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Mellin-Barnes (MB) integrals are a well-known type of integrals appearing in diverse areas of
mathematics and physics, such as in the theory of hypergeometric functions, asymptotics, quantum field
theory, solid-state physics, etc. Although MB integrals have been studied for more than a century, it is
only recently that, due to a remarkable connection found with conic hulls, N-fold MB integrals can be
computed analytically for N > 2 in a systematic way. In this article, we present an alternative novel
technique by unveiling a new connection between triangulations of point configurations and MB
integrals, to compute the latter. To make it ready to use, we have implemented our new method in the
Mathematica package MBConicHulls.wl, an already existing software dedicated to the analytic evaluation
of MB integrals using conic hulls. The triangulation method is remarkably faster than the conic hull
approach and can thus be used for the calculation of higher-fold MB integrals, as we show here by testing
our code on the case of the off-shell massless scalar one-loopN-point Feynman integral up toN ¼ 15, for
which the MB representation has 104 folds. Among other examples of applications, we present new
simpler solutions for the off-shell one-loop massless conformal hexagon and two-loop double-box
Feynman integrals, as well as for some complicated 8-fold MB integrals contributing to the hard diagram
of the two-loop hexagon Wilson loop in general kinematics.
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I. INTRODUCTION

Mellin-Barnes (MB) integrals are a special class of
integrals whose integrand, in its general form, consists
of a ratio of products of Euler gamma functions and
parameters raised to the power of integration variables.
A typical N-fold MB integral reads

Iðx1;…; xNÞ ¼
Z þi∞

−i∞

dz1
2πi

� � �
Z þi∞

−i∞

dzN
2πi

Q
k
i¼1 ΓaiðsiðzÞÞQ
l
j¼1 ΓbjðtjðzÞÞ

xz11

� � �xzNN ð1Þ

where z ¼ ðz1;…; zNÞ, ai and bj are positive integers,
k ≥ N1 and the variables x1;…; xN can be complex-valued.

The arguments of the gamma functions in the MB integrand
are of the form

siðzÞ ¼
XN
k¼1

eikzk þ fi; tjðzÞ ¼
XN
k¼1

gjkzk þ hj ð2Þ

where fi and hj are real or complex numbers, and the
coefficients eik and gjk are usually integers especially in
Feynman integral calculus. In general, the integration
contours in Eq. (1) satisfy the following property: they
do not split the set of poles of each gamma function of the
numerator into different subsets. This is easy to visualize in
the 1-fold case where such a rule dictates that the contour
separates the left-handed poles of Γð� � � þ zÞ from the right-
handed poles of Γð� � � − zÞ.2
MB integrals are of paramount importance due to their

wide-range of applications in different branches of physics
and mathematics. These include areas as diverse as quan-
tum field theory [2,3], electromagnetic wave propagation in
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1Cancellations between numerator and denominator gamma
functions are tacitly excluded.

2In the cases where one would have MB integrals with straight
contours which do not separate the left and right-handed poles,
one can perform appropriate transformations on the integration
variables to separate them, as shown in [1].
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turbulence [4], detector physics [5], condensed matter [6,7],
but also in less expected fields such as option pricing [8]. In
mathematics, apart from their important role in the theory of
multivariable hypergeometric functions [9–11], MB inte-
grals also appear in asymptotics, where they have a different
form. In particle physics, MB integrals frequently appear in
the evaluation of multi-loop Feynman integrals [2,3]. In this
context, the original Feynman integral is first converted into
an MB integral using standard procedures [2,3,12,13], and
subsequently the MB integral can be used in many ways,
such as resolving ϵ singularities of dimensionally regularized
Feynman integrals [14–17], finding analytic expressions
in terms of hypergeometric functions [18] and special
functions [2,19], performing numerical integration [20],
counting master integrals (in some cases) [21], deriving
partial differential equations without relying on integration-
by-part identities [22], etc. An important breakthrough of
MB integrals in the context of Feynman integrals calculation
concerns the derivation of the first analytic results for the
two-loop box integrals in the planar [14] and nonplanar [15]
cases. As another notable application, one can mention the
evaluation of the planarmaster integrals appearing inBhabha
scattering [23]. More recently, it has also been used to
compute the full two-loop electroweak corrections to the
Z-boson production anddecay [24] and, in a seminalwork, to
compute the Higgs boson gluon-fusion production cross
section at three loops [25].
Although N-fold MB integrals are widely used, there was

no efficient and systematic computational technique for their
analytic calculation for the case N > 2, until recently in
[1,26]. In the latter works, it was shown that a given N-fold
MB integral (with fixedN) can be solved by associating a set
of conic hulls with the MB integrand and subsequently
studying their intersections. This approach was automated in
the form of a Mathematica package called MBConicHulls.wl

