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The spectroscopy of Ξ0 is performed within the relativistic framework of independent quark model. The
equal mixture of scalar and vector components in the potential having Martin-like form is considered for
the confinement. With the suitable potential parameters for Ξ0, mass spectra for high radial and orbital
excitation is calculated. The experimentally observed values of the ground-state magnetic moment,
branching ratios, and asymmetry parameters for radiative weak decays, Ξ0 → Λ0 þ γ0 and Ξ0 → Σ0 þ γ0

are obtained to validate the model. The spin parity of experimentally known resonances like Ξð1530Þ,
Ξð1820Þ, and Ξð2030Þ are confirmed through the Regge trajectories in ðJ;M2Þ plane. The spin parity of
Ξð1950Þ, Ξð2130Þ, and Ξð2250Þ are predicted using those Regge trajectories. The radiative decay width
and magnetic moment of first resonance is also predicted.
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I. INTRODUCTION

In modern experimental facilities of the 21st century,
researchers are exploring the characteristics of heavy
baryon resonances. However, there remains limited theo-
retical knowledge about the low-lying baryon resonances
which are observed in experiments conducted during the
20th century. Given the complexity of baryons, consist of
three quarks and phenomenology emerges as the optimal
approach to delve into the dynamics of quarks within these
systems. It provides valuable insights into understanding
the behavior of the strong force within such intricate
configurations. One intriguing strange baryon is the Ξ0,
with approximately 10 observed resonances [Ξð1530Þ,
Ξð1620Þ, Ξð1690Þ, Ξð1820Þ, Ξð1950Þ, Ξð2030Þ,
Ξð2120Þ, Ξð2250Þ, Ξð2370Þ, Ξð2500Þ] [1]. Many of these
resonances were identified in bubble chambers prior to the
1980s. However, our understanding of Ξ resonances
remains limited. This complexity arises due to several
factors; firstly, Ξ resonances can only be generated as part
of a final state, making the analysis more intricate com-
pared to direct formation. Secondly, their production cross
sections are relatively small, typically in the range of a few
microbarns. Lastly, the final states are characterized by
topological complexity, posing challenges for study using

electronic techniques [1]. For a thorough examination, we
concentrate specifically on this cascade baryon, conducting
spectroscopy to probe into its details.
On the theoretical side, Chao et al. used a nonrelativistic

quark model [2] then Capstick et al. used a relativized
approach [3], both of which were based on one-gluon
exchange. Glozman et al. used the one-boson-exchange
model [4] while Lee et al. were focused on using QCD sum
rules [5]. Oh was using the Skyrme model [6] for hyperon.
Yan Chen and Bo-Qiang Ma studied the spectrum of light
flavor baryons in a quark-model framework by taking into
account the order Oðα2sÞ hyperfine interactions due to two-
gluon exchange between quarks [7] which enabled them to
produce masses till Ξ7

2
þ. Faustov and Galkin in 2015,

calculated high orbital and radial excitations of strange
baryons by treating baryons as relativistic quark-diquark
bound systems [8]. Their primary assumption was that the
two quarks with equal constituent masses form a diquark.
Menpara and Rai employed the hypercentral constituent
quark model with linear confining potential also a first
order correction term to obtain the resonance masses and
calculated states 1S-5S, 1P-4P, 1D-3D, 1F-3F, and 1G [9].
In very recent times, Oudichhya et al. extracted the
relations between Regge slopes, intercepts, and baryon
masses in the Regge phenomenology with quasilinear
Regge trajectories [10]. All of these treatments describe
either the ground states or limited resonances while in this
paper, our aim is to explain all the observed resonances and
obtain their spin-parity using the independent quark model.
The independent quark model (IQM) was originally

formulated by Kobushkin [11] and Leal Ferreira [12] for
the linear confinement of the quarks. In this approach, they
considered that the individual quarks within a baryon
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follow a Dirac-type equation characterized by an average
potential, defined within the center-of-mass of the hadron.
In subsequent advancements, scholars demonstrated that
representing the average potential as an equal combination
of scalar and vector components streamlines computations
by transforming the single-quark Dirac equation into an
effective Schrödinger equation [13–15]. The investigation
of quark confinement within a baryon can be conducted
using the Martin-like potential, incorporating an equal mix
of scalar and vector components. This potential has been
applied in the relativistic context of the IQM for various
mesons [16–21]. Given its favorable outcomes and its
efficacy in predicting and validating experimental obser-
vations for mesons, recently, we adapted and enhanced this
model to be applicable to various types of baryons [22,23].
In this paper, we thoroughly describe the entire general

