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We propose an external field approach to evaluating effective action allowing the interaction to act
everywhere at all times (everlasting). Requiring that the asymptotic gauge fields are always interacting, we
implement displacement fields encoding polarization corrections into the derivation of effective action. The
result is a novel polarization summation for one-cut reducible loop diagrams, which can be applied to two
cases: transient quasiconstant electromagnetic fields and everlasting interactions. In the first case, a
perturbative expansion of our result recovers the Schwinger-Dyson reducible diagram series with a Landau
pole. The everlasting summation evaluated in nonperturbative fashion removes the Landau pole, providing
a new avenue for modeling strongly interacting theories.
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I. INTRODUCTION

Among the unresolved mysteries in quantum field theory
is the Landau pole [1,2]—an unexpected singular point in
the sum arising in the vacuum polarization chain diagrams.
The perturbative QED framework suggests this result arises
considering the interaction between photons and electron-
positron loop fluctuations in a manner akin to a scattering
problem with switch-on-off procedure, with the Schwinger-
Dyson equations [3–5] built upon bare asymptotic photon
states. Experimental tests of this suggested pole remain
elusive, however, given the small QED coupling. In QCD,
on the other hand, there is strong evidence for the absence
of the Landau pole [6,7], supported by lattice computation
and measurements of the running coupling [8–13].
Here we explore the question of the Landau pole using

an external field method for computing effective action
in quasiconstant (infrared) fields. A convenient theore-
tical environment to develop our model example is the
electromagnetic (EM) vacuum response considered in the
context of the Euler-Heisenberg-Schwinger (EHS) effective
action [14–17]. In this context the nature of the interaction of
the fields was remarked on byWeisskopf [14]: “One can by
no means separate the external field from the field that is
created by the vacuum electrons themselves”.
Taking inspiration from Weisskopf’s remark, we distin-

guish the perturbative switch-on-off approach to evaluating

effective action, in which the external fields are asymp-
totically noninteracting far from the interaction region,
from what we propose to call hereon as “everlasting”
interactions. In the latter case, the gauge field cannot be
removed from the interaction region. We develop the
everlasting approach by implementing displacement (dis-
tinct from EM) fields to encode the polarization effects in a
self-consistent manner. The result for our illustrative
example built on the EHS action is a one-cut reducible
loop summation which exhibits, near the expected Landau
pole where the interaction strength is large, a difference in
outcomes compared to the usual perturbative approach.
Our extension of the EHS effective action may be seen as

a demonstration of the everlasting principle, to be imple-
mented in consideration of any other quantum field theory
effective action in which the asymptotic fields are always
interacting. We focus on the polarization function and the
Landau pole as it provides a model for studying more
strongly interacting theories, including as an interesting
example the Savvidy Yang-Mills vacuum [18–25]. The
strongly coupled high-mass sector of electroweak theory
e.g., the strong coupling of the Higgs boson to the top quark
and W and Z bosons [26–31] offers another domain of
future application of the everlasting principle in study of
effective action.

II. MOTIVATION

Weisskopf’s insight, that the externally applied field
entering the EHS action has to be made consistent with the
polarized vacuum, implies the need to sum higher-order
one-cut reducible loop diagrams. Clearly any effect of such
a higher-order summation would be felt in presence of
strongly coupled or very strong fields.
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In perturbative formulation for quasiconstant fields of
infinite extent the related diagrams starting with the two-
loop reducible action were, following Ritus [32], for a long
time assumed to vanish. Recently, however, Gies and
Karbstein [33] discovered that in the limit of vanishing
momentum (quasiconstant fields) the vanishing factor in
the Ritus argument is compensated by the virtual photon
propagator connecting the two loops, producing a nonzero
result.
As a step in the direction of Weisskopf’s observation, the

field-theoretical approach in [33] inserts a dynamical EM
field correction to the external background. This effectively
encodes perturbative interactions with the polarized vac-
uum, with electron loop degrees of freedom integrated out.
The effective EM action, including the proposed two-

loop complement to the EHS result [33], reads as

LGK
eff ¼ LM þ L1 þ L2; ð1Þ

with the Maxwell term

LM ¼ E2 − B2

2
¼ −

FμνFμν

4
ð2Þ

in terms of EM tensor Fμν. The one-loop EHS action

L1 ¼ LMΠ0 þ Lr
1; ð3Þ

where Π0 is the logarithmically divergent vacuum polari-
zation to be removed by charge renormalization and Lr

1 is
the renormalized nonlinear (fourth order and higher in EM
field) EHS contribution, discussed in more detail below.
The two-loop contribution Eq. (32) of [33] reads

L2 ¼
1

2

∂Lr
1

∂Fμν

∂Lr
1

∂Fμν
; ð4Þ

originally evaluated using the renormalized (finite) con-
tribution to the one-loop action.1

In this work we develop an alternate external field
method, with polarization effects encoded as part of the
asymptotic fields in a self-consistent manner. Aside from
sign and magnitude considerations (see [35]), we obtain a
loop summation action in concordance with the EM
derivative structure of Eq. (4) and sequel perturbative
higher-order loop extensions [34]. Implementation to all
orders of our procedure removes the Landau pole which is
the key result we report here.

