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We consider a scalar quantum field theory with global OðNÞ3 symmetry in four Euclidean dimensions
and solve it numerically in closed form in the large-N limit. For imaginary tetrahedral coupling the theory is
asymptotically free, with stable and real quantum effective action. We demonstrate the dynamical build-up
of a strong interaction as the correlation length increases in a regime where the coupling renormalization
flow remains well defined in the infrared. This is in contrast to perturbative results of asymptotically free
theories, which predict that the coupling becomes ill defined in the infrared, like in quantum
chromodynamics. These properties make the model an important laboratory for the study of strong-
coupling phenomena in quantum field theory from first principles.

DOI: 10.1103/PhysRevD.110.036007

I. INTRODUCTION AND OVERVIEW

Asymptotically free quantum field theories are a corner-
stone in the fundamental description of nature. A prominent
example is the theory of quantum chromodynamics (QCD)
in the Standard Model of particle physics [1,2]. While the
high-momentum (ultraviolet) behavior of the theory is
perturbatively accessible, the scale-dependent (“running”)
coupling increases toward low momenta and becomes ill
defined in the infrared. The divergence of the coupling at a
finite infrared momentum predicted by perturbation theory
illustrates the dynamical generation of a nonperturbative
scale by quantum fluctuations. Such behavior is character-
istic for the perturbative analysis of asymptotically free
theories, and it would be highly valuable to establish a
nonperturbative example where the coupling is well-
defined and can be followed all the way from the weakly
coupled high-momentum regime to the strongly interacting
infrared.
In this work we investigate the large-N limit of a four

dimensional scalar quantum field theory with globalOðNÞ3
symmetry introduced in Ref. [3]. The model has three
independent quartic couplings, whose perturbative renorm-
alization flow, which encodes how the physical couplings
change with the momentum scale due to quantum correc-
tions, has been analyzed in Refs. [3–5]. In four Euclidean
dimensions the couplings exhibit asymptotic freedom in a

regime governed by the flow of an imaginary tetrahedral
coupling igðpÞ [3]. In turn, the tetrahedral coupling
diverges in perturbation theory at a finite infrared momen-
tum scale μ�pert. A corresponding perturbative behavior is
found, in particular, also for the running coupling in
quantum chromodynamics [1,2]. The perturbative scale-
dependence of the squared coupling of our model is
represented by the dashed curve in Fig. 1.
This is to be contrasted with the nonperturbative large-N

renormalization flow of the coupling we obtain in this
work, which is displayed by the solid (colored) curves for
various values of the renormalized mass in Fig. 1. Contrary
to the perturbative prediction, the full coupling is found to

FIG. 1. Flow of the squared tetrahedral coupling g2 with
momentum p for various renormalized masses m2 (color scale),
with gðμÞ ¼ 20 at the renormalization scale μ. The two-loop
perturbative running is mass independent and represented as
dashed.
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depend on the renormalized mass or, equivalently, the
inverse correlation length. Our results show the generation
of a strong interaction by quantum fluctuations, which
builds up as the correlation length is increased. The running
coupling remains well-defined and finite in the infrared
for renormalized masses above a threshold value m�.
Approaching this threshold from above, the growth behav-
ior of the running coupling defines a strong-interaction
scale μ�, which plays the role of a nonperturbative
generalization of μ�pert. We find μ� to be larger than the
scale determined from two-loop perturbation theory. While
masses above m� allow us to investigate the running
coupling in a controlled way for momenta even below
μ�, we emphasize that the two scales should not be
identified, and we find m� to be significantly smaller than
μ�. Disentangling these scales allows one to follow the
coupling flow from an ultraviolet Gaussian fixed point to a
strongly interacting but well-defined infrared in quantum
field theory, opening up a new pathway for the inves-
tigation of strong-coupling phenomena in four dimensions
from first principles.

