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We derive the equations of motion for all the irreducible moments of the single-particle distribution
function. We find that these moment equations of motion are highly coupled, with the dynamics of lower-
rank moments always being coupled to those of a higher-rank, leading to an endless tower of equations.
Considering a massless gas in Bjorken flow, we investigate how this hierarchy of differential equations can
be properly truncated and solved.
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I. INTRODUCTION

For the past decades, relativistic fluid dynamics has
been successfully used in the description of cold atomic
gases [1,2] as well as of the quark-gluon plasma created in
ultrarelativistic heavy-ion collisions [3–5]. In order to obtain
an accurate description of these systems, it is indispensable
to take into account dissipative effects in the differential
equations that govern the relativistic fluid-dynamical evo-
lution. This has motivated a general discussion on the
derivation of relativistic dissipative fluid dynamics from an
underlying microscopic theory [5–7] and, furthermore, in
establishing the domain of applicability of such fluid-
dynamical formulations. In particular, this issue has been
widely investigated for relativistic dilute gases using the
Boltzmann equation as a starting point [7].
Chapman-Enskog theory [8–10] is the most widespread

method to derive fluid dynamics from the Boltzmann
equation. In this approach, a particular solution for the
single-particle distribution function is found in the form of a
gradient expansion. Different truncations of this expansion
lead to distinct fluid-dynamical theories: a truncation at
zeroth order leads to the Euler equations (ideal fluid
dynamics), while at first order it yields the Navier-Stokes
equations [11]. Unlike its nonrelativistic counterpart, the
relativistic Navier-Stokes theory is ill-defined, as its acausal
nature renders the global equilibrium state unstable [12,13].
Moreover, higher-order truncations of the Chapman-Enskog
expansion lead to Burnett and super-Burnett theories, which
suffer from the so-called Bobylev instability even in the
nonrelativistic regime [14]. These problems lead to the
conclusion that the traditional Chapman-Enskog method

does not yield fluid-dynamical formulations that can
actually be employed for practical purposes.1

An alternative to obtain fluid-dynamical theories from
the Boltzmann equation that does not display nonphysical
features is the method of moments. It was originally
developed by Grad for nonrelativistic gases [18], intro-
ducing an expansion for the single-particle distribution
function in terms of a complete and orthogonal basis of
generalized Hermite polynomials [19]. Three decades
later, Israel and Stewart were the pioneers in extending
Grad’s work to relativistic systems [20]. In the absence of a
convenient orthogonal basis, they simply expanded the
single-particle distribution function using a basis of
4-momenta, 1; kμ; kμkν; � � �. This expansion is then trun-
cated at second order, so that the distribution function is
described solely in terms of degrees of freedom that can be
matched to the independent fields appearing in the con-
served currents. The truncated distribution function is
finally inserted into the first three moments of the
Boltzmann equation, leading to the so-called Israel-
Stewart transient theory of relativistic fluid dynamics.
The derived equations are shown to be linearly causal
and stable as long as the transport coefficients satisfy
certain constraints, cf., Refs. [21–24]. We remark that a
major difference between the method of moments and the
Chapman-Enskog method is the fact that the first relies on
a truncation in degrees of freedom, while the latter
corresponds to a truncation in a small parameter, charac-
terized by gradients of the fluid-dynamical variables.

*Contact author: caio_brito@id.uff.br
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1In Ref. [15], a possibly convergent generalization of the
Chapman-Enskog expansion was proposed. However, its con-
vergence has only been investigated in Bjorken flow [16] within
the relaxation time approximation [17].

PHYSICAL REVIEW D 110, 036017 (2024)

2470-0010=2024=110(3)=036017(21) 036017-1 © 2024 American Physical Society

https://orcid.org/0000-0001-5237-2701
https://orcid.org/0000-0002-8395-9756
https://ror.org/02rjhbb08
https://ror.org/04cvxnb49
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.036017&domain=pdf&date_stamp=2024-08-26
https://doi.org/10.1103/PhysRevD.110.036017
https://doi.org/10.1103/PhysRevD.110.036017
https://doi.org/10.1103/PhysRevD.110.036017
https://doi.org/10.1103/PhysRevD.110.036017


In Ref. [25], the relativistic version of the method of
moments was generalized and the single-particle distribu-
tion function was expanded in terms of a basis of irreduc-
ible2 momenta, 1; khμi; khμkνi; � � �. In contrast to the basis
chosen by Israel and Stewart, the irreducible momenta form
a complete and orthogonal basis [7,10]. Hence, the expan-
sion coefficients can be obtained in exact form without
relying on a matching procedure, and their equations of
motion stem from the Boltzmann equation. In practice, one
replaces the Boltzmann equation by a set of coupled partial
differential equations for the moments of the single-particle
distribution function, and fluid-dynamical theories are then
obtained from a systematic truncation of these equations. As
a matter of fact, the method of moments, as proposed in
Ref. [25], has been consistently employed to obtain and
study causal fluid-dynamical theories from the Boltzmann
equation, cf. Refs. [26–41].
Nevertheless, the convergence of the moment equations

has never been fully explored in the relativistic regime. For
instance, the equations of motion for the moments are
highly coupled, with the dynamics of moments that are of a
lower order in the moment expansion coupling to those that
are of a higher order. How this hierarchy of equations can
be properly truncated and how this truncation quantitatively
affects the solutions for each moment is not well known.
One reason for this lack of studies is that the equations of
motion for the irreducible moments of the nonequilibrium
distribution function have only been obtained for a handful
of moments [25,34].3,4

In the present work, we bridge this gap by deriving the
equations of motion for all the irreducible moments of the
distribution function. Furthermore, we show how these
equations simplify in the highly symmetric configuration
of Bjorken flow [16]. In this case, we recover the results first
obtained in Ref. [7], where the method of moments was
developed employing the aforementioned symmetries from
the start. This shows the consistency of the derivations
developed in the present work. We then investigate the
convergence properties of the solutions for this hierarchy of
equations for a gas of classical massless particles in Bjorken
flow within the relaxation time approximation [17].
This work is organized as follows. In Sec. II we outline

the method of moments and, in Sec. III, systematically
calculate a hierarchy of equations of motion for the
irreducible moments of the distribution function. Then, in
Sec. IV, we derive the moment equations for a system
undergoing Bjorken flow and, in Sec. V, we thoroughly

analyze the convergence of the solutions for these equations
for a classical massless gas undergoing a Bjorken expan-
sion. All our conclusions are summarized in Sec. VI. The
details of the derivation of the main results of this paper is
delegated to the appendices. Throughout this work, we
make use of natural units, c ¼ ℏ ¼ kB ¼ 1, and adopt the
mostly minus convention for the Minkowski metric tensor,
gμν ¼ diagð1;−1;−1;−1Þ, unless stated otherwise.

II. RELATIVISTIC BOLTZMANN EQUATION
AND THE METHOD OF MOMENTS

The relativistic Boltzmann equation is an integrodiffer-
ential equation that describes the dynamics of the single-
particle momentum distribution of a dilute gas [9]

kμ∂μfk ¼ C½f�; ð1Þ

where kμ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
;kÞ is the 4-momentum, with m

being the mass of the particles, fk is the single-particle
distribution function, and C½f� is the collision term.
Considering classical particles and taking into account
exclusively binary elastic collisions, it reads

C½f� ¼ g
2

Z
dK0dPdP0Wkk0↔pp0 ðfpfp0 − fkfk0 Þ: ð2Þ

Here, g is the degeneracy factor (for simplicity, hereon
we assume g ¼ 1), dK ¼ d3k=½ð2πÞ3k0� is the Lorentz-
invariant volume element in momentum space and
Wkk0↔pp0 is the (also Lorentz-invariant) transition rate.
It is convenient to decompose the single-particle dis-

tribution function into an equilibrium and a nonequilibrium
contribution,

fk ¼ f0k þ δfk ¼ f0kð1þ ϕkÞ; ð3Þ

where f0k ¼ exp ðα − βEkÞ is the usual Maxwell-
Boltzmann equilibrium distribution function [44], with
α ¼ μ=T (referred to as the thermal potential, where μ is
the chemical potential and T is the temperature), β ¼ 1=T,
Ek ¼ uμkμ being the energy of the particle in the local rest
frame of the fluid, and uμ the fluid 4-velocity—a normalized
timelike 4-vector, uμuμ ¼ 1. The temperature and chemical
potential are defined via matching conditions [29]—in this
paper we employ the Landau matching conditions [11],
which will be specified later. Furthermore, δfk denotes the
deviation from local equilibrium of the distribution function,
with ϕk ≡ δfk=f0k. In the method of moments, the non-
equilibrium distribution function is expanded using a
complete and orthogonal basis of irreducible momenta [25],

ϕk ¼
X∞
l¼0

λhμ1���μlik khμ1 � � � kμli; ð4Þ

2with respect to Lorentz transformations that leave the fluid
4-velocity unchanged, i.e., Λμ

νuν ¼ uμ [10].
3In Ref. [42], general equations of motion for the reducible

moments of the single-particle distribution function were thor-
oughly investigated for a system of electrically charged particles,
in the context of the Boltzmann-Vlasov-Maxwell equation.

