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We study the thermodynamic properties of a rigidly rotating relativistic Bose gas. First, we derive the
solution of the equation of motion corresponding to a rotating complex Klein-Gordon field and determine
the free propagator of this model utilizing the Fock-Schwinger proper-time method. Using this propagator,
we then obtain the thermodynamic potential of this model in the zeroth and first perturbative level. In
addition, we compute the nonperturbative ring contribution to this potential. Our focus is on the
dependence of these expressions on the angular velocity, which effectively acts as a chemical potential.
Using this thermodynamic potential, we calculate several quantities, including the pressure, angular
momentum and entropy densities, heat capacity, speed of sound, and moment of inertia of this rigidly
rotating Bose gas as functions of temperature (T), angular velocity (Ω), and the coupling constant (α). We
show that certain thermodynamic instabilities appear at high temperatures and large couplings. They are
manifested as zero and negative values of the above quantities, particularly the moment of inertia and heat
capacity. Zero moment of inertia leads to the phenomenon of supervorticity at certain T or α. Supervortical
temperatures (couplings) decrease with increasing coupling (temperature). We also observe superluminal
sound velocities at high T and for large α.

DOI: 10.1103/PhysRevD.110.036016

I. INTRODUCTION

Studying the effects of extreme conditions on the
thermodynamic properties of quark matter is one of the
important applications of modern thermal quantum field
theory. These conditions include high temperatures up to
1012 K, large densities up to 1014 gr=cm3, large magnetic
fields up to 1020 Gauß, and large angular velocities up to
1022 s−1. These conditions are partly realized in nature, e.g.,
in the early universe or the core of compact stars. The
Quark-Gluon plasma (QGP) produced in relativistic heavy-
ion collision (HIC) experiments at Relativistic Heavy Ion
Collider (RHIC) and Large Hadron Collider (LHC) also
exhibits these extreme conditions. The aim of these experi-
ments is to recreate the conditions after the big bang in
laboratories. Various international projects and intensive
studies are in progress to understand the nature of the
matter produced after these collisions and to overcome the
deficiencies of standard computational methods in simu-
lating quark matter under extreme conditions [1–8].

Among the aforementioned extreme conditions, analyz-
ing quark matter under rotation has attracted much attention
in the past few years [9–32]. Several important phenomena,
e.g., chiral vortical effect [33], are related to the presence
of a uniform rotation in relativistic systems [22]. When
apart from rotation, these systems are subjected to a
uniform magnetic field, an inverse magnetorotational effect
occurs [21], that particularly leads to a reduction of the
temperature of the chiral phase transition [10–20,23].
Recently, it has been shown that this effect is the main
reason for excluding certain phases of quark matter in
the interior of neutron stars under some specific circum-
stances [30]. The field-theoretical investigation of rotation
is immensely simplified once it is assumed that the system
under consideration is under a rigid rotation. Although this
kind of rotation cannot be attained in the expanding QGP
produced in HICs, however, all theoretical investigations of
this problem are based on this assumption. The latter has
several unexpected consequences:
The effect of rigid rotation on the equation of state of

gluodynamics is studied recently in [26,27]. Assuming
sufficiently small angular velocities Ω, the free energy is
Taylor expanded in powers of Ω up to OðΩ2Þ. This
expansion leads immediately to an angular momentum
density that is proportional to Ω. According to classical
mechanics, the proportionality factor is the moment of
inertia IðTÞ. By computing IðTÞ using numerical simu-
lation of lattice quantum chromodynamics, it is shown that
it receives two different contributions. The competition
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between these two temperature dependent terms leads to a
negative moment of inertia at a temperature below a certain
supervortical temperature, Ts. According to these results,
Ts is given by Ts ≈ 1.5Tc, where Tc is the confinement/
deconfinement phase transition temperature. Assuming that
the angular momentum is finite, a vanishing moment of
inertia at Ts leads to the phenomenon of supervorticity,
characterized by very large angular velocity at this temper-
ature [26]. Moreover, as gluons are spin-one bosons,
another interesting effect, dubbed “negative Barnett
effect” [27], is supposed to occur at temperatures below
Ts. In contrast to the ordinary Barnett effect, in the negative
Barnett effect, the rotation polarizes spin negatively. This is
only possible when the moment of inertia IS related to spin
S is negative, and its absolute value is larger than the
moment of inertia IL, related to the angular momentum L.
Since the latter is always positive [27], the total moment of
inertia I ¼ IL þ IS corresponding to the total angular
momentum J ¼ Lþ S becomes negative.
In the present paper, we intend to answer whether a

negative moment of inertia also arises in a spin-zero
relativistic gas.We thus analyze the impact of a rigid rotation
on a relativistic Bose gas. Massless and massive scalar fields
under rigid rotation are previously studied in [28]. Here,
the focus is on imaginary rotation [25,31,32], which has
application in numerical simulation of a rigidly rotating
system on the lattice. It is shown that this procedure leads to
the appearance of the fractal features of thermodynamics
under imaginary rotation and ninionic deformation of sta-
tistics, leading to stable ghostlike excitations [28]. In [29], the
chiral symmetry breaking/restoration in a Yukawa model is
studied. The authors determine first the propagators of free
bosons and fermions in a rotating medium using the Fock-
Schwinger proper-time method [24]. These propagators are
then used to determine the thermodynamic potential of the
rigidly rotating Yukawa gas.
In the following sections, we first review the results

presented in [29] and determine the free propagator of a
rigidly rotating Bose gas using the Fock-Schwinger proper-
time method. To do this, we start with the Lagrangian
density of a complex Klein-Gordon (CKG) field ϕ. We use
the imaginary time formalism to introduce the temperature
T and determine the free propagator of the Bose gas at
finite T. Introducing the interaction term λðϕ†ϕÞ2 in the
Lagrangian density, we then utilize this propagator to
determine the thermodynamic potential of this gas in the
zeroth and first perturbative expansion in the orders of the
coupling constant λ.Wepresent the results in an integral form
and compare it with the corresponding thermodynamic
potential in a nonrotating Bose gas. As expected, the angular
velocity Ω plays the role of a chemical potential [21]. We
then perform an appropriate high temperature expansion
(HTE) and present the corresponding perturbative part of
the thermodynamic potential in this approximation. Apart
from these parts, we determine the nonperturbative ring

contribution to the thermodynamic potential. The final result
for the thermodynamic potential, including the zeroth and
first perturbative corrections as well as the nonperturbative
ring potential exhibits a summation overl, which arises from
the solution of the CKG equation of motion in cylinder
coordinate system.1 In the second part of the paper, we
perform this summation numerically. Here, we mainly focus
on the thermodynamic properties of the relativistic Bose gas
under rigid rotation. Using the thermodynamic potential, we
first determine the pressure of this gas and study the impact of
a rigid rotation on this pressure. Using standard thermody-
namic relations, we also determine the angular momentum
and entropy densities, j and s, the heat capacityCV, the speed
of sound c2s , and the moment of inertia I. Setting first l ¼ 1,
we present analytical expressions for these quantities up to
OðΩ2Þ. Plotting the moment of inertia in terms of the
coupling α≡ λ=π2, it turns out that I becomes negative
for certain coupling αs, dubbed “supervortical coupling”. In
Fig. 1, we schematically describe how a negative moment of
inertia affects the rotation of a system. In a system with a
positive (negative) moment of inertia, an applied angular
momentum J leads to a rotation with an angular velocity Ω
parallel (antiparallel) to J. Finally, we perform the summation
over l numerically and explore the T and Ω dependence of
the above thermodynamic quantities. We show that at high
temperatures and for large couplingconstants, certain thermo-
dynamic instabilities appear. They are particularlymanifested
by negative I and CV , as well as large cs. For very large
couplings, cs becomes superluminal at high temperatures.
The organization of this paper is as follows: In Sec. II,

we solve the equation of motion of a free CKG field under
rotation. The free bosonic propagator at zero and finite tem-
perature is presented in II B. In Sec. III, we compute the
thermodynamic potential of a rigidly rotating Bose gas in the
zeroth [Sec. III A] and first perturbative level [Sec. III C], as
well as the nonperturbative ring potential [Sec. III D]. To this

FIG. 1. By applying an angular momentum J, a system with a
positive (negative) moment of inertia I rotates with an angular
velocity Ω parallel (antiparallel) to J.

1The quantum number l is the conjugate momentum of the
azimuthal angle φ in a cylindrical coordinate system.
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purpose, we compute the one-loop tadpole diagram of this
model in III B. In Sec. IV, we determine the thermodynamic
quantities of this Bose gas under rigid rotation and explore
the T and Ω dependence of these quantities first in the first
nonvanishing term in Ω for l ¼ 1 [Sec. IVA] and then
numerically for l > 1 [Sec. IV B]. Section V is devoted to
our concluding remarks. In App. A, we present the analytical
details leading to the free propagator of the free CKGmodel.
In Appendices B and C, we perform an appropriate HTE and
present the free thermodynamic potential and one-loop
tadpole diagram in this approximation.

II. COMPLEX KLEIN-GORDON FIELDS
UNDER ROTATION

A. The model

We start with the action of a free CKG field in a curved
space-time

S0 ¼
Z

d4xð− detðgμνÞÞ1=2L0; ð2:1Þ

with the Lagrangian density

L0 ¼ gμν∂μϕ†
∂νϕ −m2ϕ†ϕ: ð2:2Þ

To study the effect of a rigid rotation on a relativistic Bose
gas described by (2.1), we introduce the metric

gμν ¼

0
BBB@

1 − ðx2 þ y2ÞΩ2 yΩ −xΩ 0

yΩ −1 0 0

−xΩ 0 −1 0

0 0 0 −1

1
CCCA; ð2:3Þ

where Ω is a constant angular velocity. The assumed
rotation around the z-direction leads to a cylindrical
symmetry around this axis. The system is thus naturally
described by a cylindrical coordinate system xμ ¼
ðt; x; y; zÞ ¼ ðt; r cosφ; r sinφ; zÞ, with r the radial coor-
dinate, φ the azimuthal angle, and z the height of the
cylinder. Plugging L from (2.2) into the Euler-Lagrange
equation of motion

∂α

�
∂L0

∂ð∂αϕ†Þ
�
−
∂L0

∂ϕ† ¼ 0; ð2:4Þ

we arrive at

∂αðgαν∂νϕÞ þm2ϕ ¼ 0; ð2:5Þ

with gμν, the inverse of gμν from (2.3). Using Lz≡
−iðx∂y − y∂xÞ ¼ −i∂φ, the equation of motion of a rotating
CKG field in a cylindrical coordinate system reads

½ði∂t þ ΩLzÞ2 þ ∇2 þ ∂
2
z −m2�ϕðxÞ ¼ 0; ð2:6Þ

with ∇2 ¼ ∂
2
r þ 1

r ∂r þ 1
r2 ∂

2
φ. To solve (2.6), we use the

ansatz

ϕlðx; kÞ ¼ e−iEtþikzzþilφRlðrÞ; ð2:7Þ
where the radial part of ϕlðx; kÞ, RlðrÞ satisfies�

∂
2
r þ

1

r
∂r −

l2

r2
þ k2⊥

�
RlðrÞ ¼ 0; ð2:8Þ

with k2⊥ ≡ Ẽ2 − k2z −m2 and Ẽ≡ Eþ lΩ. Introducing
ρ≡ rk⊥, we finally arrive at

½ρ2∂2ρ þ ρ∂ρ þ ðρ2 − l2Þ�RlðρÞ ¼ 0; ð2:9Þ
which is the Bessel differential equation leading to
RlðrÞ ¼ Jlðk⊥rÞ, where JlðzÞ is the Bessel function.
Plugging this result into (2.7), the solution of (2.6) reads

ϕlðx; kÞ ¼ e−iEtþikzzþilφJlðk⊥rÞ: ð2:10Þ

B. Free bosonic propagator at zero
and finite temperature

According to the Fock-Schwinger proper-time method,
the free two-point Green’s function D0ðx; x0Þ of a CKG
field is given by [24,29]

