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We present a coupled channel treatment of meson-meson dynamics, for systems with spin-parity 1þ, and
determine the corresponding amplitudes by solving the Bethe-Salpeter equations, which lead to the
generation of two axial resonances when mesons are considered as the degrees of freedom in the model. One
of them is narrow and has properties in good agreement with those ofD1ð2420Þ. The other pole is wider, but
its real and imaginary parts do not match well with the mass and width ofD1ð2430Þ. The situation improves
when a bare quark-model state is included, indicating that the dynamics at the quark level as well as among
hadrons can describe the two states simultaneously. Further, we discuss that there exists a divergence in the
value of theD�π scattering length determined through data coming from lattice QCD calculations and from
heavy ion collisions. Such different values can be accommodated in the model by making small changes in
the parameters while producing two poles having properties compatiblewith the two lightestD1 states. With
these results, we proceed to calculate the correlation function for theD�þð0Þπ0ðþÞ system for different sizes of
the source. We discuss which scenarios can be useful to shed some light on the issue.
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I. INTRODUCTION

Femtoscopic correlation functions have emerged as a
powerful alternative tool to understand the nature of
hadrons in recent times (to see the articles published in
the current year, for example, see Refs. [1–3] or see the
review of Ref. [4]), though the idea is not new [5]. In the
present manuscript, we analyze if the same idea can be
implemented to better determine the nature of the two
lightestD1 mesons,D1ð2420Þ andD1ð2430Þ, for which the
average values of mass and width, as given by the Particle
Data Group (PDG) [6], are

D1ð2420Þ∶ M¼2422.1�0.6MeV; Γ¼31.3�1.9MeV:

D1ð2430Þ∶ M¼2412�9MeV; Γ¼314�29MeV: ð1Þ

The evidence for the existence of two D1 states, with
the aforementioned properties, comes from a fit made

to the experimental data on the D�π invariant mass
distribution [7,8], where the S- and D-wave amplitudes
are associated with D1ð2430Þ and D1ð2420Þ, respectively.
From the theory side, two cd̄, cū states were predicted, as
expected from heavy quark symmetry, with the spin-parity
Jπ ¼ 1þ, in a quark model based on one-gluon-exchange-
plus-linear-confinement potential [9]. Such states were
found to arise from the 11P1 and 13P1 interactions, with
masses 2440 and 2490 MeV, respectively, [9]. An admix-
ture of the states is associated with the physical mesons,
with a mixing angle of −410 [9] (values of 35.30 or −54.70
for the mixing angle have been suggested based on the
heavy quark symmetry [10]). Though the values of the
masses determined in different quark models are not very
different from those listed in Eq. (1), a difference in the
width of the order of factor 10 cannot always be explained.
Here, we must clarify that we are referring to models which
try to explain the mass and width from the same dynamics.
Indeed, arguments based on heavy quark symmetry have
been presented by Manohar and Wise [11] to explain that
the ratio of the widths of theD1 states could be of the order
of factor 10, once the masses of the states are assumed and
the quantum numbers 11P1 and 13P1 are attributed to
D1ð2430Þ andD1ð2420Þ, respectively (without considering
a mixing between the two states). Indeed, as shown in
Refs. [12,13], a consideration of a mixing of the two quark
model states through spin-orbit interactions leads to a ratio
of widths of the two states to be far less than that found in
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the experimental data. In yet another work [14], it is shown
that the ratio of the widths of the unmixed poles is around
2.5, which is not compatible with Eq. (1). The same work
shows, however, that a mixing of the two states through the
consideration of hadron loops can describe the widths of
the two D1 states and suggests that such a finding is
compatible with the mixing angle proposed in Ref. [10]. A
similar conclusion has been reached in Ref. [15]. Further, a
correction of about −ð5.7� 2.9Þ0 is proposed in Ref. [16].
In another study [17], predictions of radiative decay widths
have been made to test the value of the mixing angle based
on the heavy quark symmetry. Thus, it seems that different
types of mixing of the 11P1 and 13P1 states lead to similar
masses but different values of the widths of the D1 states
and that the consideration of hadron loops or meson clouds
is useful in better describing the properties of the lowest-
lying D1 states.
On the other hand, the findings of models based purely

on hadron dynamics show that although two low-lying D1

states are also always found, their properties do not
coincide with those found in experiments. Besides the
difference in the properties of the states found in different
models in comparison with those found experimentally, as
we discuss below, there exists a deviation in the scattering
length of D�π determined from data on lattice QCD [18]
and from heavy ion collisions [19]. Indeed information on
observables related to the D�π channel is very relevant to
understanding the nature of the D1 states under discussion
since it is the main decay channel for such states. Given the
situation, one of the purposes of this manuscript is to
propose a model that can describe the mass and width of the
two lowest-lying D1 states. Our attempt shows that an
interplay of quark-hadron degrees of freedom can be useful
in describing the aforementioned states (in line with the
suggestions made in Ref. [14]). Yet another aim is to
investigate if femtoscopic correlation functions related to
channels and source sizes different from those considered
in Ref. [19] can be useful in resolving the situation. We
show that the extraction of data from smaller source sizes
and for channels dominated by strong interactions (and not
needing Coulomb interactions) can be used to settle the
value of the D�π scattering length, which can contribute to
a better understanding of the properties of the two lowest-
lying D1 states.

A. A short summary of model findings

Let us summarize the results of some of the works
attempting to describe the dynamical origin of the mass and
width of the lightest axial states with charm. For example, it
was pointed out in Ref. [20] that all the low-lying positive-
parity heavy open-flavor mesons can be understood as
hadronic molecules. Such a claim is motivated by facts like
the masses of the lightest open-charm mesons with
strangeness are lower than their nonstrange counterparts.
In Ref. [20], scattering equations were solved using kernels

based on the unitarized chiral perturbation theory for
heavy mesons and by fixing the free parameters to fit
the scattering lengths determined from lattice QCD calcu-
lations. Within such a framework, two poles were found for
D1 mesons, with the mass and the half-width being 2247þ5

−6 ,
107þ11

−10 and 2555þ47
−30 , 203þ8

−9 , where the lower one was
associated with D1ð2430Þ. It is argued in the former work
that the mass value, obtained from a Breit-Wigner fit, given
by PDG forD1ð2430Þ needs to be revised. A narrow pole, to
be associated with D1ð2420Þ, however, is not found.
Curiously, a very different quark-model calculation [21]
obtainedmass values for theD1 stateswhich are very similar
to those of Ref. [20]. Information on D1 mesons is also
available from 2Sþ1lJ ¼ 3S1; 3D1 amplitudes determined for
theD�π system with lattice QCD calculations [22]. A broad
and a narrow state is found, respectively, in the former and
the latter amplitudes. It is worth mentioning that the broad
3S1 state, which is related to D1ð2430Þ, has been found to
appear at mass 2397 MeV even though the pion mass is
larger than the corresponding physical mass, indicating that
the physical polemass could be lower. Updated calculations,
with contributions from channels like Dππ, are expected to
be determined in future [22]. As we will discuss, in fact
adding coupled channels like Dρ can be important to better
understand the properties of the D1 states.
It is worth mentioning that several other attempts have

been made to simultaneously describe the properties of the
D1 states [23–30], claiming different attributions to their
dynamical origin.

B. Our idea

The main purpose of our work is to determine the
femtoscopic correlation functions for the D�þð0Þπ0ðþÞ sys-
tems, which are free from Coulomb interactions. These
systems are different from those investigated in Ref. [19].
The idea is also to calculate the correlation function for
different sizes of the source and study if there exist more
ideal conditions to determine the nature of the D�π strong
interaction. To do this we need the amplitudes of the D�π
system which carry the information on the D1 states. We
proceed by extending the framework developed in
Refs. [27,28] by adding a quark-model pole to the lowest
order D�π amplitude. As shown in Ref. [28] the dynamics
of D�π and coupled channels leads to the formation of a
state whose mass and width are in excellent agreement
with those of D1ð2420Þ. It is worth emphasizing that the
aforementioned pole couples strongly to Dρ but very
weakly to D�π, which naturally explains its narrow width
that is in contrast with the one of D1ð2430Þ. Next, we
should add that yet another pole, coupling mostly to D�π,
appears in the complex plane in the formalism of Ref. [28],
around 2222 − i61 MeV [31]. This latter pole is not in
good agreement with the properties of D1ð2430Þ. To
improve this accordance, we add a bare quark-model pole
to the lowest order D�π amplitude of Ref. [28].
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On solving Bethe-Salpeter equations with such kernels, a
broad state, as well as a narrow state, are found in the
resulting amplitudes. The narrow state related to D1ð2420Þ
is as found in Ref. [28]. The broad state has properties
closer to those of D1ð2430Þ. To further compare the results
of the model with the known data we calculate the D�π
scattering length. We recall that scattering length values for
the Dπ and D�π channels are determined in Ref. [18]
within the lattice QCD framework, using a pion mass of
266 MeV. Also, in Refs. [32,33], Dπ and other systems are
investigated in the lattice QCD formulation, the results of
which are used to fix the parameters of the next-to-leading
order term of the chiral Lagrangian and the Dπ scattering
length is obtained with the physical pion mass. The
resulting values are found to agree with those obtained
within unitarized chiral perturbation theory and heavy
quark symmetry [34–36]. Values of the Dπ and D�π
scattering lengths have also been determined by the
ALICE collaboration [19] (see also Refs. [37–40]), though,
enigmatically, the value determined seems to be different to
the results of all the aforementioned works [32–36]. The
question that arises is if the Dπ and D�π scattering lengths
should be as obtained in Refs. [32–35] or as in Ref. [19]. It
is the purpose of our paper to investigate if femtoscopic
studies of systems or source sizes different from those
considered in Ref. [19] can be used to resolve this matter.
Hence we contemplate two possibilities in our model which
can produce different scattering lengths and calculate the
correlation function for D�0ðþÞπþð0Þ, for different values of
the source size. We present results for different source sizes
and discuss if such a tool can be used to resolve the issue
and discuss the implications of the two scenarios on the
properties of the two lowest-lying D1 mesons.
The article is organized as follows. We first discuss the