II. OðNÞ3 SYMMETRIC TENSOR FIELD THEORY

Following Ref. [3], we consider a scalar (under rotations)
field φ̄a¼ða1;a2;a3Þ with ai¼1;2;3 ¼ 1;…; N transforming as a
real 3-index tensor in the trifundamental representation of
OðNÞ3 [4,6,7]. The model is defined by the bare (classical)
action

S½φ̄� ¼
Z

d4x

�
1

2
φ̄aðxÞð−∂2 þ m̄2Þφ̄aðxÞ

þ 1

4

�
ḡ1P̂

ð1Þ
ab;cd þ ḡ2P̂

ð2Þ
ab;cd þ iḡδ̂tabcd

�

× φ̄aðxÞφ̄bðxÞφ̄cðxÞφ̄dðxÞ
�

ð1Þ

in four Euclidean dimensions. Here m̄ is the bare mass
parameter, and we take the bare quartic couplings ḡ1, ḡ2 and
ḡ to be real such that iḡ in Eq. (1) is purely imaginary. The
three interaction terms in the action stem from the three
OðNÞ3 invariant contraction patterns (“pillow,” “double-
trace” and “tetrahedral”)

δ̂pab;cd ¼ 1

3N2

X3
i¼1

δaiciδbidi
Y
j≠i

δajbjδcjdj ;

δ̂dab;cd ¼ N−3
Y3
i¼1

δaibi
Y3
j¼1

δcjdj ;

δ̂tabcd ¼ N−3=2δa1b1δc1d1δa2c2δb2d2δa3d3δb3c3 ; ð2Þ

which relate to the orthonormal projectors P̂ð1Þ ¼3ðδ̂p− δ̂dÞ
and P̂ð2Þ ¼ δ̂d appearing in Eq. (1).

III. RENORMALIZED CORRELATION
FUNCTIONS

Physical observables can be obtained from the renor-
malized large-N quantum field theory [8–15]. We aim to
compute correlation functions representing expectation
values of products of quantum fields, specifically the
renormalized two-point correlation function or full propa-
gator Gabðx; yÞ. In the tensor field theory this computation
can be achieved in closed form in the large-N limit. By
contrast, in asymptotically free theories like quantum
chromodynamics a resummation of the large-N planar
Feynman diagrams [16,17] is out of reach. This gives us
unique access also to the nonperturbative infrared behavior
of our large-N theory.
The renormalized field correlation functions are obtained

after imposing renormalization conditions. Two of them
concern the full propagator and we write

G−1ð0Þ ¼ m2;
G−1ðμÞ −G−1ð0Þ

μ2
¼ 1: ð3Þ

The first condition fixes the renormalized mass m at zero
momentum. The second one specifies the wave function
renormalization

ZðpÞ ¼ G−1ðpÞ − G−1ð0Þ
p2

; ð4Þ

at some high momentum scale μ (the renormalization scale)
to ZðμÞ ¼ 1. Three additional renormalization conditions
fix the three couplings at the same renormalization scale μ;
in particular, the tetrahedral coupling is fixed to a given
gðμÞ, and the results for the running coupling are presented
as a ratio as in Fig. 1. In the large-N limit the running of the
renormalized tetrahedral coupling is entirely encoded in the
scale dependence of the wave function renormalization (4)
as (see also the Appendix) [5]

gðpÞ ¼ gðμÞ
Z2ðpÞ : ð5Þ

With these renormalization conditions the full large-N
propagator in the OðNÞ3-symmetric regime, where
Gab ¼ Gδab, is determined in momentum space by

G−1ðpÞ ¼ p2 þm2 þ g2ðμÞ
Z

d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞ

×

�
Gðpþ qþ kÞ −Gðqþ kÞ

−
p2

μ2

�
Gðμþ qþ kÞ − Gðqþ kÞ

��
: ð6Þ

The self-consistent solution of this equation may be viewed
as resumming infinitely many perturbative contributions in
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the quartic couplings. It is remarkable that Eq. (6) contains
in closed form all the relevant phenomena in the asymp-
totically free regime and in the strongly interacting infrared
we are addressing. The solution for the nonperturbative
propagator GðpÞ determines the wave function renormal-
ization ZðpÞ and the coupling gðpÞ according to Eqs. (4)
and (5). The behavior of the other couplings g1 and g2 does
not enter the solution of Eq. (6). Their running is in turn
dictated by the momentum dependence of gðpÞ and has
been shown to be perturbatively already well defined in the
infrared in Ref. [3]. Even at next-to-leading order in the
large-N expansion one only encounters further tadpole
corrections which are compensated by the mass renorm-
alization [3].
We iteratively solve Eq. (6) until convergence is

observed (see details in the Appendix). We verified that
the relevant physical results are insensitive to changes in the
momentum discretization for the numerical parameters
explored in this work.

