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We investigate the causality and stability of three different relativistic dissipative fluid-dynamical
formulations emerging from a system of classical, ultrarelativistic scalar particles self-interacting via a
quartic potential. For this particular interaction, all transport coefficients of Navier-Stokes, Bemfica-
Disconzi-Noronha-Kovtun (BDNK), and second-order transient theories can be computed in analytical
form. We first show that Navier-Stokes theory is acausal and unstable regardless of the matching
conditions. On the other hand, the BDNK theory can be linearly causal and stable for a particular set of
matching choices that does not contain the so-called exotic Eckart prescription. In particular, using the
Liénard-Chipart criterion, we obtain a set of sufficient conditions that guarantee the stability of the theory.
Last, second-order transient hydrodynamic theory in Landau matching is shown to be linearly causal and
stable.
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I. INTRODUCTION

Formulations of relativistic dissipative fluid dynamics
must satisfy two fundamental properties, namely causality
and linear stability around equilibrium. The former forbids
that signals propagate in the fluid with a velocity that
exceeds the speed of light, while the latter dictates that
perturbations around a global equilibrium state must
decrease with time. These properties must be imprinted
in the partial differential equations describing the evolution
of the system and are largely entangled. In particular, in the
linear regime, causality conditions with respect to a back-
ground fluid at rest coincide with the stability constrains
with respect to a moving background fluid [1,2]. In fact, the
interplay between causality and stability in fluid-dynamical
theories has been addressed in Refs. [3,4].
Over the past years, several authors have pursued

thorough understanding of causality in relativistic fluid
dynamics [1,2,5–13]. In particular, in Ref. [7], it was shown
that if a given causal theory is stable under perturbations
around a nonrotating equilibrium state in the local rest
frame, it is also stable in any other Lorentz frame. In
Refs. [8,9], causal fluid-dynamical theories were shown to

be necessarily consistent with thermodynamic stability.
Moreover, in Refs. [10,11], universal equivalences were
shown to appear in causal and thermodynamically stable
hydrodynamic theories near equilibrium.
Historically, the search for causal and stable relativistic

dissipative hydrodynamic theories starts with the fact that
the relativistic counterpart of the Navier-Stokes theory
[14,15] is acausal [16] and unstable [17]. Hence, it is
unsuitable for the modeling of relativistic fluids, even
though its nonrelativistic analog is widely employed in
the corresponding regime [18]. This can be schematically
explained by the fact that timelike and spacelike derivatives
appear at unequal footing in these equations—Navier-
Stokes equations are parabolic [16]. This property can
be traced back to the fact that, in such theory, only spacelike
derivatives are taken into account in the constitutive
relations connecting dissipative currents and gradients of
thermodynamic fields, i.e., four-velocity, temperature, and
chemical potential. In other words, the fluid response in
terms of dissipative currents occurs instantaneously and
only in the presence of space inhomogeneities on the
aforementioned fields in the fluid rest frame.
In the past decade, the formulation pioneered by Israel

and Stewart [19,20] has been widely employed in the
modeling of heavy-ion collisions [21–23]. In this formal-
ism, the dissipative currents are considered as independent
variables which obey relaxation-type equations of motion
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independent of the local conservation laws. This renders the
theory causal and stable in the linear regime as long as the
relaxation times and further transport coefficients satisfy
fundamental constraints [1,6,12,17,24–26]. Causality con-
straints have been recently generalized to the full nonlinear
regime for uncharged, nonvortical fluids [27,28]. Then, the
constraints involve not only transport coefficients, but also
the hydrodynamic fields (e.g., bulk viscous pressure, shear-
stress tensor) themselves. Moreover, in Ref. [29], it was
shown that new propagation modes emerge in Israel-
Stewart-like theories for perturbations around inhomo-
geneous equilibrium configurations.
More recently, the Bemfica-Disconzi-Noronha-Kovtun

(BDNK) theory of hydrodynamics has been proposed
[5,7,30]. In this formulation, analogously to Navier-Stokes
theory, the dissipative currents also obey constitutive
relations. However, the fundamental difference is that these
equations contain not only spacelike derivatives, but also
timelike ones. Another noteworthy feature is the agnostic
employment of matching conditions, a basic ingredient of
all dissipative theories of hydrodynamics, which defines
temperature, chemical potential, and four-velocity out of
equilibrium. Then, the corresponding equations of motion
can be causal in the nonlinear regime and linearly stable,
also leading to constrains for the transport coefficients [31].
Indeed, causality implies that, e.g., dissipative corrections
to the energy density must be nonzero, as well as the energy
diffusion current. This requires the employment of match-
ing conditions that are more general than the traditional
prescriptions by Landau [15] and Eckart [14].
This work is a continuation of Ref. [32], where transport

coefficients for Navier-Stokes, BDNK, and second-order
transient hydrodynamic theories have been analytically
computed for a system of classical ultrarelativistic scalar
particles weakly self-interacting through the φ4 potential.
The particular form of the cross section of the system
renders it possible to compute the spectrum of the linear-
ized collision operator in exact form [33]. This immensely
simplifies the derivations of the transport coefficients
because the inversion of this operator becomes trivial. In
this follow-up paper, we assess the causality and stability of
the aforementioned fluid-dynamical theories in the linear
regime. In particular for BDNK theory, we determine the
constraints on the class of matching conditions imposed by
causality and stability.
This work is organized as follows. In Sec. II, we introduce

the formulation of relativistic dissipative hydrodynamics in
generic matching conditions. We then summarize the differ-
ent hydrodynamic theories derived inRef. [32]. After that, in
Sec. III, we discuss the linear causality and stability for
Navier-Stokes, BDNK, and transient hydrodynamic
theories, respectively, and Sec. IV concludes the text.
Last, in the Appendix, we study the causality and stability
of the Hilbert theory. Throughout this work, we adopt the
mostly minus convention for the Minkowski metric tensor,

gμν ¼ diagðþ − −−Þ, and make use of natural units,
c ¼ ℏ ¼ kB ¼ 1.

II. RELATIVISTIC FLUID DYNAMICS FOR
GENERAL MATCHING CONDITIONS

The fundamental equations of fluid dynamics are the
continuity equations that describe the conservation of
particle number, energy, and momentum,

∂μNμ ¼ 0; ∂μTμν ¼ 0; ð1Þ

with Nμ being the particle four-current and Tμν the energy-
momentum tensor. Considering generic matching condi-
tions [34], these conserved currents can be expressed as

Nμ ¼ ðn0 þ δnÞuμ þ νμ; ð2aÞ

Tμν¼ðε0þδεÞuμuν−ΔμνðP0þΠÞþhμuνþhνuμþπμν;

ð2bÞ

where ε0 and n0 are the equilibrium energy density and
particle density, respectively, with δε and δn denoting their
corresponding dissipative corrections. Furthermore, P0 is
the thermodynamic pressure, Π is the bulk viscous pres-
sure, uμ is the normalized four-velocity, uμuμ ¼ 1, νμ is the
particle diffusion current, hμ is the energy diffusion current,
and πμν is the shear-stress tensor. The definition of the local
equilibrium is determined by matching conditions, which
will be discussed in the next section. They will enable us
to identify the fluid four-velocity, the thermal potential,
α≡ μ=T (with μ being the chemical potential), and the
temperature, T, out of equilibrium. We also introduced the
projection operator onto the three-space orthogonal to uμ,
Δμν ≡ gμν − uμuν. All four-vector and rank-2 tensor dis-
sipative currents are orthogonal to the fluid four-velocity,

uμνμ ¼ 0; uμhμ ¼ 0; uμπμν ¼ 0: ð3Þ

It is convenient to decompose the conservation equations
for energy and momentum into their parallel and orthogo-
nal components with respect to the fluid four-velocity. This
is accomplished by contracting the second equality in
Eq. (1) with uν and Δα

ν , respectively, leading to the
following equations of motion:

Dn0 þDδnþ ðn0 þ δnÞθ þ ∂μν
μ ¼ 0; ð4aÞ

Dε0 þDδεþ ðε0 þ δεþ P0 þ ΠÞθ
− πμνσμν þ ∂μhμ þ uμDhμ ¼ 0; ð4bÞ

ðε0 þ δεþ P0 þ ΠÞDuμ −∇μðP0 þ ΠÞ
þ hμθ þ hαΔμν

∂αuν þ ΔμνDhν þ Δμν
∂απ

α
ν ¼ 0; ð4cÞ
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where D≡ uμ∂μ is the comoving time derivative, ∇μ ≡
Δμν

∂ν is the four-gradient operator, θ≡ ∂μuμ is the expan-
sion rate, and σμν ≡ Δμναβ

∂αuβ is the shear tensor, with
Δμναβ ≡ ðΔμαΔνβ þ ΔμβΔναÞ=2 − ΔμνΔαβ=3 being the dou-
ble symmetric, traceless projection operator with respect
to uμ.