formalism used to determine the amplitudes for different
meson-meson systems and present the convention fol-
lowed to evaluate the scattering length. We give a
summary of the scattering lengths obtained within differ-
ent works, which leads to the consideration of two
different parametrizations. We then show the amplitudes,
discuss the properties of the resulting poles, and compare
the scattering lengths obtained with other works. In a
subsequent section, we present the details of the calcu-
lations of the correlation function. Finally, we summarize
the conclusions of the work.

II. DETERMINING THE
SCATTERING AMPLITUDES

A. Formalism to solve the
scattering equations

In the present work, we start by following the formalism
of Refs. [27,28], where nonperturbative interactions
between vector and pseudoscalar mesons are considered
on the basis of a broken SU(4) symmetry, and add a bare

quark-model pole in the kernel. To be more explicit, we
begin by considering the lowest order amplitude [27,28],

tij ¼
Cij

4f2
ðs − uÞϵ⃗ · ϵ⃗0; ð2Þ

where f is the pion decay constant, taken to be 93MeV, s, u
are Mandelstam variables, ϵðϵ0Þ represents the polarization
(three-)vector for the incoming (outgoing) vector meson,
and Cij are constants for different i, j (initial, final state).
Though the amplitude in Eq. (2) is obtained in Ref. [27]

by using the SU(4) symmetry, the same can also be
determined, as we do, by considering the following
Lagrangians [41–44]

LPPV ¼ −igPPVhVμ½P; ∂μP�i;
LVVP ¼ gVVPffiffiffi

2
p ϵμναβh∂μVν∂αVβPi ð3Þ

to calculate the contribution of a vector-meson exchange in
the t channel and by applying the approximation t → 0 at
energies near the threshold. We write the SU(4) matrix for
pseudoscalar (P) and vector (V) fields as

P¼

0
BBBBBB@

ηffiffi
3

p þ η0ffiffi
6

p þ π0ffiffi
2

p πþ Kþ D̄0

π− ηffiffi
3

p þ η0ffiffi
6

p − π0ffiffi
2

p K0 D−

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0 D−

s

D0 Dþ Dþ
s ηc

1
CCCCCCCA
;

Vμ ¼

0
BBBBB@

ωffiffi
2

p þ ρ0ffiffi
2

p ρþ K�þ D̄�0

ρ− ωffiffi
2

p − ρ0ffiffi
2

p K�0 D�−

K�− K̄�0 ϕ D�−
s

D�0 D�þ D�þ
s J=Ψ

1
CCCCCA
;

which are slightly different from those in Refs. [27,28].
The difference arises from including the mixing between
η − η0 − ηc and ω − ϕ − J=Ψ, which gives slightly
different amplitudes. We, thus, provide the values of Cij

in Table I.
Besides Eq. (2), we consider contributions coming from

a pseudoscalar exchange through box diagrams as obtained
in Ref. [28] for the Dρ → D�π → Dρ. If we solve the
Bethe-Salpeter equation

T ¼ V þ VGT; ð4Þ

with such amplitudes, just as done in Ref. [28], we find
results very similar to those of Ref. [28]. Thus, as expected,
the mixing between η − η0 − ηc and ω − ϕ − J=Ψ do not
give important contributions.
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The loop function, G, in Eq. (4), for the kth channel,
is [27,28]

Gkð
ffiffiffi
s

p Þ¼
Z

d4q
ð2πÞ4

1

ðP−qÞ2−M2
k

1

q2−m2
k

¼ 1

16π2

�
akðμÞþ ln

m2
k

μ2
þM2

k−m2
kþ s

2s
ln
M2

k

m2
k

þ qkffiffiffi
s

p
�
ln

s− ðM2
k−m2

kÞþ2qk
ffiffiffi
s

p
−sþðM2

k−m2
kÞþ2qk

ffiffiffi
s

p

þ ln
sþðM2

k−m2
kÞþ2qk

ffiffiffi
s

p
−s− ðM2

k−m2
kÞþ2qk

ffiffiffi
s

p
���

1þ q2k
3M2

k

�
;

ð5Þ
with P representing the total four-momentum of the system
and q the four-momentum of one of the mesons, Mk (mk)
standing for the mass of the vector (pseudoscalar) meson in
the kth channel, ak and μ denoting a subtraction constant
needed to regularize the divergent nature of the G function
and the regularization scale, respectively. The values for the
regularization parameters are taken to be [28] μ ¼ 1500,
a ¼ −1.45, and we consider the convolution of G-function
over the finite widths of ρ and K�. The resulting amplitudes
show the presence of a state with mass ∼2428 MeV and
width ∼33 MeV on the real axis, as in Ref. [28]. This latter
state couples strongly to the Dρ channel and weakly to the
D�π channel, and its properties are in excellent agreement
with those of D1ð2420Þ. There appears another pole at
2220 − i61 MeV, which couples mostly to D�π but which
cannot be related to D1ð2430Þ (see Fig. 1).
Notice that the half-width of the narrow pole is around

5 MeV, in the complex plane, but the width on the real axis
becomes 33MeVonconsideration of the finitewidths of theρ

and K� mesons. The width of the lower energy pole also
increases to 130 MeV, but it still remains too small for the
purpose of its association with D1ð2430Þ. Besides the mass
also remains too low. We show the D�π and Dρ squared
amplitudes, on the real axis, as solid lines in Fig. 2. The results
shown as dashed lines, Fig. 2, correspond to those obtained
by considering only the first four channels of Table I. It can be
seen the results are almost unchanged, indicating that the
most relevant channels to study the mentioned D1 states are
D�π,Dρ, K̄D�

s , andDsK̄�. Thenoncompatibility between the
properties of D1ð2430Þ and the lower energy pole seen in
Fig. 1, whose effect on the real axis is shown in the left panel
of Fig. 2, shows that something is missing in the model. We
must recall at this point that the degrees of freedom
considered in our model, so far, are hadrons and other inputs
could be necessary to better describe the properties of
D1ð2420Þ and D1ð2430Þ simultaneously.
For this purpose, as a next step, we try adding a bare

quark-model pole to the lowest order amplitude for theD�π
channel, following Refs. [45–50], as1

VQM ¼ � g2QM
s −M2

QM
; ð6Þ

FIG. 1. Two poles appearing in the K̄D�
s amplitude. While the

narrower pole can be associated with D1ð2420Þ, the broader pole
does not represent the properties of D1ð2430Þ. It should be
mentioned that here we have chosen to show the K̄D�

s amplitude
as an example. The poles are seen in all the coupled channels, as
the case should be.

TABLE I. Values of the Cij constants appearing in Eq. (2) for
different processes in the isospin 1=2 configuration. Here
γ ¼ ðmL

mH
Þ2, where mL ¼ 800 MeV and mH ¼ 2050 MeV are

average masses of the light and heavy vector mesons, as defined
in Ref. [27]. In the case of isospin 3=2, we have two channels:
D�π and Dρ with the diagonal values of Cij being 1 and the
nondiagonal being γ.