III. EVERLASTING FIELD INTERACTION

In the EHS action framework, only the electron field is
2nd-quantized in our approach and thus we sum diagrams
which do not involve “internal” photon lines (inside an
electron loop). However, there are infinite (reducible)
vacuum polarization diagrams that can be derived as a
polarization effect, without need for photon field quantiza-
tion and integration over virtual photon momentum.
To develop our approach we first show the noninteract-

ing case as it yields the EHS one-loop result. We then
implement always-interacting external fields, producing a
differential equation with the one-loop expression as an
input function.

A. Noninteracting case

Consider a charged spin-1=2Dirac particle, thus a source
of the electrical field Ee (e for electron), entering an external
constant electrical field EX. To describe their interaction we
write the EM Maxwell action for both fields, with the
remainder LDirac ¼ ψ̄ðγ · p −mÞψ :

W ¼
Z

d4xðLM þ LDiracÞ

¼ 1

2

Z
d4xðEX þ EeÞ2 þ

Z
d4xψ̄ðγμpμ −mÞψ

¼ 1

2

Z
d4xðE2

X þ E2
eÞ

þ
Z

d4x½Ei
XE

i
e þ ψ̄ðγμpμ −mÞψ �: ð5Þ

In the last line we combined the mixed-field term, pro-
ducing the interaction between the particle and field, with
the particle action. Upon integration by parts

Z
d4xEi

XE
i
e ¼ −

Z
d4xð∇A0

XÞiEi
e

¼
Z

d4xA0
Xρe ¼

Z
d4xψ̄A0

Xγ0ψ ; ð6Þ

where ρe ¼ ψ†ψ and ψ̄ ¼ ψ†γ0. The surface terms vanish
due to charge conservation as imposed by gauge invariance:
this is also seen considering Ee and its derivatives describe a
single localized particle fluctuation. The remaining two
field terms in Eq. (5) describe the field action of the
classical field and the classical electron self-energy.
Inserting Eq. (6) into last line of Eq. (5), we obtain

the action for the Dirac field in the presence of an external
A0
X potential. Applying covariance argument we generalize

the potential to a full four-vector eAμ
X, replacing

pμ → pμ − eAμ
X. Upon 2nd-quantization of the Dirac field

one computes the EHS action function for constant fields
generated by potential Aμ

X [14–17]:

1A factor −1=2 difference with respect to the generally
accepted Schwinger-Dyson series at two-loop order arises, which
propagates into sequel work higher-order loop extensions [34];
see [35].
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L1 ¼
Z

d4xh0jψ̄�γ · ðp − eAXÞ −m
�
ψ þ H:c:j0i; ð7Þ

to obtain Eq. (3):

L1 ¼
E2
X

2
Π0 þ Lr

1; Lr
1 ¼ OðE4

XÞ: ð8Þ

Having summarized above the one-loop EHS action
based on noninteracting fields, we now develop an illus-
trative example of asymptotically interacting fields. This
amounts to the effective action Eq. (8), describing the
vacuum interaction, feeding back into (polarizing) the
external field EX prescribed at the start in Eq. (5).

B. Always-interacting case

As seen above, the vacuum acquires, through the
evaluation of the field-dependent action function Eq. (7),
the properties of a dielectric. This dielectric behavior is an
everlasting in time and infinitely spanning in all space
vacuum state in which the fields exist. We can no longer
assume an a priori prescribed Maxwell electromagnetic
Lagrangian LM as in Eq. (5), based on noninteracting
fields. To account for fields being already polarized by the
vacuum we introduce Leff as the self-consistent effective
EM Lagrangian:

ðLM ¼ E2=2Þ → Leff : ð9Þ

This effective action describes reducible loop polarization
effects where the electron degrees of freedom are a priori
integrated out.
Our objective is to develop the interaction term between

the polarized background field and a single electron
fluctuation. Since the vacuum dielectric response must
be solved for self-consistently, we expand in powers of the
electron sourced field Ee, of negligible magnitude com-
pared to a prescribed external field EX. We expand in the
small fluctuation to obtain