4During the writing of this manuscript, general moment
equations were also derived in Ref. [43].
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where Ahμ1���μli ¼ Δμ1���μl
ν1���νlA

ν1���νl denotes the irreducible projection of an arbitrary tensor Aν1���νl, with

Δμ1���μl
ν1���νl ¼

X½l=2�
q¼0

Cðl; qÞ
N l;q

X
Pl

μPl
ν

Δμ1μ2 � � �Δμ2q−1μ2qΔν1ν2 � � �Δν2q−1ν2qΔ
μ2qþ1
ν2qþ1

� � �Δμl
νl ; ð5Þ

being the 2l-index projection operator symmetric under the
exchange of μ- and ν-type indices, traceless and orthogonal
to the 4-velocity in every index [7,10]. It is constructed in
terms of the 2-index projection operator onto the 3-space
orthogonal to the fluid 4-velocity, Δμν ¼ gμν − uμuν. The
first sum runs up to the largest integer less than or equal to
l=2, while the second sum accounts for all possible
permutations of the indices. The factors Cðl; qÞ and
N l;q are defined as

Cðl; qÞ ¼ ð−1Þq ðl!Þ
2

ð2lÞ!
ð2l − 2qÞ!

q!ðl − qÞ!ðl − 2qÞ! ;

N l;q ¼
1

ðl − 2qÞ!
�

l!
2qq!

�
2

: ð6Þ

The former is essential to ensure the traceless property of
the projection operator,

Δμ1���μl
ν1���νl g

νiνj ¼ 0; Δμ1���μl
ν1���νl gμiμj ¼ 0; 1≤ ði; jÞ≤ l; ð7Þ

while the latter is simply the inverse of the total number of
permutations given in the second sum in Eq. (5), in order to
avoid overcounting any particular term.
We remark that, in contrast to the basis chosen by Israel

and Stewart, the irreducible momenta satisfy the following
orthogonality condition [7,10]

Z
dKFðEkÞkhμ1 � � � kμlikhν1 � � � kνmi

¼ l!δlm
ð2lþ 1Þ!!Δ

μ1���μl
ν1���νm

Z
dKFðEkÞðΔαβkαkβÞm; ð8Þ

with FðEkÞ being an arbitrary function of Ek.
Following Ref. [25], the expansion coefficients λhμ1���μlik

are functions of Ek and are further expanded using a

complete basis of orthogonal functions, PðlÞ
kn ,

λhμ1���μlik ¼
X∞
n¼0

Φhμ1���μli
n PðlÞ

kn : ð9Þ

For the sake of convenience,5 PðlÞ
kn are taken as polynomials

of Ek,

PðlÞ
kn ¼

Xn
r¼0

aðlÞnr Er
k: ð10Þ

Without loss of generality, we set PðlÞ
k0 ¼ 1, so that aðlÞ00 ¼ 1

and all remaining coefficients can be obtained using the
Gram-Schmidt orthogonalization procedure [25]. In par-
ticular, these functions are constructed to satisfy the
following orthogonality condition

N ðlÞ

ð2lþ 1Þ!!
Z

dKðΔαβkαkβÞlPðlÞ
kn P

ðlÞ
kmf0k ¼ δmn; ð11Þ

where N ðlÞ ¼ ð−1Þl=I2l;l—see Appendix E of Ref. [25]
or Ref. [7] for a detailed derivation—and Iij are thermo-
dynamic integrals defined as

Iij ¼
ð−1Þj

ð2jþ 1Þ!!
Z

dKEi−2j
k ðΔαβkαkβÞjf0k: ð12Þ

From the orthogonality condition (8), and using
Eqs. (4)–(11), the expansion coefficients in Eq. (9) can
be expressed as

Φhμ1���μli
n ¼ N ðlÞ

l!

Xn
r¼0

aðlÞnr ρ
μ1���μl
r ; ð13Þ

with ρμ1���μlr being the irreducible moments of the non-
equilibrium distribution function,

ρμ1���μlr ¼
Z

dKEr
kk

hμ1 � � � kμliδfk: ð14Þ

Finally, we have

fk ¼ f0k

 
1þ
X∞
l¼0

X∞
n¼0

Xn
r¼0

N ðlÞ

l!
aðlÞnr P

ðlÞ
kn ρ

μ1���μl
r khμ1 � � �kμli

!
:

ð15Þ

We have expressed the single-particle distribution func-
tion completely in terms of the irreducible moments of δfk,
which are the only terms a priori unknown in the
expression above. In principle, the exact solution for fk
is obtained when all sums are taken to infinity, although this
is unfeasible in practice. Nonetheless, as more terms are
included in the expansion, one expects to obtain values of
the distribution function which are in better agreement with

5For massless particles, they reduce to the associated Laguerre
polynomials [7].
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the exact solution of the Boltzmann equation, at least up to
a given energy scale. It is then necessary to determine the
time evolution of the irreducible moments in order to obtain
the single-particle distribution function itself, thus effec-
tively solving the Boltzmann equation. In general, this task
requires the inclusion of moments of arbitrarily high ranks
and not just those that appear in fluid-dynamical theories.
So far, equations of motion for the irreducible moments

have always been calculated separately (rank by rank), and,
to this day, only up to rank 4 [25,34]. Nevertheless, this task
becomes progressively more exhausting as one includes
moments of higher ranks in the expansion given by
Eq. (15). The main goal of this work is to calculate a
general equation of motion for an irreducible moment of
arbitrary rank l, from which the dynamics of any irreduc-
ible moment can be straightforwardly obtained.

III. EQUATIONS OF MOTION

First, it is convenient to define the irreducible moments
of a generic single-particle distribution function, fk,

ϱμ1���μlr ¼
Z

dKEr
kk

hμ1 � � � kμlifk: ð16Þ

We emphasize that the irreducible moments ϱμ1���μlr

are defined slightly different than ρμ1���μlr . They are inte-
grals of the single-particle distribution function, fk, rather
than integrals of its nonequilibrium component, δfk,
cf. Eq. (15). The latter prescription can be straightfor-
wardly recovered by simply factorizing fk as in Eq. (3).
We remark that only the scalar irreducible moments do not

vanish in equilibrium,6

Z
dKEr

kk
hμ1 � � � kμlif0k ≡ ϱeqn δl0 ¼ 0; ∀ l > 0; ð17Þ

where we defined ϱeqn as the equilibrium value of the
corresponding scalar irreducible moment.
We note that all the hydrodynamic variables can

be expressed in terms of the irreducible moments defined
in (16),

n ¼ ϱ1; ε ¼ ϱ2; P ¼ −
1

3
ðm2ϱ0 − ϱ2Þ;

nμ ¼ ϱμ0; Wμ ¼ ϱμ1; πμν ¼ ϱμν0 ; ð18Þ

where n is the particle density in the local rest frame, ε is the
energy density in the local rest frame, P is the isotropic
pressure, nμ is the particle diffusion 4-current, Wμ is the
energy diffusion 4-current, and πμν is the shear-stress tensor.
The Boltzmann equation, Eq. (1), can be expressed as

d
dτ

fk ¼ C½f�
Ek

−
1

Ek
khμi∇μfk; ð19Þ

where d=dτ ¼ uμ∂μ is the comoving time derivative and
∇μ ¼ Δμν

∂ν is the 4-gradient operator. Using this result, it
is possible to show that the irreducible moments of
arbitrary rank, ϱμ1���μlr , satisfy the following equations of
motion

ϱ̇hμ1���μlir ¼ Cμ1���μlr−1 þ rϱμ1���μlþ1

r−1 u̇μlþ1
− Δμ1���μl

ν1���νl∇νlþ1
ϱν1���νlþ1

r−1 þ ðr − 1Þϱμ1���μlþ2

r−2 σμlþ1μlþ2
þ lϱαhμ1���μl−1r ωμli

α

þ l
2lþ 1

�
rm2ϱhμ1���μl−1r−1 − ðrþ 2lþ 1Þϱhμ1���μl−1rþ1

�
u̇μli þ 1

3

�ðr − 1Þm2ϱμ1���μlr−2 − ðrþ lþ 2Þϱμ1���μlr
�
θ

þ l
2lþ 3

�ð2r − 2Þm2ϱαhμ1���μl−1r−2 − ð2rþ 2lþ 1Þϱαhμ1���μl−1r
�
σμliα −

l
2lþ 1

∇hμ1�m2ϱμ2���μlir−1 − ϱμ2���μlirþ1

�
þ lðl − 1Þ

4l2 − 1

�ðr − 1Þm4ϱhμ1���μl−2r−2 − ð2rþ 2l − 1Þm2ϱhμ1���μl−2r þ ðrþ 2lÞϱhμ1���μl−2rþ2

�
σμl−1μli; ð20Þ

where θ ¼ ∂μuμ is the expansion rate, σμν ¼ ∇hμuνi is the
shear tensor, ωμν ¼ ð∇μuν −∇νuμÞ=2 is the vorticity tensor
and Cμ1���μlr is the generalized collision term, defined
according to Ref. [25],

Cμ1���μlr ¼
Z

dKEr
kk

hμ1 � � � kμliC½f�: ð21Þ

In the derivation of Eq. (20), we have used the following
identities,

khμ1 � � �kμli ¼ khμ1i � � �khμli þ
X½l=2�
q¼1

ðΔαβkαkβÞq
l!
2qq!