methodology in Sec. II, making it applicable to any type of
baryon, in which we have outlined the process of solving
Dirac equations for each quark within a baryon. It also
involves determining spin-averaged masses and calculating
contributions from spin-spin, spin-orbit, and tensor inter-
actions.We computed static properties, such as themagnetic
moment of this baryon which is already observed exper-
imentally, providing a means to validate our model. Details
of the procedure can be found in Sec. III, along with the
corresponding results. In the third section only, we describe
the calculation of two decaywidths for this baryon; radiative
decay III A and radiative weak decay III B. Regge trajecto-
ries play a crucial role in phenomenological models by
providing a framework for understanding and organizing
experimental data on hadronic interactions, offering insights
into the underlying dynamics of particles, and serving as a
bridge between experimental observations and theoretical
concepts. So, in Sec. IV, we present our findings regarding
the Regge trajectories in the ðJ;M2Þ plane.

II. METHODOLOGY

In these studies (Refs. [16–21]), independent quark
model has been applied primarily to meson systems.
However, our contribution extends its application to
encompass baryons, enabling spectroscopic analysis within
this framework. We explore constituent quarks within a
hadron using the relativistic framework of the independent
quark model. In this model, the properties of individual
quarks are governed by a Dirac equation formulated in the
hadron’s rest frame. The potential in this equation show-
cases a Lorentz structure, featuring an even blend of scalar
and vector components.
We propose that quarks within a hadron system expe-

rience independent motion within a flavor-independent
central potential, characterized by a Martin-like form

VðrÞ ¼ ð1þ γ0Þ
2

ðΛr0.1 þ V0Þ; ð1Þ

where, Λ is the potential strength and V0 is the depth of the
potential. The Dirac equation for a quasi-independent quark
in the center of mass frame has the form of

½ED
q − α̂:p̂ − β̂mq − VðrÞ�ψqðr⃗Þ ¼ 0; ð2Þ

where ED
q represents the Dirac energy of a quark, mq is the

current quark mass and ψqðr⃗Þ is the four-component quark
wave function which is a spinor. As discussed in [24], the
solution of Eq. (2) can be expressed as

ψqðr⃗Þ ¼
�

igðrÞΩjlmðrrÞ
−fðrÞΩjl0mðrrÞ

�
: ð3Þ

Here, the spinor spherical harmonics Ωjlm are defined as
given in Ref. [24],

Ωjlm ¼
X
m0;ms

�
l
1

2
jjm0msm

�
Ylm0χ1

2
ms
; ð4Þ

with parity P̂0Ωjlm ¼ ð−1ÞlΩjlm, χ1
2
ms

being eigenfunctions

of Ŝ2 and Ŝ3 and Ylm being the spherical harmonics. The
radial parts of Dirac spinors follow second-order ordinary
differential equations (ODEs),

d2gðrÞ
dr2

þ
�
ðED

q þmqÞ½ED
q −mq − VðrÞ�

−
kðkþ 1Þ

r2

�
gðrÞ ¼ 0; ð5Þ

d2fðrÞ
dr2

þ
�
ðED

q þmqÞ½ED
q −mq − VðrÞ�

−
kðk − 1Þ

r2

�
fðrÞ ¼ 0; ð6Þ

where k is the eigenvalue of the operator k̂ ¼ ð1þ L̂ · σ̂Þ
having the value,

k ¼
(
−ðlþ 1Þ ¼ −ðjþ 1

2
Þ for j ¼ lþ 1

2

l ¼ þðjþ 1
2
Þ for j ¼ l − 1

2
:

ð7Þ

These ODEs can be made equivalent to ODE obeyed by the
reduced radial part of the Schrödinger wave function [13],

d2RSchðrÞ
dr2

þ
�
mqðESch

q −VðrÞÞ− lðlþ1Þ
r2

�
RSchðrÞ¼ 0: ð8Þ

For the potential of Martin-like for Eq. (1), we can define a
dimensionless variable ρ ¼ r

r0
that will reduce these

Eqs. (5), (6) and (8) to the equivalent form,
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d2gðρÞ
dρ2