πD� Dρ K̄D�
s DsK̄� ηD� Dω ηcD� DJΨ Dϕ η0D�

πD� −2 γ=2 −
ffiffi
3
2

q
0 0

ffiffi
3

p
γ

2
0 −

ffiffi
3
2

q
γ 0 0

Dρ −2 0
ffiffi
3
2

q
−

ffiffi
1
2

q
γ 0

ffiffi
3
2

q
γ 0 0 − γ

2

K̄D�
s −1 0 − 2ffiffi

3
p 0 0 −γ γ 1ffiffi

6
p

DsK̄� −1 − γffiffi
3

p − 1ffiffi
2

p −γ 0 1
ffiffi
2
3

q
γ

ηD� 0 γffiffi
6

p 0 − γffiffi
3

p 0 0

Dω 0 − γffiffi
2

p 0 0 γ
2
ffiffi
3

p

ηcD� 0 γ 0 0
DJΨ 0 0 − γffiffi

6
p

Dϕ 0 0
η0D� 0

1The potential in Eq. (6) should be considered as an effective
interaction added to one of the channels mimicking the effect of
adding a term to each channel. Such an ansatz is followed to
minimize the number of free parameters.
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where the mass, MQM, can be taken from different quark
model calculations [9,12,21] and gQM can be adjusted to
obtain a better agreement between the lower energy pole
shown in Fig. 1 and the properties of D1ð2430Þ. The
resulting lowest order amplitude for D�π is then the sum of
diagrams shown in Fig. 3.
Before proceeding further we must clarify why we add

one quark-model pole when two of them appear in
Refs. [9,12,21]. The reason is that one of the states
generated by meson-meson dynamics, in our formalism
(which is based on Refs. [27,28]), is in very good agree-
ment with the properties of D1ð2420Þ. The implication of
such a finding is that the contribution of the quark-model
component to the D1ð2420Þ wave function must be small,
such as to keep the properties of the pole related to
D1ð2420Þ mostly unchanged. It should also be mentioned
that the regularization parameter used to solve the Bethe-
Salpeter equation can embed contributions from other types
of dynamics not explicitly considered in the model (see
discussions in Refs. [51–53]).

B. Scattering lengths and related uncertainties

Before depicting the amplitudes for different channels,
we digress a bit towards the discussion of another observ-
able, on which information is available from different
sources. The observable being referred to is the scattering
length, which we calculate for different channels through
the relation

ai ¼
Tii

8π
ffiffiffi
s

p : ð7Þ

We compare the results for the D�π channel with the
information available from lattice QCD calculations [18].
The former work determined the isospin 1=2 scattering
lengths for Dπ and D�π channels and obtained the
following values:

að1=2ÞDπ ¼ 0.81� 0.14 fm;

að1=2ÞD�π ¼ 0.81� 0.17 fm; ð8Þ

at a pion mass of 266 MeV. As can be seen, the values for
the two channels are very similar. Such a finding can be
understood by invoking arguments of heavy quark sym-
metry. It is important to stress here that a sign convention
opposite to that given in Eq. (7) is followed in Ref. [18].
Further, scattering lengths for systems like DK̄, Dsπ, DsK,
and Dπ in isospin 3=2 configurations have been obtained
on a lattice in Ref. [32]. Using the values of the low energy
constants of the chiral Lagrangian fixed from such a study,
the scattering length for Dπ in isospin 1=2 is determined.
The results from the former works, obtained at the physical
pion mass, can be summarized as

að1=2ÞDπ ¼ 0.37� 0.01 fm;

að3=2ÞDπ ¼ −0.100ð1Þ fm: ð9Þ

FIG. 2. Projection of the poles shown in Fig. 1 on the real axis, shown by depicting the squared amplitudes for the D�π and Dρ
channels. The solid lines are the results of solving the scattering equation with ten coupled channels (given in Table I), while the dashed
lines result from considering only the first four channels, which areD�π,Dρ, K̄D�

s , andDsK̄�. The two results look very similar, except
for a ηD� cusp effect seen around 2556 MeV in the D�π amplitude, shown as a solid line.

D* D*D* D*

+

D* D*

FIG. 3. Lowest order amplitude for theD�π channel. The upper
diagram originates from a vector exchange in the t channel,
whereas the lower one arises from the exchange of a bare quark-
model pole in the s channel.
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It is worth mentioning here that the value of að1=2ÞDπ at
mπ ¼ 266 MeV is obtained to be 2.30þ2.40

−0.66 fm in Ref. [32],
which is higher than that of Ref. [18] [given in Eq. (8)].
On the other hand, results compatible with Eq. (9) have
been obtained in Refs. [33,34], by using effective theories
based on chiral and heavy quark symmetry and by
constraining the values of the unknown parameters to fit
the results available from lattice QCD. Somewhat smaller
values for the isospin 1=2, around 0.2 fm, are found in
Refs. [35,36], which are compatible with the results
obtained using the leading order term of the chiral effective
Lagrangian [33,34].
Recent results on the D�π scattering length are available

from an alternative source, from theAlice collaboration [19],
which seem to be in disagreement with the aforementioned
values. Let us denote the values given in Ref. [19] as ãðIÞ.
Using such a notation, the values in Ref. [19] can be
summarized as

ãð1=2ÞDπ ¼ 0.02� 0.03� 0.01 fm;

ãð3=2ÞDπ ¼ 0.01� 0.02� 0.01 fm;

ãð1=2ÞD�π ¼ −0.03� 0.05� 0.02 fm;

ãð3=2ÞD�π ¼ 0.05� 0.04� 0.02 fm: ð10Þ

In such a scenario, with different values of scattering
lengths obtained from different sources, with one relying
on lattice QCD calculations and the other being the
experimental data obtained by the Alice collaboration,
we find it instructive to investigate if femtoscopic corre-
lation functions measured for source sizes different to the
one in Ref. [19] can resolve this puzzle. We will eventually
show that the correlation functions ofD�0πþ andD�þπ0 are
sensitive to the different values of the scattering lengths,
and the difference is more marked for smaller source sizes.
We hope that our findings can motivate the determination
of data satisfying such conditions.

C. Amplitudes: Results and discussions

Asmentioned in the preceding discussions, we addEq. (6)
to the amplitudes already considered in Refs. [27,28] with
the idea of having the presence of a wide as well as a
narrow D1 state around 2430 MeV. In addition for the
amplitudes to show states with properties compatible with
those of D1ð2420Þ and D1ð2430Þ, we require the values of
the D�π scattering lengths to be in agreement with Eqs. (9)
or (10). For this purpose, we shall consider two different
sets of values for the parameters MQM and gQM, and refer
to the cases as models A and B. It must be clarified here
that there is little room for changing the only other possible
parameter of the model, which is the subtraction constant
used to regularize the loop function since the properties
of D1ð2420Þ are well described by our amplitudes as

discussed in Ref. [28]. Note that the scale μ and the
subtraction constant ak appearing in Eq. (5) are not two
parameters. Both are related to each other and, hence,
together they account for one parameter only.
It should be emphasized that adding the bare pole to the

D�π amplitude does not affect the narrow pole associated
withD1ð2420Þ and only the wider pole changes its position
in the complex plane. The ansatz followed in the work, as
summarized in Fig. 3, is chosen on purpose since a good
description ofD1ð2420Þ is already obtained with the meson
degrees of freedom. Thus, we end up finding two poles
which can be related to D1ð2420Þ and D1ð2430Þ. The
added quark-model pole, on the other hand, in the two
models discussed in the following sections, becomes a
virtual pole [54].

1. Model A

One of the choices we make is to write Eq. (6) as

VQM ¼ −
60002

s − 24402
; ð11Þ

where the value of the mass, MQM ¼ 2440 MeV, is taken
from the quark model of Ref. [9]. Such a choice, together
with gQM ¼ 6000 MeV, leads the lower energy pole in
Fig. 1 to move to E − iΓ=2 ¼ 2268 − i100 MeV. We stress
that we solve the Bethe-Salpeter equation by considering
the first four channels shown in Table I. As already shown
in Fig. 2, the first four channels of Table I are found to be
the most relevant ones for studying D1 states in the energy
region of 2150–3000 MeV.
The narrow pole, shown in Fig. 1, remains almost

unchanged and the bare quark-model pole becomes a
virtual one (appearing at 2448 − i0 MeV). The wider pole,
obtained at E − iΓ=2 ¼ 2268 − i100, coincides with the
lowest D1 state found in unitarized chiral perturbation
calculations [20] where the free parameters of the next-
leading-order term have been fixed by using lattice QCD
calculations. The results of Refs. [21,23] also agree with
Ref. [20]. Let us show the squared amplitudes for the
different channels in Fig. 4 for further discussions.
As can be seen in the left panel of the top row of Fig. 4,

the D�π amplitude shows a peak on the real axis around
2305 MeV, with a full width at a half maximum of around
160MeV. Such a width is more in agreement with the lower
limit determined by the BABAR collaboration [55]. The
same amplitude shows a zero near 2400 MeV, which is an
effect of the interference between the lower energy pole
arising from meson-meson dynamics and the quark-
model (virtual) pole. Further, it can be seen that the Dρ
amplitude is almost the same in Figs. 2 and 4. Thus, clearly,
the D�π amplitude is dominated by the wider D1 state and
does not show any clear sign of D1ð2420Þ, while the Dρ
amplitude shows only the presence of the narrow pole. In
fact, we find that the D�π amplitude gets very little

KHEMCHANDANI, ABREU, TORRES, and NAVARRA PHYS. REV. D 110, 036008 (2024)