D0ðx; x0Þ ¼ −i
Z

0

−∞
dτ
X
λ

exp ð−iλτÞϕλðxÞϕ†
λðx0Þ; ð2:11Þ

where λ and ϕλ are the energy eigenvalue and eigenfunction
of the differential operator Dð∂x; xÞ. They arise by solving
the eigenvalue equation

Dð∂x; xÞϕλðxÞ ¼ λϕλðxÞ: ð2:12Þ
To show (2.11), one starts with the Green’s function
differential equation

Dð∂x; xÞD0ðx; x0Þ ¼ δ4ðx − x0Þ; ð2:13Þ
where D0ðx; x0Þ is represented as

D0ðx; x0Þ ¼ −i
Z

0

−∞
Uðx; x0; τÞdτ: ð2:14Þ

Here, τ is the proper-time and Uðx; x0; τÞ is the proper-time
evolution operator which satisfies

i∂τUðx; x0; τÞ ¼ Dð∂x; xÞUðx; x0; τÞ: ð2:15Þ
Using the boundary conditions

lim
τ→0

Uðx; x0; τÞ ¼ δ4ðx − x0Þ; lim
τ→∞

Uðx; x0; τÞ ¼ 0; ð2:16Þ

the solution of (2.15) reads

Uðx; x0; τÞ ¼ e−iτHð∂x;xÞδ4ðx − x0Þ: ð2:17Þ
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This result leads to (2.11) upon using (2.13) and the
completeness relation satisfied by ϕλðxÞ

X
λ

ϕλðxÞϕ†
λðx0Þ ¼ δ4ðx − x0Þ: ð2:18Þ

For D ¼ ði∂t þ ΩLzÞ2 þ ∇2 þ ∂
2
z −m2 from (2.6), the

two-point Green’s function of a CKG field under rotation
is given by inserting (2.10) into (2.11), with λ ¼ Ẽ2 − k2⊥ −
k2z −m2 [29],

D0ðx; x0Þ ¼ −i
Z

0

−∞
dτ

Xþ∞

l¼−∞

Z
dEdkzk⊥dk⊥

ð2πÞ3 e−iτðẼ2−k2⊥−k2z−m2þiϵÞe−iEðt−t0Þþikzðz−z0Þþilðφ−φ0ÞJlðk⊥rÞJlðk⊥r0Þ: ð2:19Þ

Integrating (2.19) over τ and performing a change of
variable E → E − lΩ, we arrive at D0ðx; x0Þ in coordinate
space

D0ðx; x0Þ ¼
Xþ∞

l¼−∞

Z
dEdkzk⊥dk⊥

ð2πÞ3 Jlðk⊥rÞJlðk⊥r0Þ

×
e−iEðt−t0ÞþilΩðt−t0Þþikzðz−z0Þþilðφ−φ0Þ

E2 − k2⊥ − k2z −m2 þ iϵ
: ð2:20Þ

The corresponding free propagator in the Fourier space is
determined by

Dð0Þ
ll0 ðp; p0Þ ¼

Z
d4xd4x0D0ðx; x0Þϕlðx; pÞϕl0 ðx0; p0Þ;

ð2:21Þ

with d4x ¼ dtdφdzrdr in the cylindrical coordinate sys-
tem, D0ðx; x0Þ from (2.21), and ϕlðx; pÞ given in (2.10).
Performing the integration over x and x0, we arrive after
some computation at the free boson propagator at zero
temperature (see Appendix A for more details)

Dð0Þ
ll0 ðp; p0Þ ¼ ð2πÞ3δ̂3l;l0 ðp0; pz; p⊥;p0

0; p
0
z; p0⊥ÞDð0Þ

l ðpÞ;
ð2:22Þ

with

δ̂3l;l0 ðp0; pz; p⊥;p0
0; p

0
z; p0⊥Þ≡ 1

p⊥
δðp0 − p0

0Þδðpz − p0
zÞ

× δðp⊥ − p0⊥Þδll0 ; ð2:23Þ

and

Dð0Þ
l ðp0;ωÞ≡ 1

ðp0 þ lΩÞ2 − ω2 þ iϵ
: ð2:24Þ

Here, ω2 ≡ p2⊥ þ p2
z þm2. At finite temperature T, p0 is to

be replaced with iωn, where ωn ¼ 2πnT is the Matsubara
frequency. In the next section, we use

Dð0Þ
l ðωn;ωÞ≡ 1

ðωn − ilΩÞ2 þ ω2
; ð2:25Þ

to derive the thermodynamic potential of an interacting
relativistic Bose gas under rotation up to first order in
perturbative expansion. We also determine the nonpertur-
bative ring potential in the lowest order.

III. THERMODYNAMIC POTENTIAL
OF AN INTERACTING CKG FIELD
IN THE PRESENCE OF ROTATION

In this section, we determine the thermodynamic poten-
tial of an interacting CKG field in the presence of rotation.
We start with the Lagrangian density

L ¼ L0 þ Lint; ð3:1Þ

where the free part of the Lagrangian L0 is given in (2.2),
and the interaction part reads

Lint ¼ −λðϕ†ϕÞ2: ð3:2Þ

Here, λ > 0 is the coupling constant of the model.
Assuming that λ < 1, it is possible to perturbatively expand
the thermodynamic potential Veff in a power series in the
orders of λ,

Veff ¼
Xþ∞

k¼0

λkVðkÞ
eff : ð3:3Þ

In Sec. III A, we first determine the exact expression of the

zeroth order thermodynamic potential Vð0Þ
eff by making use

of the standard methods in thermal field theory [34,35].

We then perform an appropriate HTE and present Vð0Þ
eff in

this approximation.
To determine the one-loop contribution to the thermo-

dynamic potential, Vð1Þ
eff , the one-loop self-energy function

of the model, Π1, is to be computed. In Sec. III B, we first
present an exact expression for Π1. We then determine Π1

in the limit of high temperature. We end this section by
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determining the exact expression of the nonperturbative
ring potential Vring for this model.

A. Zeroth order correction
to the thermodynamic potential

According to [35,36], the free (zeroth order correction)
thermodynamic (effective) potential Veff of a relativistic
Bose gas is given by

Vð0Þ
eff ¼ T

Xþ∞

n¼−∞

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2 ln ðβ2ðDð0Þ
l Þ−1Þ; ð3:4Þ

where β≡ T−1 and Dð0Þ
l ðωn;ωÞ is the free propagator of

this model. Plugging (2.25) into (3.4), we arrive after some
standard computation at

Vð0Þ
eff ¼

T
2

Xþ∞

n¼−∞

Xþ∞

l¼−∞

X
ζ¼�

Z
dpzp⊥dp⊥

ð2πÞ2

× ln ½β2ðω2
n þ ðωþ ζlΩÞ2Þ�: ð3:5Þ

Using at this stage

Xþ∞

n¼−∞
ln ðð2nπÞ2 þ u2Þ ¼ uþ 2 ln ð1 − e−uÞ; ð3:6Þ

we perform the summation over Matsubara frequencies.
The zeroth order correction to Veff is thus given by

Vð0Þ
eff ¼

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2 fωþ T½lnð1 − e−βðωþlΩÞÞ

þ lnð1 − e−βðω−lΩÞÞ�g: ð3:7Þ

The first term is the vacuum contribution to Vð0Þ
eff . It is

independent of the angular velocity Ω. The T-dependent

part of Vð0Þ
eff , however, can be compared with the thermo-

dynamic potential of a free relativistic Bose gas at finite
chemical potential μ [34,35,37]. The fact that lΩ plays the
role of the chemical potential μ is indeed expected from the
literature (see, e.g., [21,23,30]).
In what follows, we present another possibility to

evaluate (3.4). To do this, let us again start with (3.4). Using

ln a2 ¼ −
∂

∂κ
ða2Þ−κ

����
κ¼0

;

¼ −
∂

∂κ

1

ΓðκÞ
Z

∞

0

dssκ−1e−a
2s

����
κ¼0

; ð3:8Þ

we arrive first at

Vð0Þ
eff ¼ −T

Xþ∞

n¼−∞

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2
�
∂

∂κ

1

ΓðκÞ

×
Z

∞

0

dssκ−1e−β
2½ðωn−ilΩÞ2þω2�s

�����
κ¼0

: ð3:9Þ

Performing the summation over n, by making use of

Xþ∞

n¼−∞
e−β

2ðωn−ilΩÞ2s ¼ 1

2
ffiffiffiffiffi
πs

p ϑ3

�
−
ilΩβ
2

���� i
4πs

�
; ð3:10Þ

where ϑ3ðzjτÞ is the elliptic theta-function [38],2 integrating
over pz and p⊥ according to (B10), and using

d
dκ

�
sκ

ΓðκÞ
�����

κ¼0

¼ 1; ð3:11Þ

we obtain

Vð0Þ
eff ¼ −

T4

16π2
Xþ∞

l¼−∞

Z
∞

0

ds
s3

e−ðmβÞ2sϑ3

�
−
ilΩβ
2

���� i
4πs

�
:

ð3:12Þ

For our numerical purposes, it is necessary to subtract the

T ¼ 0 contribution from Vð0Þ
eff . We thus arrive at

Vð0ÞT
eff ¼ −

T4

16π2
Xþ∞

l¼−∞
A3;lðx; yÞ; ð3:13Þ

where A3;lðx; yÞ is given from

An;lðx; yÞ≡
Z

∞

0

ds
sn

e−x
2s

�
ϑ3

�
−ily
2

���� i
4πs

�
− 1

�
; ð3:14Þ

by choosing n ¼ 3. Here, x≡mβ and y≡Ωβ.
In Sec. IV, we study the thermodynamic properties of a

relativistic Bose gas under rotation by making use of (3.13).
We derive the pressure, the entropy density, the angular
momentum, and the energy density up to first order
perturbative corrections inclusive the first corrections to
the nonperturbative ring potential.
Inspired by the method presented in [37,39], it is possible

to expand Vð0Þ
eff in x ≪ 1 and y ≪ 1 and to determine

an approximation of this potential at high temperature.
According to the proof presented in Appendix B, the HTE

of Vð0ÞT
eff from (3.7) reads

2Here, we have used the notation ϑ3ðzjτÞ≡ ϑ3ðz; e−iπτÞ. Here,
ϑ3 is given by

ϑ3ðzjτÞ ¼ 1þ 2
Xþ∞

n¼1

τn
2

cosð2nzÞ:
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Vð0ÞT
eff ¼ −T4

�
π2

45
−
x2

12
þ x3

6π
−

x4

16π2

�
ln

�
4π

x

�
− γE þ

3

4

�

þ
Xþ∞

l¼1

�
3x2 − l2y2

12π2
−

x
2π

þ 1

3

�
l2y2

	
þ � � � :

ð3:15Þ

Similar expression appears also in [35,40], where ly ¼ lΩβ
is replaced with the chemical potential μ. According to this
result, for m;Ω ¼ 0, we thus have

Vð0ÞT
eff ⟶

m;Ω→0
−
π2T4

45
; ð3:16Þ

which is the thermodynamic potential of a free and massless
relativistic Bose gas [35]. Since we are interested in the Ω
corrections to Vð0ÞT

eff , it is possible to keep the first non-
vanishing Ω dependent term in (3.15). For l ¼ 1, we thus
have

Vð0ÞT
eff ≈ −

π2T4

45

�
1þ 15

π2
ðΩβÞ2

�
: ð3:17Þ

This result indicates that rotation increases the pressure of a
free relativistic Bosegas. In Sec. IV,we study the effect ofΩβ
on the pressure of free relativistic Bose gas arising from
(3.13) and show that this statement is true also once l > 1
contributions are taken into account.We also compare it with
the pressure arising from (3.15) in the high temperature limit.
We show that at a certain temperature these two expressions
coincides.