[26] which was used to obtain the first analytic solutions of
the off-shell massless one-loop hexagon and two-loop
double-box conformal Feynman integrals [27] that involved
nine-fold MB representations. However, although very
useful, the MBConicHulls.wl package becomes limited in speed
when it comes to the computation of complicated objects
such as those considered in [27].
In the present paper, we propose an alternative novel

geometrical approach for the analytic evaluation of multi-
fold MB integrals, based on triangulations of configura-
tions of points, which, in addition to the potentially new
insights in the theory of MB integrals that it can offer, is
computationally much more efficient than the conic hull
approach. We show this by developing an updated version
of the MBConicHulls.wl [28] package where we have imple-
mented the triangulation procedure by introducing a new
module using the TOPCOM software [29] in the background.
As an example of application, we are now able to find all
possible series representations of the double-box and
hexagon conformal Feynman integrals in a very short time,
whereas it would have taken more than a lifetime using the

former conic hull approach. This allowed us to discover that
simpler series representations than those previously pub-
lished in [27] can be obtained. As another example, we can
now compute a complicated part of the hard diagram of the
two-loop six-edged Wilson loop in general kinematics [30]
and show that 1471926 different series representations can
be obtained from its MB representation. Furthermore,
the triangulation approach also makes possible the compu-
tation of much more complicated objects than the above-
mentioned integrals, as we have checked by testing the code
on higher-fold MB integrals. As an example, in this paper,
we show that the computation of triangulations associated
with the scalar off-shell massless one-loopN-point Feynman
integral, for N going up to 15 (for which the corresponding
MB representation has 104 folds), is possible.

II. THE TRIANGULATION METHOD

Before we delve into the triangulation method, we first
perform a change of the integration variables in Eq. (1), to
rewrite it as

Iðx1;…; xNÞ ¼
Z þi∞

−i∞

dz1
2πi

� � �
Z þi∞

−i∞

dzN
2πi

×
Γð−z1Þ � � �Γð−zNÞ

Q
k0
i¼Nþ1 Γa0iðs0iðzÞÞQ

l
j¼1 Γ

b0jðt0jðzÞÞ
× x0z11 � � � x0zN1 ð3Þ

where we have pulled out the factors Γð−z1Þ � � �Γð−zNÞ in
the numerator. This change of variables always exists for
k ≥ N and we call Eq. (3) the canonical form of the MB
representation. In the rest of this article, we assume that MB
integrals are written in this form, where the gamma function
arguments are now

s0iðzÞ ¼
XN
k¼1

e0ikzk þ f0i; t0jðzÞ ¼
XN
k¼1

g0jkzk þ h0j ð4Þ

For the purpose of analytic evaluation of the MB
representation in Eq. (3) with our triangulation method,
we assign to this integral a set of N þ Σk0

i¼Nþ1a
0
i points

which can be readily extracted from the arguments of the
gamma functions of the numerator of its integrand, i.e.,
s0iðzÞ. This set consists of N points whose homogeneous
coordinates in the

P
k0
i¼Nþ1 a

0
i dimensional Euclidean space

are built from the coefficients of the zi ði ¼ 1;…; NÞ
integration variables of the arguments of numerator’s
(nonpulled out) gamma functions, i.e.