036008-6



contribution from the coupled channel interactions. Some
of the transition amplitudes, like D�π → Dρ, do show the
presence of an interference effect between a bump and a
narrow peak. Such findings are in consonance with the
couplings found for the two D1 states to the different
channels, as listed in Table II. These couplings have been
determined by calculating the residues of the t matrices in
the complex energy plane. For the sake of completeness,
we also present the position and couplings of the virtual
pole in Table II.
We find it relevant to provide the values of the scattering

length for different channels as well (see Table II). As
discussed earlier, the value for D�π is especially interesting
since it can be comparedwith thosegiven inEqs. (9) and (10).
At this point, we find it useful to make a brief discussion

on how the couplings (for physical poles) listed in Table II
can be used in determining observables. For instance, these
couplings can lead to partial decay widths, through

ΓD1→m1m2
¼ pc:m:

8πM2
D1

jgD1
j2; ð12Þ

where m1, m2 represent mesons in the decay channel, pc:m:
refers to the center of mass momentum in the final state,
MD1

is the mass of the D1 state under consideration, and
gD1

is the coupling given in Table II. Using Eq. (12),

and considering the Γtotal ¼ 160 MeV for D1ð2430Þ (as
found in model A), we obtain ΓD1ð2430Þ→D�π=Γtotal ∼ 90%.
Note that, considering a fixed value of MD1

, the only open
decay channel is D�π and the expected branching ratio
ΓD1ð2430Þ→D�π=Γtotal should have been 100%.
To obtain more precise values, we must take into account

that MD1
varies in the range allowed by the related finite

width of the decaying particle (as shown in Ref. [56]) and
calculate the partial decay width as

ΓD1→D�π ¼ −
1

16π2

Z
∞

mD�þmπ

dW
pc:m:

W2
4MD1

ℑftD�π→D�πg:

ð13Þ

Such considerations are important for channels which are
closed for decay at the nominal mass of a D1 state under
consideration. In such cases, a finite value can be found
when considering the width of the decaying state. Using
Eq. (13), we obtain, for instance, the branching fractions:
(1) for D1ð2430Þ → D�π as 97.5%, (2) for D1ð2430Þ →
K̄D�

s as 2.5%, and (3) for D1ð2430Þ → D�ρ ∼ 0.

2. Model B

Contrary to Model A, where the mass of a bare pole is
taken from a quark model and the coupling, as well as the

FIG. 4. Squared amplitudes of different processes. A factor written in front of jT…j2, in the legends, implies that it has been multiplied
to the squared matrix such that different amplitudes can be seen in the same scale.
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sign, are chosen so as to determine a pole consistent with
Refs. [20,21,23], we now consider the parameters of Eq. (6)
as free. We allow them to vary such as to move the lower
energy pole shown in Fig. 1 deeper in the complex plane,
thus, providing the possibility of associating a bigger width
to the state to be related toD1ð2430Þ. As a result, we obtain
the following parametrization

VQM ¼ −
100002

s − 23702
: ð14Þ

The precise position of the pole related to D1ð2430Þ is
found to be 2281 − i218 MeV. In this case, a broad bump
is found on the real axis around 2436MeV with a full width
at half maximum being ∼311 MeV (see Fig. 5). In this
case, there occurs a constructive interference between the
pole arising from the meson-meson dynamics and the bare
quark model pole which becomes a virtual pole when the
scattering equation is solved. The resulting mass and width
values, determined from the peak on the real axis, are more
in agreement with those found by the LHCb and Belle
collaborations [7,8] [as also given in Eq. (1)].
It can also be noticed that theDρ → Dρ as well asDρ →

DsK̄� amplitudes are almost the same as obtained in model
A (see Fig. 4), though the strength of the transition ofDρ to
the other two channels has diminished. Besides such
changes, a cusp effect is seen near 2607 MeV, especially
in D�π → D�π as well as D�π → K̄D�

s , which corresponds
to the opening of the K̄D�

s channel. We must also mention
that the D�π amplitude, as mentioned in the discussions of
model A, gets little contribution from the coupled channel
interactions.
In this case, as shown in Table III, the scattering length of

D�π turns out to be more in agreement with the value
determined by the Alice collaboration [given in Eq. (10)].

TABLE II. Values of the isospin 1=2 scattering lengths and the
couplings, represented as g, of the two states D1 for the different
channels, as obtained in model A. Further, we show the couplings
of the virtual pole found in the work (as discussed in the text). The
asterisks on g indicate that the values of the pole (in the subscript)
and the couplings (in the last column) correspond to a virtual pole.

að1=2Þ

(fm)
gD1ð2430Þ
(MeV)

gD1ð2420Þ
(MeV)

g��2448−i0
(MeV)

D�π −0.20 7250 − i4995 −233þ i5 302 − i6826
Dρ 0.44 − i0.18 −521 − i355 15144þ i356 −284þ i719
K̄D�

s 0.00 − i0.12 4534 − i3612 −247 − i177 346 − i4231
DsK̄� 0.00 − i0.12 2 − i55 −8739þ i90 41 − i110

FIG. 5. Same as in Fig. 4 but for the parameter choice B shown in Eq. (14).
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We provide the couplings of the two states to the different
channels, as well as to the virtual pole, too in Table III.
To summarize this section, we can say that we have

studied the interactions of different meson-meson systems
coupling to the quantum numbers ofD1 states. We find that,
within the model considered, the meson-meson interactions
canwell describe the properties ofD1ð2420Þ. Awider pole at
lower energies is also generated from the interactions,
though the mass and width are not found to be in good
agreement with the known properties ofD1ð2430Þ. We find
that adding a bare quark model pole to the D�π amplitude
improves the situation.Wepresent two scenarios,which lead
to values of D�π scattering length in agreement with the
conflicting ones known for Dπ from lattice QCD-inspired
models and from theAlice collaboration.We now study how
such scenarios reflect in terms of the correlation functions.
To calculate correlation functions in particle basis, we require
the amplitudes in the isospin 3=2 basis too. We end this
section by showing such amplitudes in Fig. 6. Notice that the
interactions areweakly repulsive in this isospin configuration
and, thus, no states are formed in this case. The scattering

lengths in this case are að3=2ÞD�π ¼ 0.1 fm and að3=2ÞDρ ¼ 0.2 fm.
The value of the isospin 3=2 scattering length, for the D�π
channel, is in agreement with the ones summarized in
Eqs. (9) and (10). We remind the reader that our sign
convention (as given in Sec. II B) is opposite to the one

followed in the works leading to the values of Eqs. (9)
and (10).

III. CORRELATION FUNCTIONS

As stated earlier the purpose of our work is to determine
the correlation function for the D�π system. We focus on
investigating the D�þð0Þπ0ðþÞ system where Coulomb inter-
actions are absent and strong interactions dominate. The
idea is also to study the dependence of the correlation
function on the size of the source, such as to find if
experimental data on processes other than that studied in
Ref. [19] can bring useful information on the topic.

A. Formalism

The femtoscopic analysis is based on the estimation of
the correlation functions (CFs). A two-particle correlation
function is constructed as the ratio of the probability of
measuring the two-particle state and the product of the
probabilities of measuring each individual particle [5]. A
convenient form relating the correlation function to the
source function by means of a convolution with the relative
two-particle wave function Ψ is written, after certain
approximations, as [5,57–60]

CðkÞ ¼
Z

d3rS12ðr⃗ÞjΨðk⃗; r⃗Þj2; ð15Þ

where k⃗ is the relative momentum in the c.m. of the pair;
r⃗ is the relative distance between the two particles; and
S12ðr⃗Þ is the normalized source function,

R
d3rS12ðr⃗Þ ¼ 1,

describing the distribution of relative positions of particles
with identical velocities as they move in their asymptotic
state (for a detailed discussion see for example Ref. [5]). As
a consequence, the expression above for CðkÞ encodes
information on both the hadron source and the hadron-
hadron interactions and is commonly named as Koonin-
Pratt equation [57,58,61].
In the present work, we employ a source function

parametrized as a static Gaussian normalized to unity, i.e.,

S12ðr⃗Þ ¼
1

ð4πÞ32R3
exp

�
−

r2

4R2

�
; ð16Þ

where R is the source size parameter. As discussed in
Ref. [5], Gaussian parametrizations provide an acceptable
minimal description of data in a much more simpler way
than others with non-Gaussian aspects of the correlation,
such as the ones based on the decomposition in spherical or
Cartesian harmonics. Thus, the source function in Eq. (16)
can be seen as the appropriate parametrization for the sake
of its functionality.
To connect the CF to the coupled-channel approach

described in the previous section, we adopt the framework
summarized in Refs. [62–67], in which the generalized

TABLE III. Values of the isospin 1=2 scattering lengths and the
couplings, represented as g, of the two statesD1 and of the virtual
pole (marked by asterisks) for the different channels, as obtained
in model B.

að1=2Þ

(fm)
gD1ð2430Þ
(MeV)

gD1ð2420Þ
(MeV)

g��2370−i0
(MeV)

D�π 0.1 5199 − i3577 92 − i105 −1489 − i5244
Dρ 0.45 − i0.18 −248 − i91 14987þ i232 −182þ i870
K̄D�

s 0.00 − i0.12 3806 − i2249 186 − i39 45 − i9329
DsK̄� 0.00 − i0.12 −34 − i36 −8668þ i151 40 − i207

FIG. 6. Squared amplitudes for the different channels in the
isospin 3=2 basis. These amplitudes have been obtained by using
Eq. (2) with the values of Cij given in the caption of Table I.