B. One-loop perturbative correction
to the self-energy function

The one-loop correction to the self-energy function, Π1,
is given by the tadpole diagram from Fig. 2. Using the free

propagator Dð0Þ
l ðωn;ωÞ from (2.25), it is given by

Π1 ¼ 4λT
Xþ∞

n¼−∞

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2 Dð0Þ
l ðωn;ωÞ; ð3:18Þ

with Dð0Þ
l ðωn;ωÞ from (2.25). It is possible to utilize the

method presented in the previous section and determine Π1

in an exact form. To do this, we use

Dð0Þ
l ðωn;ωÞ ¼

1

2ω

∂

∂ω
ln ðβ2ðDð0Þ

l Þ−1Þ; ð3:19Þ

and replace the propagator in (3.18) with the expression on
the right-hand side of (3.19). According to the method
leading from (3.4) to (3.13), we arrive first at

Π1 ¼ −2λT
Xþ∞

n¼−∞

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2
1

ω

×
∂

∂ω

�
∂

∂κ

1

ΓðκÞ
Z

∞

0

dssκ−1e−β
2½ðωn−ilΩÞ2þω2�s

�����
κ¼0

:

ð3:20Þ

After performing the summation over the Matsubara
frequencies by making use of (3.10), integrating over pz
and p⊥ according to (B10), and using (3.11) as well as

1

ω

∂

∂ω
ðe−β2ω2sÞ ¼ −2sβ2e−β2ω2s; ð3:21Þ

we arrive at the temperature dependent part of Π1

Πmat
1 ¼ αT2

4

Xþ∞

l¼−∞
A2;lðx; yÞ; ð3:22Þ

where α≡ λ=π2 and A2;lðx; yÞ can be read from (3.14).
In what follows, we perform a HTE and present the

matter part of Π1 in this approximation. To do this, let us
consider (3.18) and evaluate the summation over the
Matsubara frequencies by making use of

Xþ∞

n¼−∞

1

ðωn − ilΩÞ2 þ ω2

¼ β

2ω
ðnbðωþ lΩÞ þ nbðω − lΩÞ þ 1Þ; ð3:23Þ

where nb is the Bose-Einstein distribution function
defined by

nbðωÞ≡ 1

eβω − 1
: ð3:24Þ

Plugging (3.23) into (3.18), we arrive at

Π1 ¼ Πvac
1 þ Πmat

1 ; ð3:25Þ

with the vacuum (T ¼ 0) part

Πvac
1 ≡ 2λ

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2
1

ω
; ð3:26Þ

FIG. 2. One-loop self-energy diagram Π1.
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and the matter (T ≠ 0) part

Πmat
1 ≡ 2λ

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2
1

ω

× ½nbðωþ lΩÞ þ nbðω − lΩÞ�: ð3:27Þ

We focus only on Πmat
1 and separate l ¼ 0 and l ≠ 0

contribution of Πmat
1 to obtain

Πmat
1 ¼ 4λðJ 1 þ J 2Þ; ð3:28Þ

with

J 1 ≡
Z

dpzp⊥dp⊥
ð2πÞ2

nbðωÞ
ω

;

J 2 ≡
Xþ∞

l¼1

Z
dpzp⊥dp⊥

ð2πÞ2
1

ω
½nbðωþ lΩÞ þ nbðω − lΩÞ�:

ð3:29Þ

In Appendix C, we apply the method used in Appendix B
and perform a HTE of J i; i ¼ 1, 2 from (3.29). The
resulting expressions are presented in (C7) and (C13).
Combining these expression the matter part ofΠ1 for x ≪ 1
and y ≪ 1 is given by

Πmat
1 ¼ 4λT2

�
1

12
−

x
4π

þ x2

8π2

�
ln

�
4π

x

�
− γE þ

1

2

�

þ
Xþ∞

l¼1

�
1

6
−

x
2π

�
1 −

l2y2

2x2

�
−
l2y2

4π2

þ x2

4π2

�
ln

�
4π

x

�
− γE þ

1

2

��	
þ � � � : ð3:30Þ

In the limit of vanishing m and Ω, Πmat
1 is given by3

Πmat
1 ⟶

m;Ω→0
Π0 ≡ λT2

3
: ð3:31Þ

Apart from a factor, this result is, as expected, the same as
the one presented in [35] for the one-loop self-energy
diagram of a λφ4 theory. Let us remind that λT2 plays the
role of a thermal mass for charged bosons.
Taking the limit of mβ → 0 in (3.30), and keeping the

first nonvanishing term in Ω, we arrive for l ¼ 1 at

Πmat
1 ≈ λT2

�
1 −

ðΩβÞ2
π2

�
: ð3:32Þ

To arrive at (3.32), we particularly used Ω < m and
neglected ðΩβ=mβÞ2 in the second line of (3.30).

This result indicates that, at least in the limit of mβ → 0,
the rotation decreases the thermal mass of a charged boson.

C. One-loop perturbative correction to the
thermodynamic potential

Following the arguments in [35], the one-loop contri-
bution to the thermodynamic potential is given by

Vð1Þ
eff ¼ λ

�
T

Xþ∞

n¼−∞

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2 Dð0Þ
l ðωn;ωÞ

�
2

:

ð3:33Þ

Comparing (3.33) with (3.18) and neglecting the
T-independent part of the thermodynamic potential, it is

possible to determine Vð1ÞT
eff using the one-loop self-energy

function Πmat
1 ,

Vð1Þ
eff ¼

1

16λ
ðΠmat

1 Þ2: ð3:34Þ

The exact expression forΠmat
1 is given in (3.22) and its HTE

is presented in (3.30). Using (3.22), we thus obtain

Vð1ÞT
eff ¼ αT4

256π2

� Xþ∞

l¼−∞
A2;lðx; yÞ

�2

: ð3:35Þ

In the high temperature limit,

Vð1ÞT
eff ¼ λT4

�
1

12
−

x
4π

þ x2

8π2

�
ln

�
4π

x

�
− γE þ

1

2

�

þ
Xþ∞

l¼1

�
1

6
−

x
2π

�
1 −

l2y2

2x2

�
−
l2y2

4π2

þ x2

4π2

�
ln

�
4π

x

�
− γE þ

1

2

��	
2

þ � � � ; ð3:36Þ

arises from (3.30). The thermodynamic potential up to one-
loop perturbative correction is thus given by

VT
eff ¼ Vð0ÞT

eff þ Vð1ÞT
eff ; ð3:37Þ

with Vð0ÞT
eff from (3.13) or (3.15) and Vð1ÞT

eff from (3.35)
or (3.36).
In the high temperature limit x ≪ 1 and y ≪ 1, it is

possible to neglect the m and Ω dependent terms in (3.36).

The T dependent part of Vð1ÞT
eff is thus given by

Vð1ÞT
eff ⟶

m;Ω→0 λT4

144
: ð3:38Þ

Together with Vð0Þ
eff ≈ − π2T4

45
from (3.16), we arrive at VT

eff in
this approximation,3For Ω ¼ 0, we neglect the series over l in (3.30).
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VT
eff ⟶

m;Ω→0
−
π2T4

45

�
1 −

45

144
α

�
: ð3:39Þ

Keeping the first nonvanishing term in Ω in (3.36), we
arrive for l ¼ 1 at

Vð1ÞT
eff ≈

λT4

16

�
1 −

2ðΩβÞ2
π2

�
; ð3:40Þ

that together with the zeroth order correction to Veff from
(3.17) leads to

VT
eff ≈ −

π2T4

45

��
1 −

45

16
α

�
þ 15ðΩβÞ2

π2

�
1þ 3

8
α

��
:

ð3:41Þ

In what follows, we determine the nonperturbative ring
contribution to the thermodynamic potential.

D. Nonperturbative ring contribution and the total
thermodynamic potential

Following the arguments in [35], the nonperturbative
part of the thermodynamic potential is given by the ring
potential

Vring ¼ T
Xþ∞

n¼−∞

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2

× ½lnð1þ ΠlD
ð0Þ
l Þ − ΠlD

ð0Þ
l �; ð3:42Þ

which arises by the resummation of ring diagrams with an
increasing number of Π1-insertion (see Fig. 3). Here,

Πl ≡ 4λT
Xþ∞

n¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2 Dð0Þ
l ðωn;ωÞ;

arises from Π1 ¼
Pþ∞

l¼−∞ Πl with the one-loop self-energy

diagramΠ1 from (3.18)4 andDð0Þ
l the free boson propagator

from (2.25). In what follows, we determine the leading
contribution to Vring by considering n ¼ 0 in the summa-

tion over the Matsubara frequencies. Plugging Dð0Þ
l with

n ¼ 0 into (3.42), we first obtain

Vring ¼ T
Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2

×

�
ln

�
1þ Πl

½p2
z þ p2⊥ þm2 − ðlΩÞ2�

�

−
Πl

½p2
z þ p2⊥ þm2 − ðlΩÞ2�

	
: ð3:43Þ

Inspired by the method described in Appendices B and C, it
is possible to perform the integration over pz and p⊥ and
arrive at an exact expression for Vring. To do this, we replace
the logarithm in (3.43) with its Taylor series,

ln ð1þ xÞ ¼
Xþ∞

k¼1

ð−1Þkþ1xk

k
; ð3:44Þ

and arrive at

Vring ¼ T
Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2
Xþ∞

k¼2

ð−1Þkþ1

k
ðΠlÞkðu2Þ−k;

ð3:45Þ

where u2 ≡ p2
z þ p2⊥ þm2 − ðlΩÞ2. Using (B11), we have

ðu2Þ−k ¼ 1

ΓðkÞ
Z

∞

0

dttk−1e−u
2t: ð3:46Þ

Plugging this expression into (3.45) and performing the
integration over pz and p⊥ by using (B10), we obtain

Vring ¼
π3=2T
ð2πÞ3

Xþ∞

l¼−∞

Xþ∞

k¼2

ð−1Þkþ1

kΓðkÞ ðΠlÞk

×
Z

∞

0

dttk−5=2e−ζlt; ð3:47Þ

with ζl ≡ ½m2 − ðlΩÞ2�. Assuming that Re½ζl� > 0, it is
possible to perform the integration over t according to5Z

∞

0

dttk−5=2e−ζlt ¼ Γðk − 3=2Þζ3=2−kl : ð3:48Þ

Substituting this expression into (3.47) and performing the
summation over k, we arrive at

Xþ∞

k¼2

ð−1Þkþ1

k
Γðk − 3=2Þ

ΓðkÞ ðΠlÞkζ3=2−kl

¼ 2π1=2

3
½3ζ1=2l Πl − 2ðΠl þ ζlÞ3=2 þ 2ζ3=2l �: ð3:49Þ

FIG. 3. The ring diagrams of an interacting CKG model. Small
circles indicate the Π1-insertion.

4Later, we consider only the T-dependent part of Πl in Vring.

5In the massless limit, it is useful to first replaceΩwith iΩI and
eventually analytically continue back to Ω. In this way ζl
becomes positive and integration over t in (3.48) will be possible.
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Plugging finally (3.49) into (3.47), the ring potential (3.47)
reads

Vring ¼
T
12π

Xþ∞

l¼−∞
ð3ζ1=2l Πl − 2ðΠl þ ζlÞ3=2 þ 2ζ3=2l Þ:

ð3:50Þ
Adding Vring from (3.50) to VT

eff from (3.37), the full
thermodynamic potential up to one-loop perturbative cor-
rection inclusive the nonperturbative ring potential is thus
given by

Veff ¼ Vð0ÞT
eff þ Vð1ÞT

eff þ Vring: ð3:51Þ

In Sec. IV, we use (3.51) to study the thermodynamic
behavior of a relativistic Bose gas under rigid rotation. In
the rest of this section, we focus on Vring and determine it in
the following four special cases:

(i) Case 1: Let us first consider the massless limit.
Settingm ¼ 0 in ζl, plugging the resulting expression
into (3.50), and neglecting the terms with odd powers
in l in the summation over l, we are left with

Vring ¼ −
T
6π

Xþ∞

l¼−∞
ðΠl − ðlΩÞ2Þ3=2: ð3:52Þ

Plugging Π0 ≡ λT2=3 from (3.31) into (3.52) and
assuming that the Bose gas does not rotate, we
arrive at

Vring ⟶
m;Ω→0

−
λ3=2T4

18
ffiffiffi
3

p ; ð3:53Þ

as expected. Plugging this expression together with
(3.39) into (3.51), the full thermodynamic potential in
the limit m;Ω → 0 reads

Veff ⟶
m;Ω→0

−
π2T4

45

�
1 −

45

144
αþ 15

6
ffiffiffi
3

p α3=2
�
: ð3:54Þ

This results is similar to the one presented in [35] for
nonrotating relativistic neutral Bose gas.