P1 ¼ e0l1; P2 ¼ e0l2; � � � PN ¼ e0lN ð5Þ

and
P

k0
i¼Nþ1 a

0
i additional points corresponding to the unit

vectors of dimension
P

k0
i¼Nþ1 a

0
i.
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PNþ1¼

0
BBBBBB@

1

0

:

0

0

1
CCCCCCA
; PNþ2¼

0
BBBBBB@

0

1

:

0

0

1
CCCCCCA
; � � � PNþΣk0

i¼Nþ1
a0i
¼

0
BBBBBB@

0

0

:

0

1

1
CCCCCCA

ð6Þ
Therefore, the point configuration associated with Eq. (3)
can be written as a ðΣk0

i¼Nþ1a
0
iÞ × ðN þ Σk0

i¼Nþ1a
0
iÞ matrix

where the columns are made of the points Pi ði ¼ 1;…;
N þ Σk0

i¼Nþ1a
0
iÞ and which we denote as the A-matrix of the

MB integral

A ¼ ðP1 P2 � � � PNþΣk0
i¼Nþ1

a0i Þ ð7Þ
In the next stepwe find all the possible regular triangulations
of the point configuration P ¼ fP1;…; PNþΣk0

i¼Nþ1
a0i
g. These

triangulations are built from a set of simplices, each simplex
being, in fact, dual to a conic hull in the conic hull approach
[26].We then observe a remarkable bijective correspondence
between the set of possible regular triangulations and the set
of relevant intersections of conic hulls in the conic hull
approach [26]. Therefore, this allows us to assign a set of
poles to each triangulation and to sum their multivariate
residues, as in [26], to obtain series solutions. Therefore, in
the end, we have several series solutions of the original MB
integral, each derived from a specific triangulation. These
solutions (when the method is applied to the computation of
Feynman integrals or to the derivation of linear transforma-
tions of multivariable hypergeometric functions) are, in
general, analytic continuations of each other and converge
in different regions of the ðx01;…; x0NÞ N-dimensional com-
plex space.
We have implemented the triangulation method in a new

version of the Mathematica package MBConicHulls.wl [28]
which can be used for the analytic calculation of N-fold
MB integrals with an arbitrary (but fixed) number of folds
N ≥ 1, as described in the Supplemental Material [31].

We also illustrate in [31] the procedure in detail, by
computing the simple two-fold MB integral associated
with the Appell F1 double hypergeometric function.

III. APPLICATIONS TO FEYNMAN
INTEGRALS

In this section, we compute higher-fold MB integrals
associated with Feynman integrals. We begin with a com-
parison between the computation times of v.1.1 of
MBConicHulls.wl [28], which is based on conic hull intersec-
tions, and those obtained from the triangulation approach
implemented in v.1.2, for several examples that have up to
nine-fold MB representations. Then we consider MB inte-
grals with a very large number of folds, and test our package
by computing triangulations and series representations of
the off-shell massless scalar one-loop N-point integral, for
several values of N going as high as 15 which, in the latter
case, yields a 104-fold MB representation. To our knowl-
edge, the corresponding results are new, even for the simplest
N ¼ 4 case. Some details of these results can be found in the
ancillary Mathematica notebook Examples.nb [28].

A. Comparison of computation times

We perform the comparison of calculation times on five
different Feynman integrals: the off-shell massive con-
formal triangle which has a three-fold MB representation
[32], the off-shell massless pentagon in 4 − 2ϵ dimensions,
whose MB representation has four folds [1], the off-
shell massless hexagon and double-box conformal fishnet
Feynman integrals in the generic nonresonant D dimen-
sional case and unit resonant four dimensional case [33]
(for interesting recent results on two dimensional fishnet
integrals see Ref. [34]) which both have nine-fold MB
representations3 [27], and the hard diagram of the two loop
six-edged Wilson loop [30] (see Fig. 1 for the Feynman
diagrams of these five examples). For explicit expressions
of their MB representations, we refer the reader to the
quoted references. We only give here, as an example, the
A-matrix of the double-box, which reads

ADB ¼

0
BBBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0

0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0

0 0 0 −1 −1 −1 −1 −1 −1 0 0 0 0 1 0 0

−1 −1 −1 0 −1 −1 0 −1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 1

1
CCCCCCCCCCA

ð8Þ

3These last two Feynman integrals are related to one another by a differential equation which allows one to check the obtained
results.
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The results presented in Table I show the computation
times4 needed for the calculation of one (sometimes all) series
representation(s) by the two methods. They clearly prove the
huge improvement that the triangulation method provides in
the analytic calculations of multifold MB integrals.
We note that the hexagon and double-box were solved

using the conic hull method in [27] as sums of, respectively,
26 and 44 multivariable hypergeometric series, for generic
values of the powers of their propagators satisfying the
conformal constraint. However, due to computational
limitations of the conic hull approach, only very few of

all the possible series representations of these integrals
could be derived. This is no longer the case due to the
efficiency of the triangulation method. In fact, we can find
the total numbers of their different series representations,
which are 194160 for the hexagon and 243186 for the
double box. It is then possible to find in these sets simpler
series solutions than those of [27], as sums of 25 hyper-
geometric series for both the hexagon and double box.
These series solutions are presented in the ancillary
Examples.nb [28] notebook together with the resonant
D ¼ 4 results.