CAN A FEMTOSCOPIC CORRELATION FUNCTION SHED LIGHT … PHYS. REV. D 110, 036008 (2024)

036008-9



coupled-channel CF for a specific channel i reads

CiðkÞ¼ 1þ4πθðqmax−kÞ
Z

∞

0

drr2S12ðr⃗Þ

×

�X
j

wjjj0ðkrÞδjiþTjið
ffiffiffi
s

p ÞG̃jðr;sÞj2− j20ðkrÞ
�
;

ð17Þ

where wj is the weight of the observed channel j (we use
wj ¼ 1); jνðkrÞ is the spherical Bessel function; E ¼ ffiffiffi

s
p

is
the c.m. energy; the relative momentum of the channel is
k ¼ λ1=2ðs;m2

1; m
2
2Þ=ð2

ffiffiffi
s

p Þ (λ being the Källen function
and m1, m2 the masses of the mesons in the channel i); Tji

are the elements of the scattering matrix encoding the
meson-meson interactions, obtained and analyzed in the
previous section; and the G̃jðr; sÞ function is defined as

G̃jðr;sÞ¼
Z
jq⃗j<qmax

d3q
ð2πÞ3

ωðjÞ
1 þωðjÞ

2

2ωðjÞ
1 ωðjÞ

2

j0ðqrÞ
s−

�
ωðjÞ
1 þωðjÞ

2

�
2þ iε

;

ð18Þ

with ωðjÞ
a ≡ ωðjÞ

a ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

a

p
being the energy of the

particle a, and qmax being a sharp cutoff momentum
introduced to regularize the r → 0 behavior. We choose
a value for qmax within its natural range ([600,900] MeV):
qmax ¼ 700 MeV. We remark that the results for the CFs
remain almost the same for different values of qmax within
the mentioned range, as expected because of the presence
of j0ðqrÞ in the integrand, which prevents sizable changes
for large values of q.

B. Lednicky-Lyuboshits approximation

To shed some light on the interpretation of the CFs, it can
be instructive to review the Lednicky-Lyuboshits (LL)
model, which is based on replacing the full wave function
for a single channel by its nonrelativistic, asymptotic
(r → ∞) form, corresponding to the superposition of plane
and converging spherical waves [59]. In particular, we
benefit from the discussion presented in the Appendix of
Ref. [64] and Secs. V.B and V.C of Ref. [68], which have
some of their fundamental aspects reproduced here.
Proceeding ahead, the consideration of the LL approxi-

mation, together with a Gaussian source, and using the
relationship between the standard quantum mechanics
amplitude fðkÞ and the scattering matrix T, i.e.,
fðkÞ ¼ −T=ð8π ffiffiffi

s
p Þ, allow us to write the single-channel

CF as [4,59,64,68]

CLLðkÞ ¼ 1þ jTj2
2R2ð8π ffiffiffi

s
p Þ2 F1

�
reff
R

�

−
2Re½T�

8π3=2R
ffiffiffi
s

p F2ð2kRÞ þ
Im½T�
R

ffiffiffi
s

p F3ð2kRÞ; ð19Þ

where F1ðzÞ ¼ 1 − z=ð2 ffiffiffi
π

p Þ, F2ðzÞ ¼
R
z
0 dte

t2−z2=z and
F3ðzÞ ¼ ð1 − e−z

2Þ=z; reff is the effective range. An
alternative version of Eq. (19) can be obtained by
employing the formula [69]

−
T

8π
ffiffiffi
s

p ≡ 1

k cot δðkÞ − ik
¼ R

−R=a − ikR
; ð20Þ

where reff is taken as zero.
In this way Eq. (19) becomes [64,68]

CLLðx;yÞ¼ 1þ 1

x2þy2

�
1

2
−
2yffiffiffi
π

p F2ð2xÞ−xF3ð2xÞ
�
; ð21Þ

where x ¼ kR and y ¼ R=a. In the low-momentum limit
(x → 0) we have F2 → 1 and F3 → 0, which yields

CLLðx; yÞ!x→0
1 −

2

π
þ 1

2

�
1

y
−

2ffiffiffi
π

p
�

2

¼ 1 −
2ffiffiffi
π

p
�
a
R

�
þ 1

2

�
a
R

�
2

: ð22Þ

Thus, considering an attractive interaction generated by
the strong force, the CF given in Eqs. (21) and (22) behaves
as follows. Near the threshold, for negative values of the
scattering length (which means an unbound scenario for the
system) the CF acquires (i) a strong enhancement when
jaj ≫ R (i.e., smaller source), (ii) a moderate enhancement
when jaj ∼ R, and (iii) a value CLLð0Þ ≳ 1 when jaj ≪ R
(larger source). On the other hand, in the situation of a > 0,
corresponding to an attractive interaction which could
generate a bound or quasibound state, in the low-momen-
tum limit, the CF achieves (i) a strong enhancement for
smaller sources (a ≫ R), (ii) a value very close to one when
a=R ∼ 4=

ffiffiffi
π

p
∼ 2.3, (iii) its minimum value (≃0.4) when

a=R ∼ 2=
ffiffiffi
π

p
≃ 1.1, (iv) a moderate dip when a < R, and

(v) a value CLLð0Þ≲ 1 for larger sources (a ≪ R). This
behavior is summarized in Fig. 7 (left panel), where one can
see that the enhancement of CF at a given value of R is not
conclusive concerning the formation of a bound or quasi-
bound state. Notwithstanding this, as a consequence of
the dependence of the CF on R and a, one can infer the
existence of a bound or quasibound state when, near the
threshold, the CF moves from an enhancement to a dip at
a ≃ R as R increases. In this sense, experimental analyses
of the CF in systems with different sizes, for instance,
pp; pA, and AA collisions, deserve special attention.
Pursuing further the analysis, to understand the effect of

the presence of a resonance at a given momentum kR in the
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CF, it is more convenient to use Eq. (20) and write Eq. (19)
in the form

CLLðxÞ¼ 1þ sin2δðkÞ
2x2

�
e−4x

2 þ4xF2ð2xÞffiffiffi
π

p cotδðkÞ
�
: ð23Þ

Then, considering that a resonance present at kR gene-
rates δðkRÞ ¼ π=2, which when used in Eq. (23) yields

CLLðxRÞ ¼ 1þ e−4x
2
R

2x2R
, xR ¼ kRR. Accordingly, the CF ends

up having the following properties: (i) C0
LLðxRÞ < 0,

(ii) CLL < 1 for x≳ xR, and (iii) CLL ≃ 1 for large xR.
To be more didactic, from the analytical expression for the
Breit-Wigner-like phase shift, δðEÞ ¼ ΓðEÞ=ð2ER − 2EÞ
(Γ being the width and ER the energy at kR), one gets
cot δðkÞ ∼ −ðx2 − x2RÞ=x2Γ, with x2Γ ¼ μΓR2 (μ being the
reduced mass of the two particles in the channel). Thus, the
use of this last expression of cot δðkÞ in Eq. (23) can
engender in CLL (i) a maximum at k≲ kR and a pro-
nounced minimum at k≳ kR for small xΓ, (ii) a weakened
minimum at k≳ kR for intermediate values of xΓ, and
(iii) an almost plateaulike appearance at k≲ kR for large xΓ.
This behavior is summarized in Fig. 7 (right panel) in
accordance with that in Ref. [64].
In the end, the form and what can be interpreted from the

CF are strongly dependent on the parameters, namely
kR;Γ; R, and a. We also remark that the application of
the LL approximation in the interpretation of the present
context must be seen with caution since we treat a coupled-
channel problem, which is naturally more complex to
analyze and understand. In this sense, it will be helpful
to perform comparisons between the single-channel LL and
coupled-channel CFs in order to get insights into the
reliability of the LL model in the description of this
problem.

C. Results

1. CFs in isospin basis

In Fig. 8 we plot the results of the correlation functions
for the most relevant channels D�π and Dρ as functions of
their c.m. momentum k, for different values of the range
parameter R of the source, considering the following
scenarios: I ¼ 1=2 with model A, I ¼ 1=2 with model
B, and I ¼ 3=2. For the sake of comparison and to reach a
more profound comprehension concerning our findings, the
results with the single-channel LL approximation are also
included.