A. Hydrodynamic theories

The local conservation laws, Eq. (4), comprise five
equations for, in principle, 19 variables [n0, ε0, δn, δε,
Π, uμ, νμ, hμ, and πμν, since P0 ¼ P0ðn0; ε0Þ is not an
independent variable]. Thus, further dynamical/constitutive
relations must be provided for closure. The specific
procedure employed to obtain such relations defines a
relativistic dissipative theory of hydrodynamics. Over the
next sections, we shall consider three different formula-
tions, namely, Navier-Stokes theory, BDNK theory,
and transient second-order fluid dynamics, for a system
of weakly self-interacting classical massless particles,
derived in Ref. [32]. Before discussing these theories,
we shall digress about the definition of the local equilib-
rium state.
Traditionally, the prescriptions constructed by Landau

[15] and Eckart [14] are employed to define the local
equilibrium state, or, equivalently, the thermodynamic
variables α, β≡ 1=T, and uμ. In both approaches, α and
β are defined so that the total particle and energy densities
follow the equilibrium equation of state, which implies that

δn≡ 0; δε≡ 0: ð5Þ

On the other hand, the definition of uμ is different in these
prescriptions. For Landau, uμ is defined as the timelike
normalized eigenvalue of the energy-momentum tensor,
Tμ

νuν ¼ ε0uμ, which sets the energy diffusion current to
zero,

hμ ≡ 0; ð6Þ

whereas for Eckart uμ is the four-velocity of the matter
current, Nμ ≡ n0uμ, which implies that

νμ ≡ 0: ð7Þ

Alternative matching prescriptions have been employed
in Refs. [32,34–36] in the context of kinetic theory. In this
framework, the particle four-current and the energy-
momentum tensor are integrals over momentum space of
the single-particle distribution function, fp, whose dynam-
ics is given by the Boltzmann equation,

Nμ ¼
Z

dPpμfp; Tμν ¼
Z

dPpμpνfp: ð8Þ

When describing fluids, it is often convenient to decom-
pose the single-particle distribution function into an equi-
librium part, f0p, and a dissipative correction, δfp,

fp ¼ f0p þ δfp: ð9Þ

Then, matching conditions are imposed to define the local
equilibrium distribution. In Refs. [32,34–36] this is done by
considering the wide (but not complete) set of matching
conditions,Z

dPEq
pδfp≡0;

Z
dPEs

pδfp≡0;
Z

dPEz
pphμiδfp≡0;

ð10Þ

where phμi ≡ Δμνpν, while q, s, and z are free para-
meters. These conditions reduce to the Landau matching
prescription [Eqs. (5) and (6)] for q ¼ 1, s ¼ 2, and z ¼ 1
and to the Eckart prescription [Eqs. (5) and (7)]
when q ¼ 1, s ¼ 2, and z ¼ 0. Other values of q, s, and
z lead to alternative matching conditions which do not
possess an intuitive physical interpretation. In general, the
transport coefficients of all hydrodynamic theories may
depend on q, s, and z, and, as a consequence, the choice of
matching can affect their causality and stability.
Next, we proceed to discuss the complementary con-

stitutive/dynamical relations for the dissipative currents
that must be coupled with the conservation laws in order
to close the system of partial differential equations given
in Eq. (4). As already mentioned, we consider a system
composed of classical ultrarelativistic scalar particles
described by the following Lagrangian density:

L ¼ 1

2
∂μφ∂

μφ −
λφ4

4!
: ð11Þ

The specific form of the total cross section for this
interaction, at leading order in the coupling constant λ,
reads

σðs;ΘÞ ¼ λ2

64π2s
≡ g

2πs
; ð12Þ

where s and Θ are the total energy and scattering angle in
the center-of-momentum frame, respectively, and we
defined g≡ λ2=ð32πÞ. In this case, the spectrum of the
linearized collision operator of the Boltzmann equation
can be computed in analytical form [33]. It is then possible
to obtain exact expressions for the transport coefficients, as
first demonstrated in Ref. [32].

1. Navier-Stokes theory

Navier-Stokes theory is constructed based on the concept
that space inhomogeneities in the thermodynamic fields
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generate a response of the fluid in the form of dissipative
currents. In the context of kinetic theory, this is imple-
mented by the Chapman-Enskog procedure [37–40], in
which the single-particle distribution function is expanded
in powers of spacelike gradients of the hydrodynamic
variables. The Navier-Stokes equations then originate from
the first-order truncation of this expansion, thus being often
referred to as a first-order theory. In Ref. [32], the following
constitutive relations were analytically derived:

δn ¼ 0; νμ ¼ z
3

gβ2
∇μα; δε ¼ 0;

hμ ¼ ðz − 1Þ 12
gβ3

∇μα; πμν ¼ 96

gβ3
σμν: ð13Þ

The dissipative corrections to the particle and energy
density are identically zero, since only massless particles
were considered, see Ref. [32] for details. This implies that
these hydrodynamic equations do not carry any dependence
on q and s. The particle and energy diffusion currents
depend on gradients of the thermal potential, while the
shear-stress tensor depends on gradients of the fluid four-
velocity. In particular, if z ¼ 0 (z ¼ 1), these definitions
are in fact consistent with Landau (Eckart) matching
conditions.

2. Bemfica-Disconzi-Noronha-Kovtun theory

BDNK theory has recently emerged as a formulation of
relativistic dissipative hydrodynamics containing only
first-order derivatives that can be constructed to be causal
and stable [31]. The novel ingredient of this theory is the
inclusion of timelike derivatives in the constitutive rela-
tions for the dissipative currents. This feature, together
with the employment of alternative matching conditions,
can render the theory causal and well posed [7]. Indeed,
this fact inspired the development of the more general
matching prescriptions presented in Eq. (10) in the context
of kinetic theory. In such framework, BDNK theory is
obtained by a generalization of the Chapman-Enskog
procedure, as originally proposed in Ref. [35]. In
Ref. [32], this method was applied to a system of classical
massless particles, yielding the following constitutive
relations:

Π¼ χ

3

�
Dβ

β
−
θ

3

�
; δn¼ ξ

�
Dβ

β
−
θ

3

�
; δε¼ χ

�
Dβ

β
−
θ

3

�
;

νμ¼ϰ

�∇μβ

β
þDuμ

�
; hμ¼ λ

�∇μβ

β
þDuμ

�
;

πμν¼2ησμν: ð14Þ

The transport coefficients are given in analytical form by

ξ ¼ 12

gβ2
ðq − 1Þðs − 1Þ; χ ¼ 36

gβ3
ðq − 2Þðs − 2Þ;

ϰ ¼ 12

gβ2
z; λ ¼ 48

gβ3
ðz − 1Þ; η ¼ 48

gβ3
: ð15Þ

As previously discussed, the major contrast in compari-
sonwith Navier-Stokes equations is the presence of timelike
derivatives in the constitutive relations for the dissipative
currents, with the exception of the shear-stress tensor, which
has the same form in both formulations. In addition, the
dissipative corrections to particle and energy density are not
always zero, but instead depend explicitly on the matching
conditions. We note that, for the interaction considered in
this paper, all nonequilibrium fields depend on derivatives of
the temperature but not of the chemical potential. Moreover,
it can be readily seen that if we take ðq; s; zÞ ¼ ð1; 2; 1Þ and
ðq; s; zÞ ¼ ð1; 2; 0Þ, we recover Landau and Eckart match-
ing conditions, respectively.

3. Transient theory

Second-order theories of fluid dynamics have been
widely employed in models to emulate the evolution of
the quark-gluon plasma phase of ultrarelativistic heavy-ion
collisions [41–44]. The derivation of these theories can be
pursued phenomenologically, from the second law of
thermodynamics [19], and also via microscopic calcula-
tions, in particular, from kinetic theory [20]. In Ref. [32],
transient second-order equations of motion for the dis-
sipative currents for a system with cross section given by
Eq. (12) were analytically derived using the method of
moments [40] within the order of magnitude truncation
scheme [45,46] and assuming Landau matching conditions,
leading to

τνDνhλi þ νλ ¼ ϰn∇λα − δννν
λθ − ðλνπ∇μαþ τνπ∇μP0Þπλμ þ lνπΔλ

α∇μπ
αμ −

7

5
τνσμ

λνμ − τνωμ
λνμ; ð16aÞ

τπDπhλμi þπλμ¼2ησλμþφ8ν
hλνμi−δπππ

λμθ−τπν∇hλP0ν
μi þlπν∇hλνμi þλπν∇hλανμi−2τπων

hλπμiν−τππσν
hλπμiν; ð16bÞ

where expressions for the transport coefficients were obtained in exact form as follows1:

1In Ref. [32], the diffusion coefficient was originally defined as κn. In order to avoid confusion with the covariant wave number, κ,
which will be introduced in the next section, in this work we adopt the notation ϰn instead.
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τν ¼
60

gn0β2
; ϰn ¼

3

gβ2
; λνπ ¼

3τνβ

40
; τνπ ¼

τνβ

80P0

; lνπ ¼
τνβ

40
; δνν ¼ τν;

τπ ¼
72

gn0β2
; η ¼ 48

gβ3
; φ8 ¼

4

n0β
; δππ ¼

4

3
τπ; τππ ¼ 2τπ; τπν ¼ −

4

3

τπ
n0

;

lπν ¼ −
4

3

τπ
β
; λπν ¼

2

3

τπ
β
: ð17Þ

The product of the coupling terms between the particle
diffusion and the shear-stress tensor, lνπ and lπν, is
negative definite, in agreement with the second law of
thermodynamics [6]. Moreover, the diffusion and shear
viscosity coefficients are identical to the ones calculated in
Navier-Stokes theory. Therefore, the transient equations
reduce to the Navier-Stokes equations within Landau
matching conditions when the relaxation times are taken
to zero, i.e., τν → 0 and τπ → 0.
The main goal of this paper is to analyze whether these

different formulations of hydrodynamics are linearly causal
and stable around global equilibrium. This can be fully
determined now that exact expressions for the transport

coefficients are known. In particular, when it comes to
BDNK theory, we wish to quantify the effect that the choice
of matching conditions can have on the linear stability and
causality of the theory. This shall be carefully addressed in
the following section.