þ
�
ϵD − ρ0.1 −

kðkþ 1Þ
ρ2

�
gðρÞ ¼ 0; ð9Þ

d2fðρÞ
dρ2

þ
�
ϵD − ρ0.1 −

kðk − 1Þ
ρ2

�
fðρÞ ¼ 0; ð10Þ

d2RSchðρÞ
dρ2

þ
�
ϵSch − ρ0.1 −

lðlþ 1Þ
ρ2

�
RSchðρÞ ¼ 0: ð11Þ

Here,

ϵD ¼ ðED
q −mq − V0Þðmq þ ED

q Þ0.12.1
�
2

Λ

� 2
2.1 ð12Þ

and

ϵSch ¼ mqðESch
q − V0ÞðmqÞ−22.1

�
1

Λ

� 2
2.1

: ð13Þ

In the Sch: case, r0 ¼ ðmqΛÞ−12.1 and r0 ¼ ½ðmq þ ED
q Þ Λ2�

−1
2.1 in

the Dirac case [13]. The Schrödinger equation can be
solved numerically using the code given in Ref. [25] and
the Dirac energies for the individual quarks can be found by
equating ϵD to ϵSch. So this formalism can give the spin
average masses of the three-body hadron system like a
baryon (having constituent quark q1, q2, and q3) as

Mq1q2q3
SA ¼ ED

q1 þ ED
q2 þ ED

q3 − ECM: ð14Þ

Where ECM is the parametric center of mass correction
considered to remove the effects which come from the
inability of the center of mass to remain invariant. We fit the
potential parameters by equating the theoretical spin
average mass with the experimental spin average mass
of the S wave, where the experimental spin average mass
can be calculated as

MSA ¼
P

Jð2J þ 1ÞMnJP
Jð2J þ 1Þ ; ð15Þ

which take the form of ðM1=2 þ 2M3=2Þ=3 for the S waves
of the baryon. With the fitted parameters, the spin average
masses of the excited S waves can also be calculated. Now
we can remove the spin degeneracy by incorporating the
spin-spin interaction to the MSA by considering the total

spin of the quark system as J3q
�! ¼ J1

!þ J2
!þ J3

!
,

hVjj
q1q2q3ðrÞi ¼

Xi;k¼3

i¼1;i<k

σhji:jkJMjĵi:ĵkjji:jkJMi
ðED

qi þmqiÞðED
qk þmqkÞ

; ð16Þ

which describes the interactions as the sum of the inter-
action of individual pairs of quarks. Here σ is the j − j

coupling constant which can also be fitted using the
experimental data. The fitted values of the potential
parameters, center of mass correction, and the j − j
coupling constant for Ξ0 baryon are given in Table I.
To derive the masses of the P, D, and F states from the

spin-averaged mass, we incorporate three interactions;
spin-spin, spin-orbit, and tensor interactions. The spin-spin
interaction term is defined in Eq. (16), while the spin-orbit
and tensor interaction terms emerge as integral components
of the confined one-gluon exchange potential [26], which
are also considered to be the sum of interactions between
the pairs of quarks,

VLS
q1q2q3ðrÞ

¼ αs
4

Xi;k¼3

i¼1;i<k

N2
qi :N

2
qk

ðED
qi þmqiÞðED

qk þmqkÞ
λi:λj
2r

⊗ ½½r× ðp̂qi − p̂qkÞ:ðσ̂qi þ σ̂qkÞ�:½ðD0
0ðrÞþ2D0

1ðrÞÞ�
þ ½r× ðt̂pqi þ p̂qkÞ:ðσ̂qi − σ̂qkÞ�:½ðD0

0ðrÞ−D0
1ðrÞÞ��; ð17Þ

VT
q1q2q3ðrÞ ¼ −

αs
4

Xi;k¼3

i¼1;i<k

N2
qiN

2
qk

ðED
qi þmqiÞðED

qk þmqkÞ

⊗ λi:λj

��
D00

1ðrÞ
3

−
D0

1ðrÞ
3r

�
Sqi:qk

�
: ð18Þ

Where λi:λj represents the color factor of the baryon and
Sqi:qk ¼ ½3ðσqi r̂Þðσqk r̂Þ − σqiσqk �, the running coupling con-
stant can be calculated as

αs ¼
αsðμ0Þ

1þ 33−2nf
12π αsðμ0Þ ln

�
ED
q1þED

q2þED
q3

μ0

� ; ð19Þ

where αsðμ0 ¼ 1 GeVÞ ¼ 0.6 is considered in the present
study. We keep the parametric form of the confined gluon
propagators (D0 and D1) as it is mentioned in Ref. [26] and
here prime represents the derivative with respect to r,

D0ðrÞ ¼
�
α1
r
þ α2

�
exp

�
−r2c20
2

�
; ð20Þ

D1ðrÞ ¼
γ

r
exp

�
−r2c21
2

�
; ð21Þ

TABLE I. Fitted parameters for the Ξ0.