W̃ ¼
Z

d4xðLeffðEÞ þ LDiracÞ

¼
Z

d4x

�
LeffðEÞjEX þ

1

2

∂
2LeffðEÞ
∂Ei∂Ej

����
EX

Ei
eE

j
e þ � � �

�

þ
Z

d4x

�
∂LeffðEÞ

∂Ei

����
EX

Ei
e þ ψ̄ðγμpμ −mÞψ

�
: ð10Þ

In the leading term of the expansion we recognize the
displacement field DX:

EX → DX ¼ ∂Leff

∂EX
; ð11Þ

where polarization contributions P enter the displacement
field according to [36]

DX ¼ EX þ P: ð12Þ

We identify the interaction term coupling the displacement
field to the probe charge and integrate by parts:

Z
d4x

∂LeffðEXÞ
∂EXi

Ei
e ¼ −

Z
d4xð∇Ã0

XÞiEi
e

¼
Z

d4xÃ0
Xρe; ð13Þ

with surface terms canceling again due to charge con-
servation, also noting Ee describes a single localized
fluctuation like before. However, rather than seeing a
noninteracting field, the electron is subject to the external
field which a priori encodes the everlasting interaction with
the collective (infinite) fluctuations spanning the vacuum.
This field is described by potential Ãμ

X, defined as a basis
for the displacement field. This potential can be recom-
bined with the Dirac particle action.
The derivation of effective action proceeds like in theEHS

approach resulting in the effective nonlinear action [14–17].
The same one-loop functional dependence emerges—
except that now the gradient of this potential in Eq. (13)
enters, producing in the evaluation of the effective action the
displacement field. This is the key difference—our consid-
eration allows for the existence of effective nonlinear action
ab initio, in comparison to the usual perturbative approach.
We return to the effect this has on the EHS action and on the
electron self-energy under separate cover. These problems
are nonlinear and more intricate, while the study of the
Landau pole has an analytical solution.
Therefore here we focus our attention on how these

considerations impact the charge renormalization. For this
we consider the quadratic in EM field term arising in
effective action, the one-loop function. This term corrects
the Maxwellian term

LeffðEÞ ¼
E2

2
þ L1

�
∂LeffðEÞ

∂E

�
; ð14Þ

where above and from here on we have dropped the label X
in the subscript. According to Eq. (8) to leading order in
EM fields, keeping the quadratic in EM field contribution
to charge renormalization the EHS action function is

L1ðzÞ ¼
z2

2
Π0 þOðz4Þ: ð15Þ

These equations (14) and (15) create a nested differential
equation, with the one-loop function L1 as input:

LeffðEÞ ¼
E2

2
þ Π0

2

�
∂LeffðEÞ

∂E

�
2

þO
�
∂LeffðEÞ

∂E

�
4

: ð16Þ

Our approach encodes the always-interacting field structure
within its argument (∂Leff=∂E). This allows us to unravel
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the nonperturbative structure by solving for the relation
between E and ∂Leff=∂E.

IV. CONTINUOUS FRACTION VACUUM
RESPONSE

A. Vacuum polarization and the Landau pole

Since we consider in the study of the Landau pole the
charge renormalizing contribution to vacuum response, the
differential equation form of effective action in Eq. (16) is
analytically solvable. More generally, however, keeping the
nonlinear terms [light-light scattering and higher orders in
Eq. (15)] will likely require numerical solutions, which we
will address under separate cover.
We can write the solution with an expression that is

quadratic in EM fields, times a constant ð1þ ΠeffÞ:

LeffðEÞ≡ E2

2
ð1þ ΠeffÞ: ð17Þ

Πeff describes the polarization response—the object of
interest which we set out to compute in order to describe the
self-consistent dressed fields.
To solve for Πeff, we plug Eq. (17) and its derivative with

respect to E into Eq. (16), so that the polarization response
[Eq. (12)] modifies the field entering into the effective
action function L1:

E2

2
ð1þ ΠeffÞ ¼

E2

2
þ L1

�
∂Leff

∂E

�

¼ E2

2
þ L1

�
Eð1þ ΠeffÞ

�
: ð18Þ

Πeff appears on both sides of Eq. (18) in a nested
expression. Applying the one-loop function L1 from
Eq. (15), the quadratic in EM field dependence cancels,
and after some algebra we obtain

1þ Πeff ¼
1

1 − Π0ð1þ ΠeffÞ
: ð19Þ

We recognize a Schwinger-Dyson-like summation, with the
key distinction being that the polarization functionΠ0 gains
an additional factor ð1þ ΠeffÞ. This factor iterates as a
continuous fraction

