat regime,
where the energy at the bottom of the moat vanishes. If and
how the complex and the moat regime are connected is not
entirely clear. It is known that a moat regime can arise even
if mixing is not taken into account, see, e.g., Refs. [7,77].
Hence, while a complex regime is sufficient for spatial
modulations, it is not necessary. Understanding the relation
and interplay between these different features is an inter-
esting open problem. In any case, their ubiquity is a strong
indication that spatially modulated regimes are natural in
dense systems.
We emphasize that our analysis is not limit not the

vicinity of the CEP of QCD at finite baryon chemical
potential. It can be viewed as a blueprint to study the effects
of mixing in various scenarios. Within QCD, additional
mixing arises at finite strangeness and isospin chemical
potentials as well as in the presence of other order
parameters, such as diquarks in the color-superconducting
phase at very large density. The nature of the critical modes
at other critical points can also change, with potentially far
reaching consequences for dynamical scaling.
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