(ii) Case 2: To keep the lowest Ω-dependent contribu-
tion to Vring in the massless limit, we replace Πl in
(3.52) with Πmat

1 from (3.32). Here, only the l ¼ 1
term in the HTE of Πmat

1 from (3.30) is considered.
Going through the same procedure leading to (3.54),
we arrive first at

Vring ≈ −
λ3=2T4

6π

��
1 −

ðΩβÞ2
π2

�
3=2

þ 2
Xþ∞

l¼1

�
1 −

ðΩβÞ2
π2

−
l2ðΩβÞ2

λ

�
3=2

�
:

ð3:55Þ

Considering only the contribution from l ¼ 0, 1
terms, we obtain

Vring ≈ −
λ1=2T4

2π

�
λ − ðΩβÞ2

�
1þ 3λ

2π

�	
: ð3:56Þ

The full thermodynamic potential, including the
perturbative part VT

eff from (3.41) and the non-
perturbative part Vring from (3.56) in the massless
limit is thus given by

Veff ≈ −T4ðC0 þ ðΩβÞ2C2Þ; ð3:57Þ

with T and Ω independent coefficients C0 and C2

C0 ≡ π2

45

�
1 −

45

16
αþ 45

2
α3=2

�
;

C2 ≡ 1

3

�
1 −

3

2
α1=2 þ 3

8
α −

9

4
α3=2

�
: ð3:58Þ

A comparison between (3.57) with (3.54) shows that
the limit Ω → 0 is singular.

(iii) Case 3: In this case, we keep the m-dependence
in ζl ¼ m2 − ðlΩÞ2 in (3.50) and neglect the m,
Ω-dependence in Πl. We thus arrive at

Vring¼
T
12π

Xþ∞

l¼−∞
f3ζ1=2l Π0−2ðΠ0þζlÞ3=2þ2ζ3=2l g;

ð3:59Þ

with Π0 from (3.31).
(iv) Case 4: In this case, similar to the previous one, we

keep the m-dependence in ζl, and replace Πl in
(3.50) with

ΠlðT;ΩÞ≡ λ

�
T2

3
−
l2Ω2

2π2

�
; ð3:60Þ

from (3.30). We thus obtain

Vring¼
T
12π

Xþ∞

l¼−∞
f3ζ1=2l Πl−2ðΠlþζlÞ3=2þ2ζ3=2l g;

ð3:61Þ

withΠl from (3.60). InSecs. IVAand IV B, the above
results are used to determine the thermodynamic
quantities of a rigidly rotating relativistic Bose gas.

IV. THERMODYNAMIC QUANTITIES OF A
RIGIDLY ROTATING RELATIVISTIC BOSE GAS

In this section, we compute the pressure P, the angular
momentum, entropy, and energy densities j, s, and ϵ by
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making use of the results from previous section. We also
determine the moment of inertia I and the heat capacity of
this Bose gas analytically as well as numerically and show
that in some regions in the parameter space of this model,
they become negative. Let us first consider the thermody-
namic Euler equation of this system, ϵþ P ¼ Ts. Here, the
pressure P is given by

P ¼ −Veff ; ð4:1Þ

with Veff , the full thermodynamic potential from (3.51).
It includes contributions from tree level, first perturba-
tive correction as well as nonperturbative ring potential.
The energy density ϵ is defined in the corotating frame.
Its relation with the energy density in the nonrotating
frame, ϵnr, is given by ϵ ¼ ϵnr − jΩ. Here, j is the
angular momentum density of the rotating system. It is
defined by

j≡
�
dP
dΩ

�
T
: ð4:2Þ

This expression arises from the Gibbs-Duhem relation
[26,27]

dP ¼ sdT þ jdΩ: ð4:3Þ

Using (4.3), the entropy density s is defined by

s≡
�
dP
dT

�
Ω
: ð4:4Þ

Apart from these quantities, let us define the heat
capacity by [35]

CV ≡ d2P
dT2

¼ ds
dT

; ð4:5Þ

and the speed of sound cs,

c2s ≡ dP
dϵ

¼ s
TCV

: ð4:6Þ

We also define the moment of inertia I ¼ IðTÞ by Taylor
expanding the pressure PðT;ΩÞ in the powers of Ω,

PðT;ΩÞ ¼
Xþ∞

n¼0

1

n!
PðnÞðT; 0ÞΩn; ð4:7Þ

with PðnÞðT; 0Þ≡ limΩ→0
dnPðT;ΩÞ

dΩn , and identifying
Pð2ÞðT; 0Þ with IðTÞ [26,27],

IðTÞ≡ d2PðT;ΩÞ
dΩ2

����
Ω¼0

: ð4:8Þ

Using (4.2), the moment of inertia (4.8) can be also
interpreted as the linear response to j,

IðTÞ ¼ jðT;ΩÞ
Ω

����
Ω→0

: ð4:9Þ

Plugging (3.13), (3.35), and (3.50) with Πl from (3.22)
into Veff from (3.51) the exact expression for the
pressure P in (4.1) is determined. We use this exact
result in Sec. IV B to study the thermodynamic proper-
ties of a relativistic Bose gas under a rigid rotation. In
the following Sec. IVA, however, we present analytical
results for P, s, j, I, and ϵ using the approximations
(3.54) (case i) and (3.57) (case ii) for Veff.

A. Analytical results including first nontrivial
contribution from l= 1

Plugging Veff from (3.54) (case i) into (4.1), the pressure
P in the limit of vanishing m and Ω reads

P ⟶
m;Ω→0 π2T4

45

�
1 −

45

144
αþ 15

6
ffiffiffi
3

p α3=2
�
: ð4:10Þ

This result is in analogy to the result presented in [35] for
the pressure of an interacting relativistic neutral Bose gas
(λφ4-theory). The nonanalytical contribution proportional
to α3=2 arises from the nonperturbative ring contribution.
Plugging in contrast (3.57) (case ii) into (4.1), the first

nontrivial contribution of Ω arises in the pressure as

P ≈ T4ðC0 þ ðΩβÞ2C2Þ; ð4:11Þ

with Ci; i ¼ 0, 2 defined in (3.58). As in the previous
case, in the coefficients Ci; i ¼ 0, 2 the terms proportional
to αn and αn=2 with n∈N0 arise from the perturbative
and ring corrections to the pressure P, respectively.
Using (4.11), we immediately arrive at j; s; CV; c2s , and I
in this approximation,

j ≈ 2T2C2Ω;

s ≈ 2T3ð2C0 þ ðΩβÞ2C2Þ;
CV ≈ 2T2ð6C0 þ ðΩβÞ2C2Þ;

c2s ≈
2C0 þ ðΩβÞ2C2
6C0 þ ðΩβÞ2C2

≈
1

3

�
1þ C2

3C0
ðΩβÞ2

�
;

I ≈ 2T2C2: ð4:12Þ

Moreover, plugging (4.11) and (4.12) into ϵ ¼ −Pþ Ts,
the energy density of the relativistic Bose gas reads

ϵ ≈ T4ð3C0 þ ðΩβÞ2C2Þ: ð4:13Þ

Let us emphasize that the coefficients Ci; i ¼ 0, 2 depend
only on α. The thermodynamic quantities j; s; CV; c2s thus
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depend on α and Ωβ. The moment of inertia, however,
depends only on α. It consists of a perturbative and a
nonperturbative part, I ¼ Ip þ Inp, with

IpðαÞ≡ 2T2

3

�
1þ 3

8
α

�
;

InpðαÞ≡ −T2

�
α1=2 þ 3

2
α3=2

�
: ð4:14Þ

In Fig. 4, the α dependence of Ip; Inp, and I is demonstrated.
It is shown that for 0 < α < 0.5, Ip > 0 (red dashed line)
and Inp < 0 (green dashed line) in this interval, so that
their combination I becomes positive for α < 0.272 and
negative for α > 0.272 (see black solid line). At α ≈ 0.272,
the total moment of inertia vanishes. This scenario is very
similar to the one described in [26,27] in which the
summation of two different contributions to I leads to
negative moment of inertia in some region of the parameter
space. Inspired by [26,27], we refer to α ≈ 0.272 at which
the moment of inertia vanishes as “supervortical coupling,”
αs. According to (4.12), at this point C2 vanishes, thus, the
speed of sound c2s becomes equal to the speed of sound of a
free relativistic Bose gas c2s ¼ 1=3. Let us notice that for a
perturbative expansion to be valid, α ¼ λ=π2 must be lower
than 0.1. Thus assuming that α < 0.1, the total moment of
inertia turns out to be always positive. In what follows, we
determine numerically the thermodynamic quantities
j; s; CV; c2s ; I, and ϵ and show that by considering the
contribution from l > 1, some thermodynamic quantities,
in particular, the moment of inertia and the heat capacity
becomes negative for α < 0.1.

B. Numerical results including contributions
from jlj ≥ 0

1. Preliminaries

As it is shown in the previous section, the pressure P
includes three different contribution, the zeroth order

correction P0, the one-loop perturbative correction P1,
and the nonperturbative ring correction Pring. There are

given by P0 ¼ −Vð0ÞT
eff ; P1 ¼ −Vð1ÞT

eff , and Pring ¼ −Vring

with Vð0ÞT
eff ; Vð1ÞT

eff , and Vring given in (3.13), (3.35), and
(3.50). As concerns the ring contribution, we present
in this section the results arising from (3.59) (case iii),
where we use the lowest order contribution to the one-loop
self-energy in (3.50).6 Since, according to (4.2)–(4.9),
other thermodynamic quantities arise from P, they also
consists of three contribution X0, X1 and X ring with
X ¼ fj; s; CV; c2s ; I; ϵg. In what follows, we present the
necessary analytic expressions for Y0, Y1 and Yring with
Y ¼ fj̄; s̄; Ī; C̄Vg, where j̄≡ j=T3; s̄≡ s=T2; Ī ≡ I=T2,
and C̄V ≡ CV=T2 are dimensionless quantities. The zeroth
order, one-loop, and ring contributions of c2s , and ϵ arise
simply from these expressions. Using the analytical expres-
sions in this section, we explore the z≡ T=m as well as
y ¼ Ωβ behavior of these quantities. We particularly focus
on the interval z∈ ½0.1; 1� and y∈ ½0.01; 0.025� as well as
α∈ ½0.01; 0.1�. For nonvanishing Ω, we numerically per-
form the summation over l up to lmax ¼ 50.7

Let us start with j̄ð0Þ arising from (4.2) with P replaced
with P0. Using (3.13), we arrive at

j̄0ðx; yÞ ¼ −
i

32π2
Xþ∞

l¼−∞
lAð1Þ

3;lðx; yÞ; ð4:15Þ

where AðmÞ
n;l ðx; yÞ is defined by

AðmÞ
n;l ðx; yÞ≡

Z
∞

0

ds
sn

e−x
2sϑðmÞ

3

�
−ily
2

���� i
4πs

�
: ð4:16Þ

Here, ϑðmÞ
3 ðzjτÞ≡ dm

dzm ϑ3ðzjτÞ. Plugging then P1 into (4.2)

and using dP1

dΩ ¼ β dP1

dy , as well as

dmAn;lðx; 0Þ
dym

¼
�
−il
2

�
m
AðmÞ

n;l ðx; yÞ
����
y¼0

; ð4:17Þ

we arrive at

j̄1ðx; y; αÞ ¼
iα

256π2
Xþ∞

l¼−∞
A2;l

Xþ∞

l¼−∞
lAð1Þ

2;l: ð4:18Þ

FIG. 4. The α dependence of Ip; Inp, and I ¼ Ip þ Inp is
demonstrated. Whereas Ip > 0 and Inp < 0 in the interval
α∈ ½0; 0.5�, I is positive for α < 0.272 and negative for
α > 0.272.