Cðl;qÞ
N l;q

×
X
Pl

μ

Δμ1μ2 � � �Δμ2q−1μ2qkhμ2qþ1i � � �khμli; ð22aÞ

6This happens because, unless l ¼ 0, it is not possible to
construct an lth rank irreducible tensor solely in terms of T, μ,
uμ, and gμν.
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khν1 � � �kνlikhνlþ1i ¼ khν1 � � �kνlþ1i þ l
2lþ 1

× ðΔλβkλkβÞΔν1���νl
α1���αlΔαlνlþ1khα1 � � �kαl−1i:

ð22bÞ

The calculations to obtain Eqs. (20) and (22) are reported in
detail in Appendices A and B.
The result obtained in Eq. (20) is consistent with

previous calculations for l ¼ 0, 1, 2 [25], as well as for
l ¼ 3, 4 [34], originally derived in the context of second-
and third-order theories of relativistic fluid dynamics,
respectively. In particular, we remark that this result is
the relativistic generalization of Eq. (8) from Ref. [45].
Furthermore, we note that Eq. (20) do not clearly display
the traditional Navier-Stokes terms, i.e., terms that are of
first-order in gradients of thermal potential and 4-velocity.
This happens because such terms stem solely from deriv-
atives of the local equilibrium distribution function, while
the irreducible moments ϱμ1���μlr were constructed in terms
of the single-particle distribution function, without facto-
rizing its equilibrium component. In order to identify the
Navier-Stokes-like terms in the equations, the irreducible
moments must be separated into their equilibrium and
nonequilibrium parts. In particular, we remark that only the
equations of motion for the irreducible moments with l ≤ 2
have nonzero Navier-Stokes-like terms—these terms van-
ish for all moments of rank l ≥ 3, as a consequence of
Eq. (17). Nevertheless, we remark that these terms were
explicitly calculated in Ref. [25].
In order to obtain an expression for fk, it is necessary to

compute the dynamics of the irreducible moments, which in
turn satisfy a hierarchy of coupled differential equations. In
particular, as previously discussed, the exact single-particle
distribution function is obtained when the sums in Eq. (15)
are taken to infinity, i.e., when the dynamics of all its
irreducible moments is taken into account. In practice,
however, we are required to truncate the expansion in
Eq. (15), including the number of moments required for
the series to converge. Nevertheless, the goal of this paper
will be different. We will not evaluate the distribution
function itself but will instead verify how one can effec-
tively truncate the moment equations derived above and
how well this truncation procedure converges. This will be
discussed in detail in the next section in the context of boost-
invariant expanding systems, where the moment equations
derived above can be solved to a very high order.
In the following we define the local equilibrium state

using Landau matching conditions [11]. In this case, the
values of temperature and chemical potential are defined
in such a way that the particle and energy densities are
fixed to their corresponding equilibrium values, ϱ1 ≡ ϱeq1
and ϱ2 ≡ ϱeq2 , respectively. Furthermore, the 4-velocity
is defined so that the energy diffusion 4-current
vanishes, ϱμ1 ¼ 0.

IV. GAS OF MASSLESS PARTICLES
IN BJORKEN FLOW

Bjorken flow [16] is a simplified framework to study
ultrarelativistic heavy-ion collisions. It consists in assuming
that the bulk matter produced after the collision displays an
axial symmetry and is invariant under Lorentz boosts along
the collision axis. This highly symmetric flow profile
provides the simplest setup in which the fluid-dynamical
equations admit analytical solutions [46–48] and further
serves as a starting point to investigate solutions of the
Boltzmann equation [49–52].
The spacetime in Bjorken flow is more conveniently

described using hyperbolic coordinates, with a geometry
defined by the following metric tensor

gμν ¼ diagðgττ; gxx; gyy; gηsηsÞ ¼ diagð1;−1;−1;−τ2Þ; ð23Þ

where τ is the proper time and ηs is the spacetime rapidity.
These coordinates are related to the usual Cartesian
coordinates through

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; ηs ¼

1

2
ln

�
tþ z
t − z

�
: ð24Þ

In this coordinate system, the only nonzero Christoffel
symbols are

Γτ
ηsηs ¼ τ; Γηs

τηs ¼ Γηs
ηsτ ¼

1

τ
: ð25Þ

Therefore, all usual derivatives must be replaced by
covariant derivatives in the equations of motion for the
irreducible moments. In addition, we make the following
set of assumptions:
(1) The system is symmetric under reflections with the

respect to the ηs axis, i.e., ηs → −ηs.
(2) The system is homogeneous, i.e., invariant under

translations, along the ηs axis. This implies the
system is boost-invariant and thus all fluid-dynamical
quantities depend solely on the proper time τ.

(3) The system is homogeneous and isotropic (invariant
under translations and rotations) in the transverse
xy-plane.

These assumptions combined lead to a static fluid
velocity in hyperbolic coordinates, uμ ¼ ðuτ; ux; uy; uηsÞ ¼
ð1; 0; 0; 0Þ. Naturally, the fluid itself is not static, as its
expansion is embedded in the metric tensor and thus
manifests itself via the covariant derivatives of the
4-velocity [7]. In particular, the expansion rate and shear
tensor are given by

θ¼Dμuμ ¼
1

τ
; σμν ¼Dhμuνi ¼

�
0;

1

3τ
;
1

3τ
;−

2τ

3

�
: ð26Þ
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Finally, the symmetry assumptions imply that the space-
time dependence of fk is restricted to the time coordinate τ.
On top of that, the assumption of isotropy in the xy-plane
implies that the momentum dependence of fk can be fully
determined by magnitude of the transverse momentum,

k⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, and the longitudinal component, kηs . In

particular, given the on-shell condition, kμkμ ¼ 0, k⊥ can
be expressed solely in terms of k0 and kηs , via,

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2ηs=τ

2
q

. Then, in Bjorken flow, the single-

particle distribution function can be written as,

fk ¼ fðτ; k0; kηsÞ: ð27Þ

At this point, it is convenient to define a normalized
spacelike 4-vector zμ ¼ ð0; 0; 0;−τÞ, such that zμzμ ¼ −1,
that is orthogonal to the fluid 4-velocity, uμzμ ¼ 0, so that
Eq. (27) can be expressed in a covariant form,

fk ¼ fðτ; uμkμ; zμkμÞ: ð28Þ

The irreducible moments ϱμ1���μlr are defined as integrals
of fk over momentum space. Thus, in Bjorken flow, they
can only depend on τ, uμ, and zμ, see Eqs. (16) and (28). In
particular, their tensor structure must be constructed solely
from combinations of uμ, zμ, and the metric tensor, gμν. The
only combination of these tensors that form an irreducible
tensor of rank l is zhμ1 � � � zμli [7]. Thus, the irreducible
moments must have the following general form in Bjorken
flow,

ϱμ1���μln ¼ F ðτÞzhμ1 � � � zμli; ð29Þ

where we identify,

F ðτÞ ¼ ð−1Þl ð2l − 1Þ!!
l!

zhμ1 � � � zμliϱμ1���μln ; ð30Þ

making use of the identity [7]

zhμ1 � � � zμlizhμ1 � � � zμli ¼ ð−1Þl l!
ð2l − 1Þ!! : ð31Þ

The next step it to obtain the explicit form of F ðτÞ. First,
we note that [7]

zhμ1 � � �zμlikhμ1 � � �kμli ¼
X½l=2�
q¼0

Cðl;qÞð−E2
kÞqð−1Þq

�
kηs
τ

�
l−2q

¼El
k

X½l=2�
q¼0

Cðl;qÞðcosΘÞl−2q; ð32Þ

where we have defined cosΘ≡ kηs=ðτk0Þ. In particular, we
remark that the Legendre polynomials can be expressed
as [53]

PnðxÞ ¼
ð2n − 1Þ!!

n!

X½n=2�
q¼0

Cðn; qÞxn−2q; ð33Þ

thus leading to

zhμ1 � � � zμlikhμ1 � � � kμli ¼
l!

ð2l − 1Þ!!E
l
kPlðcosΘÞ: ð34Þ

Wherefore, it follows that

zhμ1 � � � zμliϱμ1���μln ¼ l!
ð2l − 1Þ!!

Z
dKknþl

0 PlðcosΘÞfk:

ð35Þ

The system’s invariance under reflections around the
ηs-axis further implies that fðτ; k0; kηsÞ ¼ fðτ; k0;−kηsÞ.
Moreover, the Legendre polynomials, PlðcosΘÞ, are even
(odd) functions of kηs , as long as l is equally even (odd).
Therefore, irreducible moments of odd rank are identically
zero in Bjorken flow [7]. Taking l → 2l, we have

zhμ1 � � � zμ2liϱμ1���μ2ln ≡ ð2lÞ!
ð4l − 1Þ!! ϱn;l; ð36Þ

where we have defined the new fields7

ϱn;l ¼
Z

dKkn0P2lðcosΘÞfk: ð37Þ

In particular, taking fk ¼ f0k, we obtain the equilibrium
value of the irreducible moments, which vanish unless
l ¼ 0, as a consequence of the orthogonality of the
Legendre polynomials [53],

ϱeqn;l ¼ geα
ðnþ 1Þ!
2π2

Tnþ2δl0; ð38Þ

with g being the degeneracy factor, which we have
previously assumed to be 1. In summary, the irreducible
moments of a generic single-particle distribution function
in Bjorken flow can be written as

ϱμ1���μ2ln ¼ ϱnþ2l;lzhμ1 � � � zμ2li: ð39Þ

7We remark that the momentsLl, investigated in Refs. [37–41],
are a subset of the irreducible moments ϱn;l for n ¼ 2. Further-
more, what these references refer to as mode coupling theory is
equivalent to the traditional method of moments discussed here.
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In order to obtain the equation of motion satisfied by
ϱn;l, it is still necessary to provide an expression for the
collision term, C½f�. In general, obtaining a closed expres-
sion for C½f� is the most challenging part of solving the
Boltzmann equation with the method of moments. It
typically requires the computation of several integrals
involving the single-particle distribution function and the
transition rate that determines the scattering processes,
which can be rather cumbersome even in the linear
regime [54,55]. In this work, however, we adopt a rather
simple prescription for the collision term, known as the
relaxation time approximation [17]. In this approach, the
single-particle distribution function is assumed to relax to
its equilibrium value within a timescale τR, and the collision
term becomes simply