Parameter Value (with 5% variation)

Depth of the potential, V0 −1.893� 0.0946 GeV
Potential strength Λ 1.890� 0.0945 GeV1.1

Center of mass correction ECM 0.039� 0.0019 GeV
j − j coupling constant σ 0.067� 0.0033 GeV3
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with α1 ¼ 10, α2 ¼ 10, c0 ¼ 0.05 GeV, c1 ¼ 0.05 GeV,
and γ ¼ 10. Consequently, upon deriving the wave func-
tion, we can determine the Nqi , which is the normalisation
constant for the individual quark wave function and the
determination of hψ jVLSjψi and hψ jVT jψi becomes fea-
sible by evaluating these quantities for all permutations of
q1, q2, and q3. The cumulative summation of these values
provides the overall contribution for a specific state. The
incorporation of spin-spin interaction contributions in
addition to this total, yields the masses of corresponding
P, D, and F states.
The sensitivity of the model can be studied by under-

standing the uncertainty of the fitted parameters given in
Table I. To achieve that, we first investigated the spin
average masses change by considering 5% change in the Λ,
we observe an average ∼18% change in theMSA. However,
the overall uncertainty associated with MSA can be under-
stood by changing all three parameters, i.e., Λ, V0, and
ECM, where we have considered 5% change in all the
parameters leads to the overall change of ∼3% in the MSA.
We have mentioned our predictions along with uncertainty
associated with the masses (by considering 5% variation in
Λ, V0, ECM, and σ), Although the 5% variation in σ has a
negligible impact, we have included it in our calculations
but omitted it from the mass table. Our results are compared
with corresponding experimental observations and other
theoretical predictions for the masses in the S, P, D, and F
states, as shown in Tables II, III, IV, and V, respectively.

III. MAGNETIC MOMENTS
AND DECAY PROPERTIES

The magnetic moment of baryons is expressed in relation
to its constituent quarks [27] as follows:

μB ¼
X
q

hϕsfjμ⃗qzjϕsfi; ð22Þ

where

μq ¼
eq
2mq

σq: ð23Þ

Here, eq and σq represent the charge and the spin of the
quark, and jϕsfi is spin-flavor wave function. Inside the
baryon, the mass of quarks may undergo alterations as a
result of their binding interactions with the other two
quarks. To consider this impact of the bound state, we
incorporate the bound state effect by substituting the mass
parameter from equation (23) with the introduction of an
effective mass. The effective quark masses meff

q in our
model is defined as

meff
q ¼ ED

q

�
1þ hHi − ECMP

qE
D
q

�
; ð24Þ

which follows the property of MJ ¼
P

3
q¼1 m

eff
q . Our

prediction and comparison with other different approaches
are given in Table VI.

A. Radiative decay

Radiative decays of baryons offer enhanced insights into
the intrinsic structure of baryons and their correlation with
the mass of constituent quarks. The radiative decay width
of light baryons, such as Ξ0, is relatively modest when
compared to heavy baryons. However, it is not insignifi-
cantly small. Given the distinctive status of the cascade as a
light baryon, it is worthwhile to delve into the calculation of
its radiative decay width. The expression for the electro-
magnetic radiative decay width can be formulated based
on the radiative transition magnetic moment (in μN) and
photon energy (q ¼ M3=2 −M1=2) as [29,30]

TABLE II. S state masses (in GeV).

nL JP State hVjj
q1q2q3i

Our
predictions

Experimental
observations

[1]

Relativistic
quark-diquark

[8]

Two-gluon
exchange

[7]

Hypercentral
constituent

quark model [9]

Quark
model
[3]

Skyrme
model
[6]

Regge
phenomenology

[10]

1S 1
2
þ 12S1

2
−0.136 1.324�0.038 1.315 1.330 1.317 1.322 1.305 1.318 1.291

1S 3
2
þ 14S3

2
0.081 1.541�0.038 1.532 1.518 1.526 1.531 1.505 1.539 1.534

2S 1
2
þ 22S1

2
−0.082 1.848�0.059 � � � 1.886 1.750 1.884 1.840 1.932 1.886

2S 3
2
þ 24S3

2
0.049 1.979�0.058 � � � 1.966 1.952 1.971 2.045 2.120 1.966

3S 1
2
þ 32S1

2
−0.064 2.143�0.071 � � � 2.367 1.982 2.361 2.100 � � � 2.333

3S 3
2
þ 34S3

2
0.039 2.245�0.070 2.250 2.421 1.970 2.457 2.165 � � � 2.318

4S 1
2
þ 42S1

2
−0.055 2.351�0.080 � � � � � � 2.054 2.935 2.150 � � � 2.708

4S 3
2
þ 44S3

2
0.033 2.439�0.079 � � � � � � 2.065 3.029 2.230 � � � 2.624

5S 1
2
þ 52S1

2
−0.049 2.514�0.087 � � � � � � 2.107 3.591 2.345 � � � 3.036

5S 3
2
þ 54S3

2
0.029 2.592�0.086 � � � � � � 2.114 3.679 � � � � � � 2.897
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ΓR ¼ q3