IV. PERTURBATION THEORY

We first summarize the two-loop perturbative results as
detailed in the Appendix, which predict [see Eq. (A10)]

g2pertðpÞ ¼
g2ðμÞ

1þ 2g2ðμÞ
ð4πÞ4 log

�
p2

μ2

� : ð7Þ

This perturbative result exhibits a pole at the finite infrared
momentum scale

μ�pert ¼ μe−ð4πÞ4=ð4g2ðμÞÞ: ð8Þ
This behavior may be contrasted with the perturbative
coupling flow of a familiar scalar quantum field theory with
single-component field ϕ and quartic interaction term λϕ4

in four dimensions. In that case the renormalization flow is
described by the beta-function βλ ∼ λ2, leading to the scale-
dependent coupling λðpÞ ¼ λðμÞð1 − KλðμÞ logðp2=μ2ÞÞ−1
for some constant K > 0. Comparing to Eq. (7), one
observes that a sign flip in the denominator transforms
the UV Landau pole of the ϕ4 model into an IR pole of an
asymptotically free theory—a well known feature of the
ϕ4-model with negative coupling, λ < 0 [18,19]. However,
such a model with repulsive interaction has classically an
unbounded spectrum and is therefore considered unstable.
Recently this conclusion has been reinvestigated in the con-
text of PT -symmetry [20–22]. In contrast, our theory is
bounded from below due to the two additional (positive
semidefinite) quartic couplings and, importantly, the two-
loop beta-function βg;real ∼ g3real changes sign for an
imaginary coupling greal → ig, not a negative one. The
beta-function of our tensor field theory starts at cubic order
in the tetrahedral coupling because its flow is driven solely
by the wavefunction renormalization.

V. NONPERTURBATIVE FLOW OF THE
TETRAHEDRAL COUPLING

The running of the tetrahedral coupling is controlled by
the wave function renormalization and, gathering Eqs. (4)
and (5), we obtain

g2ðμÞ
g2ðpÞ ¼ ZðpÞ4 ¼

�
G−1ðpÞ −G−1ð0Þ

p2

�
4

: ð9Þ

The full large-N result for the scale-dependent coupling is
given for a wide range of renormalized masses (see color
code) in Figs. 1 and 2. In Fig. 2, we plot its inverse on a
logarithmic momentum scale for a broader range of masses
to illustrate the deviation from the perturbative result (7),
which is represented by a strictly straight dashed line. At
large momenta, the perturbative and nonperturbative sol-
utions agree increasingly well, consistent with the predic-
tion of asymptotic freedom. However, the slope of the
nonperturbative flow becomes steeper toward the IR such
that the coupling grows faster than the perturbative one at
intermediate scales.
While the perturbative result is insensitive to the renor-

malized mass, the full coupling is seen to depend on it. The
coupling reaches a mass-dependent finite value in the deep
infrared for masses above a threshold value. As we decrease
the renormalized mass, the limiting value of the tetrahedral
coupling grows, as depicted in Fig. 3 [23]. The observed
behavior suggests that, for any given gðμÞ, there exist a
finite mass m� for which the tetrahedral coupling diverges
at a finite IR momentum scale μ�. We stress that the mass
scale m� should not be identified with the dynamically
generated scale μ�. We can estimate m� from Fig. 3 and the
momentum scale μ� by extrapolating the envelope of the
curves in Fig. 2. We find that the dynamically generated
scale μ� is significantly larger than the mass scale m�,
which in turn is much larger than the perturbative scale μ�pert

FIG. 2. Inverse of the squared tetrahedral coupling for different
renormalized masses (color scale). The perturbative result is
displayed as a black dashed line.
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[24]. These values of m� and μ� are highlighted in Fig. 2.
For completeness, the corresponding results for the propa-
gator are discussed in the Appendix.