First, one can notice the distinct behavior of the Cð1=2Þ
D�π ðkÞ

whenmodelsA orB are employed (see left and center panels
in the upper row of Fig. 8). To start with the discussions, let
us focus on the curves related to the smallest source size
parameter, R ¼ 1 fm. In the case of model A, at threshold,

we have Cð1=2Þ
D�π ðk ¼ 0Þ > 1, because of the attractive char-

acter of this channel and the negative scattering length. In the
sequence, as k increases a moderate minimum and a bump
are found in the region 220≲ k≲ 360 MeV. Interestingly,

these effects reflect essentially the behavior of the Tð1=2Þ
D�π;D�π

amplitude, since the other contributions Tð1=2Þ
D�π;Dρ and

TD�π;K̄D�
s
are negligible, as shown in Fig. 9 [70]. In

this sense, the minimum (bump) at k≳ 250 MeV
(k ≃ 340 MeV) is associated to the broad peak (dip) in

Tð1=2Þ
D�π;D�π at

ffiffiffi
s

p
∼2304MeV (

ffiffiffi
s

p
∼ 2405 MeV). Thus,

according to our model, the CF encodes the manifestation

of the interference between the poles present inTð1=2Þ
D�π;D�π (see

discussions in Sec. II C 1). However, these effects are no
longer prominent for larger values of the source size
parameter. Also, a cusp at k ≃ 518 MeV is seen and comes
from the effect of the K̄D�

s threshold. Notably, when
compared to the single-channel LL results, these CFs have
a similar qualitative behavior only near the threshold, having

FIG. 7. Left panel: CF in LL approximation given in Eq. (21) as a function of x ¼ kR, taking different values of y ¼ R=a. Right panel:
CF in LL approximation given in Eq. (23) as a function of x ¼ kR, taking different values of xΓ ¼

ffiffiffiffiffiffiffiffiffiffiffi
μΓR2

p
. We have considered here the

reduced mass μ of the D�π system, and the value of xR ¼ kRR ≃ 1.3, which is associated to a resonance localized at kR ≃ 250 MeV and
R ¼ 1 fm. The value of xΓ ≃ 0.8 corresponds to a resonance with Γ ≃ 200 MeV.
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values larger than one. TheCLL does not acquire aminimum

from the peak inTð1=2Þ
D�π;D�π , possibly because of its largewidth

(as argued in Sec. III B).
On the other hand, at the threshold model B generates

Cð1=2Þ
D�π ðk¼ 0Þ≲1, which is compatible with the result

expected within the LL approximation when að1=2ÞD�π ¼
0.1 fm < 2.3R. After that, the CF slightly increases with
k, and presents almost a plateau shape, which comes from
the interference between the states discussed in Sec. II C 2;
then it shows also a cusp at k ≃ 518 MeV and goes to one.
As in the former model, in this case too the full CF

expresses the behavior of the Tð1=2Þ
D�π;D�π amplitude (see the

left panel of Fig. 9); and is qualitatively similar to the
single-channel LL results only near the threshold, since
the CLL goes faster towards unity.
For the I ¼ 3=2 channel (top, right panel of Fig. 8), at

threshold Cð3=2Þ
D�π ðkÞ starts moderately lower than one.

This, considering the value of the scattering length

að3=2ÞD�π ¼ 0.1 fm, is compatible with the behavior expected

within the LL approximationwhen að3=2ÞD�π ¼ 0.1 fm < 2.3R.
After that, the CF increases with the augmentation of k and
goes to one; no other effect appears as no state is present.
Now we move on to the channel Dρ (bottom panels of

Fig. 8), whose scattering length has an imaginary compo-

nent. We do not see sizable differences in the Cð1=2Þ
Dρ ðkÞ

obtained considering the models A and B (as expected from
the similarity of the Dρ amplitude in the two models).

Noticing that Re½að1=2ÞDρ � ¼ 0.44 fm < 2.3R, then one can

expect that Cð1=2Þ
D�π ðk ¼ 0Þ < 1. However, when compared

with the results for D�π in model B, the CF experiences a
substantial dip. Taking advantage of the analysis in the
previous section, this may be interpreted as the influence of

the narrow state present in the Tð1=2Þ
Dρ;Dρ amplitude below the

Dρ threshold, which as shown in Fig. 9, provides the
relevant contribution. When compared to the single-

channel LL approximation, at threshold Cð1=2Þ
Dρ ðkÞ is quite

near CLL but goes more slowly towards unity.

FIG. 8. CFs for the D�π (top panels) and Dρ (bottom panels) channels as functions of their relative momentum k, taking different
values of the source size. The left, center, and right panels show the results obtained, respectively, with I ¼ 1=2 considering the model
A, with I ¼ 1=2 considering model B, and with I ¼ 3=2. Recall that the interaction in the isospin 3=2 configuration is repulsive and
weaker as compared to the case of isospin 1=2. Thus, no states are formed in the isospin 3=2 case and the amplitudes are obtained from
the same model [using Eq. (2)].

FIG. 9. CFs with I ¼ 1=2 for theD�π (left panel) andDρ (right panel) as functions of their relative momentum k considering the single
contribution of the elastic channel [i.e., only i ¼ j of the sum in Eq. (15)], and the total CF.
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2. CFs in physical basis

We remark that the CFs presented so far, for the relevant
channelsD�π andDρ, are in the isospin basis. Therefore, in
order to provide measurable CFs, we need to express them
on the particle basis. In the case of D�π (the case of Dρ is
completely analogous), we consider the isospin doublet of
the vector charmed meson and isospin triplet of the pion as
D≡ ðjD�þi;−jD�0iÞ and π ≡ ð−jπþi; jπ0i; jπ−iÞ, respec-
tively. Then, for D�π states with I3 ¼ þ1=2, the particle
basis is given by jD�0πþi; jD�þπ0i, which is related to the
isospin basis through (denoting states as jDπ; Ii)

jD�0πþi ¼ −
� ffiffiffi

2

3

r 				Dπ;
1

2



−

ffiffiffi
1
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�
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1
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1

2



þ
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3
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: ð24Þ

With these last expressions, we can write the two-particle
wave function for charged states as

ΨD�0πþ→D�0πþ ≡ 2
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where the superscript on Ψ indicates the related isospin. As
a consequence, using Eq. (25) in (15) we get

CD�0πþ ≡CD�0πþ→D�0πþ þCD�þπ0→D�0πþ ¼
2

3
C
ð1
2
Þ
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1
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We show the CFs for the D�π and Dρ states in the
particle basis defined in Eq. (26), in Fig. 10, for both

models A and B. The CFs CD�0π−ðkÞ and CD0ρ−ðkÞ are also
plotted; since these states have I3 ¼ −3=2, their corre-

sponding CFs are naturally equal to Cð3=2Þ
i ðkÞ. It can be

seen that for model A the features of the Tð1=2Þ
D�π;D�π amplitude

are more notable in the channel D�0πþ, because of the
bigger weight of the I ¼ 1=2 channel in its wave function.
In contrast, for model B there is no sizable difference
among the channels D�0πþ; D�þπ0, and D�0π−, due to the

similarity among Cð1=2Þ
D�π ðkÞ and Cð3=2Þ

D�π ðkÞ. Going to the
scenario of Dρ, the difference coming from the isospin
weights produces CDþρ0ðkÞ closer to one at threshold than
CD0ρþðkÞ. Hence, one can conclude that the D�0πþ and
D0ρþ channels are more appropriate to test both models. It
is worth mentioning that correlation functions for D�þπþ
andD�þπ− have been calculated in Ref. [71], although with
very different poles present in the amplitudes, those in line
with Refs. [20,21].
In the end, we stress the main conclusion of this study,

namely: our findings suggest that CD�πðkÞ and CDρðkÞ
might encode sufficiently identifiable signatures of the
D1ð2430Þ0 and D1ð2420Þ states when smaller sources are
considered. It should be emphasized that if the femtoscopic
analysis for the mentioned channels is done and the
measured genuine CFs have similar behavior to those
obtained here, then it is possible to say that this work
provides a framework compatible with the existence of both
broad and narrow states. Determining information on the
D�π channel, where both mesons are not electrically
charged, from smaller sources, like proton-proton colli-
sions, can be useful in settling the value of the D�π
scattering length. It should be possible to determine data
on D�0πþ where D�0 is reconstructed from Dþπ−. In this
sense, it would be interesting to confront these CFs with
data collected in future high-precision experiments.

IV. CONCLUSIONS

The main conclusions of the discussions presented in this
work can be summarized as follows:
(1) The information on the properties of the two lightest

D1 states comes mostly from fits made to the
experimental data on the D�π invariant mass, which

FIG. 10. CFs for the physicalD�π andDρ states defined in Eq. (24) in both cases of models A and B, taking the source size parameter

R ¼ 1 fm. The CFs CD�0π−ðkÞ and CD0ρ−ðkÞ, equivalent to the corresponding Cð3=2Þ
i ðkÞ, are also plotted.
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gets contribution from several charm states. Such a
procedure attributes similar masses but very differ-
ent widths to the two of them. Although two states
with similar masses are expected from the quark
model, and once the masses are assumed one could
explain their different widths on the basis of heavy
quark symmetry, it seems not trivial to simultane-
ously describe both (masses and widths) from the
same dynamics. Different models lead to different
results and considerations of hadronic loops or
similar mechanisms of mixing between 11P1 and
13P1 quark model seems to work better.