4π

2

2J þ 1

e2

m2
p
jμ3

2
þ→1

2
þj2; ð25Þ

where the transition magnetic moment takes the form,

μ3
2
þ→1

2
þ ¼

X
i

hϕ3
2
þ

sfjμi · σi!jϕ1
2
þ

sfi

¼ 2
ffiffiffi
2

p

3
ðμu − μsÞ: ð26Þ

The key distinction in this transition magnetic moment
lies in how we determine the magnetic moment of the
quarks participating in this process. We obtain this by
taking the geometric mean of their effective masses [30,31],
as illustrated in Eq. (27),

meff
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff

ið3
2
þÞm

eff
ið1
2
þÞ

q
: ð27Þ

Our obtained results are discussed in the last section.

B. Radiative weak decay

The most dominant decay of Ξ0 is Ξ0 → Λπ0, but, the
radiative weak decay is the second and it is observed
experimentally. The calculation of decay widths of the
transitions Ξ0 → Λγ and Ξ0 → Σ0γ will be helpful in

verifying our model and its parameters. We calculate the
decay width for the radiative weak decays of Ξ0 using a
joint description of weak radiative (WR) and nonleptonic
(NL) hyperon decays (HD) in broken SUð3Þ. The two
groups of decays are linked via SUð2ÞW spin symmetry and
vector-meson dominance (VMD) [32]. The effective
Lagrangian for weak radiative hyperon decay Bi → Bfγ is

ūfiσμνðpf − piÞνðCþDγ5ÞuiAμ; ð28Þ

where, C and D are parity-conserving and parity-violating
amplitudes. For this case, the decay is given by [32],

Γ ¼ 1

π

�
m2

i −m2
f

2mi

�3

ðjCj2 þ jDj2Þ; ð29Þ

and the asymmetry by [32]

α ¼ 2ReðC�DÞ
jCj2 þ jDj2 : ð30Þ

Here, parity-conserving amplitudes obtained in the ground-
state baryon pole model from the nonleptonic hyperon
decay (NLHD) amplitudes via the SUð2ÞW þ VMD route,
are given by [32]

TABLE III. P state masses (in GeV).

n2Sþ1LJ hVjj
q1q2q3i hVL:S

q1q2q3i hVT
q1q2q3i Our [1] [8] [7] [9]

12P1
2

−0.108 −0.085 −0.038 1.567� 0.053 � � � 1.682 1.772 1.886

12P3
2

0.072 −0.015 0.001 1.857� 0.052 1.823 1.764 1.801 1.871

14P1
2

−0.085 −0.121 −0.075 1.518� 0.053 � � � 1.758 1.894 1.894

14P3
2

−0.126 −0.050 0.025 1.647� 0.052 � � � 1.798 1.918 1.879

14P5
2

0.162 0.044 −0.005 2.000� 0.052 � � � 1.853 1.917 1.859

22P1
2

−0.074 −0.041 −0.014 1.985� 0.067 � � � 1.839 1.926 2.361

22P3
2

0.047 −0.007 0.001 2.155� 0.066 � � � 1.904 1.976 2.337

24P1
2

−0.059 −0.058 −0.028 1.969� 0.067 1.950 2.160 � � � 2.373

24P3
2

−0.079 −0.024 0.009 2.021� 0.067 � � � 2.245 � � � 2.349

24P5
2

0.107 0.021 −0.002 2.241� 0.065 � � � 2.333 � � � 2.318

32P1
2

−0.060 −0.022 −0.006 2.245� 0.077 � � � 2.21 � � � 2.929

32P3
2

0.037 −0.004 0.000 2.368� 0.075 � � � 2.350 � � � 2.894

34P1
2

−0.048 −0.031 −0.012 2.242� 0.076 � � � 2.233 � � � 2.946

34P3
2

−0.063 −0.013 0.004 2.262� 0.077 � � � 2.352 � � � 2.912

34P5
2

0.086 0.011 −0.001 2.431� 0.075 � � � � � � � � � 2.865

42P1
2

−0.052 −0.012 −0.003 2.436� 0.084 � � � � � � � � � 3.577

42P3
2

0.032 −0.002 0.000 2.534� 0.083 � � � � � � � � � 3.532

44P1
2

−0.042 −0.017 −0.006 2.438� 0.084 � � � � � � � � � 3.599

44P3
2

−0.054 −0.007 0.002 2.445� 0.084 � � � � � � � � � 3.554

44P5
2

0.074 0.006 −0.000 2.584� 0.082 � � � � � � � � � 3.494
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CðBi → BfγÞ ¼
�
e
g