VI. RELATION TO OTHER TENSOR
FIELD THEORIES

In order to put our results into context, we compare to
similar tensor models in the literature. First, one can
consider the OðNÞ3 model in 4 − ϵ dimensions [4]. This
model has a nontrivial (so-called “melonic”) fixed point
with couplings of order

ffiffiffi
ϵ

p
. However, while the tetrahedral

coupling is real, the pillow and double trace couplings are
imaginary at the fixed point, and the resulting conformal
field theory is unstable as it has a primary operator in the
principal series [25,26]. Alternatively, one can consider a
long-range version of the OðNÞ3 model in d < 4 dimen-
sions [5,27]. Picking the marginal scaling for the propa-
gator and an imaginary tetrahedral coupling, one obtains a
line of infrared fixed points (indexed by the exactly
marginal tetrahedral coupling), which are stable and cor-
respond to well-defined (and presumably unitary [28])
large-N conformal field theories. More generally, the
renormalization group fixed points for tensor field theories
give rise to a new family of conformal “melonic” field
theories which can be studied analytically [29–36] (see also
[37–41] for reviews and references therein) [42].
We stress that the behavior we encounter here is of a

very different nature. The infrared regime we identify does
not correspond to a renormalization group fixed point:
although the (classically marginal) tetrahedral coupling
flows to a fixed value, the renormalized mass is nonzero
and larger than a threshold value.

VII. REAL TETRAHEDRAL COUPLING

If one considers the OðNÞ3 model with a real tetrahedral
coupling in exactly four dimensions, the melonic fixed

point of order
ffiffiffi
ϵ

p
coincides with the trivial Gaussian fixed

point. The perturbative computation, Eq. (7) with the sign
in the denominator flipped, shows that the tetrahedral
coupling vanishes in the IR like g2ðpÞ ∼ log ðμ2=p2Þ−1
and displays a UV Landau pole at a finite scale. It is not
known whether this flow is completed by some nontrivial
UV fixed point. In Fig. 4 we contrast the running in the real
and imaginary case obtained by solving Eq. (6) with
g2 → −g2real. The corresponding two-point functions are
discussed in the Appendix. For a real tetrahedral coupling
we are able to obtain a self-consistent solution for the
propagator with vanishing renormalized mass. This sol-
ution exhibits a vanishing coupling for p → 0 (red curve in
Fig. 4). The self-consistent running decreases faster toward
the IR than predicted by perturbation theory (dashed).
Similar to the imaginary tetrahedral coupling case, the self-
consistent solution with real tetrahedral coupling is sensi-
tive to the presence of a nonvanishing renormalized mass,
whereas the perturbative solution is not.

VIII. DISCUSSION AND OUTLOOK

Our results show that for an asymptotically free massive
scalar field theory in four dimensions quantum fluctuations
can generate a strong coupling that remains well defined in
the infrared. The phenomenon is captured in closed form by
the equation for the scalar field two-point correlator in the
large-N limit. The wave function renormalization deter-
mines the growth of the running coupling toward the
infrared. In contrast to the standard perturbative behavior,
as long as the mass is above a threshold value, the full
nonperturbative coupling remains finite in the infrared. By
varying the mass over several orders of magnitude, we find
that the infrared value of the coupling grows as the mass is
decreased, and exceeds the perturbative estimate.

FIG. 3. Limiting value of the squared tetrahedral coupling in
the infrared for varying mass.