C½f� ¼ −
Ek

τR
ðfk − f0kÞ ⇒ Chμ1���μlir−1

¼ −
1

τR
ðρμ1���μlr − ρμ1���μlr;eq Þ: ð40Þ

Hence, all irreducible moments also evolve toward their
equilibrium values within the same timescale. In particular,
we assume this to be the shear relaxation time, τR ¼ τπ ¼
5η=ðε0 þ P0Þ [25]. In order to be consistent with the
conservation of energy and momentum, this prescription
requires the imposition of Landau matching conditions
[56], which, as already mentioned, defines the values of the
temperature and chemical potential out of equilibrium so
that the particle and energy densities are fixed to their
equilibrium values, ϱ1;0 ≡ ϱeq1;0 and ϱ2;0 ≡ ϱeq2;0, respectively.
We are now finally in position to obtain a set of coupled

equations of motion for the irreducible moments in the
framework of Bjorken flow. Replacing Eqs. (39) and (40)
into Eq. (20) and contracting it with zhμ1 � � � zμ2li, we obtain

Dτϱn;l ¼−
1

τR
ðϱn;l− ϱeqn;lÞ−P

ϱn;l−1
τ

−Q
ϱn;l
τ

−R
ϱn;lþ1

τ
;

ð41Þ

where we have introduced the following coefficients

P ¼ 2l
ðnþ 2lÞð2l − 1Þ
ð4lþ 1Þð4l − 1Þ ; ð42aÞ

Q ¼ 2lð2lþ 1Þ þ nð24l2 þ 12l − 3Þ
3ð4l − 1Þð4lþ 3Þ þ 2

3
; ð42bÞ

R ¼ ðn − 2l − 1Þ ð2lþ 1Þð2lþ 2Þ
ð4lþ 1Þð4lþ 3Þ : ð42cÞ

We recovered the set of differential equations previously
obtained in Ref. [7], where the method of moments was
directly constructed assuming the symmetries of Bjorken

flow within the relaxation time approximation. In the
present work, however, we followed a different path: we
constructed the method of moments for a general flow
configuration and only then employed the assumptions of
Bjorken flow and the relaxation time approximation.
Finally, contracting the equation of motion for ϱμ1���μ2ln with
zhμ1 � � � zμli, we obtained the same result as in Ref. [7],
showing the consistency of the calculations developed here.
We note that the Denicol-Niemi-Molnár-Rischke equa-

tions of fluid dynamics [25] appear when the moment
equations (20) are truncated at rank 2, i.e., all moments of
rank higher than 2 are neglected. Moreover, the inclusion
of irreducible moments of rank 3 and 4 in the hierarchy of
equations (in Bjorken flow, this consists in including
irreducible moments ϱn;2) lead to third-order fluid dynam-
ics, as shown in Ref. [34]. As a matter of fact, if a
sufficiently large number of moments is included in the
hierarchy, one expects to obtain the exact solution for the
hydrodynamic fields. However, the behavior and conver-
gence of these solutions have not been fully explored. The
next step is to thoroughly analyze the behavior of the
irreducible moments and the convergence of this hierarchy
of differential equations.

V. CONVERGENCE OF THE SOLUTIONS

We solve Eq. (41) by imposing a truncation of the
moment expansion. In practice, this means that irreducible
moments of a given rank (or higher) will simply be
neglected in the calculations. In the highly symmetric flow
configuration considered in the previous section, this is
implemented by taking ϱn;l ¼ 0, ∀ l > lmax, with the
parameter lmax quantitatively specifying our truncation.
Once this is done, Eq. (41) can be solved using the Runge-
Kutta algorithm. Unless stated otherwise, we consider the
system to be in equilibrium at an initial time τ0, with a
temperature Tðτ0Þ ¼ 1 GeV and a vanishing chemical
potential. Also, we consider three distinct values of initial
time, always specified in units of τR, τ0=τR ¼ 0.01, 0.1,
and 1.
We first look at the convergence of solutions for the

temperature and thermal potential as a function of the
rescaled time, τ=τR, for lmax ¼ 2, 4, and 8. These quantities
are obtained by solving Eq. (41) and then using Landau
matching conditions to extract T and α from the particle
number and energy densities. In Fig. 1, we display solutions
for the temperature (upper panels) and thermal potential
(lower panels) as functions of the rescaled time. We note
that all the dependence on η=s is embedded in the relaxation
time, τR, and, by plotting our results as a function of the
rescaled time, the magnitude of the dissipative effects is
solely determined by the initial value of τ=τR—that is, more
dissipative systems can be probed by considering smaller
values for the initial rescaled time. We observe that, as the
initial rescaled time is smaller, i.e. as the system becomes
more dissipative, more moments have to be included in the
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hierarchy of differential equations (41) in order for the
solutions to converge.
Next we look at the convergence of certain irreducible

moments. In Fig. 2, we display ϱ2;1=ϱ
eq
2;0 (which is related to

the shear-stress tensor as πηsηs ¼ −2ϱ2;1=3 [7]), ϱ2;5=ϱ
eq
2;0

and ϱ2;10=ϱ
eq
2;0 as functions of the rescaled time τ=τR, for

several values of lmax. It can readily be seen that, as more
moments are included in the hierarchy of differential
equations, the solutions for the irreducible moments gradu-
ally converge to a unique curve. Moreover, as the initial
rescaled time becomes smaller, the irreducible moments
become larger in magnitude and more moments have to be
included in order to observe convergence, i.e., a larger
value of lmax is required in order for the solutions to
converge. We remark that this behavior is also observed for
different values of n, which defines the power of energy in
Eq. (37), but we do not display these cases for the sake of
simplicity.
We now look at the irreducible moments, ϱnl, fixing the

value of n and varying the parameter l. We solve Eq. (41)

for lmax ¼ 100 and portray, in Fig. 3, the absolute value of
the irreducible moments normalized by their equilibrium
value, jρn;lj=ρeqn;0, for n ¼ 1 and l ¼ 1–10 as a function of
τ=τR. Each panel of Fig. 3 displays solutions obtained for a
different choice of initial time. We observe that, for a fixed
n, the normalized irreducible moments become smaller
(in magnitude) as the value of l is increased. This is
consistent with the apparent convergence observed for the
solutions of the moment equations obtained with our
truncation scheme—moments become smaller as the value
of l is increased and, for a sufficiently large value of l, it
becomes a good approximation to simply set them to zero.
Naturally, the moments with l ≪ lmax are well approxi-
mated in this scheme, whereas those with l ∼ lmax are
usually not. This is in agreement with the behavior
observed in Figs. 1 and 2.
Next, we analyze the behavior of the irreducible

moments, ϱnl, for l ¼ 1 and several values of n. We solve
Eq. (41) with lmax ¼ 10 (which is sufficiently large to
ensure the convergence of the solutions) and considering

FIG. 1. Solutions for the temperature (upper panels) and thermal potential (lower panels) considering different truncations and values
for the initial rescaled time and assuming Tðτ0Þ ¼ 1 GeV and nðτ0Þ ¼ Tðτ0Þ3=π2.
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n ¼ 1–10 In Fig. 4, we display the absolute value of the
normalized irreducible moments jϱn1j=ϱeqn0 as a function of
the rescaled time τ=τR. We observe that as the value of n is
increased, the magnitude of the normalized moments is also
increased, and this behavior becomes even more manifested

as the initial rescaled time is smaller. We remark that this
behavior is also observed for different choices of l, but we
not display these results here for the sake of simplicity. This
behavior of the irreducible moments as one increases the
parameter n is significant, since it renders the task of

FIG. 2. Solutions for ϱ2;1=ϱ
eq
2;0 (upper panels), ϱ2;5=ϱ

eq
2;0 (middle panels) and ϱ2;10=ϱ

eq
2;0 (lower panels) considering different truncations

and values for the initial rescaled time and assuming Tðτ0Þ ¼ 1 GeV and nðτ0Þ ¼ Tðτ0Þ3=π2.
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determining the single-particle distribution function com-
plicated. In the method of moments, the single-particle
distribution function is expressed in terms of a sum of
irreducible moments, cf. Eq. (15), and it is generally
assumed that this series converges rapidly, at least for
relatively small values of momentum. However, here we
see that ϱnl grows significantly with n at intermediate
(rescaled) times, making it challenging to calculate the
moment expansion to a sufficiently high order and estab-
lishing its convergence. This will be thoroughly investi-
gated in an upcoming follow-up work.
Last, we compute the pressure anisotropy, defined as

PL=PT ¼ ð1þ 2ϱ2;1Þ=ð1 − ϱ2;1Þ, considering different val-
ues for the shear viscosity over entropy density, η=s, and
initial temperatures calibrated to emulate the hot and dense

matter created at the Relativistic Heavy-Ion Collider (RHIC)
and the Large Hadron Collider (LHC). In the left panel of
Fig. 5, we display the pressure anisotropy as a function of
the proper time, calculated from Eq. (41) with lmax ¼ 6, and
compare them to semianalytical solutions for this quantity
derived in Ref. [5]. Three values of shear viscosity over
entropy density are considered: η=s ¼ 1=ð4πÞ, 3=ð4πÞ, and
10=ð4πÞ—here, since we do not display the solution as a
function of the rescaled time, the curves will depend on the
magnitude of the shear viscosity coefficient. For the sake of
comparison, we consider the initial conditions proposed in
Ref. [5], with the system being initially at equilibrium at an
initial time τ0 ¼ 0.25 fm, with an initial temperature of
Tðτ0Þ ¼ 300 MeV. For this type of initial condition, we
observe that including 6 moments in the moment equations

FIG. 4. Normalized irreducible moments for lmax ¼ 10 considering different values for the initial rescaled time and assuming
Tðτ0Þ ¼ 1 GeV and nðτ0Þ ¼ Tðτ0Þ3=π2.