1þ Πeff ¼
1

1 − Π0

1− Π0
1−

Π0
1−���

: ð20Þ

In this exceedingly simple case there is also an analytical
solution which can be inferred directly from Eq. (19):

1þ Πeff ¼
1

1=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 − Π0

p : ð21Þ

Moreover, we recall that the function replacing the polari-
zation function entering the Schwinger-Dyson equation is

Π0ð1þ ΠeffÞ ¼ 1=2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 − Π0

p
: ð22Þ

The Landau pole requires that there is a zero in

1 − Π0ð1þ ΠeffÞ ¼ 1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 − Π0

p
≠ 0; ð23Þ

which clearly as indicated cannot ever happen for the
physical form of Π0,

Π0 ¼
e2

12π2
�
δ−1 − γE − lnðm2Þ�; ð24Þ

with δ−1 following from dimensional regularization and
relating to cutoff Λ dependence as lnðΛ2Þ. This form
suggests that, instead of a Landau pole, we ultimately at
short distances will encounter finite renormalization, or
branch cuts, depending on the theory studied. These
solutions do not necessarily have the character of a freely
propagating particle—we hope that their understanding
will arise in the future.
One can also look at the perturbative in Π0 expansion:

1þ Πeff ¼
Π0≪1

1þ Π0 þ 2Π2
0 þ 5Π3

0 þ 14Π4
0 þ � � � ; ð25Þ

where we note that departure from the perturbative
Schwinger-Dyson series,

1

1 − Π0

¼
Π0≪1

1þ Π0 þ Π2
0 þ Π3

0 þ Π4
0 þ � � � ; ð26Þ

begins at the two-loop order coefficients. However, our
primary result is significant when the effective strength of
interaction is large, thus at very large q2. We next present a
specific example for the case of strong magnetic fields
which attracted attention in other works.

B. Strong magnetic fields

We now obtain the effective action in the everlasting
interaction case for a pure magnetic constant field. We
repeat the steps in Eq. (10), where the self-consistent
polarization corrections to the magnetic field amount to
using the displacement field

HðBÞ ¼ −
∂Leff

∂B
ð27Þ

in the argument of the one-loop EHS action. The resulting
differential equation has now the form
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LeffðBÞ ¼ −
B2

2
þ L1

�
−
∂LeffðBÞ

∂B

�
: ð28Þ

To compare with other works, we take the strong B limit
of the renormalized one-loop EHS action

lim
eB=m2≫1

Lr
1ðBÞ ¼ −

B2

2
ΠB; ð29Þ

where polarization ΠB is given by

ΠB ≡ −
e2

12π2
ln
�
eB
m2

�
: ð30Þ

A single chain of reducible loop diagrams dominates in
the strong B limit, as evidenced by the derivative

lim
eB=m2≫1

−
∂Lr

1

∂B
¼ BΠB þ B2

2

∂ΠB

∂B
≈ BΠB; ð31Þ

a feature noted by Karbstein [34]. We treat the magnetic
field inside ΠB as a constant. In consequence given all
approximations each electron loop couples to a maximum
of two (reducible) virtual photons resulting in a single chain
continued fraction sum. Therefore all steps we presented in
the study of the Landau pole apply.
Repeating the steps from Sec. IVA with a constant ΠB

we can write the effective action as a quadratic in B
solution, rendering the differential equation (28) analyti-
cally solvable:

LeffðBÞ ¼ −
B2

2
ð1þ ΠeffÞ

¼ −
B2

2
þ Lr

1

�
Bð1þ ΠeffÞ

�
: ð32Þ

Applying Lr
1 from Eq. (29), we obtain

1þ Πeff ¼
1

1 − ΠBð1þ ΠeffÞ
¼ 1

1 − ΠB

1− ΠB

1−
ΠB
1−���

: ð33Þ

Recalling that the series Eq. (33) follows Eq. (19), which
can be expressed as a square root and a series expansion in
powers of loop order ΠB,

LeffðBÞ ¼ −
B2

2

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ΠB

p
2ΠB

¼ −
B2

2

�
1þ ΠB þ 2Π2

B þ 5Π3
B þOðΠ4

BÞ
�
: ð34Þ

We recall our everlasting interaction approach to devel-
oping the above expressions is based on asymptotically
interacting fields that exist at all times. On the other hand,

in context of strong EM field environments, it is important
to note that all EM fields occurring in nature span finite
spacetime domains.
To apply our result to such switch-on-off EM fields, we

expand the rhs of Eq. (33), this time in powers of Πeff :