FIG. 4. Comparison of real vs imaginary tetrahedral coupling
for different renormalized masses and jgðμÞj ¼ jgrealðμÞj. The
corresponding perturbative predictions are shown as dashed black
lines. For real tetrahedral coupling also the solution at vanishing
renormalized mass is shown (red curve).
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It is very interesting to consider these results in view of
other asymptotically free theories such as QCD, where
the nonperturbative generation of a strong-interaction
scale by quantum fluctuations is known to have striking
phenomenological consequences such as confinement
[43]. The gluons in QCD are massless, which is protected
by local gauge symmetry, and only gauge-invariant
quantities are observable. In particular, in QCD the
perturbative notion of a (gauge-variant) coupling ceases
to hold in the infrared, where it diverges at the confine-
ment scale ΛQCD. Comparing this to the asymptotically
free scalar field theory, the role of ΛQCD is played by the
scale μ�pert in the perturbative tensor model. However, the
scalar field theory allows one to vary the mass scale and
investigate the dynamical build-up of a strong-interaction
as the correlation length increases in a regime where
the nonperturbative coupling remains well defined and
its infrared value determines the physical interaction
strength.
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APPENDIX

1. Renormalization and two-loop perturbation theory

The renormalized action of the model writes in terms of
the renormalized field φa as:

S½φ� ¼
Z

d4x

�
Z̃
2
φaðxÞð−∂2ÞφaðxÞ þ

1

2
ðm2 þ δm2ÞφaðxÞφaðxÞ

þ 1

4

	
ðg1 þ δg1ÞP̂ð1Þ

ab;cd þ ðg2 þ δg2ÞP̂ð2Þ
ab;cd þ iðgþ δgÞδ̂tabcd



φaðxÞφbðxÞφcðxÞφdðxÞ

�
; ðA1Þ

where the wave function renormalization constant is Z̃ ¼ 1þ δZ̃. The bare and renormalized quantities are related by
φ̄a ¼ Z̃1=2φa, m̄2 ¼ Z̃−1ðm2 þ δm2Þ, ḡ ¼ Z̃−2ðgþ δgÞ, ḡ1;2 ¼ Z̃−2ðg1;2 þ δg1;2Þ and the counterterms δZ̃; δm2, δg and δg1;2
ensure that the renormalized correlations are free of divergences. The counterterms are fixed by the renormalization
conditions:

G−1ð0Þ ¼ m2; ZðμÞ ¼ G−1ðμÞ −G−1ð0Þ
μ2

¼ 1; Γð4;tÞðp1; p2; p3; p4Þjp2
i¼μ2 ¼ δ

	X4
i¼1

pi



gðμÞ; ðA2Þ

where Gabðx; yÞ ¼ hφaðxÞφbðyÞi ¼ Gðx; yÞδab is the re-
normalized two-point function and Γð4;tÞ is the tetrahedral
channel of the renormalized four-point function. The four-
point functions in the P̂ð1Þ and P̂ð2Þ channel are fixed
similarly.
The function ZðμÞ arising in the renormalization con-

dition above is related to Z̃ ¼ Z̃ðμÞ, the renormalization
constant in the renormalized action. The renormalized pro-
pagator is G−1ðpÞ ¼ Z̃ðμÞG−1

b ðpÞ with G−1
b the resummed

propagator computed in the bare theory, hence ZðpÞ ¼
Z̃ðμÞfbðpÞ for fb some function which depends parametri-
cally on the bare parameters. This function is of course
divergent, that is it exhibits 1=ϵ poles in d ¼ 4 − ϵ, or
logarithmic divergences with the ultraviolet momentum
cutoff Λ at d ¼ 4. Fixing ZðμÞ ¼ 1 yields Z̃ðμÞ ¼ 1=fbðμÞ
which in turn implies ZðpÞ ¼ Z̃ðμÞ=Z̃ðpÞ. The renormal-
ized two-point function at large-N respects the Schwinger-
Dyson equation:

G−1ðpÞ ¼ Z̃p2 þm2 þ δm2 þ ðg2 þ δg2Þ
Z

d4q
ð2πÞ4 GðqÞ þ ðgþ δgÞ2

Z
d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞGðpþ qþ kÞ: ðA3Þ
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Imposing the renormalization conditions and taking into
account that in the large N limit δg ¼ 0, see Ref. [5], we
obtain Eq. (6) of the main text.
Keeping the renormalization scale μ fixed, we are

interested in the momentum dependence of the physical
couplings of the theory, that is the local parts of the
effective action at a symmetric point

ΓðnÞðpiÞjp2
i¼p2 ¼ δ

	X
i

pi



ZðpÞn=2gðnÞðpÞ: ðA4Þ

As δg ¼ 0 at large-N, the momentum dependent tetra-
hedral coupling is entirely driven by the wave function,