(2) There exists information on the scattering length,
determined in the lattice QCD calculations, for the
D�π and Dπ channels. Both values are very similar.
Several model calculations constrain their parame-
ters using the former information and determine the
Dπ scattering length in the infinite volume by using
physical masses. It can be argued that the scattering
lengths for Dπ and D�π can be similar, which
provides valuable information on the study of the
D�π system.

(3) A value for the D�π scattering length is also
available from heavy ion collisions but it does not
agree with those mentioned in the previous point.

(4) With the purpose of understanding the properties of
the two D1 states and finding alternative ways to
extract information on the D�π scattering length, we
consider a model where different meson-meson
interactions and a bare quark model pole constitute

the lowest order amplitudes. Such amplitudes are
used as kernels to solve the Bethe-Salpeter equation
in a coupled channel approach. Consequently, a
narrow pole is found to get generated by the hadron
dynamics and is related toD1ð2420Þ. A broader pole
is also found whose properties match those of
D1ð2430Þ when both hadron dynamics and a bare
quark-model pole are considered.

(5) To contemplate the two aforementioned disagreeing
values of the scattering lengths, we present two
models. The two differ in the parameters related to
the bare quark-model pole.

(6) Using such amplitudes we determine correlation
functions and find that such information on the
D�0πþ and D�0ρþ channels, determined from
smaller source sizes, can bring useful information
on the subject.

ACKNOWLEDGMENTS

This work is partly supported by the Brazilian agencies
CNPq (L. M. A.: Grants No. 309950/2020-1, No. 400215/
2022-5, No. 200567/2022-5, and No. 308299/2023-0;
K. P. K.: Grants No. 407437/2023-1 and No. 306461/
2023-4; A. M. T: Grant No. 304510/2023-8), FAPESP
(K. P. K.: Grant No. 2022/08347-9; A. M. T.: Grant
No. 2023/01182-7); and CNPq/FAPERJ under the
Project INCT-Física Nuclear e Aplicações (Contract
No. 464898/2014-5).

[1] S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 844,
137223 (2023).

[2] S. Acharya et al. (ALICE Collaboration), Phys. Rev. C 107,
054904 (2023).

[3] S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 845,
138145 (2023).

[4] L. Fabbietti, V. Mantovani Sarti, and O. Vazquez Doce,
Annu. Rev. Nucl. Part. Sci. 71, 377 (2021).

[5] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Annu.
Rev. Nucl. Part. Sci. 55, 357 (2005).

[6] R. L. Workman et al. (Particle Data Group), Prog. Theor.
Exp. Phys. 2022, 083C01 (2022).

[7] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 92,
012012 (2015).

[8] K. Abe et al. (Belle Collaboration), Phys. Rev. D 69,
112002 (2004).

[9] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[10] T. Barnes, N. Black, and P. R. Page, Phys. Rev. D 68,

054014 (2003).
[11] A. V. Manohar and M. B. Wise, Heavy Quark Physics

(Cambridge University Press, Cambridge, 2000), Vol. 10.

[12] J. Ferretti and E. Santopinto, Phys. Rev. D 97, 114020
(2018).

[13] R. N. Cahn and J. D. Jackson, Phys. Rev. D 68, 037502
(2003).

[14] Z.-Y. Zhou and Z. Xiao, Phys. Rev. D 84, 034023 (2011).
[15] R.-H. Ni, Q. Li, and X.-H. Zhong, Phys. Rev. D 105,

056006 (2022).
[16] Z.-H. Wang, Y. Zhang, T.-h. Wang, Y. Jiang, Q. Li, and

G.-L. Wang, Chin. Phys. C 42, 123101 (2018).
[17] S. Godfrey, Phys. Rev. D 72, 054029 (2005).
[18] D. Mohler, S. Prelovsek, and R. M. Woloshyn, Phys. Rev. D

87, 034501 (2013).
[19] S. Acharya et al. (ALICE Collaboration), arXiv:2401

.13541.
[20] M.-L. Du, M. Albaladejo, P. Fernández-Soler, F.-K. Guo, C.

Hanhart, U.-G. Meißner, J. Nieves, and D.-L. Yao, Phys.
Rev. D 98, 094018 (2018).

[21] L. M. Abreu, A. G. Favero, F. J. Llanes-Estrada, and A. G.
Sánchez, Phys. Rev. D 100, 116012 (2019).

[22] N. Lang and D. J. Wilson (Hadron Spectrum Collaboration),
Phys. Rev. Lett. 129, 252001 (2022).

KHEMCHANDANI, ABREU, TORRES, and NAVARRA PHYS. REV. D 110, 036008 (2024)

036008-14

https://doi.org/10.1016/j.physletb.2022.137223
https://doi.org/10.1016/j.physletb.2022.137223
https://doi.org/10.1103/PhysRevC.107.054904
https://doi.org/10.1103/PhysRevC.107.054904
https://doi.org/10.1016/j.physletb.2023.138145
https://doi.org/10.1016/j.physletb.2023.138145
https://doi.org/10.1146/annurev-nucl-102419-034438
https://doi.org/10.1146/annurev.nucl.55.090704.151533
https://doi.org/10.1146/annurev.nucl.55.090704.151533
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.92.012012
https://doi.org/10.1103/PhysRevD.92.012012
https://doi.org/10.1103/PhysRevD.69.112002
https://doi.org/10.1103/PhysRevD.69.112002
https://doi.org/10.1103/PhysRevD.32.189
https://doi.org/10.1103/PhysRevD.68.054014
https://doi.org/10.1103/PhysRevD.68.054014
https://doi.org/10.1103/PhysRevD.97.114020
https://doi.org/10.1103/PhysRevD.97.114020
https://doi.org/10.1103/PhysRevD.68.037502
https://doi.org/10.1103/PhysRevD.68.037502
https://doi.org/10.1103/PhysRevD.84.034023
https://doi.org/10.1103/PhysRevD.105.056006
https://doi.org/10.1103/PhysRevD.105.056006
https://doi.org/10.1088/1674-1137/42/12/123101
https://doi.org/10.1103/PhysRevD.72.054029
https://doi.org/10.1103/PhysRevD.87.034501
https://doi.org/10.1103/PhysRevD.87.034501
https://arXiv.org/abs/2401.13541
https://arXiv.org/abs/2401.13541
https://doi.org/10.1103/PhysRevD.98.094018
https://doi.org/10.1103/PhysRevD.98.094018
https://doi.org/10.1103/PhysRevD.100.116012
https://doi.org/10.1103/PhysRevLett.129.252001


[23] M. Di Pierro and E. Eichten, Phys. Rev. D 64, 114004
(2001).

[24] P. Colangelo, F. De Fazio, and R. Ferrandes, Mod. Phys.
Lett. A 19, 2083 (2004).

[25] E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582, 39
(2004).

[26] F.-K. Guo, P.-N. Shen, and H.-C. Chiang, Phys. Lett. B 647,
133 (2007).

[27] D. Gamermann and E. Oset, Eur. Phys. J. A 33, 119 (2007).
[28] B. B. Malabarba, K. P. Khemchandani, A. Martinez Torres,

and E. Oset, Phys. Rev. D 107, 036016 (2023).
[29] S. Coito, G. Rupp, and E. van Beveren, Phys. Rev. D 84,

094020 (2011).
[30] T. J. Burns, Phys. Rev. D 90, 034009 (2014).
[31] The position of the corresponding pole in Ref. [27] was

2311.24 − i115.68 MeV, which is in better agreement with
the properties of D1ð2430Þ. However, recall that the narrow
pole found in Ref. [27] appears at ∼2526 MeV which is far
from the mass of D1ð2420Þ.

[32] L. Liu, K. Orginos, F.-K. Guo, C. Hanhart, and U.-G.
Meissner, Phys. Rev. D 87, 014508 (2013).

[33] Z.-H. Guo, L. Liu, U.-G. Meißner, J. A. Oller, and A.
Rusetsky, Eur. Phys. J. C 79, 13 (2019).

[34] F.-K. Guo, C. Hanhart, and U.-G. Meissner, Eur. Phys. J. A
40, 171 (2009).

[35] L. M. Abreu, D. Cabrera, F. J. Llanes-Estrada, and J. M.
Torres-Rincon, Ann. Phys. (Amsterdam) 326, 2737 (2011).

[36] L. S. Geng, N. Kaiser, J. Martin-Camalich, and W. Weise,
Phys. Rev. D 82, 054022 (2010).

[37] ALICE Collaboration, https://indico.cern.ch/event/883427/
contributions/4921802/attachments/2480998/4259088/
HFwincLaura.pdf.