FIG. 3. Normalized irreducible moments for n ¼ 1 and considering different values for l and initial rescaled time and assuming
Tðτ0Þ ¼ 1 GeV and nðτ0Þ ¼ Tðτ0Þ3=π2.
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is sufficient to obtain a convergent solution. In the right
panel of Fig. 5, we compare our solutions to numerical
solutions of the Boltzmann equation obtained using the
BAMPS simulation code [57,58], in Ref. [59]. For the sake
of comparison, we now use the initial conditions employed
in Ref. [59], i.e., a system in equilibrium at τ ¼ 0.4 fm
with an initial temperature of T ¼ 500 MeV. We note that
the solutions calculated with the method of moments are in
surprisingly good agreement with the numerical solutions
from BAMPS for practically all values of shear viscosity
employed. This did not have to be the case, since in our
solutions the collision term was simplified significantly by
imposing the relaxation time approximation. This indicates
that the relaxation time approximation, even though
extremely rudimentary, can still provide a reasonable
approximation for the pressure anisotropy. Nevertheless,
this may be a feature of the highly symmetric flow
configuration considered here.

A. Anisotropic distribution function

So far, we have restricted our analysis to systems that are
initially in equilibrium. For the sake of completeness, we
now solve the moment equations considering an aniso-
tropic initial distribution function. In Ref. [60], an aniso-
tropic distribution function is constructed by changing the
3-momentum of an isotropic distribution as follows

jkj →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ξðk · n̂Þ2

q
; ð43Þ

where ξ > −1 is the anisotropy coefficient and n̂ is an
unitary vector pointing in the direction of the anisotropy.
Naturally, if ξ ¼ 0, one recovers the original isotropic
distribution. In Bjorken flow, the z-axis corresponds to the

anisotropic direction, and thus n̂ ¼ ẑ. It follows that
k · n̂ ¼ kμzμ ¼ kηs=τ, and therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ξðk · n̂Þ2

q
¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξcos2Θ

p
: ð44Þ

Here we apply this procedure over the equilibrium
Maxwell-Boltzmann distribution function, thus leading to

faniso ¼ exp ðα⋆ − β⋆Ek

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξcos2Θ

p
Þ: ð45Þ

We shall use the distribution above to compute the initial
value of the irreducible moments. In particular, we remark
that α⋆ and β⋆ do not necessarily correspond to the usual
thermal potential and inverse temperature, respectively.
They are simply free parameters that define the anisotropic
distribution function and, without loss of generality, we
take α⋆ ¼ 1 and β⋆ ¼ 1. The physical temperature and
chemical potential are then extracted by imposing Landau
matching conditions and used to compute the correspond-
ing equilibrium values for the irreducible moments.
We consider τ0=τR ¼ 0.1 and assume three different

values for the anisotropy coefficient, namely ξ ¼ 0.01, 0.1,
1. In Fig. 6, we display the resulting rescaled irreducible
moments. We observe that the irreducible moments slightly
increase in magnitude as we probe more anisotropic initial
conditions. Nevertheless, we note that the system does not
display a strong sensitivity on the magnitude of the
anisotropy coefficient. A similar behavior is observed
when we consider smaller initial rescaled times, but we
do not display these cases here. Overall, there are no
qualitative differences to the case of an isotropic initial
distribution displayed in Fig. 4.

FIG. 5. Pressure anisotropy for Tðτ0Þ ¼ 300 MeV and τ0 ¼ 0.25 fm (left panel) and Tðτ0Þ ¼ 500 MeV and τ0 ¼ 0.4 fm
(right panel).
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VI. CONCLUSIONS AND DISCUSSION

We have derived the equations of motion for all the
irreducible moments of the single-particle distribution
function. As expected from previous less general results
[25,34], the equations of motion for the moments are
coupled, with the particular challenging feature of the
dynamics of lower-rank moments being always coupled to
those of a higher-rank, leading to an endless tower of
equations. In this work we then investigated how this
hierarchy of equations can be properly truncated and
solved. This is a fundamental step in making it possible
to solve the Boltzmann equation using the method of
moments.
We have specifically investigated the solutions for the

irreducible moments considering a gas of classical mass-
less particles undergoing a Bjorken expansion, assuming
the relaxation time approximation for the collision term
[17]. In this flow profile, the dynamics of the irreducible
moments is entirely contained in the scalars ϱnl, which
then satisfy a simplified set of coupled differential
equations of motion. We observe that, as we increase
the truncation of the hierarchy of differential equations for
the irreducible moments, Eq. (41), i.e., as the dynamics of
more moments is taken into account, their solutions
gradually converge. In particular, we observe that for
more dissipative systems, the irreducible moments
increase in absolute value, as expected, and even more
moments must be included in order for the solutions to
converge. In addition, we computed the pressure
anisotropy taking lmax ¼ 6 and obtained results in rather
good agreement with numerical solutions of the
Boltzmann equation for initial conditions calibrated to
reproduce the hot and dense matter created at RHIC and

LHC considering a wide range of values for the shear
viscosity over entropy density. This serves as an important
test for the capability of the method of moments in
providing accurate solutions for moments of the single-
particle distribution function.
Finally, we observed that the magnitude of the moments

ρnl always increases with increasing n. This makes it a
challenge to calculate the single-particle distribution func-
tion using the method of moments, since higher-order terms
in the moment expansion will not be necessarily small.
Understanding the convergence of this series is an impor-
tant task and will be the primary scope of an upcoming
follow-up work.
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APPENDIX A: DERIVATION OF THE EQUATION
OF MOTION FOR THE IRREDUCIBLE

MOMENTS

In this appendix, we outline the details of the derivation
of the equation of motion for the irreducible moments of
arbitrary rank, given in Eq. (20). The starting point is

FIG. 6. Normalized irreducible moments assuming an initially anisotropic distribution function for lmax ¼ 10 considering
different values for the anisotropy coefficient, ξ ¼ 0.1, 1, 10. In all cases, we assume the initial rescaled time is τ0=τR ¼ 0.1,
Tðτ0Þ ¼ 1 GeV, and nðτ0Þ ¼ Tðτ0Þ3=π2.
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ϱ̇hμ1���μlir ¼ Δμ1���μl
ν1���νl

�	
dEr

k

dτ
khν1 � � � kνli




þ
	
Er
k
d
dτ

ðkhν1 � � � kνliÞ



þ
	
Er
kk

hν1 � � � kνli dfk
dτ


�
: ðA1Þ

where we have employed the notation introduced in
Ref. [25], h� � �i≡ R dKð� � �Þfk. In the following, we
compute each term in the right-hand side individually.

1. First term

The first term is

Δμ1���μl
ν1���νl

	
dEr

k

dτ
khν1 � � � kνli



; ðA2Þ

where

dEr
k

dτ
¼ rEr−1

k khμiu̇μ; ðA3Þ

since the 4-momentum does not depend on spacetime.
Furthermore, it is possible to replace kμ by its orthogonal
projection with respect to the 4-velocity, khμi, since the
4-acceleration of the fluid is orthogonal to its 4-velocity,
uμu̇μ ¼ 0. Therefore,

Δμ1���μl
ν1���νl

	
dEr

k

dτ
khν1 � � � kνli



¼ ru̇νlþ1

Δμ1���μl
ν1���νl

�
Er−1
k khν1 � � � kνlikhνlþ1i�: ðA4Þ

In order to obtain a result in terms of irreducible moments,
it is necessary to compute the irreducible decomposition of
the term khν1 � � � kνlikhνlþ1i. First, we write

khν1 � � � kνlikhνlþ1i ¼ Δν1���νl
α1���αlΔ

νlþ1
αlþ1

khα1i � � � khαlþ1i: ðA5Þ

Since the 4-momenta are all contracted with projection
operators introduced in Eq. (5), we have the freedom to
replace all of them by their orthogonal projection with
respect to the fluid 4-velocity. Then,

Δν1���νl
α1���αlΔ

νlþ1
αlþ1

khα1i � � � khαlþ1i ¼ Δν1���νl
α1���αlΔ

νlþ1
αlþ1

0
B@khα1 � � � kαlþ1i −

Cðlþ 1; 1Þ
Nlþ1;1

X
Plþ1

α Plþ1
β

Δαlαlþ1Δβlβlþ1
Δα1

β1
� � �Δαl−1

βl−1
kβ1 � � � kβlþ1

1
CA:

ðA6Þ

Here we make use of Eq. (5) to write the irreducible
4-momenta of rank lþ 1, where only the first two terms
provide nonzero contributions. In fact, all terms involving
two or more doubly contravariant (and the same number of
doubly covariant) rank 2 projection operators lead to
vanishing terms, since there is always a contraction of
the type

Δν1���νl
α1���αlΔαiαj ¼ 0; with 0 ≤ ði; jÞ ≤ l; ðA7Þ

which is zero, given the traceless property of the projection
operator, see Eq. (7).
Next, it is necessary to compute the number of non-

vanishing permutations accounted in the sums in Eq. (A6).
First, we look at the doubly contravariant projection
operator. One of its indices must necessarily be αlþ1,

regardless of the other, otherwise leading to zero given
Eq. (A7). This index can be paired with l other indices,
which corresponds to a total of l combinations. Second, the
doubly covariant projection operators are contracted with
the corresponding pair of 4-momenta, without restrictions
to be imposed on these indices. In this case, the number of
different combinations is simply a permutation of lþ 1

elements taken in pairs, i.e., ðlþ1Þ!
2!ðl−1Þ!. Last, the l − 1

remaining 4-momenta are contracted with projection oper-
ators with one covariant and one contravariant index. For a
given a covariant (contravariant) index, there are l − 1
possible contravariant (covariant) indices it can be paired
with. Naturally, a different covariant (contravariant) index
can now be paired with l − 2 contravariant (covariant)
indices, and so on. Therefore, the number of permutations
for these projectors is simply ðl − 1Þ!, thus leading to
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khν1 � � � kνlikhνlþ1i ¼ khν1 � � � kνlþ1i − l ×
ðlþ 1Þ!
2!ðl − 1Þ! × ðl − 1Þ! × Cðlþ 1; 1Þ

Nlþ1;1
Δν1���νl

α1���αl

×
X

Plþ1
α Plþ1

β

Δαlαlþ1Δβlβlþ1
Δα1

β1
� � �Δαl−1

βl−1
kβ1 � � � kβlþ1

¼ khν1 � � � kνlþ1i þ bk
l

2lþ 1
Δν1���νl

α1���αlΔαlνlþ1khα1i � � � khαl−1i

¼ khν1 � � � kνlþ1i þ bk
l

2lþ 1
Δν1���νl

α1���αlΔαlνlþ1khα1 � � � kαl−1i; ðA8Þ

which is exactly Eq. (22b). Note that we are able to replace khα1i � � � khαl−1i by khα1 � � � kαl−1i in the last equality since this term
is contracted with Δν1���νl

α1���αl . Finally, plugging this result in Eq. (A4), we obtain

Δμ1���μl
ν1���νl

	
dEr

k

dτ
khν1 � � � kνli



¼ r


ϱμ1���μlþ1

r−1 u̇μlþ1
þ l
2lþ 1

ðm2ϱhμ1���μl−1r−1 − ϱhμ1���μl−1rþ1 Þu̇μli
�
; ðA9Þ

where we have used bk ¼ m2 − E2
k.