6We have also performed the computation with (3.61) from
case iv. The difference between the results of case iii and case iv
is negligible.

7We considered various upper limits for l smaller and lower
than lmax ¼ 50. It turns out that when lmax ≳ 50, the results
remain stable and are qualitatively the same as those reported in
the following sections. This robustness led us to confidently
choose lmax ¼ 50. It is important to note that choosing lmax ≫
50 is not allowed due to the properties of ϑ3ðzjτÞ appearing in our
analytical results.
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Here, A2;l and Að1Þ
2;l are given by (3.14) and (4.16),

respectively. As concerns j̄ring, we use (3.59) (case i)
and obtain

j̄ringðx;y;αÞ¼
y
4π

Xþ∞

l¼−∞
l2½ζ̄−1=2l Π̄0−2ðΠ̄0þ ζ̄lÞ1=2þ2ζ̄1=2l �;

ð4:19Þ

where ζ̄l ≡ x2 − l2y2 and Π̄0 ¼ απ2=3 are dimensionless
quantities.
The zeroth order contribution to entropy density arises

from (4.4) with P replaced with P0. Using

T
dAn;l

dT
¼ 2x2An−1;l þ

ily
2

Að1Þ
n;l; ð4:20Þ

we obtain

s̄0ðx; yÞ ¼
1

16π2
Xþ∞

l¼−∞

�
4A3;l þ 2x2A2;l þ

ily
2

Að1Þ
3;l

�
:

ð4:21Þ

To determine the one-loop contribution to the entropy
density, we substitute P1 into (4.4), to arrive first at

s̄1 ¼ −
α

64π2
Xþ∞

l¼−∞
A2;l

Xþ∞

l¼−∞

�
A2;l þ

T
2

dA2;l

dT

�
:

Then using (4.20), we obtain

s̄1ðx; y; αÞ ¼ −
α

64π2
Xþ∞

l¼−∞
A2;l

Xþ∞

l¼−∞

�
A2;l þ x2A1;l

þ ily
4

Að1Þ
2;l

�
: ð4:22Þ

Using (3.59) and (4.4), the ring contribution to the entropy
density reads

s̄ringðx; y; αÞ ¼ −
1

6π

Xþ∞

l¼−∞

�
9

2
¯ζl
1=2Π̄0 − ðΠ̄0 þ ξ̄lÞ3=2

þ ζ̄3=2l − 3Π̄0ðΠ̄0 þ ζ̄lÞ1=2
�
: ð4:23Þ

Similarly, plugging P0 into (4.8), the dimensionless
moment of inertia Ī0 is given by

Ī0ðxÞ ¼ −
1

64π2
Xþ∞

l¼−∞
l2Að2Þ

3;lðx; 0Þ: ð4:24Þ

Plugging P1 into (4.8), Ī1 reads

Ī1ðx; αÞ ¼ −
α

128π2

�� Xþ∞

l¼−∞

dA2;lðx; 0Þ
dy

�
2

þ
Xþ∞

l¼−∞

d2A2;lðx; 0Þ
dy2

Xþ∞

l¼−∞
A2;lðx; 0Þ

	
; ð4:25Þ

with dmAn;l

dym from (4.17). The above expressions for Ī0 and Ī1
are independent of y. Thus, the summation over l may be
performed using

Xþd

l¼−d
ln ¼ Hð−nÞ

d ;

where HðnÞ
d is the generalized Harmonic number [41].

We need, in particular, Hð−1Þ
d ¼ dðdþ 1Þ=2 and Hð−2Þ

d ¼
dðdþ 1Þð2dþ 1Þ=6.
Let us now consider Īring, which is given by plugging

Pring into (4.8). It reads

Īringðx; αÞ ¼
1

2π

Xþ∞

l¼−∞
l2

�
Π̄0

2x
− ðΠ̄0 þ x2Þ1=2 þ x

�
; ð4:26Þ

where again the summation over l can be performed. To
determine the zeroth and first order contribution to C̄V , we
replace P in (4.5) with P0 and P1, and arrive first at

C̄V;0 ¼
1

16π2
Xþ∞

l¼−∞

�
12A3;l þ 2x2A2;l þ ilyAð1Þ

3;l

þ 4T
dA3;l

dT
þ 2x2T

dA2;l

dT
þ ily

2
T
dAð1Þ

3;l

dT

	
; ð4:27Þ

and

C̄V;1 ¼ −
α

64π2

� Xþ∞

l¼−∞

�
A2;l þ x2A1;l þ

ily
4

Að1Þ
2;l

�

×
Xþ∞

l¼−∞

�
3A2;l þ T

dA2;l

dT

�

þ
Xþ∞

l¼−∞
A2;l

Xþ∞

l¼−∞

�
T
dA2;l

dT
− 2x2A1;l

þ x2T
dA1;l

dT
−
ily
4

Að1Þ
2;l þ

ily
4

T
dAð1Þ

2;l

dT

�	
: ð4:28Þ

Using then (4.20) and

T
dAðmÞ

n;l

dT
¼ 2x2AðmÞ

n−1;l þ
ily
2

Aðmþ1Þ
n;l ; ð4:29Þ
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we obtain the final expression for C̄V;i; i ¼ 0, 1. Finally, the
ring contribution to C̄V is given by

C̄V;ring ¼ −
απ

6

Xþ∞

l¼−∞
½3ζ̄1=2l − 3ðΠ̄0 þ ζ̄lÞ1=2

− Π̄0ðΠ̄0 þ ζ̄lÞ−1=2�: ð4:30Þ

Combining the expressions corresponding to s and CV , it is
possible to determine the speed of sound c2s according to
(4.6). In what follows, we focus on T,Ω, and α dependence
of thermodynamic quantities P; j; s; I; CV; c2s . We also com-
pute the dimensionless energy density ϵ̄ using ϵ̄ ¼ −P̄þ s̄
and explore the T, Ω, α dependence of the interaction
measure Δ̄≡ ϵ̄ − 3P̄ [34]. We use following notations:

y ¼ Ωβ; z≡ T=m, Pp ≡ P0 þ P1, and X̄ tot ≡ X̄0 þ X̄1 þ
X̄ ring, with X ¼ fP; s; j; I; ϵg.

2. Results

In Sec. III A, the exact and HTE expressions of Vð0ÞT
eff are

given in (3.13) and (3.15). According to (4.1), the exact and
HTE expressions of the zeroth order pressure P0 are
determined from these expressions. In Fig. 5, we compare
the T=m dependence of the exact (blue dots) and the HTE
(red squares) of the dimensionless P0=T4 for a nonrotating
y ¼ 0 [Fig. 5(a)] and rotating [Fig. 5(b)] relativistic Bose
gas with y ¼ 0.018. As it is demonstrated, in both cases
two expressions coincide for z ≥ 0.4. This fixes the
reliability regime for HTE. A comparison between two
plots shows that the rotation increases the pressure P0 up to
several orders of magnitude.

(a) (b)

FIG. 5. A comparison between the T=m dependence of the exact expression and the HTE of dimensionless P0=T4 are made for a
nonrotating relativistic Bose gas with y ¼ 0 (panel a) and a rotating relativistic Bose gas with y ¼ 0.018 (panel b). In both cases the HTE
results coincide with the exact ones at T=m ≥ 0.4. Moreover, the rotation increases the pressure P0 up to several orders of magnitude.

(a) (b)

FIG. 6. The T=m (panel a) and Ωβ (panel b) dependence of dimensionless Pring=T4 are plotted for fixed y ¼ 0.018 (panel a) and
z ¼ 0.75 (panel b) as well as α ¼ 0.02, 0.06, 0.08. As it turns out, Pring is negative for all values of 0 < α < 0.1. For fixed angular
velocity (temperature), it increases with increasing temperature (angular velocity). Its dependence on α is nontrivial (see Fig. 7).
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In Fig. 6, the T=m and Ωβ dependence of dimensionless
Pring=T4 is presented for α ¼ 0.02, 0.06, 0.08 and fixed
y ¼ 0.018 [Fig. 6(a)] as well as z ¼ 0.75 [Fig. 6(b)]. It is
shown that Pring=T4 increases with increasing T=m andΩβ.
The α dependence of Pring=T4 is, however, nontrivial. It is
plotted in Fig. 7 for fixed y ¼ 0.018 and various temper-
atures z ¼ 0.7, 0.8, 0.9. It turns out that at low temperature
(z ¼ 0.7) Pring=T4 is negative and decreases with increas-
ing α, while at high temperatures (z ¼ 0.8, 0.9), it is first
negative, then increases with α and becomes positive
for α ∼ 1.
In Fig. 8(a), the T=m dependence of Pp=T4 (blue circles)

and Ptot=T4 (red squares) are plotted for fixed y ¼ 0.018
and α ¼ 0.02. At T=m > 0.4, Pp and Ptot are both positive

and their difference (Ptot − Pp ¼ Pring) becomes negligible.
The same is also true for their Ωβ dependence once z and α
are fixed [see Fig. 8(b)]. According to this plot, Pp and Ptot

increases with increasingΩβ, and their difference decreases
with increasing Ωβ. These results are in complete agree-
ment with the results from Fig. 6, where the absolute value
of Pring decreases with increasing temperature and angular
velocity.
Let us now consider the T=m and Ωβ dependence of

the dimensionless angular momentum density j̄tot, which
includes the contribution from j̄0; j̄1, and j̄ring. In Fig. 9(a),
the T=m dependence of j̄tot is plotted for fixed y ¼ 0.018
and three different coupling α ¼ 0.02, 0.06, 0.08.
According to this plot, j̄tot first increases with T=m, at
some temperature becomes maximum, and then decreases
with increasing temperature. The position of the maxima
and the point at which j̄tot vanishes and then changes its
sign depends on the strength of the coupling α. The larger
α, the smaller is the maximum of j̄tot. This specific T
dependence of j̄tot may be interpreted as a sign of
thermodynamic instability in the medium, which turns
out to be more probable for strong couplings α. In
Fig. 9(b), we explore the Ωβ dependence of j̄tot for fixed
temperature z ¼ 0.75 and α ¼ 0.02, 0.06, 0.08. It turns out
that for a weakly interacting relativistic Bose gas, j̄tot
increases with Ωβ, whereas for a moderately interacting
one, it is first positive and remains almost constant for
Ωβ ∼ 0.018. Afterward it becomes zero and changes its
sign for larger Ωβ. For α ¼ 0.08 and z ¼ 0.75, however, it
turns out to be negative, in accordance with the plots from
Fig. 9(a). The plot from Fig. 9(b) indicates that j̄tot is not
linear in Ωβ, especially for larger Ωβs.
In Fig. 10, the T=m dependence of the dimensionless

entropy density s̄tot for a nonrotating (y ¼ 0) and a rotating
(y ¼ 0.018) relativistic Bose gas is compared. As in the

FIG. 7. The α dependence of dimensionless Pring=T4 is pre-
sented for fixed y ¼ 0.018 and z ¼ 0.7, 0.8, 0.9. Whereas for
z ¼ 0.7, Pring=T4 is negative and decreases with increasing α, for
z ¼ 0.8 and z ¼ 0.9, it is first negative and then, after passing a
minimum, increases with increasing α. We notice that α > 0.1
corresponds to λ > 1, which is not appropriate for perturbative
studies.

(a) (b)

FIG. 8. The T=m (panel a) and Ωβ (panel b) dependence of dimensionless Pp=T4 (blue circles) and Ptot=T4 (red squares) are plotted
for fixed y ¼ 0.018 (panel a) and z ¼ 0.75 (panel b) as well as α ¼ 0.02. At high temperature, i.e., for z > 0.4, Ptot is positive and
increases with increasing T=m (see panel a). For fixed z, Ptot increases with increasing Ωβ (see panel b). The difference between Pp and
Ptot becomes negligible at high temperature, as expected from Fig. 6.
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previous case, s̄tot receives contributions from s̄0, s̄1, and
s̄ring. As it is shown in Fig. 10(a), in a nonrotating gas, the
entropy increases with increasing temperature and changing
the strength of the interaction α has practically no effect on
this behavior. For a rotating gas, however, the coupling α
substantially affects the T dependence of s̄tot. Apart from the
fact that its value increases up to several orders of magnitude
due to rotation, the T dependence of s̄tot in a weakly
interacting medium is similar to the T dependence of a
nonrotating gas. In contrast, for larger values of α, s̄tot
increases first with increasing temperature, exhibits a maxi-
mum at a certain temperature decreases with increasing T.