III. LINEAR CAUSALITY AND STABILITY
ANALYSIS

We assess the causality and linear stability of the above-
mentioned theories by considering small perturbations on
all fluid-dynamical fields (denoted by Δ) around a global
equilibrium state, so that

ε → ε0 þ Δε0 þ Δδε; n → n0 þ Δn0 þ Δδn; Π → ΔΠ;

uμ → uμ0 þ Δuμ; νμ → Δνμ; hμ → Δhμ; πμν → Δπμν: ð18Þ

In this case, the linearized fluid-dynamical equations, Eq. (4), become

D0Δn0 þD0Δδnþ n0∇0
μΔuμ þ∇0

μΔνμ ¼ OðΔ2Þ ≈ 0; ð19aÞ

D0Δε0 þD0Δδεþ ðε0 þ P0Þ∇0
μΔuμ þ∇0

μΔhμ ¼ OðΔ2Þ ≈ 0; ð19bÞ

ðε0 þ P0ÞD0Δuμ −
1

3
∇μ

0ðΔε0 þ ΔδεÞ þD0Δhμ þ∇0
αΔπμα ¼ OðΔ2Þ ≈ 0; ð19cÞ

where OðΔ2Þ denote terms of second order (or higher)
in perturbations. Furthermore, we have introduced the
comoving time derivative with respect to the background
velocity, D0 ≡ uμ0∂μ, and the projected four-gradient,
∇μ

0 ≡ Δμν
0 ∂ν ≡ ðgμν − uμ0u

ν
0Þ∂ν. In addition, we employed

the equation of state for a massless gas, Δε0 ¼ 3ΔP0, and
expressed the bulk viscous pressure in terms of the non-
equilibrium deviation of the energy density as Π ¼ δε=3,
see Ref. [47].
It is practical to express the linearized fluid-dynamical

equations in Fourier space. We adopt the following con-
vention for the Fourier transform:

X̃ðkμÞ ¼
Z

d4x exp ð−ixμkμÞXðxμÞ;

XðxμÞ ¼
Z

d4k
ð2πÞ4 exp ðixμk

μÞX̃ðkμÞ; ð20Þ

where kμ ¼ ðω;kÞ, with ω being the frequency and k the
wave vector. As proposed in Ref. [6], we define the
following covariant variables:

Ω≡ uμ0kμ; κμ ≡ Δμν
0 kν; ð21Þ

which correspond to the frequency and wave vector in the
local rest frame of the background system, respectively. We
also introduce the covariant wave number as κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−κμκμ
p

.
The linearized fluid-dynamical equations in Fourier

space are then given by

ΩΔñ0 þ ΩΔδ̃nþ n0κμΔũμ þ κμΔν̃μ ¼ 0; ð22aÞ
ΩΔε̃0 þΩΔ eδεþ ðε0 þ P0ÞκμΔũμ þ κμΔh̃μ ¼ 0; ð22bÞ

ðε0þP0ÞΩΔũμ−
1

3
κμðΔε̃0þΔ eδεÞþΩΔh̃μþκαΔπ̃μα¼0:

ð22cÞ
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It is convenient to write these equations in terms of
dimensionless variables,

ΩΔ ˆ̃n0 þΩΔcfδnþ κμΔũμ þ κμΔ ˆ̃νμ ¼ 0; ð23aÞ

ΩΔ ˆ̃ε0 þΩΔ beδεþ 4

3
κμΔũμ þ κμΔ

ˆ̃h
μ ¼ 0; ð23bÞ

4

3
ΩΔũμ−

1

3
κμðΔ ˆ̃ε0þΔ beδεÞþΩΔ ˆ̃h

μþκαΔ ˆ̃πμα¼0; ð23cÞ

where we have defined the rescaled variables in Fourier
space,

Δ ˆ̃n0 ≡Δñ0=n0; Δcfδn≡Δfδn=n0; Δ ˆ̃ε0 ≡Δε̃0=ε0;

Δ beδε≡Δ eδε=ε0;
Δ ˆ̃νμ ≡Δν̃μ=n0; Δ ˆ̃h

μ ≡Δh̃μ=ε0; Δ ˆ̃πμν ≡Δπ̃μν=ε0:

ð24Þ

We remark that the transverse (orthogonal to κμ) and
longitudinal (parallel to κμ) components of Eq. (23)
decouple, and the resulting equations can be solved
independently. In this context, we define a projection
operator in Fourier space onto the three-space orthogonal
to κμ,

Δμν
κ ≡ gμν þ κμκν

κ2
: ð25Þ

Then, an arbitrary four-vector, Aμ, can be decomposed into
its transverse and longitudinal components with respect to
κμ as

Aμ ¼ Akκμ þ Aμ
⊥; ð26Þ

with the longitudinal component being defined as Ak ¼
−κμAμ=κ while the transverse component is Aμ

⊥ ¼ Δμν
κ Aν.

An analogous procedure can be performed to decompose
an arbitrary traceless rank-2 tensor, Bμν. In this case, it is
first essential to introduce the double, symmetric, and
traceless projection operator in Fourier space as

Δμναβ
κ ¼ 1

2
ðΔμα

κ Δνβ
κ þ Δμβ

κ Δνα
κ Þ − 1

3
Δμν

κ Δαβ
κ : ð27Þ

Then, a traceless second-rank tensor, Bμν, can be
expressed as

Bμν ¼ Bk
κμκν

κ2
þ 1

3
BkΔ

μν
κ þ Bμ

⊥
κν

κ
þ Bν⊥

κμ

κ
þ Bμν

⊥ ; ð28Þ

with the corresponding projections being defined as Bk≡
κμκνBμν=κ2, Bμ

⊥ ≡ −κλΔμν
κ Bλν=κ, and Bμν

⊥ ≡ Δμναβ
κ Bαβ.

At this point, we can express the rescaled linearized
conservation laws in Fourier space, Eq. (23), in terms of the
longitudinal and transverse degrees of freedom. First, we
note that the scalar equations are already expressed in terms
of the longitudinal degrees of freedom. Then, contracting
Eq. (23c) with −κ̂μ, we obtain the remaining longitudinal
equation, leading to

ΩΔ ˆ̃n0 þ ΩΔδ̂ñ − κΔũk − κΔ ˆ̃νk ¼ 0; ð29aÞ

ΩΔ ˆ̃ε0 þΩΔδ̂ε̃ −
4

3
κΔũk − κΔ ˆ̃hk ¼ 0; ð29bÞ

4

3
ΩΔũk −

1

3
κðΔ ˆ̃ε0 þ Δδ̂ε̃Þ þ ΩΔ ˆ̃hk − κΔ ˆ̃πk ¼ 0: ð29cÞ

In order to obtain the equations for the transverse degrees
of freedom, we project Eq. (23c) with Δμν

κ , leading to

4

3
ΩΔũμ⊥ þ ΩΔ ˆ̃h

μ
⊥ − κΔ ˆ̃πμ⊥ ¼ 0: ð30Þ

These are the rescaled longitudinal and transverse projec-
tions of the linearized conservation laws in Fourier space.
Naturally, it is still necessary to impose relations for the
dissipative currents for closure.
In particular, we remark that the fully transverse shear-

stress tensor, πμν⊥ , decouples from the equations of motion
for the energy density and fluid velocity and therefore will
not be investigated. Furthermore, given that stability of a
causal fluid-dynamical theory in the local rest frame
implies that such formulation is also stable in every
Lorentz frame [4,7], in this work we solely analyze the
case of perturbations on a fluid at rest, where Ω ¼ ω
and κ2 ¼ k2.