2. Second term

The second term on the right-hand side of Eq. (A1) is

Δμ1���μl
ν1���νl

	
Er
k
d
dτ

ðkhν1 � � � kνliÞ



¼ Δμ1���μl
ν1���νl

d
dτ

ðΔν1���νl
α1���αlÞhEr

kk
α1 � � � kαli; ðA10Þ

The task here is to calculate the time derivative of the 2l-index projection operator,

Δμ1���μl
ν1���νl

d
dτ

ðΔν1���νl
α1���αlÞ ¼ Δμ1���μl

ν1���νl
d
dτ

�
Cðl; 0Þ
Nl;0

X
Pl

νPl
α

Δν1
α1 � � �Δνl

αl þ
Cðl; 1Þ
Nl;1

X
Pl

νPl
α

Δν1ν2Δα1α2Δ
ν3
α3 � � �Δνl

αl þ � � �
�
: ðA11Þ

It can readily be seen that, except for the first term, there
will always be contractions either of the type given by
Eq. (A7), or

Δμ1���μl
ν1���νl u

νi ; with 0 ≤ i ≤ l; ðA12Þ

which are identically zero since the projection operator is
traceless and orthogonal to the fluid 4-velocity by con-
struction. Therefore, the only nonvanishing contribution
comes from the first term. Analogously to the discussion
developed in the previous subsection, the sums account for
l! possibilities to arrange the indices of the remaining
projection operators. In particular, all permutations lead to
the same result when contracted with kα1 � � � kαl , this
yielding a factor l. Furthermore, since the covariant
derivative of the metric is zero, we have

d
dτ

Δμ
ν ¼ −u̇μuν − uμu̇ν; ðA13Þ

and thus

Δμ1���μl
ν1���νl

d
dτ

ðΔν1���νl
α1���αlÞ¼Δμ1���μl

ν1���νl
Cðl;0Þ
Nl;0

d
dτ

X
Pl

νPl
α

Δν1
α1 � � �Δνl

αl ¼−lΔμ1���μl
ν1���νl u̇

νluαlΔ
ν1
α1 � � �Δνl−1

αl−1 : ðA14Þ

Using this result in Eq. (A10), we obtain

Δμ1���μl
ν1���νl

	
Er
k
d
dτ

ðkhν1 � � � kνliÞ



¼ −lΔμ1���μl
ν1���νl hErþ1

k khν1i � � � khνliiu̇νl−1
¼ −lΔμ1���μl

ν1���νl hErþ1
k khν1 � � � kνliiu̇νl−1

¼ −lϱhμ1���μl−1rþ1 u̇μli; ðA15Þ

where we have used Eq. (22a) to obtain the second equality,
whose derivation is discussed in Appendix B.
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3. Third term

The last term on the right-hand side of Eq. (A1) is

Δμ1���μl
ν1���νl

Z
dKEr

kk
hν1 � � � kνli dfk

dτ
ðA16Þ

At this point, it is convenient to decompose the 4-momentum in terms of its longitudinal and transverse components with
respect to the fluid 4-velocity as kμ ¼ uμEk − khμi. Then, from the Boltzmann equation, Eq. (1), it is possible to express the
time derivative of the single-particle distribution function as

dfk
dτ

¼ E−1
k C½f� − E−1

k khμi∇μfk: ðA17Þ

Therefore, Eq. (A16) can be written as

Δμ1���μl
ν1���νl

Z
dKEr

kk
hν1 � � � kνli dfk

dτ
¼ Δμ1���μl

ν1���νl

�Z
dKEr−1

k khν1 � � � kνliC½f� −
Z

dKEr−1
k khν1 � � � kνlikhμlþ1i∇μlþ1

fk

�
: ðA18Þ

The first term on the right-hand side of this equation can be immediately identified as the generalized collision term, see
Eq. (21),

Δμ1���μl
ν1���νl

Z
dKEr−1

k khν1 � � � kνliC½f� ¼ Chμ1���μlir−1 : ðA19Þ

We now look at the last term on the right-hand side of Eq. (A18).

− Δμ1���μl
ν1���νl

Z
dKEr−1

k khν1 � � � kνlikhνlþ1i∇νlþ1
fk

¼ −Δμ1���μl
ν1���νl

�∇νlþ1

�
Er−1
k khν1 � � � kνlikhνlþ1i�þ Δμ1���μl

ν1���νl
��∇νlþ1

Er−1
k

�
khν1 � � � kνlikhνlþ1i�

þ Δμ1���μl
ν1���νl

�
Er−1
k ∇νlþ1

�
khν1 � � � kνlikhνlþ1i��: ðA20Þ

In the following, we work each of these terms individually.

a. Part I

Using Eq. (A8), the first term on the right-hand of Eq. (A20) can be written as

−Δμ1���μl
ν1���νl∇νlþ1

hEr−1
k khν1 � � �kνlikhνlþ1ii ¼ −Δμ1���μl

ν1���νl∇νlþ1

��
Er−1
k khν1 � � �kνlþ1i�þ l

2lþ 1
Δν1���νl

α1���αlΔαlνlþ1hbkEr−1
k khα1 � � �kαl−1ii

�

¼ −Δμ1���μl
ν1���νl∇νlþ1

ϱν1���νlþ1

r−1 −
l

2lþ 1
Δμ1���μl

α1���αl∇αl
�
bkEr−1

k khα1 � � �kαl−1i�
¼ −Δμ1���μl

ν1���νl∇νlþ1
ϱν1���νlþ1

r−1 −
l

2lþ 1
∇hμ1�m2ϱμ2���μlir−1 − ϱμ2���μlirþ1

�
; ðA21Þ

where we have usedΔν1���νl
α1���αl∇νlþ1

Δαlνlþ1 ¼ 0 andΔμ1���μl
ν1���νl ð∇αlΔν1���νl

α1���αlÞ ¼ 0, since every term carries contractions either of the
type given by Eq. (A7) or by Eq. (A12).

b. Part II

We proceed to analyze the second term on the right-hand side of Eq. (A20). First, we note that

∇μEr−1
k ¼ ðr − 1ÞEr−2

k khνið∇μuνÞ: ðA22Þ

Then, we use the relation

METHOD OF MOMENTS FOR A RELATIVISTIC SINGLE- … PHYS. REV. D 110, 036017 (2024)

036017-15



∇μuν ¼ σμν þ
1

3
Δμνθ þ ωμν ðA23Þ

to write

Δμ1���μl
ν1���νl hð∇νlþ1

Er−1
k Þkhν1 � � �kνlikhνlþ1ii ¼ ðr− 1ÞΔμ1���μl

ν1���νl

�
θ

3

�
bkEr−2

k khν1 � � �kνli�þ �Er−2
k khν1 � � �kνlikhνlþ1ikhνlþ2i�σνlþ1νlþ2

�

¼ r− 1

3

�
m2ϱμ1���μlr−2 − ϱμ1���μlr

�
θþ ðr− 1ÞΔμ1���μl

ν1���νl
�
Er−2
k khν1 � � �kνlikhνlþ1ikhνlþ2i�σνlþ1νlþ2

ðA24Þ

The vorticity is contracted with a symmetric tensor, thus leading to zero. In order to express the second term on the right-
hand side of Eq. (A24) in terms of irreducible moments, we successively use Eq. (A8),