[38] F. Grosa (ALICE Collaboration), ALICE determines the
scattering parameters of D mesons with light-flavor hadrons,
https://indico.cern.ch/event/895086/contributions/4715876/.

[39] D. Battistini (ALICE Collaboration), Measurement of scatter-
ing parameters governing the residual strong interaction
between charm and light hadrons, https://indico.cern.ch/
event/1198609/contributions/5363368/attachments/2651649/
4596659/2023.

[40] L. Fabbietti, F. Grosa, E. Chizzali, and D. Battistini,
Measurement of scattering parameters governing the
residual strong interaction between charm and light hadrons,
https://indico.cern.ch/event/883427/contributions/4921802/
attachments/2480998/4259088/HFwincLaura.pdf.

[41] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T.
Yanagida, Phys. Rev. Lett. 54, 1215 (1985).

[42] M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164, 217
(1988).

[43] U. G. Meissner, Phys. Rep. 161, 213 (1988).
[44] M. Harada and K. Yamawaki, Phys. Rep. 381, 1 (2003).
[45] J. Nieves and R. Pavao, Phys. Rev. D 101, 014018 (2020).
[46] E. Cincioglu, J. Nieves, A. Ozpineci, and A. U. Yilmazer,

Eur. Phys. J. C 76, 576 (2016).

[47] M. Albaladejo, P. Fernandez-Soler, J. Nieves, and P. G.
Ortega, Eur. Phys. J. C 77, 170 (2017).

[48] M. Albaladejo, P. Fernandez-Soler, J. Nieves, and P. G.
Ortega, Eur. Phys. J. C 78, 722 (2018).

[49] L. S. Geng, E. Oset, L. Roca, and J. A. Oller, Phys. Rev. D
75, 014017 (2007).

[50] A. Martínez Torres, E. Oset, S. Prelovsek, and A. Ramos, J.
High Energy Phys. 05 (2015) 153.

[51] T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. C 85, 015201
(2012).

[52] A. Martinez Torres, L. R. Dai, C. Koren, D. Jido, and E.
Oset, Phys. Rev. D 85, 014027 (2012).

[53] F. Aceti and E. Oset, Phys. Rev. D 86, 014012 (2012).
[54] A pole which appears below the threshold of a given

channel, on the unphysical Riemann sheet, is called as a
virtual pole.

[55] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74,
012001 (2006).

[56] J. A. Oller and E. Oset, Nucl. Phys. A620, 438 (1997);
A652, 407(E) (1999).

[57] S. E. Koonin, Phys. Lett. 70B, 43 (1977).
[58] S. Pratt, Phys. Rev. D 33, 1314 (1986).
[59] R. Lednicky and V. L. Lyuboshits, Yad. Fiz. 35, 1316

(1981).
[60] R. Lednicky, V. V. Lyuboshits, and V. L. Lyuboshits, Phys.

At. Nucl. 61, 2950 (1998).
[61] Eq. (15) is also called by some authors like those from

Ref. [68] as Koonin–Pratt–Lednicky–Lyuboshits–Lyubosh-
its formula due to subsequent contributions [59,60].

[62] I. Vidana, A. Feijoo, M. Albaladejo, J. Nieves, and E. Oset,
Phys. Lett. B 846, 138201 (2023).

[63] A. Feijoo, L. R. Dai, L. M. Abreu, and E. Oset, Phys. Rev. D
109, 016014 (2024).

[64] M. Albaladejo, J. Nieves, and E. Ruiz-Arriola, Phys. Rev. D
108, 014020 (2023).

[65] Z.-W. Liu, K.-W. Li, and L.-S. Geng, Chin. Phys. C 47,
024108 (2023).

[66] Z.-W. Liu, J.-X. Lu, and L.-S. Geng, Phys. Rev. D 107,
074019 (2023).

[67] Z.-W. Liu, J.-X. Lu, M.-Z. Liu, and L.-S. Geng, Phys. Rev.
D 108, L031503 (2023).

[68] Y. Kamiya, K. Sasaki, T. Fukui, T. Hyodo, K. Morita, K.
Ogata, A. Ohnishi, and T. Hatsuda, Phys. Rev. C 105,
014915 (2022).

[69] Once again, we emphasize that our sign convention is
different from that of Ref. [64], i.e., limk→0 k cot δðkÞ≡
−a−1, which gives a different sign in the last term between
parentheses.

[70] This finding is in agreement with the result on the D�π
amplitude discussed in Secs. II C 1 and II C 2. An equivalent
effect is also found in the femtoscopic analysis of the
coupled-channel NΞ and ΛΛ interactions [68].

[71] J. M. Torres-Rincon, A. Ramos, and L. Tolos, Phys. Rev. D
108, 096008 (2023).

CAN A FEMTOSCOPIC CORRELATION FUNCTION SHED LIGHT … PHYS. REV. D 110, 036008 (2024)

036008-15

https://doi.org/10.1103/PhysRevD.64.114004
https://doi.org/10.1103/PhysRevD.64.114004
https://doi.org/10.1142/S0217732304015269
https://doi.org/10.1142/S0217732304015269
https://doi.org/10.1016/j.physletb.2003.10.118
https://doi.org/10.1016/j.physletb.2003.10.118
https://doi.org/10.1016/j.physletb.2007.01.050
https://doi.org/10.1016/j.physletb.2007.01.050
https://doi.org/10.1140/epja/i2007-10435-1
https://doi.org/10.1103/PhysRevD.107.036016
https://doi.org/10.1103/PhysRevD.84.094020
https://doi.org/10.1103/PhysRevD.84.094020
https://doi.org/10.1103/PhysRevD.90.034009
https://doi.org/10.1103/PhysRevD.87.014508
https://doi.org/10.1140/epjc/s10052-018-6518-1
https://doi.org/10.1140/epja/i2009-10762-1
https://doi.org/10.1140/epja/i2009-10762-1
https://doi.org/10.1016/j.aop.2011.06.006
https://doi.org/10.1103/PhysRevD.82.054022
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/895086/contributions/4715876/
https://indico.cern.ch/event/895086/contributions/4715876/
https://indico.cern.ch/event/895086/contributions/4715876/
https://indico.cern.ch/event/1198609/contributions/5363368/attachments/2651649/4596659/2023
https://indico.cern.ch/event/1198609/contributions/5363368/attachments/2651649/4596659/2023
https://indico.cern.ch/event/1198609/contributions/5363368/attachments/2651649/4596659/2023
https://indico.cern.ch/event/1198609/contributions/5363368/attachments/2651649/4596659/2023
https://indico.cern.ch/event/1198609/contributions/5363368/attachments/2651649/4596659/2023
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://indico.cern.ch/event/883427/contributions/4921802/attachments/2480998/4259088/HFwincLaura.pdf
https://doi.org/10.1103/PhysRevLett.54.1215
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-1573(88)90090-7
https://doi.org/10.1016/S0370-1573(03)00139-X
https://doi.org/10.1103/PhysRevD.101.014018
https://doi.org/10.1140/epjc/s10052-016-4413-1
https://doi.org/10.1140/epjc/s10052-017-4735-7
https://doi.org/10.1140/epjc/s10052-018-6176-3
https://doi.org/10.1103/PhysRevD.75.014017
https://doi.org/10.1103/PhysRevD.75.014017
https://doi.org/10.1007/JHEP05(2015)153
https://doi.org/10.1007/JHEP05(2015)153
https://doi.org/10.1103/PhysRevC.85.015201
https://doi.org/10.1103/PhysRevC.85.015201
https://doi.org/10.1103/PhysRevD.85.014027
https://doi.org/10.1103/PhysRevD.86.014012
https://doi.org/10.1103/PhysRevD.74.012001
https://doi.org/10.1103/PhysRevD.74.012001
https://doi.org/10.1016/S0375-9474(97)00160-7
https://doi.org/10.1016/S0375-9474(99)00427-3
https://doi.org/10.1016/0370-2693(77)90340-9
https://doi.org/10.1103/PhysRevD.33.1314
https://doi.org/10.1016/j.physletb.2023.138201
https://doi.org/10.1103/PhysRevD.109.016014
https://doi.org/10.1103/PhysRevD.109.016014
https://doi.org/10.1103/PhysRevD.108.014020
https://doi.org/10.1103/PhysRevD.108.014020
https://doi.org/10.1088/1674-1137/ac988a
https://doi.org/10.1088/1674-1137/ac988a
https://doi.org/10.1103/PhysRevD.107.074019
https://doi.org/10.1103/PhysRevD.107.074019
https://doi.org/10.1103/PhysRevD.108.L031503
https://doi.org/10.1103/PhysRevD.108.L031503
https://doi.org/10.1103/PhysRevC.105.014915
https://doi.org/10.1103/PhysRevC.105.014915
https://doi.org/10.1103/PhysRevD.108.096008
https://doi.org/10.1103/PhysRevD.108.096008