A. Navier-Stokes theory

The linear causality and stability of the relativistic
Navier-Stokes equations have been investigated by several
authors in the past for both Eckart and Landau matching
conditions [16,48,49]. In these studies, it was demonstrated
that the theory displays nonphysical instabilities around
global equilibrium that are directly related to its acausal
nature. For the sake of completeness, in this subsection we
repeat these analyses considering a wider set of matching
conditions and the transport coefficients derived for a
system of weakly self-interacting classical massless
particles.
In Fourier space, the rescaled nontrivial Navier-Stokes

constitutive relations, Eq. (13), become

Δ ˆ̃νν ¼ iϰ̄nκμΔα̃; Δ ˆ̃h
μ ¼ iλ̄hκμΔα̃;

Δ ˆ̃πμν ¼ iη̄

�
κμΔũν þ κνΔũμ −

2

3
Δμν

0 κλΔũλ
�
; ð31Þ
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where we have defined the following transport coefficients:

ϰ̄n¼ z
3

gn0β2
; λ̄h¼ðz−1Þ 12

gβ3ε0
; η̄¼ 48

gβ3ε0
: ð32Þ

The transverse and longitudinal projections of these cur-
rents read

Δ ˆ̃νμ⊥ ¼ 0; Δ ˆ̃h
μ
⊥ ¼ 0; Δ ˆ̃πμ⊥ ¼ iη̄κΔuμ⊥; ð33aÞ

Δ ˆ̃νk ¼ iϰ̄nκΔα̃; Δ ˆ̃hk ¼ iλ̄hκΔα̃; Δ ˆ̃πk ¼
4

3
iη̄κΔũk: ð33bÞ

From Eqs. (30) and (33a), we obtain the following
dispersion relation associated with the transverse modes of
Navier-Stokes theory:

Ω ¼ 3

4
iη̄κ2: ð34Þ

We note that this is a diffusionlike, and thus parabolic,
dispersion relation. In the context of special relativity,
parabolic differential equations are mathematically patho-
logical since they admit acausal solutions [40]. In fact,
when calculated in a Lorentz-boosted frame, the math-
ematical properties of these equations change, and the
resulting equation has an additional (in this case, also
unstable) solution in comparison to the original equation in
a rest frame [40], a clearly nonphysical feature.
To obtain the dispersion relation for the longitudinal

modes, we first express the perturbations of particle and
energy density in terms of perturbations of thermal poten-
tial and inverse temperature,

Δε0 ¼
∂ε0
∂α0

����
β0

Δαþ ∂ε0
∂β0

����
α0

Δβ ¼ ε0Δα −
4ε0
β0

Δβ ⇒ Δ ˆ̃ε0 ¼ Δα̃ −
4

β0
Δβ̃; ð35aÞ

Δn0 ¼
∂n0
∂α0

����
β0

Δαþ ∂n0
∂β0

����
α0

Δβ ¼ n0Δα −
3

β0
n0Δβ ⇒ Δ ˆ̃n0 ¼ Δα̃ −

3

β0
Δβ̃; ð35bÞ

where we have used that, for a dilute classical gas,

∂ε0
∂α0

����
β0

¼ ε0;
∂ε0
∂β0

����
α0

¼ −4
ε0
β0

;
∂n0
∂α0

����
β0

¼ n0;
∂n0
∂β0

����
α0

¼ −
3

β0
n0: ð36Þ

Therefore, from Eqs. (29), (33b), and (35), the rescaled
equations for the longitudinal degrees of freedom are
given by0BB@

Ω − iϰ̄nκ2 − 3
β0
Ω −κ

Ω − iλ̄hκ2 − 4
β0
Ω − 4

3
κ

− 1
3
κ þ iΩκλ̄h 4

3β0
κ 4

3
Ω − 4

3
iη̄κ2

1CCA
0BB@

Δα̃
Δβ̃
Δũk

1CCA ¼ 0:

ð37Þ

This equation admits nontrivial solutions as long as the
determinant of the matrix on the left-hand side is zero,
leading to the dispersion relation associated with the
longitudinal modes,

Ω3 þ iΩ2κ2½ð3λ̄h − 4ϰ̄nÞ − η̄� þ Ωκ2
�
η̄κ2ð3λ̄h − 4ϰ̄nÞ −

1

3

�
−
1

3
iκ4ð3λ̄h − 4ϰ̄nÞ ¼ 0: ð38Þ

We then analyze the solutions for a system with zero
background velocity. In the large wave number limit, the
modes behave as

ω ¼ iη̄k2 þOðkÞ; ω ¼ ið4ϰ̄n − 3λ̄hÞk2 þOðkÞ;

ω ¼ i
3η̄

þO
�
1

k

�
: ð39Þ

We note that, for perturbations on a static fluid, the modes
are stable for all matching conditions since 4ϰ̄n − 3λ̄h > 0,
see Eq. (32). However, similarly to what was observed for
the transverse modes, two of the longitudinal modes
display a diffusionlike behavior for large values of k,
hence leading to an additional unstable and acausal mode
when considering perturbations on a moving fluid [40].
Overall, we conclude that the Navier-Stokes theory for
weakly self-interacting classical massless particles is ill
defined and unsuitable to describe such systems regardless
of the matching condition employed.
For the sake of completeness, in the Appendix, we show

that Hilbert theory, a hydrodynamic theory whose micro-
scopic derivation inspired the Chapman-Enskog expansion,
does not display such instability and acausality problems.
However, we remark that this formulation is usually not
employed in practical applications since it requires a new
conservation law at each order in the gradient expansion.
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B. BDNK theory

The causality and linear stability of BDNK theory have
been studied for several different scenarios [5,31,32,50–52].
Nevertheless, we emphasize that the theory derived for a
system of weakly self-interacting classical massless par-
ticles, outlined in the previous section, has novel features—
in particular, the constitutive relations do not contain any
timelike or spacelike derivatives of the thermal potential. In
Ref. [52], causality and stability constraints were derived for

this framework employing characteristic manifold tech-
niques. However, they do not provide expressions for the
transport coefficients in terms of temperature and chemical
potential. In this subsection, we shall investigate, for the first
time, the stability and causality of this formulation with
transport coefficients derived from the interaction described
by Eq. (11).
In Fourier space, the rescaled linearized BDNK equa-

tions, Eq. (14), become

Δ ˆ̃Π ¼ i
χ̄

3

�
Ωðδ ˆ̃n − δ ˆ̃εÞ þ κΔũk

3

�
;

δΔ ˆ̃n ¼ iξ̄
�
Ωðδ ˆ̃n − δ ˆ̃εÞ þ κΔũk

3

�
; δΔ ˆ̃ε ¼ iχ̄

�
Ωðδ ˆ̃n − δ ˆ̃εÞ þ κΔũk

3

�
;

Δ ˆ̃νμ ¼ iϰ̄½κμðδ ˆ̃n − δ ˆ̃εÞ þΩΔũμ�; Δ ˆ̃h
μ ¼ iλ̄½κμðδ ˆ̃n − δ ˆ̃εÞ þΩΔũμ�;

Δ ˆ̃πμν ¼ iη̄

�
κμΔũν þ κνΔũμ −

2

3
Δμν

0 κλΔũλ
�
; ð40Þ

where we have defined the rescaled transport coefficients following the convention adopted in the last section,

ξ̄ ¼ 12

gβ2n0
ðq − 1Þðs − 1Þ; χ̄ ¼ 12

gβ2n0
ðq − 2Þðs − 2Þ;

ϰ̄ ¼ 12

gβ2n0
z; λ̄ ¼ 16

gβ2n0
ðz − 1Þ;

η̄ ¼ 16

gβ2n0
; ð41Þ

and made use of the identity Δβ=β0 ¼ Δn=n0 − Δε=ε0,
which stems from Eq. (35).
Once again, we shall begin with the analysis of the

transverse modes. First, we calculate the transverse pro-
jection of the energy diffusion and shear-stress tensor,

Δ ˆ̃h
μ
⊥ ¼ iλ̄ΩΔuμ⊥; Δ ˆ̃πμ⊥ ¼ iη̄κΔuμ⊥: ð42Þ

Substituting these relations in Eq. (30), we obtain the
transverse dispersion relation

iλ̄Ω2 þ 4

3
Ω − iη̄κ2 ¼ 0: ð43Þ

Note that BDNK equations do not lead to a parabolic
dispersion relation, which is the source of the nonphysical
features displayed by Navier-Stokes theory, as discussed in
the previous section [cf. Eq. (34)], as a consequence of the
inclusion of timelike derivatives in the constitutive relation
for the energy diffusion, hμ.
Considering perturbations on a fluid at rest, the solutions

of the transverse dispersion relation read

ω� ¼ i

3λ̄

�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 9η̄ λ̄ k2

q 	
: ð44Þ

If the term inside the square root is non-negative, both trans-
versemodes are purely imaginary andpositive definite as long
as λ > 0, which further implies that z > 1. This is a necessary
condition for stability and it was first derived in Ref. [32]
considering homogeneous perturbations, i.e., k ¼ 0, with a
similar analysis being pursued in Ref. [50]. Therefore, the
stability of BDNK theory depends on the choice of matching
conditions. Since η > 0, this term is either positive and
smaller than 2, or negative, in that case yielding modes that
are oscillating as well as damping, if k > 1=ð3

ffiffiffiffiffiffi
η̄ λ̄

p
Þ. In both

cases, the modes are stable for any value of k.
In Fig. 1(a), we portray the transverse modes of BDNK

theory assuming z ¼ 1.002, satisfying the stability con-
dition obtained above. Indeed, it can be readily seen that the
imaginary part of both modes is positive for any value
of wave number, and therefore such modes are stable. In
Fig. 1(b), on the other hand, we display the transverse
modes assuming z ¼ 0.998, which violates the stability
condition. As expected, one of the modes has a negative
imaginary part, thus being unstable.
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The next step is to analyze the longitudinal modes of the theory. The longitudinal projections of the dissipative currents
are given by