Δμ1���μl
ν1���νl

�
Er−2
k khν1 � � � kνlikhνlþ1ikhνlþ2i�σνlþ1νlþ2

¼ Δμ1���μl
ν1���νl

	
Er−2
k

�
khν1 � � � kνlþ1ikhνlþ2i þ l

2lþ 1
bkΔ

ν1���νl
α1���αlΔαlνlþ1khα1 � � � kαl−1ikhνlþ2i

�

σνlþ1νlþ2

¼ Δμ1���μl
ν1���νl

	
Er−2
k


khν1 � � � kνlþ2i þ lþ 1

2lþ 3
bkΔ

ν1���νlþ1

β1���βlþ1
Δβlþ1νlþ2khβ1 � � � kβli þ l

2lþ 1
bkΔ

ν1���νl
α1���αlΔαlνlþ1

×

�
khα1 � � � kαl−1kνlþ2i þ l − 1

2l − 1
bkΔ

α1���αl−1
λ1���λl−1 Δ

λl−1νlþ2khλ1 � � � kλl−2i
��


σνlþ1νlþ2

¼ ϱμ1���μlþ2

r−2 σμlþ1μlþ2
þ lðl − 1Þ

4l2 − 1

�
m4ϱhμ1���μl−2r−2 − 2m2ϱhμ1���μl−2r þ ϱhμ1���μl−2rþ2

�
σμl−1μli

þ l
2lþ 1

�
m2ϱαhμ1���μl−1r−2 − ϱαhμ1���μl−1r

�
σμliα þ lþ 1

2lþ 3
Δμ1���μl

ν1���νlΔ
ν1���νlþ1

β1���βlþ1

�
m2ϱβ1���βlr−2 − ϱβ1���βlr

�
σβlþ1
νlþ1

: ðA25Þ

Using Eq. (5), it is possible to write the term Δμ1���μl
ν1���νlΔ

ν1���νlþ1

β1���βlþ1
ϱβ1���βlσβlþ1

νlþ1
as

Δμ1���μl
ν1���νlΔ

ν1���νlþ1

β1���βlþ1
ϱβ1���βlσβlþ1

νlþ1
¼ Δμ1���μl

ν1���νl

2
4Cðlþ 1; 0Þ

N lþ1;0

X
Plþ1

ν Plþ1
β

Δν1
β1
� � �Δνlþ1

βlþ1

þ Cðlþ 1; 1Þ
N lþ1;1

X
Plþ1

ν Plþ1
β

Δνlνlþ1Δβlβlþ1
Δν1

β1
� � �Δνl−1

βl−1
þ � � �

3
5ϱβ1���βlσβlþ1

νlþ1
; ðA26Þ

where the ellipsis denote all terms containing at least two covariant (and contravariant) projection operators, which are
identically zero since they involve contractions similar to Eq. (A7).
We analyze each term inside square brackets separately, starting with the first. All permutations containing the projector

Δνlþ1

βlþ1
are identically zero, since the shear tensor is traceless and orthogonal to the 4-velocity, and thus Δνlþ1

βlþ1
σβlþ1
νlþ1

¼ 0.
Therefore, in order to account exclusively the nonvanishing terms, we calculate the number of total permutations and
exclude those that contain the aforementioned operator. Hence, the number of contributing terms in the sum is simply

ðlþ 1Þ! − l! ¼ ll!: ðA27Þ

Then, the first term inside square brackets reduces to

CAIO V. P. DE BRITO and GABRIEL S. DENICOL PHYS. REV. D 110, 036017 (2024)

036017-16



Cðlþ 1; 0Þ
N lþ1;0

X
Plþ1

ν Plþ1
β

Δν1
β1
� � �Δνlþ1

βlþ1
ϱβ1���βlσβlþ1

νlþ1
¼ Cðlþ 1; 0Þ

N lþ1;0
× ll! × Δν1

βlþ1
Δν2

β2
� � �Δνl

βl
Δνlþ1

β1
ϱβ1���βlσβlþ1

νlþ1

¼ l
lþ 1

Δν1
βlþ1

Δν2
β2
� � �Δνl

βl
Δνlþ1

β1
ϱβ1���βlσβlþ1

νlþ1

¼ l
lþ 1

ϱαν1���νl−1σνlα : ðA28Þ

The next step is to compute the number of nonzero permutations in the second term in square brackets. First, we note that
the doubly contravariant projection operator must be Δνiνlþ1 , with 0 ≤ i ≤ l, which accounts for l different possibilities,
otherwise leading to vanishing terms analogous to Eq. (A7). Similarly, the doubly covariant projection operator can only be
of the typeΔβiβlþ1

, once again corresponding to l different combinations. In particular, since the indices βlþ1 and νlþ1 were
already used in constructing these projectors, there are no restrictions to be imposed on the projectors with one covariant and
one contravariant indices. Therefore, the first contravariant (covariant) index can be paired with any of the remaining l − 1
covariant (contravariant) indices. The next can be paired with l − 2 indices and so on. Wherefore, the number of
permutations in this case is ðl − 1Þ × ðl − 2Þ × � � � × 1 ¼ ðl − 1Þ!, and thus

Cðlþ 1; 1Þ
N lþ1;1

X
Plþ1

ν Plþ1
β

Δνlνlþ1Δβlβlþ1
Δν1

β1
� � �Δνl−1

βl−1
ϱβ1���βlσβlþ1

νlþ1

¼ Cðlþ 1; 1Þ
N lþ1;1

× l × l × ðl − 1Þ! × Δνlνlþ1Δβlβlþ1
Δν1

β1
� � �Δνl−1

βl−1
ϱβ1���βlσβlþ1

νlþ1

¼ −
2l

ðlþ 1Þð2lþ 1Þ ϱ
αν1���νl−1σνlα : ðA29Þ

Then, from Eqs. (A28) and (A29), the last term on the right-hand side of Eq. (A25) becomes

lþ 1

2lþ 3
Δμ1���μl

ν1���νlΔ
ν1���νlþ1

β1���βlþ1
ðm2ϱβ1���βlr−2 − ϱβ1���βlr Þσβlþ1

νlþ1
¼ lð2l − 1Þ

ð2lþ 1Þð2lþ 3Þ ðm
2ϱαhμ1���μl−1r−2 − ϱαhμ1���μl−1r Þσμliα : ðA30Þ

Finally, from Eqs. (A24), (A25), and (A30), the second term on the right-hand side of Eq. (A20) is given by

ðr − 1ÞΔμ1���μl
ν1���νl hð∇νlþ1

Er−1
k Þkhν1 � � � kνlikhνlþ1ii

¼ ðr − 1Þϱμ1���μlþ2

r−2 σμlþ1μlþ2
þ ðr − 1Þlðl − 1Þ

4l2 − 1

�
m4ϱhμ1���μl−2r−2 − 2m2ϱhμ1���μl−2r þ ϱhμ1���μl−2rþ2

�
σμl−1μli

þ ðr − 1Þ 2l
2lþ 3

�
m2ϱαhμ1���μl−1r−2 − ϱαhμ1���μl−1r

�
σμliα þ r − 1

3

�
m2ϱμ1���μlr−2 − ϱμ1���μlr

�
θ: ðA31Þ

c. Part III

The final step is to compute the last term on the right-hand side of Eq. (A20). We have

Δμ1���μl
ν1���νl

�
Er−1
k ∇νlþ1

�
khν1 � � � kνlikhνlþ1i�� ¼ Δμ1���μl

ν1���νl∇νlþ1

�
Δν1���νl

α1���αlΔ
νlþ1
αlþ1

��
Er−1
k kα1 � � � kαlþ1

�
; ðA32Þ

where

∇νlþ1

�
Δν1���νl

α1���αlΔ
νlþ1
αlþ1

� ¼ ∇αlþ1
Δν1���νl

α1���αl − Δν1���νl
α1���αluαlþ1

θ: ðA33Þ

Therefore, Eq. (A32) becomes
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Δμ1���μl
ν1���νl∇νlþ1

ðΔν1���νl
α1���αlΔ

νlþ1
αlþ1

ÞhEr−1
k kα1 � � � kαlþ1i ¼ Δμ1���μl

ν1���νl ð∇αlþ1
Δν1���νl

α1���αlÞhEr−1
k kα1 � � � kαlþ1i − Δμ1���μl

α1���αlhEr
kk

α1 � � � kαliθ
¼ Δμ1���μl

ν1���νl ð∇αlþ1
Δν1���νl

α1���αlÞhEr−1
k kα1 � � � kαlþ1i − ϱμ1���μlr θ: ðA34Þ

The next step is to compute the term Δμ1���μl
ν1���νl ð∇αlþ1

Δν1���νl
α1���αlÞ,

Δμ1���μl
ν1���νl ð∇αlþ1

Δν1���νl
α1���αlÞ ¼ Δμ1���μl

ν1���νl∇αlþ1


Cðl; 0Þ
N l;0

X
Pl

νPl
α

Δν1
α1 � � �Δνl

αl þ � � �
�
: ðA35Þ

Once again, the ellipsis denote all vanishing terms. In fact, terms containing at least one doubly covariant (and one
corresponding doubly contravariant) projection operators are identically zero, since they always involve contractions
analogous to Eqs. (A7) and/or (A12). Furthermore, given the symmetry of the projection operator being contracted, all
terms yield the same result,

lΔμ1���μl
ν1���νl

Cðl; 0Þ
N l;0

X
Pl

νPl
α

Δν1
α1 � � �Δνl−1

αl−1ð∇αlþ1
Δνl

αlÞ; ðA36Þ

where ∇αlþ1
Δνi

αj ¼ −ðuνi∇αlþ1
uαj þ uαj∇αlþ1

uνiÞ, with fi; jg∈ ½1;…;l�. The l − 1 remaining projection operators that are
not being derived are contracted with Δμ1���μl

ν1���νl . We remark that this is a symmetric tensor under the exchange of its covariant
and contravariant indices, and therefore all these terms are identical, hence the factor l, which comes from the product rule.
As it was already discussed, the number of different ways we can arrange the indices of the projectors Δνi

αj is simply l!, thus
leading to

lΔμ1���μl
ν1���νl

Cðl; 0Þ
N l;0

X
Pl

νPl
α

Δν1
α1 � � �Δνl−1

αl−1ð∇αlþ1
Δνl

αlÞ ¼ −lΔμ1���μl
ν1���νlΔ

ν1
α1 � � �Δνl−1

αl−1uαl

�
σνlαlþ1

þ 1

3
Δνl

αlþ1
θ þ ωαlþ1

νl

�
; ðA37Þ

where we have used Eq. (A23) to obtain the last equality. Using this result in Eq. (A34),