Z2ðpÞgðpÞ ¼ gðμÞ. The renormalized propagator GðpÞ is
determined self-consistently by Eq. (6), which in turn fixes
the wave function renormalization ZðpÞ and the running
coupling gðpÞ. The running of g1 and g2 is dictated by the
running of g and can be extracted from their corresponding
Bethe-Salpeter equations, which we will address in
future work.
Two loops. The renormalization group flow at two-loops

is obtained using dimensional regularization and minimal
subtraction in d ¼ 4 − ϵ and setting ϵ ¼ 0. At two loops
and after mass renormalization, Eq. (A3) reads (where
we denote the renormalization scale with s here for
convenience)

G−1
pertðpÞ ¼ Z̃p2 þm2 þ g2s2ϵ

Z
ddq
ð2πÞd

ddk
ð2πÞd

1

ðq2 þm2Þðk2 þm2Þ
	

1

ðpþ qþ kÞ2 þm2
−

1

ðqþ kÞ2 þm2



; ðA5Þ

and the sunset (melon) diagram evaluates in a Laurent series in ϵ [44]

g2s2ϵ
Z

ddq
ð2πÞd

ddk
ð2πÞd

1

ðq2 þm2Þðk2 þm2Þððpþ qþ kÞ2 þm2Þ

¼ −
g2m2

ð4πÞ4
�
6

ϵ2
þ 6

ϵ

�
3

2
− γ þ log

	
4πs2

m2


�
þ p2

2m2ϵ
þOðϵ0Þ

�
: ðA6Þ

Up to order 1=ϵ the full propagator at two loops is G−1
pertðpÞ ¼ Z̃p2 þm2 − p2 g2

ð4πÞ42ϵ. In the minimal subtraction scheme,

renormalization is performed by requiring that at the renormalization scale s both the tetrahedral counterterm δg and the
wave function counterterm δZ̃ are pure divergences. As δg ¼ 0 we have

gðsÞ ¼ g; Z̃ðsÞ ¼ 1þ g2

ð4πÞ42ϵ ; ðA7Þ

where the first equation signifies that the coupling constant g in the renormalized action is exactly the physical four point
function (in the tetrahedral channel) at the renormalization scale s.
We note that the minimal subtraction prescription differs from imposing the renormalization conditions in Eq. (3) by

finite terms, but the beta functions up to two loops are prescription independent [45,46]. The bare tetrahedral coupling
writes ḡ ¼ sϵgðsÞZ̃−2ðsÞ. Taking the s derivative at fixed ḡ, at two loops we obtain

βðgÞ ¼ s∂sgðsÞ ¼ −ϵgðsÞ − 2g3ðsÞ
ð4πÞ4 ; η ¼ s∂s logðZ̃ðsÞÞ ¼

βðgÞ∂gZ̃ðsÞ
Z̃ðsÞ ¼ −

g2ðsÞ
ð4πÞ4 : ðA8Þ

We emphasize that we obtained a scale-dependent coupling despite δg ¼ 0, as the flow is driven by the wavefunction
renormalization Z̃ðsÞ, which is nontrivial already at leading order in the large-N expansion. This features sets melonic
tensor field theories, such as OðNÞ3 at large-N, apart from the more standard OðNÞ vector models at large-N. We set ϵ ¼ 0
and integrate the flow down from some reference scale μ in the UV to find

g2pertðsÞ ¼
g2ðμÞ

1þ 2g2ðμÞ
ð4πÞ4 log

�
s2

μ2

� ; Z̃pertðsÞ ¼ e
−
R

gðμÞ
gðsÞ

ηðg0Þdg0
βðg0Þ Z̃ðμÞ ¼

�
1þ 2g2ðμÞ

ð4πÞ4 log

	
s2

μ2


�−1
4

Z̃ðμÞ: ðA9Þ

Taking into account the relation between ZðpÞ and Z̃ðpÞ, we get

ZpertðpÞ ¼
�
1þ 2g2ðμÞ

ð4πÞ4 log

	
p2

μ2


�1
4

: ðA10Þ
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2. Full propagator

In Fig. 5 we display the renormalized self-consistent
propagator for different renormalized masses with the
trivial 1=p2 momentum dependence scaled out. The flow
of couplings discussed in Fig. 4 in the main text was
obtained from the propagators depicted here.
The case with imaginary tetrahedral coupling is