�
1

ðmi þmfÞ
ffiffiffi
2

p

× BðBi → BfU0Þ; ð31Þ

where B describe amplitudes for the emission of a linear
superposition U0 of virtual vector mesons ρ0;ω;ϕ, corre-
sponding to a photon and obtained by the SUð6ÞW
symmetry from the NLHD amplitudes and given by,

BðΞ0 → Λ0U0Þ ¼
�
−1ffiffiffi
3

p
�
3
fp
dp

− 1

�
ðμΞ0 − μΛ0Þ

−
�
fp
dp

þ 1

�
μΣΛ

�
N

μpD
; ð32Þ

and

BðΞ0 → Σ0U0Þ ¼
��

fp
dp

þ 1

�
ðμΞ0 − μΣ0Þ

þ 1ffiffiffi
3

p
�
3
fp
dp

− 1

�
μΣΛ

�
N

μpD
: ð33Þ

In this approach, the parity-violating weak radiative
hyperon decay (WRHD) amplitudes has the form,

DðBi → Bfγ
0Þ ¼

�
e
g

�
1

ðmi −mfÞ
ffiffiffi
2

p

× AðBi → BfU0Þ ð34Þ

where amplitudes A are related by SUð2ÞW to the (vanish-
ing in the soft-meson limit) correction terms in NLHD as,

AðΞ0 → λ0U0Þ ¼ −2þ ϵ

9
ffiffiffi
3

p 1 − x
1 − x2

bR þ 1

2
ffiffiffi
3

p SR ð35Þ

AðΞ0 → Σ0U0Þ ¼ −1
3

1þ x
1 − x2

bR −
5

6
SR ð36Þ

Throughout, we have kept the notation and parameter
values same as [32]. Our obtained branching ratios and
asymmetry parameters are given in the Table VII.

TABLE IV. D state masses (in GeV).

n2Sþ1LJ hVjj
q1q2q3i hVL:S

q1q2q3i hVT
q1q2q3i Our [1] [8] [7] [9]

12D3
2

−0.203 −0.060 −0.005 1.755� 0.063 � � � 2.100 1.970 2.270

12D5
2

−0.041 −0.002 0.001 1.981� 0.062 � � � 2.108 1.959 2.234

14D1
2

−0.074 −0.126 −0.023 1.799� 0.063 � � � 1.993 1.980 2.310

14D3
2

−0.067 −0.082 −0.008 1.865� 0.063 � � � 2.121 2.065 2.283

14D5
2

0.148 −0.024 0.002 2.150� 0.062 � � � 2.147 2.102 2.247

14D7
2

0.229 0.051 −0.002 2.302� 0.061 � � � 2.189 2.074 2.203

22D3
2

−0.134 −0.031 −0.002 2.096� 0.074 2.120 2.144 2.174 2.819

22D5
2

−0.021 −0.001 0.000 2.242� 0.073 � � � 2.213 2.170 2.771

24D1
2

−0.055 −0.064 −0.010 2.134� 0.073 � � � 2.091 2.107 2.874

24D3
2

−0.050 −0.042 −0.003 2.168� 0.073 � � � 2.149 2.184 2.838

24D5
2

0.102 −0.012 0.001 2.354� 0.072 � � � � � � 2.205 2.790

24D7
2

0.158 0.026 −0.001 2.447� 0.071 � � � � � � 2.189 2.729

32D3
2

−0.109 −0.017 −0.001 2.318� 0.082 � � � � � � 2.252 3.455

32D5
2

−0.015 −0.000 0.000 2.430� 0.081 � � � � � � 2.239 3.391

34D1
2

−0.046 −0.036 −0.005 2.359� 0.081 � � � 2.367 2.254 3.527

34D3
2

−0.042 −0.023 −0.002 2.379� 0.081 � � � � � � � � � 3.479

34D5
2

0.083 −0.007 0.000 2.522� 0.080 � � � � � � � � � 3.415

34D7
2

0.130 0.015 −0.000 2.590� 0.079 � � � � � � � � � 3.336

42D3
2

−0.094 −0.009 −0.001 2.488� 0.088 � � � � � � � � � � � �
42D5

2
−0.012 −0.000 0.000 2.580� 0.087 � � � � � � � � � � � �

44D1
2

−0.040 −0.020 −0.003 2.530� 0.088 � � � � � � � � � � � �
44D3

2
−0.037 −0.013 −0.001 2.542� 0.088 � � � � � � � � � � � �

44D5
2

0.072 −0.004 0.000 2.662� 0.086 � � � � � � � � � � � �
44D7

2
0.113 0.008 −0.000 2.714� 0.086 � � � � � � � � � � � �
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IV. REGGE TRAJECTORIES