Δμ1���μl
ν1���νl ð∇αlþ1

Δν1���νl
α1���αlÞhEr−1

k kα1 � � � kαlþ1i

¼ −lΔμ1���μl
ν1���νlΔ

ν1
α1 � � �Δνl−1

αl−1uαlhEr−1
k kα1 � � � kαlþ1i

�
σνlαlþ1

þ 1

3
Δνl

αlþ1
θ þ ωαlþ1

νl

�
− ϱμ1���μlr θ

¼ −lΔμ1���μl
ν1���νl hEr

kk
hν1i � � � khνl−1ikhνlþ1ii

�
σνlνlþ1

þ 1

3
Δνl

νlþ1
θ þ ωνlþ1

νl

�
− ϱμ1���μlr θ

¼ −
l
3
Δμ1���μl

ν1���νl hEr
kk

hν1i � � � khνliiθ − lΔμ1���μl
ν1���νl hEr

kk
hν1i � � � khνl−1ikhνlþ1iiðσνlνlþ1

þ ωνlþ1

νlÞ − ϱμ1���μlr θ

¼ −
�
1þ l

3

�
ϱμ1���μlr θ − lΔμ1���μl

ν1���νl hEr
kk

hν1i � � � khνl−1ikhνlþ1iiðσνlνlþ1
þ ωνlþ1

νlÞ: ðA38Þ

The final step is to determine the second term on the right-hand side of Eq. (A38). At this point, we make use of Eq. (22a)
to write

Δμ1���μl
ν1���νl k

hν1i � � � khνl−1ikhνlþ1i ¼ Δμ1���μl
ν1���νl k

hν1 � � � kνl−1kνlþ1i þ l − 1

2l − 1
bkΔνl−1νlþ1khν1i � � � khνl−2i þ � � � : ðA39Þ

As usual, the ellipsis contain all the terms that are zero when contracted with Δμ1���μl
ν1���νl . In particular, we note that the doubly

contravariant projector must be Δνiνlþ2 , with i∈ ½1;…;l�, corresponding to l − 1 different permutations, otherwise leading
to contractions analogous to Eq. (A7). Therefore, the last term on the right-hand side of Eq. (A38) can be cast in the
following form
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− lΔμ1���μl
ν1���νl

�
Er
kk

hν1i � � � khνl−1ikhνlþ1i��σνlνlþ1
þ ωνlþ1

νl
�

¼ −Δμ1���μl
ν1���νl

�
l
�
Er
kk

hν1 � � � kνl−1kνlþ1i�þ lðl − 1Þ
2l − 1

Δνl−1νlþ1

�
Er
kbkk

hν1i � � � khνl−2i���σνlνlþ1
þ ωνlþ1

νl
�

¼ −lΔμ1���μl
ν1���νl ϱ

ν1���νl−1νlþ1
r

�
σνlνlþ1

− ωνl
νlþ1

�
−
lðl − 1Þ
2l − 1

Δμ1���μl
ν1���νl

�
m2ϱν1���νl−2r − ϱν1���νl−2rþ2

��
σνl−1νl − ωνl−1νl

�
¼ −lϱαhμ1���μl−1r

�
σμliα − ωμli

α

�
−
lðl − 1Þ
2l − 1

�
m2ϱhμ1���μl−2r − ϱhμ1���μl−2rþ2

�
σμl−1μli: ðA40Þ

Note that we have exchanged the order of the covariant and contravariant indices in the vorticity tensor, thus leading to a
minus sign, since this is an antisymmetric object, which further leads to Δμ1���μl

ν1���νlω
νl−1νl ¼ 0, since the projection operator is

symmetric by construction. Then, using Eq. (A40), we can write Eq. (A38) as

Δμ1���μl
ν1���νl

�∇αlþ1
Δν1���νl

α1���αl
��
Er−1
k kα1 � � � kαlþ1

� ¼ −
�
1þ l

3

�
ϱμ1���μlr θ − lϱαhμ1���μl−1r

�
σμliα − ωμli

α

�
−
lðl − 1Þ
2l − 1

�
m2ϱhμ1���μl−2r − ϱhμ1���μl−2rþ2

�
σμl−1μli: ðA41Þ

From Eqs. (A21), (A31), and (A41), it is possible to write Eq. (A20) as

− Δμ1���μl
ν1���νl

Z
dKEr−1

k khν1 � � � kνlikhνlþ1i∇νlþ1
fk

¼ ðr − 1Þϱμ1���μlþ2

r−2 σμlþ1μlþ2
− Δμ1���μl

ν1���νl∇νlþ1
ϱν1���νlþ1

r−1 þ lϱαhμ1���μl−1r ωμli
α

þ l
2lþ 3

½ð2r − 2Þm2ϱαhμ1���μl−1r−2 − ð2rþ 2lþ 1Þϱαhμ1���μl−1r �σμliα −
l

2lþ 1
∇hμ1ðm2ϱμ2���μlir−1 − ϱμ2���μlirþ1 Þ

þ lðl − 1Þ
4l2 − 1

½ðr − 1Þm4ϱhμ1���μl−2r−2 − ð2rþ 2l − 1Þm2ϱhμ1���μl−2r þ ðrþ 2lÞϱhμ1���μl−2rþ2 �σμl−1μli

þ 1

3
½ðr − 1Þm2ϱμ1���μlr−2 − ðrþ lþ 2Þϱμ1���μlr �θ: ðA42Þ

We are finally in position to obtain the final form of the equation of motion for the irreducible moments of rank l.
Combining Eqs. (A9), (A15), (A19), and (A42), it is possible to write Eq. (A1) as

ϱ̇hμ1���μlir ¼ Cμ1���μlr−1 þ rϱμ1���μlþ1

r−1 u̇μlþ1
− Δμ1���μl

ν1���νl∇νlþ1
ϱν1���νlþ1

r−1 þ ðr − 1Þϱμ1���μlþ2

r−2 σμlþ1μlþ2
þ lϱαhμ1���μl−1r ωμli

α

þ l
2lþ 1

�
rm2ϱhμ1���μl−1r−1 − ðrþ 2lþ 1Þϱhμ1���μl−1rþ1

�
u̇μli þ 1

3
½ðr − 1Þm2ϱμ1���μlr−2 − ðrþ lþ 2Þϱμ1���μlr �θ

þ l
2lþ 3

�ð2r − 2Þm2ϱαhμ1���μl−1r−2 − ð2rþ 2lþ 1Þϱαhμ1���μl−1r
�
σμliα −

l
2lþ 1

∇hμ1�m2ϱμ2���μlir−1 − ϱμ2���μlirþ1

�
þ lðl − 1Þ

4l2 − 1

�ðr − 1Þm4ϱhμ1���μl−2r−2 − ð2rþ 2l − 1Þm2ϱhμ1���μl−2r þ ðrþ 2lÞϱhμ1���μl−2rþ2

�
σμl−1μli; ðA43Þ

which is exactly Eq. (20) from the main text.

APPENDIX B: GENERAL IDENTITY OF THE IRREDUCIBLE 4-MOMENTA

In this appendix, we derive an explicit relation for the irreducible decomposition of 4-momenta,

khμ1 � � � kμli ¼ Δμ1���μl
ν1���νl k

ν1 � � � kνl ¼

2
64X½l=2�

q¼0

Cðl; qÞ
N l;q

X
Pl

μPl
ν

Δμ1μ2 � � �Δμ2q−1μ2qΔν1ν2 � � �Δν2q−1ν2qΔ
μ2qþ1
ν2qþ1

� � �Δμl
νl

3
75kν1 � � � kνl : ðB1Þ

We must analyze all different contractions between the 2–index projection operators and the 4-momenta. First, we note that
the doubly covariant projectors, Δνiνj , are always contracted with a pair of 4-momenta kνi kνj , resulting in Δαβkαkβ ¼ bk,
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where i; j ¼ 1; 2;…; 2q. Naturally, since q corresponds to the number of doubly covariant (as well as the number of doubly
contravariant) projection operators, it will also indicate the power of bk of each term of the sum. It is then necessary to
compute the number of different configurations among the indices of aforementioned projectors. The result is simply

X
Pl

ν

Δν1ν2Δν3ν4 � � �Δν2q−1ν2q ¼
l!

2!ðl − 2Þ! ×
ðl − 2Þ!
2!ðl − 4Þ! × � � � × ðl − 2qþ 2Þ!

2!ðl − 2qÞ! ¼ l!
2qðl − 2qÞ!Δν1ν2Δν3ν4 � � �Δν2q−1ν2q : ðB2Þ

Furthermore, these projectors commute. Therefore, in order
to avoid counting the same term more than once, we must
then multiply this result by the inverse number of different
forms that these projectors can be arranged, which is given
simply by 1=q!.
On the other hand, projectors of the type Δμm

νn are
contracted with the remaining 4-momenta, kνn , with
m; n ¼ 2qþ 1; 2qþ 2;…;l. Therefore, each covariant
(contravariant) index μm can be paired with a total of
l − 2q contravariant (covariant) indices νn, thus resulting
in a total of l − 2q possibilities. In the next projector, the
covariant (contravariant) index can now be paired with one
of the l − 2q − 1 remaining contravariant (covariant) indi-
ces, and so on. Consequently, the number of possible
configurations to arrange these projectors is ðl − 2qÞ!.
Then, the irreducible momenta can be expressed as

khμ1 � � � kμli ¼
X½l=2�
q¼0

Cðl; qÞ
N l;q

X
Pl

μ

bqk ×
l!

2qðl − 2qÞ!

×
1

q!
× ðl − 2qÞ! × khμ2qþ1i � � � khμli: ðB3Þ

Finally, we obtain

khμ1 � � �kμli ¼ khμ1i � � �khμli þ
X½l=2�
q¼1

bqk
l!
2qq!

Cðl;qÞ
N l;q

×
X
Pl

μ

Δμ1μ2 � � �Δμ2q−1μ2qkhμ2qþ1i � � �khμli; ðB4Þ

which is exactly Eq. (22a) from the main text.
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