shown on the left. Due to the Gaussian UV fixed point,
all the solutions asymptote to 1 at high momenta. As we
decrease p toward the IR, p2GðpÞ increases until the
presence of a nonvanishing renormalized mass m2

eventually suppresses the momentum dependence and
p2GðpÞ ∼ p2=m2 drops to zero. If we decrease m2, we
extend the range of scales over which p2GðpÞ grows
and we observe an increasingly prominent bump at
intermediate momentum scales with associated increas-
ing deviations from the two-loop perturbation theory
result

p2GpertðpÞ ≃
p2

m2 þ p2
h
1þ 2g2ðμÞ

ð4πÞ4 log
�
p2

μ2

�i1
4

; ðA11Þ

which is displayed in dashed black. Observe that
Eq. (A11) is only valid for momenta p2 ≥ ðμ�pertÞ2 with
μ�pert ¼ μ exp½−ð4πÞ4=ð4g2ðμÞÞ� since the term in square
brackets becomes negative for p ≤ μ�pert.
The case with real tetrahedral coupling is shown on the

right in Fig. 5. In contrast to the imaginary case, the
propagator is more suppressed for low momenta and we
were able to obtain a solution for vanishing mass. In the
perturbative two-loop result for the propagator in Eq. (A11)
only the sign in front of g2ðμÞ changes. This makes the
perturbative result well defined for all momenta p ≤ μ�pert.
These differences are not surprising as for real tetrahedral
coupling the Gaussian fixed point is IR attractive. In contrast
to the imaginary tetrahedral case, for real coupling it is not
known whether there exists a nontrivial UV fixed point and
consequently the theory might not exist without a UV cutoff.

3. Numerical implementation

Implementing the renormalization conditions (3)
amounts to subtracting the sunset integral evaluated at
zero external momentum respectively at the renormaliza-
tion scale μ. The mass and wave function counterterms are

δm2 ¼ −ðg2 þ δg2Þ
Z

d4q
ð2πÞ4 GðqÞ − g2ðμÞ

Z
d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞGðqþ kÞ; ðA12Þ

δZ̃ ¼ −
g2ðμÞ
μ2

Z
d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞ½Gðμþ qþ kÞ −Gðqþ kÞ�; ðA13Þ

leading to the renormalized version of the Schwinger-Dyson equation in Eq. (6)

G−1ðpÞ ¼ p2ð1þ δZ̃Þ þm2 þ g2ðμÞIðG;pÞ; ðA14Þ
with

IðG;pÞ ¼
Z

d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞ½Gðpþ qþ kÞ −Gðqþ kÞ�; ðA15Þ

and δZ̃ ¼ −g2ðμÞ=μ2IðG; μÞ.

FIG. 5. Propagator with 1=p2 momentum dependence scaled out respectively for the case of imaginary tetrahedral coupling (left) and
real tetrahedral coupling (right) displayed for various renormalized masses (color scale). The two loop results correspond to the black
dashed lines.
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We discretize by using a logarithmic p2 grid with 7000
points and IR/UV cutoffs, respectively ΛIR=μ ¼ 1.25 ×
10−7 and Λ=μ ¼ 1.25, which regularize the integral.

a. Algorithm

We solve the renormalized Schwinger-Dyson equation
for the propagator via fixed-point iteration. The algorithm
proceeds as follows:
(1) We initiate the solver by providing the arbitrary

renormalization scale μ, chosen for convenience to
lie in the UV with μ=Λ ¼ 0.8, and the renormalized
parameters m2 and gðμÞ.

(2) Due to asymptotic freedom [3], we can and do
choose the initial ansatz for the propagator to coin-
cide with the classical one ½G−1ðpÞ�i¼0 ¼ p2 þm2.
Here the superscript i denotes the iteration step.