Regge trajectories help in understanding the assignment
of quantum numbers to hadronic states. This includes
spin, parity, and other quantum numbers that characterize

particles. Having determined the masses of orbitally and
radially excited heavy baryons up to a high excitation
numbers, we can construct the regge trajectories for this
baryon in ðJ;M2Þ planes. We fit the linear relation

TABLE V. F state masses (in GeV).

n2Sþ1LJ hVjj
q1q2q3i hVL:S

q1q2q3i hVT
q1q2q3i Our [1] [8] [9]

12F5
2

−0.113 −0.046 −0.001 2.032� 0.081 2.025 2.411 2.713

12F7
2

−0.344 0.004 0.000 1.852� 0.071 � � � 2.460 2.647

14F3
2

−0.395 −0.100 −0.008 1.689� 0.072 � � � 2.252 2.786

14F5
2

−0.538 −0.061 −0.002 1.592� 0.073 � � � � � � 2.733

14F7
2

0.430 −0.011 0.001 2.613� 0.068 � � � 2.474 2.667

14F9
2

0.581 0.048 −0.001 2.820� 0.067 � � � 2.502 2.588

22F5
2

−0.072 −0.023 −0.001 2.292� 0.079 � � � � � � 3.333

22F7
2

−0.239 0.002 0.000 2.151� 0.080 � � � � � � 3.249

24F3
2

−0.289 −0.051 −0.004 2.044� 0.081 � � � � � � 3.426

24F5
2

−0.393 −0.031 −0.001 1.963� 0.082 � � � � � � 3.358

24F7
2

0.303 −0.006 0.001 2.686� 0.075 � � � � � � 3.274

24F9
2

0.412 0.0244 −0.000 2.823� 0.074 � � � � � � 3.173

32F5
2

−0.057 −0.013 −0.000 2.472� 0.086 � � � � � � � � �
32F7

2
−0.197 0.001 0.000 2.348� 0.087 � � � � � � � � �

34F3
2

−0.242 −0.028 −0.002 2.271� 0.088 � � � � � � � � �
34F5

2
−0.330 −0.017 −0.000 2.196� 0.089 � � � � � � � � �

34F7
2

0.251 −0.003 0.000 2.792� 0.082 � � � � � � � � �
34F9

2
0.342 0.014 −0.000 2.898� 0.081 � � � � � � � � �

42F5
2

−0.049 −0.007 −0.000 2.616� 0.091 � � � � � � � � �
42F7

2
−0.172 0.001 0.0000 2.501� 0.093 � � � � � � � � �

44F3
2

−0.214 −0.016 −0.001 2.442� 0.094 � � � � � � � � �
44F5

2
−0.292 −0.010 −0.000 2.372� 0.095 � � � � � � � � �

44F7
2

0.221 −0.002 0.000 2.893� 0.088 � � � � � � � � �
44F9

2
0.301 0.008 −0.000 2.981� 0.087 � � � � � � � � �

TABLE VI. Magnetic moments (in μN).

State Our [1] [9] [28]

Ξ01
2
þ −1.42 −1.25� 0.014 −1.50 −1.37

Ξ03
2
þ 0.15 � � � 0.766 0.16

TABLE VII. Radiative weak decay (Branching ratios and
asymmetry parameters).

Decay and asymmetry Our [1]

Ξ0 → Λ0 þ γ0 1.69 × 10−3 1.17� 0.07 × 10−3

Ξ0 → Σ0 þ γ0 3.48 × 10−3 3.33� 0.10 × 10−3

αΞΛ0γ −0.6957 −0.704� 0.019� 0.064
αΞΣ0γ −0.7707 −0.69� 0.06 FIG. 1. Regge trajectory for 14S3

2
, 14P5

2
, 14D7

2
, and 14F9

2
state

masses. Red dot represents the experimental value of Ξð1530Þ.
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J ¼ αM2 þ α0: ð37Þ

The plots are given in Figs. 1, 2, 3, and 4; slopes and
intercepts are given in Table VIII.