Hence, an interplay between the coupling α and angular
velocity Ω in the final expression for s̄tot leads to a more
ordered system at high temperature. In what follows, we
show that this counter-intuitive T dependence of the entropy
density leads to two novel phenomena in a rigidly rotating
relativistic Bose gas: (i) the emergence of negative heat
capacity and (ii) the appearance of superluminal sound
velocities at high enough temperatures and large enough
couplings. Both effects are signs of thermodynamic
instability.
In Fig. 11, the Ωβ dependence of the dimensionless

entropy density is plotted for a fixed temperature z ¼ 0.75

FIG. 10. (a) The T=m dependence of dimensionless entropy density stot=T3 in a nonrotating relativistic Bose gas is plotted for fixed
α ¼ 0.02, 0.06, 0.08. The entropy is increasing with increasing temperature. The coupling α has very small effect on this behavior, so
that the results for different αs almost coincide. (b) The T=m dependence of dimensionless entropy density stot=T3 in a rotating
relativistic Bose gas is plotted for fixed y ¼ 0.018 and α ¼ 0.02, 0.06, 0.08. Whereas for a weakly interacting relativistic Bose gas with
α ¼ 0.02 the entropy density increases with increasing T=m and becomes almost constant at high temperatures, for a moderately/
strongly interacting Bose gas with α ¼ 0.06=α ¼ 0.08, stot=T3 first increases and then decreases with T=m. In the high temperature
regime, for a fixed T=m and y, the entropy density decreases with increasing α. A comparison with the entropy density in the nonrotating
case from panel a shows that stot=T3 in a rigidly rotating gas is several orders of magnitude larger than in a nonrotating gas.

(a) (b)

FIG. 9. The T=m (panel a) and Ωβ (panel b) dependence of dimensionless angular momentum density jtot=T3 are plotted for fixed
y ¼ 0.018 (panel a) and z ¼ 0.75 (panel b) for α ¼ 0.02, 0.06, 0.08. As it is demonstrated in panel a, jtot=T3 first increases and then
decreases with increasing T=m and Ωβ. For larger values of α, the temperature at which jtot=T3 vanishes is lower. Negative slopes of
jtot=T3 indicates negative moment of inertia at high temperatures T=m as well as high angular velocities Ωβ. The plot in panel b shows
that jtot is not linear in Ωβ.
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and various couplings α ¼ 0.02, 0.06, 0.08. In the weakly
interacting case (α ¼ 0.02), stot=T3 increases slightly with
increasing Ωβ. In contrast, for a moderately/strongly inter-
acting medium, stot=T3 decreases with Ωβ. According to
these results, we conclude that the coupling constant α
plays an important role on theT=m aswell asΩβ dependence
of the total entropy density. Moreover, in general, for fixed
temperature and angular velocity, the total entropy density
decreases with increasing coupling α.
Let us now consider the temperature dependence of

the dimensionless moment of inertia Itot=T2. In Fig. 12,
the T=m dependence of Ī0 (blue dots), Īp (red squares),
and Ītot ¼ I0 þ Ip (green triangles) is plotted. For a
weakly interacting relativistic Bose gas with α ¼ 0.02,
Ītot increases with increasing temperature. In addition, its

T=m dependence turns out to be mainly dominated by that
of Īp ¼ Ī0 þ Ī1. The fact that Ītot is positive for the whole
interval T=m∈ ½0; 1� is only true for a weakly interacting
gas. In Fig. 13(a), we explore the T=m dependence of the
dimensionless Ītot for a weakly, moderately, and strongly
interacting rotating Bose gas with couplings α ¼ 0.02,
0.06, and α ¼ 0.08, respectively. It turns out that in a
weakly interacting medium Ītot is positive in the whole
interval of temperature, while in a moderately/strongly
interacting gas, it first increases with T=m, has then a
maximum at some moderate temperature, and eventually
falls and changes sign at high temperatures. Following
the terminology introduced recently in [26,27], we refer to
temperatures at which Ītot vanishes as “supervortical”

FIG. 12. The T=m dependence of dimensionless I0=T2; Ip=T2,
and Itot=T2 are plotted for fixed α ¼ 0.02. At low temperature
(T=m ≲ 0.5), Itot=T2 increases with increasing T=m. At higher
temperatures T=m > 0.5, however, Ip=T2 and Itot=T2 decrease
with increasing T=m. The T=m dependence of Itot is mainly
dominated by that of Ip.

FIG. 11. The Ωβ dependence of dimensionless entropy density
stot=T3 is plotted for fixed temperature z ¼ 0.75 and coupling
α ¼ 0.02, 0.06, 0.08. Whereas for weakly interacting Bose gas,
stot=T3 slightly increases with increasing Ω, for moderately and
strongly interacting Bose gas, it decreases with increasing Ωβ.

(a) (b)

FIG. 13. (a) The T=m dependence of dimensionless Itot=T2 is plotted for α ¼ 0.02, 0.06, 0.08. Whereas for α ¼ 0.02 (weakly
interacting rotating Bose gas) Itot=T2 is always positive, for α ¼ 0.06 and α ¼ 0.08 (moderately and strongly interacting rotating Bose
gas) Itot=T2 vanishes at certain T=m. These temperatures are the supervortical temperatures ðT=mÞs at which Ω → ∞. (b) The α
dependence of the supervortical temperature ðT=mÞs is plotted. The region below (above) the blue dots corresponds to Itot < 0 (Itot > 0),
and the dots indicate the supervortical temperatures for each given coupling α. According to these results, the supervortical temperature
decreases with increasing α, as expected from panel a.
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temperatures” zs ≡ ðT=mÞs. According to the results in
Fig. 13(a), at z < zs (z > zs) the total moment of inertia is
positive (negative). In Fig. 13(b), the α dependence of
supervortical temperatures ðT=mÞs is plotted. The blue
dots indicate supervortical temperatures for each given α.
The region below (above) the blue dots corresponds to
Ītot > 0 (Ītot < 0).
We also examine the α dependence of Ītot=T2 for fixed

temperatures z ¼ 0.55, 0.75, 0.95 [see Fig. 14(a)]. Whereas
for z ¼ 0.55, the dimensionless moment of inertia is
positive for 0 < α < 0.1, at higher temperatures, there
exists a certain “supervortical coupling” for which Ītot

vanishes. Consequently, for α < αs (α > αs) Ītot turns out
to be positive (negative). In Fig. 14(b), the T=m depend-
ence of αs is plotted. It decreases with increasing temper-
atures as expected from Fig. 14(a). Again, the blue dots
indicate the supervortical couplings for each given temper-
ature T=m and the region below (above) the blue dots
corresponds to Ītot > 0 (Ītot < 0).
At this stage a couple of remarks concerning I ¼ 0 and

I < 0 are in order. Using j ¼ IΩ from (4.9) and assuming
that j ¼ const, a vanishing moment of inertia leads to an
extremely large angular velocity Ω. This is why the term
“supervortical” is used in [26,27]. A negative moment of

(a) (b)

FIG. 14. (a) The α dependence of dimensionless Itot=T2 is plotted for fixed z ¼ 0.55, 0.75, 0.95. Whereas for z ¼ 0.55 (low
temperature) Itot=T2 is positive for all values of α, for moderate and high temperature z ¼ 0.75 and z ¼ 0.95, Itot=T2 vanishes at certain
supervortical coupling, αs. (b) The T=m dependence of αs is plotted. The region below (above) the blue dots corresponds to Itot < 0
(Itot > 0), and the dots indicate the supervortical couplings for each given temperature T=m. According to this result, the supervortical
coupling decreases with increasing temperature.

FIG. 15. (a) The T=m dependence of dimensionless Δtot=T4 (Δtot ¼ ϵtot − 3Ptot) is plotted for a nonrotating relativistic Bose gas for
fixed α ¼ 0.02, 0.06, 0.08. It decreases with increasing T=m, and asymptotically approaches zero at high temperatures, indicating that
the gas becomes ideal at high enough T.The slope of its fall depends on the coupling α. (b) The T=m dependence of dimensionless
Δtot=T4 is plotted for a rotating relativistic Bose gas with y ¼ 0.018 for fixed α ¼ 0.02, 0.06, 0.08. Although the qualitative behavior is
similar to y ¼ 0 case in panel a, but the value of Δtot is several orders of magnitude larger than in a nonrotating Bose gas. As in the
nonrotating case, Δtot decreases with increasing T, but it contrast to this case vanishes at certain temperature and by increasing T
becomes negative. This may be interpreted as a sign of thermodynamic instability of the strongly interacting medium caused by a rigid
rotation.
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inertia, however, means that by applying an external
angular momentum J, the system rotates with an angular
velocity Ω directed antiparallel to J (see Fig. 1 for a
visualization of this situation). Thus, a negative moment of
inertia may indicate a thermodynamic instability in a
rigidly rotating medium [26,27].
In Fig. 15, we explore the T dependence of dimension-

less Δ̄ ¼ ϵ̄ − 3P̄ for a nonrotating y ¼ 0 and a rotating y ¼
0.018 relativistic Bose gas. This quantity is a measure for
the ideality of a relativistic medium, as ϵ ¼ 3P is the
equation of state of an ideal (Bose) gas. As it is demon-
strated in Fig. 15(a), Δ̄tot decreases with increasing temper-
ature. The slope of its fall depends slightly on the coupling

α. This result indicates that at high enough temperature the
nonrotating Bose gas behaves as an ideal gas, as Δ̄tot
approaches asymptotically to zero. For a rotating medium,
apart from the fact that Δ̄tot is up to several orders of
magnitude larger than in a nonrotating medium, it
decreases with increasing temperature [see Fig. 15(b)].
However, in contrast to the nonrotating case, it vanishes at
certain temperature, and becomes negative afterward. This
is a sign of a thermodynamic instability caused by a rigid
rotation in a strongly interacting relativistic Bose gas.
The Ωβ dependence of Δ̄tot is plotted in Fig. 16 for fixed

temperature z ¼ 0.75 and α ¼ 0.02, 0.06, 0.08. According
to this plot, Δ̄tot decreases with increasing Ωβ. At some
specificΩβ, it vanishes and becomes negative. The stronger
the coupling constant, the lower the angular velocity is at
which Δ̄tot vanishes and the system becomes unstable.
In Fig. 17, the temperature dependence of dimensionless

heat capacity CV=T2 is plotted for a nonrotating y ¼ 0 and
rotating (y ¼ 0.018) relativistic Bose gas. We used (4.5) to
determine CV . According to the plot in Fig. 17(a), in the
nonrotating medium, the heat capacity increases with
increasing temperature. In a rotating medium, however,
the T=m dependence of C̄V depends significantly on α
[see Fig. 17(b)]. Whereas for α ¼ 0.02 (weakly interacting
medium), the heat capacity is always positive and its T
dependence is more or less similar to the case of a
nonrotating gas, for a moderately and strongly interacting
gas with α ¼ 0.06 and α ¼ 0.08, C̄V decreases with
increasing temperature. For α ¼ 0.08 at T=m ∼ 0.82, it
vanishes and then becomes negative at T=m > 0.82. Let us
notice that when a system possesses a negative heat
capacity, its temperature decreases by supplying heat.
Same counterintuitive behavior appears in a rigidly rotating

FIG. 16. The Ωβ dependence of dimensionless Δtot=T4

(Δtot ¼ ϵtot − 3Ptot) is plotted for fixed z ¼ 0.75 and α ¼ 0.02,
0.06, 0.08. It decreases with increasing Ωβ. The larger α, the
smaller the specific angular velocity is at which Δtot vanishes.
Negative Δtot is a sign of thermodynamic instability of the
strongly interacting medium caused by a rigid rotation.