Δ ˆ̃νk ¼ iϰ̄½κðΔ ˆ̃n0 − Δ ˆ̃ε0Þ þΩΔũk�; Δ ˆ̃hk ¼ iλ̄½κðΔ ˆ̃n0 − Δ ˆ̃ε0Þ þ ΩΔũk�; Δ ˆ̃πk ¼
4

3
iη̄κΔũk: ð45Þ

Substituting these relations into Eq. (29) and expressing the resulting equations in matrix form, we obtain0BB@
Ωþ iξ̄Ω2 − iϰ̄κ2 −iξ̄Ω2 þ iϰ̄κ2 −κ þ i

3
ξ̄Ωκ − iϰ̄Ωκ

iχ̄Ω2 − iλ̄κ2 Ω − iχ̄Ω2 þ iλ̄κ2 − 4
3
κ þ i

3
χ̄Ωκ − iλ̄Ωκ

− i
3
χ̄Ωκ þ iλ̄Ωκ − κ

3
þ 1

3
iχ̄Ωκ − iλ̄Ωκ 4

3
Ω − 4

3
iη̄κ2 − i

9
χ̄κ2 þ iλ̄Ω2

1CCA
0BB@

Δ ˆ̃n

Δ ˆ̃ε

Δũk

1CCA ¼ 0: ð46Þ

Once again, this equation admits nontrivial solutions only if the determinant of the matrix on the left-hand side is zero,
leading to a dispersion relation whose solutions are the longitudinal modes of the theory,

Ω5λ̄ðχ̄ − ξ̄Þ þ i
9
Ω4ð9λ̄þ 12ξ̄ − 12χ̄Þ þ 1

9
Ω3½6κ2ð2η̄þ λ̄Þðξ̄ − χ̄Þ þ 12� − 2

9
iκ2Ω2ð6η̄ − 3λ̄þ 2ξ̄þ 6ϰ̄ − 2χ̄Þ

þ 1

9
Ω½κ4λ̄ð12η̄ − ξ̄þ χ̄Þ − 12η̄ ϰ̄ κ4 − 4κ2� þ i

9
ð4ϰ̄ − 3λ̄Þκ4 ¼ 0: ð47Þ

At small wave number, these modes become

FIG. 1. Imaginary and real part of the transverse modes of BDNK theory for two values of z. (a) z ¼ 1.002. (b) z ¼ 0.998.
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ωnh ¼
4i

3λ̄
þOðk2Þ; ð48aÞ

ωnh ¼
i

ξ̄ − χ̄
þOðk2Þ; ð48bÞ

ωh ¼ � 1ffiffiffi
3

p kþOðk2Þ; ð48cÞ

ωh ¼
i
4
ð4ϰ̄ − 3λ̄Þk2 þOðk3Þ; ð48dÞ

where “n” stands for hydrodynamic and “nh” stands for
nonhydrodynamic, i.e., modes that either do or do not
vanish at k → 0, respectively. The imaginary part of these

modes is positive as long as the transport coefficients
satisfy

λ̄ > 0; ξ̄ > χ̄; ð49Þ
which further constrain the matching parameters as follows:

z > 1; qþ s > 3: ð50Þ

We remark that these conditions have been first obtained in
Ref. [32] for the case where the fluid-dynamical perturba-
tions are homogeneous.
Moreover, in the large wave number limit, the longi-

tudinal modes become

ω ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
þ 2

3λ

�
η̄�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η̄

ξ̄ − χ̄
½η̄ ξ̄ þ 3λ̄2 þ λ̄ ξ̄ − 3λ̄ ϰ̄ − χ̄ðη̄þ λ̄Þ�

r �s
þO

�
1

k

�
; ð51aÞ

ω ¼ ð3λ̄ − 4ϰ̄Þi
12η̄ðλ̄ − ϰ̄Þ þ λ̄ðχ̄ − ξ̄Þ þO

�
1

k

�
: ð51bÞ

First, stability implies that both outer and inner square roots
in Eq. (51a) must be real, otherwise leading to an unstable
mode. In particular, we have previously imposed that
ξ̄ − χ̄ > 0, Eq. (49), hence rendering the numerator in
the inner square root positive. In order for stability to be
satisfied, the numerator must be identically positive. Since
η is positive definite, we have

η̄ ξ̄þ3λ̄2 þ λ̄ ξ̄−3λ̄ ϰ̄−χ̄ðη̄þ λ̄Þ ≥ 0; ð52Þ

which leads to

qþ s ≥
−z2 þ 8z − 4

z
: ð53Þ

On top of that, we must also ensure the term inside the outer
square root is positive, and thus real, leading to

12η̄ðϰ̄ − λ̄Þ þ λ̄ðξ̄ − χ̄Þ ≥ 0: ð54Þ

In terms of the matching parameters, this reduces to

qþ s ≥
7z − 19

z − 1
: ð55Þ

In particular, since 3λ̄ − 4ϰ̄ < 0, the stability of the mode
given in Eq. (51b) implies that the denominator is iden-
tically negative, hence excluding the equality in Eq. (55)
and providing a stronger constraint. Furthermore, we re-
mark that the stability condition given by Eq. (55) sur-
mounts the one given in Eq. (53) if z > 4.

Furthermore, causality implies that the asymptotic group
velocity must be smaller than the speed of light,

lim
k→∞

���� ∂Reω
∂k

���� ≤ 1: ð56Þ

Then, causality is guaranteed as long as the term inside the
outer square root in Eq. (51a) is smaller than 1, leading to
the following condition:

λ̄ − η̄ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η̄

ξ̄ − χ̄
½η̄ ξ̄þ3λ̄2 þ λ̄ ξ̄−3λ̄ ϰ̄−χ̄ðη̄þ λ̄Þ�

r
: ð57Þ

Stability then dictates that

λ ≥ η; ð58Þ

which leads to z ≥ 2. Then, we finally obtain the causality
condition for the BDNK theory,

3η̄ð−λ̄ − ξ̄þ ϰ̄ þ χ̄Þ þ λ̄ðξ̄ − χ̄Þ ≥ 0: ð59Þ

This condition can be expressed in terms of the matching
parameters as follows:

ðqþ s − 4Þðz − 4Þ ≥ 0: ð60Þ
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1. Liénard-Chipart criterion

So far, we solved the dispersion relations and obtained
the transverse and longitudinal modes of BDNK theory. In
general, since these solutions are rather cumbersome, we
resorted to analyzing the asymptotic behavior of the modes,
i.e., in the small (k → 0) and large (k → ∞) wave number
limits. We then required that all modes have positive
imaginary parts and their real parts are not greater than
1 when k → ∞. This provided us with necessary con-
straints for the transport coefficients, and, consequently, for
the matching parameters, to ensure that stability and
causality are simultaneously satisfied.
We remark, however, that these conditions might still not

be sufficient to guarantee that stability is always satisfied,
since we lack the knowledge on how the modes behave at
intermediate values of wave number. In particular, we can
obtain a set of necessary stability conditions using the
Routh-Hurwitz criterion [53–55]. The criterion gives the
number of roots with positive real parts of a polynomial of
the type

fðϒÞ ¼
XN
j¼0

aN−jϒj: ð61Þ

Defining ϒ≡ iω, so that ℜðϒÞ ¼ −ℑðωÞ and expressing
the dispersion relations, Eqs. (43) and (47), as polynomials
of ϒ, the Routh-Hurwitz criterion gives the number of
modes with negative imaginary parts. In this case, stability

is guaranteed if, and only if, this number is exactly zero,
i.e., if all modes have positive imaginary real parts. In this
case, the polynomial is said to be Hurwitz stable.
The Hurwitz stability of a real polynomial of the type

given in Eq. (61) is guaranteed if, and only if, the sequence
consisting of a0 and all the principal minor determinants of
the Hurwitz matrix associated with the polynomial above
are positive. The Hurwitz matrix is a square matrix of
dimension N whose elements are obtained from the
coefficients aj in Eq. (61),

H¼

0BBBBBBBBBBBBBBBBBB@

a1 a0 0 � �� 0

a3 a2 a1 � �� 0

a5 a4 a3 � �� 0

..

. ..
. ..

. ..
. ..

.

a2bN=2c−1 a2bN=2c−2 a2bN=2c−3 � �� abN=2c
0 0 a2bN=2c−1 � �� abN=2cþ2

..

. ..
. ..

. ..
. ..

.