V. DISCUSSION AND CONCLUSION

The plotted Regge trajectories and the masses mentioned
in Tables II, III, IV, and V, suggest that the spin parity of
Ξð1530Þ, Ξð1820Þ, Ξð1950Þ, Ξð2030Þ, Ξð2130Þ, and
Ξð2250Þ could be 3

2
þ, 3

2
−, 1

2
−, 5

2
−, 3

2
þ, and 3

2
þ, respectively,

which perfectly agrees with the experimental prediction of
Ξð1530Þ to be 3

2
þ, Ξð1820Þ to be 3

2
− [33] and Ξð2030Þ to be

≥ 5
2
[34]. In the n2Sþ1L notation they are 14S, 12P, 24P,

12F, 22D, and 34S, respectively. The linear behavior of
squared masses are observed in the ðJ;M2Þ plane. The
calculated slopes and intercepts will be useful in verifying
the additivity of inverse slopes, factorization of slopes, and
additivity of intercepts when this approach will be applied
to Σ and Ω baryons.
As it is widely recognized that the magnetic moments of

the ground state of nearly all light flavor baryons have been
established experimentally, our next logical step, following
the determination of their masses, involves the computation
of static property like the magnetic moment. This enables
us to assess and validate theoretical models beyond mere
mass matching. In our study, we employed the effective
constituent quark masses within our model to calculate the
magnetic moments. The obtained magnetic moment of the
ground state to be −1.42μn is very close to the observed
value of −1.25� 0.014μn. However, the magnetic moment
of first resonance is obtained to be 0.15μn that is in the
range of order of predictions from hypercentral constituent
quark model [9] and background field method [28].
Our investigation has yielded the radiative decay width

to be 0.159 MeV, in which the transition magnetic moment
from (3

2
→ 1

2
) is 1.94μN which is close to that is obtained in

other approaches like effective mass and screened charge
scheme [31], hypercentral constituent quark model with
linear confining potential [9], chiral constituent quark
model [35] and lattice QCD [36].
The challenge of WRHD has persisted for around six

decades. It can be seen as a weak-interaction-related
counterpart to the matter of baryon magnetic moments.
However, unlike the baryon magnetic moments issue,

FIG. 2. Regge trajectory for 12S1
2
, 12P3

2
, 14D5

2
, and 14F7

2
state

masses. Red dot represents the experimental value of Ξð1820Þ.

FIG. 3. Regge trajectory for 14P1
2
, 12D3

2
, 12F5

2
, and 14D7

2
and

24P1
2
, 22D3

2
, 22F5

2
, and 24D7

2
state masses. Blue triangles represent

the experimental values of Ξð1950Þ, Ξð2120Þ, and Ξð2030Þ.

FIG. 4. Regge trajectory for 34S3
2
, 34P5

2
, 34D7

2
, and 34F9

2
state

masses. Red dot represents the experimental value of Ξð2250Þ.

TABLE VIII. Slope(α) and intercept(α0).

Baryon state Slope Intercept

Ξ03
2
þ 0.541� 0.060 −0.154� 0.321

Ξ01
2
þ 0.602� 0.05 −0.005� 0.228

Ξ01
2
− 0.887� 0.120 −3.280� 0.797

Ξ01
2
− 0.989� 0.062 −1.161� 0.24

Ξ03
2
þ −1.378� 0.092 −4.221� 0.455
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which was well understood early in the development of the
quark model, WRHD continues to generate significant
controversy. Recent observation of negative asymmetry of
Λ → nγ [37] confirms the Hara’s-theorem-satisfying nature
of WRHD [38]. The good observational data for weak
radiative decay contains their branching ratios and the
asymmetry parameters of both the possible decays of Ξ0,
i.e., Ξ0 → Λ0 þ γ0 and Ξ0 → Σ0 þ γ0. We obtain those
values using the joint description of WR and NL HDs
SUð2ÞW spin symmetry and Hara’s-theorem-satisfying
VMD [32]. The calculated values of branching ratios
and asymmetries αΞΛ0γ and αΞΣ0γ are in close proximity
of experimentally observed values.
Having seen the potential of our approach to predict the

experimental data in the natural way with the fixation of
model parameters λ,V0, and σ, we can apply this approach to
many other baryons that have a good number of experimental

data available. Having the parameters for the baryons
observed experimentally, we can correlate the parameters
with themass of the baryonwhich then be extrapolated to the
baryonswith less or no experimental data. Thiswill enable us
to predict the masses and other spectroscopic properties of
those unobserved baryons which will be useful in resolving
the future experimental uncertainties.
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