(a) (b)

FIG. 17. (a) The T=m dependence of dimensionless heat capacity CV=T2 for a nonrotating Bose gas is plotted for fixed α ¼ 0.02, 0.06,
0.08. The heat capacity increases with increasing temperature. (b) The T=m dependence of the dimensionless heat capacity CV=T2 of a
rotating Bose gas is plotted for fixed α ¼ 0.02, 0.06, 0.08. Comparing with the heat capacity of a nonrotating gas,CV in a rigidly rotating
system is several orders of magnitude larger. In contrast to the nonrotating case, CV first increases with increasing T=m and then
decreases at large temperatures. For large enough coupling α, it vanishes at certain temperature, and becomes negative at Ts. Negative
CV is a sign of thermodynamic instability of the medium. It is caused by a rigid rotation in a medium with large α.
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Bose gas, and is affected by the strength of the interaction
in the medium.
The Ωβ dependence of the dimensionless heat capacity

is plotted in Fig. 18 for fixed temperature z ¼ 0.75 and
α¼ 0.02, 0.06, 0.08. In the weakly interacting case α ¼
0.02, C̄V is positive and almost constant inΩβ. For α ¼ 0.06
and α ¼ 0.08, however, it slightly decreases with increasing
Ωβ. For large coupling α ¼ 0.08, it vanishes at some large
Ωβ. For fixed T and Ω, C̄V decreases with increasing α.
Using the data corresponding to the entropy density and

heat capacity, it is possible to determine the sound velocity
cs according to (4.6). In Fig. 19, the T=m dependence of c2s

is plotted for fixed α ¼ 0.02, 0.06, 0.08 as well as y ¼ 0
[Fig. 19(a)] and y ¼ 0.018 [Fig. 19(b)]. According to these
results, the speed of sound of a nonrotating Bose gas
increases with increasing T and approaches asymptotically
the speed of sound of a free relativistic gas, c2s ¼ 1=3. In the
absence of rotation, different choices of α does not affect
this behavior too much. In a rotating medium, however, the
situation is different. Whereas, according to the results in
Fig. 19(b), the temperature dependence of c2s is more of less
similar to the nonrotating case, for a moderately interacting
gas with α ¼ 0.06, c2s increases with T but it passes 1=3 at
high temperature and becomes almost equal to the speed of
light at T=m ∼ 1. For strong coupling α ¼ 0.08, the sound
velocity increases very fast, so that at T=m ¼ 0.8 is given
by cs ¼ 1.07 > 1. This breaks the causality and is an
indication that a strongly interacting rotating Bose gas
becomes unstable at high temperature.
The Ωβ dependence of c2s is explored in Fig. 20 for fixed

temperature z ¼ 0.75 and α ¼ 0.02, 0.06, 0.08. For a
weakly interacting Bose gas, the speed of sound is lower
than c2s ¼ 1=3. It increases slightly with increasing Ωβ, but
never becomes larger than the speed of light. The same is
also true for a moderately interacting medium with
α ¼ 0.06. For α ¼ 0.08, however, c2s increases very fast
with increasing Ωβ and reaches cs ∼ 1 at Ωβ ∼ 0.022.
Afterward the system becomes unstable because of broken
causality for larger values of angular velocity. Let us notice
that α ¼ 0.08 corresponds to λ ∼ 0.78 < 1, which is still
reliable for a perturbative expansion. The above results
show that such a strongly interacting Bose gas become
unstable either at large temperatures or large angular
velocities once the system is subjected to a rigid rotation.

(a)

FIG. 18. The Ωβ dependence of dimensionless CV=T2 is
plotted for fixed temperature z ¼ 0.75 and α ¼ 0.02, 0.06, 0.08.
For a weakly interacting medium, the heat capacity is almost
constant. For moderately/strongly interacting medium, however, it
decreases moderately with increasing angular velocity.

FIG. 19. (a) The T=m dependence of the speed of sound c2s for a nonrotating Bose gas is plotted for fixed α ¼ 0.02, 0.06, 0.08. It
increases with increasing temperature and approaches asymptotically the speed of sound of an ideal gas, c2s ∼ 1=3, at high temperature.
(b) The T=m dependence of the speed of sound c2s for a rotating Bose gas is plotted for fixed y ¼ 0.018 and α ¼ 0.02, 0.06, 0.08.
Whereas cs increases with increasing T=m, for α ¼ 0.08, c2s diverges at certain temperature and at certain temperature becomes larger
than the speed of light. The appearance of superluminal sound velocities (cs > 1) at high temperatures and strong α breaks the causality.
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V. CONCLUDING REMARKS

We studied the effect of a rigid rotation on the thermo-
dynamic properties of a relativistic Bose gas. First, we
determined the perturbative thermodynamic potential up to
one-loop order, which together with the nonperturbative
ring potential was used to compute the thermodynamic
quantities in this approximation. To do this, we considered
the Lagrangian density of a CKGmodel in the presence of a
rigid rotation. We utilized the solution of the corresponding
equation of motion to derive the free propagator of this
model using the Fock-Schwinger method. The free propa-
gator allowed us to determine the thermodynamic potential
of this model, including zeroth and one-loop perturbative
contributions as well as nonperturbative ring potential. We
presented analytical expressions for these quantities and
showed, in particular, that the angular velocity Ω plays
effectively the role of a chemical potential, as anticipated
from literature. Additionally, we performed an appropriate
high temperature expansion and presented the correspond-
ing results to the total thermodynamic potential in this
approximation. This potential was then used to determine
several thermodynamic quantities, including the pressure,
entropy density, angular momentum density, heat capacity,
speed of sound, and the moment of inertia of this rotating
relativistic Bose gas. We numerically explored the T and Ω
dependence of these quantities.
By comparing the exact expression of P0, arising from

the zeroth order thermodynamic potential, with the high
temperature expanded expressions corresponding to it, we
determined the high temperature regime of this model to
be T=m ≥ 0.4. We showed that P0 of a rotating relativistic
Bose gas is much higher than P0 for a nonrotating gas. We
then focused on the one-loop and ring contributions to the

total pressure Ptot. As the ring potential is negative in the
whole interval of T and Ω, and as it increases with
increasing T and Ω, its effect reduces in high temperature
and frequency regimes. Hence, in this regime, the ðT;ΩÞ
dependence of the total pressure is mainly dominated by
the ðT;ΩÞ dependence of P1, including the zeroth and
one-loop contributions to Ptot. Apart from ðT;ΩÞ depend-
ence of the pressure, we focused on its α ¼ λ=π2 depend-
ence. Here, λ is the coupling constant of the model, which
appears in the corresponding Lagrangian density. We
showed that the ring pressure exhibits a nonlinear depend-
ence on α.
Regarding the ðT;ΩÞ dependence of the angular momen-

tum and entropy densities, jtot and stot, for fixed ðΩβ; T=mÞ
and α, we distinguish three different types of behavior in
three different regimes of α. Whereas in the weakly
interacting regime 0 < α ≤ 0.05, jtot is positive and stot
increases with increasing temperature and angular velocity,
in the moderately and strongly interacting regimes
α∈ ½0.05; 0.07� and α∈ ½0.07; 0.1�, jtot becomes negative,
in particular, in the high temperature regime and stot
decreases with increasing temperature. This is an effect
mainly caused by the rigid rotation, as, for instance, the
entropy density of a nonrotating relativistic Bose gas
increases with increasing T, as expected.
Being directly related to jtot through its definition in

(4.9), the T dependence of the moment of inertia Itot is
also affected by α. Whereas in the weakly interacting
regime, it is positive, it becomes negative in a moderately
and strongly interacting medium after certain temperature.
The specific temperature at which Itot vanishes, was
referred to as the supervortical temperature, Ts. We
demonstrated in Fig. 12(b) that Ts decreases with increas-
ing α. Apart from Ts, we defined a supervortical coupling
αs, and showed in Fig. 13(b) that αs decreases with
increasing temperature. Interpreting j ¼ IΩ as the linear
response to Ω, the moment of inertia I plays the role of the
susceptibility of the medium corresponding to rotation. As
it is demonstrated in Fig. 1, I > 0 (I < 0) means that by
applying an angular momentum j, the system rotates withΩ
parallel (antiparallel) to j and a vanishing moment of inertia
leads to Ω → ∞ once j is assumed to be finite. Similar
counterintuitive effect is also observed in the temperature
dependence of the heat capacity CV. Whereas CV is positive
in a weakly interacting Bose gas under rotation, in a
moderately interacting gas, it decreases with increasing
temperature, and in a strongly interacting Bose gas, it
vanishes at some finite temperature and becomes negative
with increasing temperature. Negative CV means that
although a system receives heat, but its temperature
decreases. Its occurrence is a sign of thermodynamic
instability in a medium. Here, this instability is caused
by rigid rotation.
Another noticeable effect that occurs once the relativistic

Bose gas is strongly interacting and rigidly rotates, is the

FIG. 20. TheΩβ dependence of the speed of sound c2s is plotted
for fixed temperature z ¼ 0.75 and α ¼ 0.02, 0.06, 0.08. Whereas
for α ¼ 0.02, the speed of sound is almost constant in Ωβ and
increases slightly for α ¼ 0.06, it diverges in a strongly interact-
ing medium with α ¼ 0.08. The appearance of sound velocities
larger than the speed of light is a sign of thermodynamic
instabilities.
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appearance of superluminal sound velocities at high tem-
peratures and for large angular velocities (see Figs. 19
and 20). According to (4.6), the sound velocity cs is defined
in terms of the entropy density and heat capacity. Its
ðT;Ω; αÞ dependence is thus directly related to the
ðT;Ω; αÞ dependence of the entropy density. It thus seems
that a relativistic Bose gas under rigid rotation becomes
thermodynamically unstable in the strong coupling regime
α∈ ½0.07; 0.1�, in which (because of λ < 1) perturbative
computation is still possible. We thus conclude that the
above-mentioned instabilities are caused by an interplay
between free parameters ðT;Ω; αÞ.
In summary, the analysis of the thermodynamic proper-

ties of the rigidly rotating relativistic Bose gas revealed
interesting behavior at high temperatures and large cou-
pling constants. The appearance of thermodynamic insta-
bilities, such as zero and negative values of the moment of
inertia and heat capacity, suggested the presence of unique
phenomena such as supervorticity and provided insight into
the complex behavior of a rigidly rotating system. It would
be interesting to extend this work to a relativistic Fermi gas

and eventually generalize it to the QGP produced in
relativistic HICs. First attempt in this direction is made
in [42]. In general, the study of such systems not only
enriches our knowledge of fundamental physics, but may
offer potential applications in diverse fields such as con-
densed matter physics [43] and astrophysics [44–46].