0 0 0 � �� a2bN=2c−1

1CCCCCCCCCCCCCCCCCCA

;

ð62Þ

where bN=2c denotes the smallest integer larger than, or
equal to N=2. The principal minor determinants of H read

T1 ¼ a1; T2 ¼ det

�
a1 a0
a3 a2

�
; T3 ¼ det

0B@a1 a0 0

a3 a2 a1
a5 a4 a3

1CA;…; TN ¼ detH: ð63Þ

Hence, the Routh-Hurwitz criterion can be summarized as T0 ¼ a0 > 0, T1 > 0, T2 > 0, � � �, TN > 0. This is a rather
convenient approach to assess the stability status of a given system, especially when working with high order polynomials,
since it is not necessary to actually solve an otherwise convoluted expression that often does not admit analytical solutions.
An equivalent set of constraints is given by the Liénard-Chipart criterion [56]. Then, the roots of a polynomial given by

Eq. (61) are Hurwitz stable if, and only if, all coefficients and either all odd- or even-dimensional principal minors of the
Hurwitz matrix are positive. Therefore, stability is guaranteed as long as

a0 > 0; a1 > 0;…; aN > 0; and T1 > 0; T3 > 0; T5 > 0;…; T2⌈ðNþ1Þ=2⌉−1 > 0; ð64Þ

or

a0 > 0; a1 > 0;…; aN > 0; and T2 > 0; T4 > 0; T6 > 0;…; T2⌈N=2⌉ > 0; ð65Þ
where ⌈j⌉ denotes the largest integer not exceeding j. The Liénard-Chipart criterion demands calculating roughly half of the
determinants required by the Routh-Hurwitz criterion. In this section, we shall carefully obtain a set of constraints for the
transport coefficients that stem from the Liénard-Chipart criterion and are required to ensure that the stability of BDNK
theory is always fulfilled.
For the transverse modes, the dispersion relation, Eq. (43), becomes

λ̄ϒ2 þ 4

3
ϒþ η̄k2 ¼ 0: ð66Þ
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In the context of the Liénard-Chipart criterion, stability dictates that λ̄ > 0 and η̄ > 0. The shear viscosity coefficient, η, is
positive definite, leading to a single nontrivial constraint, λ > 0, which is in agreement with the stability condition given by
Eq. (49) and implies that z > 1.
Furthermore, the dispersion relation associated with the longitudinal modes becomes

ϒ5λ̄ðχ̄ − ξ̄Þ þ 1

3
ϒ4ð3λ̄þ 4ξ̄ − 4χ̄Þ þ 2

3
ϒ3½ð2η̄þ λ̄Þðξ̄ − χ̄Þk2 þ 2� þ 2

9
k2ϒ2ð6η̄ − 3λ̄þ 2ξ̄þ 6ϰ̄ − 2χ̄Þ

þ 1

9
ϒ½ðλ̄ðξ̄ − χ̄Þ − 12η̄ðλ̄ − ϰ̄ÞÞk4 þ 4k2� þ 1

9
ð4ϰ̄ − 3λ̄Þk4 ¼ 0: ð67Þ

The stability of the longitudinal modes is then guaranteed as long as the following inequalities are simultaneously satisfied:

ξ̄ − χ̄ > 0; ð68aÞ

12η̄ðϰ̄ − λ̄Þ þ λ̄ðξ̄ − χ̄Þ > 0; ð68bÞ

3λ̄2 þ 4ηðξ̄ − χ̄Þ þ λ̄ðξ̄ − χ̄ − 3ϰ̄Þ > 0; ð68cÞ

4ðξ̄ − χ̄Þ3 þ 6ð2η̄þ 5λ̄ − 4φ̄Þðξ̄ − χ̄Þ2 þ 9ðλ̄ − φ̄Þð−4η̄þ 7λ̄ − 4φ̄Þðξ̄ − χ̄Þ þ 27λ̄ðλ̄ − φ̄Þ½ðλ̄ − φ̄Þ − η̄� > 0; ð68dÞ

4λ̄ðξ̄ − χ̄Þ4 þ 36λ̄ðλ̄ − ϰ̄Þðξ̄ − χ̄Þ3 þ 36½λ̄3 − 6ϰ̄λ̄2 þ 3ϰ̄2λ̄ − 3ðλ̄ − ϰ̄Þη̄ λ̄−4η̄2ðλ̄ − ϰ̄Þ�ðξ̄ − χ̄Þ2
þ108½λ̄4 − 3ϰ̄λ̄3 þ 3ϰ̄2λ̄2 − ϰ̄3λ̄þ 3η̄ ϰ̄ λ̄ðλ̄ − ϰ̄Þ�ðξ̄ − χ̄Þ − 81η̄λ̄2ðλ̄ − ϰ̄Þ½λ̄ − ϰ̄ þ 4ðξ̄ − χ̄Þ� > 0; ð68eÞ

which stem from Eq. (65). In terms of the matching parameters q, s, and z, the stability conditions become

qþ s − 3 > 0; ð69aÞ

qþ s −
7z − 19

z − 1
> 0; ð69bÞ

qþ s −
zð8 − zÞ þ 5

zþ 3
> 0; ð69cÞ

ðqþ sÞ3 þ ð4z − 15Þðqþ sÞ2 þ ð4z2 − 51zþ 107Þðqþ sÞ þ z3 − 25z2 þ 161z − 245 > 0; ð69dÞ

ðqþ sÞ4 þ 3ðz − 8Þðz − 1Þðqþ sÞ3 þ
�
3z2 − 51z −

16ðz − 4Þ
z − 1

− 12ðz − 4Þ þ 210

�
ðqþ sÞ2

þ
�
z3 − 30z2 − 12ðz − 4Þzþ 273zþ 96ðz − 4Þ

z − 1
þ 120ðz − 4Þ − 784

�
ðqþ sÞ

− 3z3 − 4ðz − 1Þz2 þ 63z2 −
144ðz − 4Þ

z − 1
− 268ðz − 4Þ þ 1029þ 56ðz − 4Þz − 441z > 0: ð69eÞ

In Fig. 2(a), we display the regions in parameter space in
which BDNK theory is stable. This plot illustrates the values
that the matching parameters q, s, and z can assume in order
for stability to be satisfied, i.e., where the equations of (69)
are all satisfied. We remark that this approach provides a
more restrict range for the values that q, s, and z can assume
in order to ensure the stability of theory, in comparison to the
analysis developed in the last section. In Fig. 2(b), we
display the regions in parameter space where causality and

stability conditions, given by Eqs. (60) and (69), respec-
tively, are either all satisfied or at least one of them is
violated. It can be readily seen that requiring causality
conditions to be also fulfilled constrains even further the
range of values allowed for the matching parameters.
We display the imaginary and real parts of the longi-

tudinal modes of BDNK theory considering several sce-
narios in Fig. 3. In the first column, we consider q ¼ s ¼ 1
and z ¼ 4, violating stability in both approaches, see
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Fig. 2(a). In the second column, we assume q ¼ s ¼ 3 and
z ¼ 9, hence obtaining modes that are asymptotically
stable, while unstable according to the Liénard-Chipart
criterion. In this case, we observe that, in fact, such
criterion poses stronger—in particular, necessary—con-
straints on stability and thus the modes are actually
unstable. In the third column we assume q ¼ s ¼ 2.5
and z ¼ 4, corresponding to a stable configuration

according to both approaches. Last, in the fourth column,
we consider q ¼ s ¼ 4 and z ¼ 5, obtaining modes that are
both causal and stable, see Fig. 2(b).

C. Transient fluid dynamics

For the past decades, the linear stability and causality of
transient theories of relativistic fluid dynamics have been

FIG. 3. Imaginary and real parts of the longitudinal modes of BDNK theory considering several values for the matching parameters
q, s, and z.
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10
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q s

Unstable Stable

0 2 4 6 8 10
0

2

4

6

8

10

z

Acausal and or unstable Causal and stable

q s

FIG. 2. (a): regions in matching parameter space where all stability conditions stemming from the Liénard-Chipart are simultaneously
satisfied (blue) or at least one of them is violated (red). (b): regions in parameter space where all stability and causality conditions are
simultaneously satisfied (blue) or at least one of them is violated (red).
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extensively studied [1,2,6,12,17,24,26,57]. The transport
coefficients cannot assume arbitrary values if causality and
stability are imposed. In particular, constraints on the
relaxation times are crucial to ensure a subluminal signal
propagation and are also essential for the linear stability of
these theories. In Ref. [32], the equations of motion for the
diffusion current and shear-stress tensor for a system of
classical massless particles self-interacting via a quartic
potential were explicitly obtained from the Boltzmann
equation within Landau matching conditions, Eq. (16),
and expressions for the transport coefficients were explic-
itly obtained in exact form, Eq. (17). In this section, we
analyze the causality and stability of this formulation.
In the linear regime, the equations of (16) reduce to

τνD0Δνμ þ Δνμ ¼ ϰn∇μ
0Δαþ lνπ∇λΔπμλ þOðΔ2Þ; ð70Þ

τπD0Δπμν þ Δπμν ¼ 2ηΔμναβ
0 ∇αΔuβ

þ lπνΔ
μναβ
0 ∇αΔνβ þOðΔ2Þ: ð71Þ

Analogously to the previous analyses, we express these
equations in terms of dimensionless variables in Fourier
space