(3) We calculate the integral Ið½G�i;pÞ in Eq. (A15).
This requires some interpolation and extrapolation
for p2 values that are not elements of the grid (see
next paragraph).

(4) We determine δZ̃ from Ið½G�i; μÞ.
(5) We evaluate the right hand side of Eq. (A14)

as ½RHS�iþ1 ¼ p2ð1 − g2ðμÞ=μ2Ið½G�i; μÞÞ þm2 þ
g2ðμÞIð½G�i; pÞ and set ½G−1�iþ1 ¼ α½RHS�iþ1 þ

ð1 − αÞ½G−1�i with mixing parameter α ¼ 0.2 to
improve the convergence of the algorithm.

(6) We repeat steps 3–5 until apparent convergence is
achieved. This is quantified by confirming that the
grid-point-wise relative deviation of ½G−1�i and
½G−1�iþ1 averaged over all grid points is below a
predefined threshold, 10−7 in our case.

We tested the insensitivity of all displayed results by
varying the resolution of the grid and the cutoffs over four
orders of magnitude.

b. Integration

We use hyperspherical coordinates ðr;θ;ψ ;ϕÞ∈ ½0;∞Þ×
½0;π�× ½0;π�× ½0;2π� and denote z ¼ cosðθÞ, y ¼ cosðψÞ,
such that the integral measure on R4 can be written as
d4p ¼ 1

2
p2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
dðp2Þdzdydϕ. Due to spherical sym-

metry all functions only depend on the invariant p2. We
make use of the fact that the sunset integral:

MðpÞ ¼
Z

d4q
ð2πÞ4

d4k
ð2πÞ4 GðqÞGðkÞGðpþ qþ kÞ; ðA16Þ

can be written as two nested convolutions. First, we define:

FðpÞ ¼
Z

d4k
ð2πÞ4 Gðpþ kÞGðkÞ ¼ 1

ð2πÞ3
Z

Λ2

Λ2
IR

dk2
Z

1

−1
dz k2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Gðp2 þ k2 þ jpjjkjzÞGðk2Þ; ðA17Þ

and, second, we notice that IðpÞ ¼ MðpÞ −Mð0Þ can be computed as:

IðpÞ ¼
Z

d4q
ð2πÞ4 ðFðpþ qÞ − FðqÞÞGðqÞ ¼

Z
Λ2

Λ2
IR

dq2

ð2πÞ3
Z

1

−1
dz q2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Gðq2Þ½Fðp2 þ q2 þ jpjjqjzÞ − Fðq2Þ�: ðA18Þ

The angular z-integrals are performed via a Gauss-
Chebyshev quadrature with 64 points and for the
q2-integrals we use Gauss-Legendre quadrature [47] with
7000 points.

Momenta probed in the convolution range from 0 to 2Λ,
such that G−1ðpÞ and FðpÞ need to be extrapolated. For
jpj < ΛIR we set both functions to be equal to their values
at ΛIR. For Λ < jpj < 2Λ we make use of asymptotic

FIG. 6. Left: Numerical results for the convolution of two propagators FðpÞ ¼ R
d4k
ð2πÞ4 Gðpþ kÞGðkÞ together with the prescribed

extrapolation functions (A19). The extrapolation for Λ < p ≤ 2Λ is shown in dashed gray. Right: Numerical results for the melon
integral with subtracted local part (A15). The individual lines for different masses are not distinguishable in this plot.
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freedom and extrapolate with the momentum dependence
inferred from perturbation theory [48]:

G−1
pertðpÞ ¼ m2 þ p2

�
1þ 2g2ðμÞ

ð4πÞ4 log

	
p2

μ2


�1
4

;

FpertðpÞ ¼ FðΛÞ
�
1þ log

	
Λ2

p2


�
: ðA19Þ

The validity of these extrapolations is tested by varying the
cutoffs and comparing to the numerical result at high and
low momenta. The corresponding numerical result for the
convolution FðpÞ ¼ R

d4k
ð2πÞ4 Gðpþ kÞGðkÞ and the sunset

integral with subtracted local part (A15) are shown
in Fig. 6.
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