APPENDIX A: FREE BOSONIC PROPAGATOR
IN MOMENTUM SPACE

The free boson propagator in the coordinate space is
given by (2.20). The corresponding propagator in the
Fourier space is determined by

Dð0Þ
ll0 ðp; p0Þ ¼

Z
d4xd4x0D0ðx; x0Þϕlðx; pÞϕl0 ðx0; p0Þ;

ðA1Þ
with d4x ¼ dtdφdzrdr in the cylindrical coordinate sys-
tem. Plugging D0ðx; x0Þ from (2.21) and ϕlðx; pÞ from
(2.10) into (A1), we arrive first at

Dð0Þ
ll0 ðp; p0Þ ¼

Xþ∞

n¼−∞

Z
dtdt0dφdφ0dzdz0rdrr0dr0

×
Z

dEdkzdk⊥k⊥
ð2πÞ3

e−iEðt−t0ÞþinΩðt−t0Þþikzðz−z0Þþinðφ−φ0Þ

E2 − k2⊥ − k2z −m2 þ iϵ
Jnðk⊥rÞJnðk⊥r0Þ

× eþip0t−ilφ−ipzzJlðp⊥rÞ × e−ip
0
0
tþil0φ0þip0

zz0Jl0 ðp0⊥r0Þ: ðA2Þ

To perform the integrations over t and z, we use

Z
dte−iðE−ðnΩþp0ÞÞt ¼ 2πδðE − ðnΩþ p0ÞÞ;Z

dzeiðkz−pzÞz ¼ 2πδðkz − pzÞ: ðA3Þ

Integration over t0 and z0 are performed similarly. The
integral over φ yields

Z
2π

0

dφeiðn−lÞφ ¼ 2πδnl: ðA4Þ

Similarly, the integration over φ0 leads to

Z
2π

0

dφeiðn−l0Þφ ¼ 2πδnl0 : ðA5Þ

Because of the summation over n in (A2), (A4) and (A5)
result in l ¼ l0 ¼ n. It is thus possible to perform the
integration over r and r0 by making use of

Z
∞

0

drrJlðk⊥rÞJlðp⊥rÞ ¼
1

k⊥
δðk⊥ − p⊥Þ;Z

∞

0

dr0r0Jlðk⊥r0ÞJlðp0⊥r0Þ ¼
1

k⊥
δðk⊥ − p0⊥Þ: ðA6Þ

Plugging (A3), (A4), (A5) and (A6) into (A2), and
performing the integration over E; kz; k⊥ and the summa-
tion over n, we arrive at

Dð0Þ
ll0 ðp; p0Þ ¼ ð2πÞ3δ̂l;l0 ðp0; pz; p⊥;p0

0; p
0
z; p0⊥Þ

ðp0 þ lΩÞ2 − p2⊥ − p2
z −m2 þ iϵ

; ðA7Þ

with

δ̂l;l0 ðp0; pz; p⊥;p0
0; p

0
z; p0⊥Þ ¼

1

p⊥
δðp0 − p0

0Þδðpz − p0
zÞ

× δðp⊥ − p0⊥Þδll0 ; ðA8Þ

[see (2.22) and (2.23)].
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APPENDIX B: HIGH TEMPERATURE
EXPANSION OF Vð0ÞT

eff

In this appendix, we derive (3.15) which arises by an
appropriate HTE of the T dependent part of the zeroth order
correction to the thermodynamic (effective) potential (3.7).
To this purpose, we use the method introduced in [37,39],
where the thermodynamic potential of a free relativistic
Bose gas with a finite chemical potential μ is expanded in
the orders of mβ, with β ¼ T−1 and μ < m.8

Let us consider Vð0ÞT
eff from (3.7),

Vð0ÞT
eff ¼ T

Xþ∞

l¼−∞

Z
dpzp⊥dp⊥

ð2πÞ2

× ½ln ð1 − e−βðωþlΩÞÞ þ ln ð1 − e−βðω−lΩÞÞ�; ðB1Þ

and separate the summation over l into the contribution

from l ¼ 0 and l ≠ 0 to Vð0ÞT
eff . The resulting expression is

then given by

Vð0ÞT
eff ¼ 2ðI1 þ I2Þ; ðB2Þ

with

I1 ≡
Z

dpzp⊥dp⊥
ð2πÞ2 ln ð1 − e−βωÞ;

I2 ≡
Xþ∞

l¼1

Z
dpzp⊥dp⊥

ð2πÞ2

× ½ln ð1 − e−βðωþlΩÞÞ þ ln ð1 − e−βðω−lΩÞÞ�: ðB3Þ

Here, ω2 ¼ p2⊥ þ p2
z þm2. To evaluate the Ω-independent

part of Vð0ÞT
eff , I1, we use

lnð1 − xÞ ¼ −
Xþ∞

k¼1

xk

k
; ðB4Þ

and arrive first at

I1 ¼ −
Xþ∞

k¼1

1

k

Z
dpzp⊥dp⊥

ð2πÞ2 e−βωk: ðB5Þ

Using, at this stage, the Mellin transformation of the
exponential function in (B5), we obtain

e−βωk ¼ 1

2πi

Z
cþi∞

c−i∞
dzΓðzÞðβkÞ−zðω2Þ−z=2: ðB6Þ

Plugging then

ðω2Þ−z=2 ¼ 1

Γðz=2Þ
Z

∞

0

dtt
z
2
−1e−ω

2t; ðB7Þ

into (B6) and the resulting expression into (B5), we
arrive at

I1 ¼ −
1

2πi

Z
cþi∞

c−i∞
dzζðzþ 1Þ ΓðzÞ

Γðz=2Þ β
−z

×
Z

∞

0

dtt
z
2
−1e−m

2t

Z
dpzp⊥dp⊥

ð2πÞ2 e−ðp2
zþp2⊥Þt; ðB8Þ

where ζðzÞ is the Riemann ζ-function. It arises from

Xþ∞

k¼1

k−ð1þzÞ ¼ ζð1þ zÞ; ðB9Þ

that is used to perform the summation over k in (B8). The
integration over pz and p⊥ can easily be performed and
yields

Z
dpzp⊥dp⊥

ð2πÞ2 e−ðp2
zþp2⊥Þt ¼ 1

ð2πÞ3
�
π

t

�
3=2

: ðB10Þ

We first substitute (B10) into (B8) and then perform the
integration over t by making use of

Z
∞

0

dttx−1e−w
2t ¼ ΓðxÞðw2Þ−x; ðB11Þ

for Re½w2� > 0, and Re½x� > 0: Using, at this stage, the
Legendre formula for the ΓðzÞ function in (B8)

ΓðzÞ ¼ 2z

2
ffiffiffi
π

p Γ
�
z
2

�
Γ
�
zþ 1

2

�
; ðB12Þ

and plugging (B11) and (B12), with x ¼ z=2 and w ¼ m,
into (B8), we arrive at

I1 ¼ −
m3

16π2
1

2πi

Z
cþi∞

c−i∞
dzΓ

�
zþ 1

2

�
Γ
�
z − 3

2

�

× ζð1þ zÞ
�
mβ

2

�
−z
; ðB13Þ

that leads to

I1 ¼ −
π2

90
T3 þm2T

24
−

m3

12π
þ m4

32π2T

×

�
ln

�
4πT
m

�
− γE þ

3

4

�
þ � � � ; ðB14Þ

upon using Cauchy’s theorem and summing over the
residues of Γs and ζ-function.8Here, μ is assumed to be positive.
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Let us now consider the Ω-dependent part of Vð0ÞT
eff , I2

from (B3). Using (B4), it is first given by

I2 ¼ −2
Xþ∞

l¼1

Z
dpzp⊥dp⊥

ð2πÞ2
�
e−βωk

k
cosh ðklΩβÞ

�
: ðB15Þ

Expanding cosh ðklΩβÞ in (B15), I2 is given by

I2 ¼ −2
Xþ∞

l¼1

Xþ∞

j¼1

1

ð2jÞ! ðβlΩÞ
2jQj; ðB16Þ

with

Qj ≡
Xþ∞

k¼1

Z
dpzp⊥dp⊥

ð2πÞ2 e−βωkk2j−1: ðB17Þ

Following the same steps leading to I1, we arrive first at

Qj ¼
m3

16π2
1

2πi

Z
cþi∞

c−i∞
dzΓ

�
zþ 1

2

�

× Γ
�
z − 3

2

�
ζð1þ z − 2jÞ

�
mβ

2

�
−z
; ðB18Þ

and then after performing the integration over z by using
the Cauchy’s theorem, we obtain

Q1 ¼
m4

16π2T
ζ0ð−2Þ þ m2

8π2T
−

m
4πT2

þ 1

6T3
þ � � � ; ðB19Þ

and

Q2 ¼
m4

16π2T
ζ0ð−4Þ − 1

2π2T3
þ � � � : ðB20Þ

Substituting these results into I2, we arrive at

I2 ¼ −
Xþ∞

l¼1

�ð3m2 − ðlΩÞ2Þ
24π2T

−
m
4π

þ 1

6T

�
ðlΩÞ2 þ � � � :

ðB21Þ

Adding this expression with I1 from (B14), according to

(B2), the HTE of Vð0ÞT
eff is given by (3.15).

APPENDIX C: HIGH TEMPERATURE
EXPANSION OF Π1

As it is described in Sec. III B, the one-loop self-energy
function of the CKG field is given by (3.28), with
J i; i ¼ 1, 2 from (3.29). In this appendix, we use the
method introduced in Appendix B and derive the HTE of
J i; i ¼ 1, 2.
Let us first consider J 1 and replace the Bose-Einstein

distribution function nbðωÞ with

nbðωÞ ¼ T
d
dα

ln ð1 − e−βðωþαÞÞ
����
α¼0

: ðC1Þ

We thus arrive at

J 1 ¼ T
d
dα

Z
dpzp⊥dp⊥

ð2πÞ2
1

ω
ln ð1 − e−βðωþαÞÞ

����
α¼0

: ðC2Þ

Using (B4) to expand the logarithm in (C2), substituting the
Mellin transformation of the exponential function (B6) into
the resulting expression, and using

ðω2Þ−ðzþ1Þ=2 ¼ 1

Γðz=2Þ
Z

∞

0

dtt
ðzþ1Þ
2

−1e−ω
2t; ðC3Þ

with ω2 ¼ p2
z þ p2⊥ þm2, we arrive at

J 1 ¼ −
T
2πi

d
dα

Z
cþi∞

c−i∞
dzLizþ1ðe−αβÞ

ΓðzÞ
Γððzþ 1Þ=2Þ β

−z

×
Z

∞

0

dtt
zþ1
2
−1e−m

2t

Z
dpzp⊥dp⊥

ð2πÞ2 e−ðp2
zþp2⊥Þt

����
α¼0

;

ðC4Þ

where the polylogarithm Lizþ1ðe−αβÞ arises from

Xþ∞

k¼1

e−βkαk−ð1þzÞ ¼ Lizþ1ðe−αβÞ: ðC5Þ

Performing the integration over pz and p⊥ by using (B10),
plugging the resulting expression into (C4), and performing
the integration over t by using (B11),

J 1 ¼
m2

16π2
1

2πi

Z
cþi∞

c−i∞
dzΓ

�
z
2

�
Γ
�
z − 2

2

�
Lizð1Þ

�
mβ

2

�
−z
:

ðC6Þ

To arrive at (C6), we also used (B12) and

d
dα

Lizþ1ðe−αβÞ
����
α¼0

¼ −βLizð1Þ:

Using Cauchy’s theorem and summing over residues of Γ
and polylogarithm functions, J 1 is given by

J 1 ¼
T2

12
−
mT
4π

þ m2

8π2

�
ln

�
4πT
m

�
− γEþ

1

2

�
þ� � � : ðC7Þ

Let us now consider J 2 from (3.29). To evaluate it, we use

nbðω� lΩÞ ¼ �T
∂

∂ðlΩÞ ln ð1 − e−βðω�lΩÞÞ; ðC8Þ
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and Taylor expand the logarithms according to (B4). We
arrive at

J 2 ¼ 2T
Xþ∞

l¼1

Xþ∞

k¼1

∂

∂ðlΩÞ
Z

dpzp⊥dp⊥
ð2πÞ2

1

ω

×

�
e−βωk

k
sinh ðklΩβÞ

�
: ðC9Þ

Expanding sinhðklΩβÞ in the orders of lΩ, we arrive
first at

J 2 ¼ 2
Xþ∞

l¼1

Xþ∞

j¼0

1

ð2jÞ!F j; ðC10Þ

with

F j ≡
Xþ∞

k¼1

Z
dpzp⊥dp⊥

ð2πÞ2
e−βωkk2j

ω
: ðC11Þ

Following, at this stage, the same steps leading to I1 from
Appendix B, we arrive first at

F j¼
m2

16π2
1

2πi

Z
cþi∞

c−i∞
dzΓ

�
z−2

2

�
Γ
�
z
2

�
ζðz−2jÞ

�
mβ

2

�
−z
;

ðC12Þ

and then after performing the integration over z by using
the Cauchy’s theorem, we obtain

J 2 ¼
Xþ∞

l¼1

�
T2

6
−
ð2m2 − ðlΩÞ2ÞT

4πm
−
ðlΩÞ2
4π2

þ m2

8π2

�
ln

�
4πT
m

�
− γE þ 1

2

��
: ðC13Þ

Adding this expression to J 1 from (C7), we arrive,
according to (3.28) at Πmat

1 from (3.30).
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