ðiτνΩþ 1ÞΔ ˆ̃νμ ¼ iϰ̄nκμΔα̃þ iLνπκλΔ ˆ̃πμλ; ð72Þ

ðiτπΩþ 1ÞΔ ˆ̃πμν

¼ i2η̄

�
1

2
ðκμΔũν þ κνΔũμÞ − 1

3
Δμν

0 καΔũα
�

þ iLπν

�
1

2
ðκμΔ ˆ̃νν þ κνΔ ˆ̃νμÞ − 1

3
Δμν

0 καΔ ˆ̃να

�
; ð73Þ

where Lνπ ¼ 3lνπ=β and Lπν ¼ βlπν=3, while the remain-
ing rescaled coefficients are defined according to Eqs. (32)
and (41).
The transverse projections of these equations are

obtained by contracting Eq. (72) with Δκ
να=κ and Eq. (73)

with −κμΔκ
να=κ, respectively, leading to

ðiτνΩþ 1ÞΔ ˆ̃να⊥ þ iLνπκΔ ˆ̃πα⊥ ¼ 0; ð74Þ

ðiτπΩþ 1ÞΔ ˆ̃πα⊥ − iη̄κΔũα⊥ −
i
2
LπνκΔν̃α⊥ ¼ 0: ð75Þ

These equations are then plugged into Eq. (30) and can be
cast as0B@

4
3
Ω −κ 0

0 iκLνπ iΩτν þ 1

−iη̄κ iΩτπ þ 1 − 1
2
iκLπν

1CA
0B@Δũμ⊥

Δ ˆ̃πμ⊥
Δ ˆ̃νμ⊥

1CA ¼ 0; ð76Þ

leading to the following dispersion relation:

4

3
τντπΩ3 −

4i
3
ðτν þ τπÞΩ2

þ 1

3
½ð2LνπLπν − 3η̄τνÞκ2 − 4�Ωþ iη̄κ2 ¼ 0: ð77Þ

Once again, we assume perturbations on a fluid at rest. In
this scenario, in the small wave number limit, the transverse
modes read

ω¼ i
τν
þOðk2Þ; ω¼ i

τπ
þOðk2Þ; ω¼3iη̄

4
k2þOðk3Þ:

ð78Þ

Therefore, stability implies that τν > 0, τπ > 0, and η > 0.
These transport coefficients are, in fact, positive definite,
see Eq. (17), thus rendering the transverse modes stable in
this regime. Moreover, in the large wave number limit,
these modes behave as

ω ¼ � k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3η̄τν − 2LνπLπν

τντπ

s
þOðk0Þ;

ω ¼ 3iη̄
3η̄τν − 2LνπLπν

þO
�
1

k

�
: ð79Þ

Stability implies that the first mode must be purely real,
otherwise the negative solution would be unstable and
therefore the term inside the square root has to be positive.
In fact, since the relaxation times and shear viscosity are
positive definite and the product between the coupling
terms is negative, see Eq. (17), stability is always guaran-
teed for all transverse modes in the large wave number
limit. In addition, causality implies that

lim
k→∞

���� ∂Reω
∂k

���� ≤ 1 ⇒ 3η̄τν − 4τντπ − 2LνπLπν ≤ 0; ð80Þ

which is indeed satisfied by the transport coefficients given
in Eq. (17). Therefore, we conclude that the transverse
modes are linearly causal and stable. In Fig. 4, we display
the real and imaginary parts of the transverse modes of the
transient theory with the frequency and wave number being
expressed in units of τη ≡ 3η̄=4.
The final step is to look at the longitudinal modes. In

particular, in order to obtain the longitudinal projections of
Eqs. (72) and (73), we contract them with −κμ=κ and
κμκν=κ2, respectively,

ðiτνΩþ 1ÞΔ ˆ̃νk ¼ iϰ̄nκΔα̃ − iLνπκΔ ˆ̃πk; ð81aÞ

ðiτπΩþ 1ÞΔ ˆ̃πk ¼
4

3
iη̄κΔũk þ

2

3
iLπνκΔ ˆ̃νk: ð81bÞ

Using Eq. (35), we express the longitudinal projections of
the conservation laws, Eq. (29), as
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Ω
�
Δα̃ −

3

β0
Δβ
�
− κΔũk − κΔ ˆ̃νk ¼ 0; ð82aÞ

Ω
�
Δα̃ −

4

β0
Δβ
�
−
4

3
κΔũk ¼ 0; ð82bÞ

4

3
ΩΔũk −

1

3
κ

�
Δα̃ −

4

β0
Δβ
�
− κΔ ˆ̃πk ¼ 0: ð82cÞ

Then, Eqs. (81) and (82) can be expressed as

0BBBBBBBB@

Ω − 3
β0
Ω −κ −κ 0

Ω − 4
β0
Ω −4

3
κ 0 0

−1
3
κ 4

3β0
κ 4

3
Ω 0 −κ

−iϰ̄nκ 0 0 iτνΩþ1 iLνπκ

0 0 −4
3
iη̄κ −2

3
iLπνκ iτπΩþ1

1CCCCCCCCA

0BBBBBBBB@

Δα̃
Δβ̃
Δũk
Δ ˆ̃νk

Δ ˆ̃πk

1CCCCCCCCA
¼0;

ð83Þ

leading to the following dispersion relation:

9τντπΩ5 − 9iðτν þ τπÞΩ4 − 3½ð3η̄τν þ τντπ þ 12ϰ̄nτπ − 2LνπLπνÞκ2 þ 3�Ω3

þ 3ið3η̄þ τν þ τπ þ 12ϰ̄nÞκ2Ω2 þ ½ð36η̄ϰ̄n þ 12ϰ̄nτπ − 2LνπLπνÞκ2 þ 3�κ2Ω − 12iκ4ϰ̄n ¼ 0: ð84Þ

In the small wave number, the longitudinal modes behave as

ω ¼ i
τν

þOðk2Þ; ω ¼ i
τπ

þOðk2Þ; ω ¼ � 1ffiffiffi
3

p kþOðk2Þ; ω ¼ 4iϰ̄nk2 þOðk3Þ; ð85Þ

and are identically stable, see Eq. (17). In the large wave number limit, on the other hand, the longitudinal modes become

ω ¼ �k


τνð3η̄þ τπÞ þ 12ϰ̄nτπ − 2LνπLπν �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½τνð3η̄þ τπÞ þ 12ϰ̄nτπ − 2LνπLπν�2 − 8τντπ½6ϰ̄nð3η̄þ τπÞ − LνπLπν�

p
6τντπ

s
;

ð86aÞ

ω ¼ 6iϰ̄n
6ϰ̄nð3η̄þ τπÞ − LνπLπν

þO
�
1

k

�
: ð86bÞ

First, stability implies that the term inside the inner square root must be real, otherwise there would be a mode with a
negative imaginary part, hence, imposing the condition

½τνð3η̄þ τπÞ þ 12ϰ̄nτπ − 2LνπLπν�2 − 8τντπ½6ϰ̄nð3η̄þ τπÞ − LνπLπν� ≥ 0; ð87Þ

which is indeed satisfied by the transport coefficients given in Eq. (17). Likewise, the term inside the outer square root must
also be real. Since the relaxation times are positive definite, this implies that the numerator must be positive as well, which is
guaranteed by

FIG. 4. Imaginary and real parts of the transverse modes of the transient theory for perturbations on a static background.
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6ϰ̄nð3η̄þ τπÞ − LνπLπν ≥ 0: ð88Þ

As a matter of fact, the product of the coupling terms is
negative, while ϰn, η, and τπ are positive definite, see
Eq. (17), hence the inequality above is trivially satisfied.
This also guarantees the stability of the remaining mode.
In addition to having exponentially decreasing ampli-

tudes, these modes must also propagate subluminally, i.e.,
they must be stable as well as causal. Causality is then
guaranteed by the following condition:

3ð3η̄ − 2τπÞð4ϰ̄n − τνÞ þ 4LνπLπν ≥ 0: ð89Þ

In particular, in deriving this condition, the transport
coefficients still must satisfy an additional constraint, given
by

5τντπ þ 2LνπLπν − 3η̄τν − 12ϰ̄nτπ ≥ 0: ð90Þ

Finally, using the transport coefficients summarized in
Eq. (17), we verify that the stability and causality con-
ditions given by Eqs. (87)–(90) are simultaneously satis-
fied. Therefore, we conclude that transient fluid dynamics
for a system of weakly self-interacting classical massless
particles is linearly causal and stable. In particular, the
propagating modes given in Eq. (86a) reduce to

ω ¼ �0.456k; ω ¼ �0.755k: ð91Þ

For the sake of illustration, in Fig. 5, we display the real
and imaginary parts of the longitudinal modes of the
transient theory. Once again, it is readily seen that all
modes are causal as well as stable.