1

1−ΠBð1þΠeffÞ
¼ 1

1−ΠB
þ Πeff

ð1−ΠBÞ2
þOðΠ2

effÞ: ð35Þ

Truncating Eq. (35) to the first term (0th order in Πeff ),
we recover the perturbative switch-on-off polarization
series [Eq. (26) with ΠB in place of Π0] built on asymp-
totically noninteracting external fields. This perturbative
form can be compared to the prior reducible loop summa-
tions [34,37,38] extending the two-loop action in [33], also
supported by our earlier consideration [39]. Our result
preserves the generally accepted sign of the Schwinger-
Dyson series at two-loop and higher orders, resolving prior
sign and magnitude prefactors [35].
Interestingly the everlasting interaction result expressed

as a continuous fraction in Eq. (33), i.e., Eq. (35) to all
orders in Πeff , is also a single-cut reducible loop sum in the
limit of large magnetic fields. The key difference is that
there is no Landau pole, irrespective of the sign of ΠB as
seen in Eq. (34). This shows the potential for application of
our continued fraction summation to strongly interacting
chromomagnetic fields and the Savvidy [18,24,25] vac-
uum state.

V. CONCLUSIONS AND OUTLOOK

In the context of the external field method for evaluating
effective action, we took inspiration from Weisskopf’s
comment to consistently define the meaning of the electric
and magnetic fields in the absence of an asymptotic region
where these fields do not experience polarization effects.
Our procedure consists of (i) recognition of external fields
entering the one-loop effective action derivation to be the
displacement fields and (ii) implementation of nonpertur-
bative summation before an attempt to define renormalized
charge. Our result is distinct from the usual perturbative
method based on asymptotically noninteracting fields.
In this manner, we encoded nonperturbative reducible

loop corrections into the standard approach to deriving one-
loop effective action, using EHS as an example. We
demonstrated in Sec. IVA that the Schwinger-Dyson series
transforms upon resummation into a continuous fraction
expression for effective polarization Πeff , Eq. (20). This
contains no Landau pole: at the value of one-loop polari-
zationΠ0 at which one normally expects a pole, the summed
renormalization constant remains finite. However, at large
enoughΠ0, the improvedΠeff can become complex—at this
point the driving Π0 function needs further exploration.
In Sec. IV B we evaluated the effective action in strong

magnetic field backgrounds. We applied our everlasting
approach, based on infinitely spanning in time fields, to
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realistic fields that span finite spacetime domains using
perturbative expansion of the action in Eq. (35). From this
expansion we recovered the structure of the perturbative
reducible diagram summation proposed in prior works,
while resolving sign and magnitude prefactors to ensure
consistency with the Schwinger-Dyson series [35]. To our
knowledge this is the first derivation of reducible loop
diagrams in strong fields stemming from the exceedingly
simple recognition that the asymptotically interacting fields
in the effective action are the displacement fields.
Up to this point we have considered closed electron

loops; reducible diagram summations were recently
obtained for EHS loop contributions to spin-0 [40] and
spin-1=2 propagators [41]. Moreover, extensions of the
summation procedure to different field configurations
beyond the constant field EHS limit are possible [42].
We recall that in the external field approach in Eq. (10)

we have truncated the expansion at lowest power of
electron field. Higher powers in Ee e.g., corresponding
to two and higher photon cut reducible diagrams require
further consideration. Some diagram classes are relating to
the self-energy of the probing particle; these contributions
show similarities with mass catalysis [43–47]. It is impor-
tant to note in this context that the mathematical approach

presented here needs to be tested in many regimes and will
perhaps evolve further.
To obtain the full polarization summation beyond one-

cut reducible diagrams, one needs to precisely account for
all terms in Π0; see Eq. (25). For example we need to
incorporate an internal photon to obtain up to second-order
polarization effects. To be exact to third order one would
also need to incorporate higher-order cut reducible dia-
grams. Such corrections in higher order incorporate their
own continued fraction summation. We mention this in
order to clarify that a systematic study of the everlasting
nonperturbative vacuum structure reaches far beyond the
usual polarization series. This clarifies why the current
study is focused on the Landau pole.
In summary, we have proposed and developed a novel

external field approach, implementing displacement fields
in the derivation of effective action. This encodes inter-
actions into the fields in a self-consistent manner, and as a
result the Landau pole difficulty is resolved. This insight
opens a new avenue in study of strong interactions.
Therefore, our next step is to study the Savvidy Yang-
Mills vacuum state [18,20,22–25], where the everlasting
approach can be applied to the strong field limit of the
constant chromomagnetic background.
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