IV. CONCLUSIONS

We have analyzed the causality and stability of several
fluid-dynamical formulations for a system of weakly self-
interacting classical massless particles derived in Ref. [32].
The Navier-Stokes theory was shown to be linearly acausal

and unstable for arbitrary matching conditions, as both
transverse and longitudinal modes have a diffusionlike
behavior in the large wave number limit. In this regime, the
dispersion relation is parabolic, leading to an additional
(unstable) mode when an observer other than one sitting on
the rest frame of the system is taken into account. In
particular, it is not possible to tune the transport coefficients
in order for causality and stability to be fulfilled, even by
considering different matching conditions. We remark that
this result was expected, since the acausal and unstable
character of Navier-Stokes theory is an already well-known
issue for Eckart and Landau matching conditions [48].
The Bemfica-Disconzi-Noronha-Kovtun theory is a for-

malism that describes the dissipative currents as constitutive
relations that includes not only spacelike derivatives, but
also timelike ones. We have shown that this leads to
nonparabolic dispersion relations, and therefore such for-
mulation is not affected by the aforementioned problems of
Navier-Stokes theory. As a matter of fact, causality and
stability in this case depend on the value of the transport
coefficients, which in turn depend on the choice of matching
conditions. Therefore, causality and stability of the BDNK
theory are strongly matching dependent. In this work, we
have obtained the complete set of necessary conditions for
the transport coefficients (and, consequently, for the match-
ing parameters) that must be satisfied in order for causality
and stability to be simultaneously fulfilled. In particular, we
remark that these constraints prohibit the so-called exotic
Eckart matching [31,35], for which νμ ≡ 0 (z ¼ 0, in our
notation), which lies in the unstable region in Fig. 2.
The transient fluid-dynamical formulation derived in

Ref. [32] was restricted to Landau matching conditions.
We have explicitly calculated the asymptotic behavior of
the modes and concluded that, if the transport coefficients
derived in exact form in Ref. [32] are employed, causality
and stability are always fulfilled, and all modes are well
behaved for any value of wave number. This result is
in agreement with previous analyses of Israel-Stewart
theory [1,6,12].

FIG. 5. Imaginary and real parts of the longitudinal modes of the transient theory for perturbations on a static background.
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APPENDIX: CAUSALITY AND STABILITY
ANALYSIS FOR HILBERT THEORY

In Appendix B of Ref. [32], the microscopic derivation
of transport coefficients for the Hilbert theory has been
performed. Historically, the Hilbert expansion [58,59] was
the first systematic procedure for deriving hydrodynamic
equations of motion from kinetic theory. However, since it
did not lead to Navier-Stokes theory, such an approach is
usually not discussed, even in nonrelativistic contexts.
Based on Hilbert’s work, Enskog [37] and Chapman
[38] proposed their expansion, which is indeed a resum-
mation of Hilbert expansion. The relativistic counterpart of
Hilbert expansion in generic matching conditions was
discussed in Ref. [35]. In this appendix, we discuss the
causality status of such theory.
The main feature of the Hilbert equations of motion is

that local conservation laws are obeyed independently at
each order in the gradient expansion. In this case, the Euler
equations are identically satisfied,

Dn0 þ n0θ ¼ 0; ðA1aÞ

Dε0 þ ðε0 þ P0Þθ ¼ 0; ðA1bÞ

ðε0 þ P0ÞDuμ −∇μP0 ¼ 0; ðA1cÞ

and at first order, which is the order at which we will
truncate, dissipative currents obey

Dnð1Þ þ nð1Þθ þ ∂μν
μ
ð1Þ ¼ 0; ðA2aÞ

Dεð1Þ þ ðεð1Þ þ Πð1ÞÞθ − πμνð1Þσμν þ ∂μh
μ
ð1Þ þ uμDhμð1Þ ¼ 0;

ðA2bÞ

ðεð1Þ þ Πð1ÞÞDuμ −∇μΠð1Þ þ hμð1Þθ þ hαð1ÞΔ
μν
∂αuν

þ ΔμνDhð1Þν þ Δμν
∂απ

α
ð1Þν ¼ 0; ðA2cÞ

where the thermodynamic fields α, β, and uμ enter as
nonconstant coefficients, since they are solutions of
Eq. (A1). The subscript (1) denotes that the dissipative
currents are only considered at first order in gradients. The
equations of motion above are supplemented by the
following constraints/constitutive relations, valid for a
gas composed of massless particles,

Πð1Þ ¼
1

3
εð1Þ; ðA3aÞ

νμð1Þ −
β

4
hμð1Þ ¼ κ̃H∇μα; ðA3bÞ

πμνð1Þ ¼ 2ησμν; ðA3cÞ

where the Hilbert transport coefficients, computed in
Ref. [32], read

κ̃H ¼ 3

gβ2
;

η ¼ 48

gβ3
: ðA4Þ

Considering linear perturbations around global equilib-
rium, so that

ε ¼ ε0 þ εð1Þ → ε0 þ Δε0 þ Δδε; n ¼ n0 þ nð1Þ → n0 þ Δn0 þ Δδn; Πð1Þ → ΔΠ;

uμ → uμ0 þ Δuμ; νμð1Þ → Δνμ; hμð1Þ → Δhμ; πμνð1Þ → Δπμν; ðA5Þ

Equations (A1)–(A3) become

D0Δnþ n0∇0μΔuμ ¼ 0þOðΔ2Þ; ðA6aÞ

D0Δεþ
4

3
ε0∇0μΔuμ ¼ 0þOðΔ2Þ; ðA6bÞ

4

3
ε0D0Δuμ −∇μ

0ΔP ¼ 0þOðΔ2Þ; ðA6cÞ

D0Δδnþ∇0μΔνμ ¼ 0þOðΔ2Þ; ðA6dÞ

D0Δδεþ∇0μΔhμ ¼ 0þOðΔ2Þ; ðA6eÞ

−
1

3
∇μΔδεþ Δμν

0 D0Δhν þ Δμν
0 2η∇αΔσαν ¼ 0þOðΔ2Þ;

ðA6fÞ
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Δνμ −
β

4
Δhμ ¼ κ̃H∇μ

0Δα; ðA6gÞ

where Eqs. (A3a) and (A3c) have been explicitly sub-
stituted in Eqs. (A2b) and (A2c). In Fourier space, the
equations of motion above read

iΩΔñþ n0iκμΔũμ ¼ 0þOðΔ2Þ; ðA7aÞ

iΩΔε̃þ 4

3
ε0iκμΔũμ ¼ 0þOðΔ2Þ; ðA7bÞ

4

3
ε0iΩΔũμ −

i
3
κμΔε̃ ¼ 0þOðΔ2Þ; ðA7cÞ

iΩΔδñþ iκμΔν̃μ ¼ 0þOðΔ2Þ; ðA7dÞ

iΩΔδε̃þ iκμΔh̃μ ¼ 0þOðΔ2Þ; ðA7eÞ

−
1

3
iκμΔδε̃þ iΩΔh̃μ − η

�
−κ2Δũμ þ 1

3
ðκαΔũαÞκμ

�
¼ 0þOðΔ2Þ; ðA7fÞ

Δν̃μ −
β

4
Δh̃μ ¼ 3

gβ2
iκμΔα̃; ðA7gÞ

which imply in the following expression for the transverse
modes, 0B@ iΩ 0 0

η̄κ2 0 iΩ
0 1 − 3

4

1CA
0B@Δũμ⊥

Δ ˆ̃νμ⊥
Δ ˆ̃h

μ
⊥

1CA ¼ 0: ðA8Þ

Equating the determinant of the above-defined matrix to
zero leads to Ω2 ¼ 0, which implies that these modes are
nonpropagating. On the other hand, the longitudinal modes
are expressed as 

Mid
3×3 03×4

Mid-diss
4×3 Mdiss

4×4

! 
ΔUid

jj
ΔUdiss

jj

!
¼ 0; ðA9Þ

where we define variable vectors ΔUid
jj ≡ ðΔ ˆ̃n;Δ ˆ̃ε;ΔũjjÞT ,

and ΔUdiss
jj ¼ ðΔδ ˆ̃n;Δδ ˆ̃ε;Δ ˆ̃νjj;Δ

ˆ̃hjjÞT , and the matrices

Mid
3×3 ¼

0B@ iΩ 0 −iκ
0 iΩ − 4

3
iκ

0 − i
3
κ 4

3
iΩ

1CA; Mid-diss
4×3 ¼

0BBBBB@
0 0 0

0 0 0

0 0 − 4
3
η̄κ2

iκϰ̄H 4
3
iκϰ̄H 0

1CCCCA;

Mdiss
4×4 ¼

0BBBB@
iΩ 0 −iκ 0

0 iΩ 0 −iκ
0 − iκ

3
0 iΩ

0 0 1 − 3
4

1CCCCA: ðA10Þ

Because of the structure of the Hilbert equations of motion, which contain the Euler equations, the longitudinal modes do
not depend on the elements of the matrix Mid-diss

4×3 . Indeed, the dispersion relation defined by Eq. (A9) leads to

det
�

Mid
3×3 03×4

Mid-diss
4×3 Mdiss

4×4

�
¼ ðdetMid

3×3ÞðdetMdiss
4×4Þ ¼ −

4

3

�
Ω
�
Ω2 −

1

3
κ2
��

2

¼ 0; ðA11Þ

which leads to double-degenerate nonpropagating modes (Ω ¼ 0) and two sound modes (Ω ¼ ð1= ffiffiffi
3

p Þκ), which propagate
with velocity vsound ¼ 1=

ffiffiffi
3

p
≃ 0.577. One of such propagating modes stems from the ideal equations of motion, contained

in the matrixMid
3×3, and the other from the dissipative part, contained in the matrixMdiss

4×4. Since the speed of sound of both
modes is smaller than that of light and larger than zero, Hilbert theory is causal and stable. For massive particles, this
degeneracy of the velocity of the two propagating modes is broken, i.e., the sound velocities become different [36], but both
remain subluminal and positive, thus causality is preserved.
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