B. Higher-fold MB integrals: One-loop scalar
massless N-point integral

We next consider the computation of MB integrals with a
higher number of folds, and test our method on the class
of one-loop scalar massless N-point Feynman integrals
(see Fig. 2 for the corresponding Feynman diagram) with
generic powers of the propagators, whose general MB
representation for arbitrary N is known for more than three
decades (see Eq. (3.8) in [35] for the notation):

JðNÞðfνjgjfpjg; 0Þ ¼ πD=2i1−Dðk21NÞD=2−
P

i
νi

1

ΓðD −
P

iνiÞ
Q

iΓðνiÞ
1

ð2πiÞNðN−1Þ=2−1

×
Z þi∞

−i∞
� � �
Z þi∞

−i∞

Y
j<l

ðj;lÞ≠ð1;NÞ

�
dsjl

�
k2jl
k21N

�sjl

Γð−sjlÞ
�
Γ

0
B@X

i

νi −D=2þ
X
j<l

ðj;lÞ≠ð1;NÞ

X
l

sjl

1
CA

× Γ

0
B@D=2 −

X
i

νi þ ν1 −
X
j<l
j≠1

X
l

sjl

1
CAΓ

0
B@D=2 −

X
i

νi þ νN −
X
j<l
l≠N

X
l

sjl

1
CA

×
YN−1

i¼2

Γ

 
νi þ

X
j<i

sji þ
X
l>i

sil

!
ð9Þ

(a) (b) (c) (d)

FIG. 1. One-loop and two-loop Feynman diagrams evaluated using the conic hulls and triangulation methods in Table I. (a) Conformal
triangle, (b) Conformal hexagon, (c) Conformal doublebox, (d) Massless pentagon.

FIG. 2. One-loop N-point massless Feynman integral.

4On Ubuntu 22.04.2 with AMD Ryzen Threadripper Pro 5965WX (24-cores 48-threads) and 128 GB RAM using Mathematica
13.2.1.
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The analytic expression of the N ¼ 3 case is well-known
as a combination of four Appell F4 double hypergeo-
metric functions [36]. However, for N ≥ 4, due to the
intricate structure of the poles in the MB integrand, it is
indicated in [35] that it is considerably more complicated
to obtain analytic results, and to the best of our knowl-
edge, no such results have been published in the literature
since then. However, it is easy to derive these results with
the new version of MBConicHulls.wl [28] even for larger
values of N, as we have checked by considering the cases
until N ¼ 15 (the latter having a MB representation with
104 folds); see Table II for a few examples of compu-
tation times.
Thanks to the master series of these series represen-

tations, which can also be obtained from our package,
we have checked numerically these expressions (see
Examples.nb notebook) against the direct numerical
integration of the corresponding MB integrals using the
MB.m package [16], for N ¼ 4 and N ¼ 5.

IV. CONCLUSION AND DISCUSSION

We have presented a new geometrical approach for the
analytic evaluation ofmultifoldMB integrals, which is based
on the triangulation of point configurations. As described in
Sec. II, we assign a set of points to a given MB integral, the
triangulations of which yield series solutions of the MB
integral. Along with this method, we have shown in Sec. III
how this approach considerably improves the computational
speed compared to previous techniques, with the resulting
fact that MB integrals with a very high number of folds can
now be handled analytically in a reasonable computational
time. This is possible due to the implementation of the
triangulation technique in a new version of theMathematica
package MBConicHulls.wl [28].
As practical applications of this method, we have

presented new simpler analytic series solutions of the
conformal hexagon and double box Feynman integrals
than the ones previously obtained in [27]. Among other
examples, we computed some contributions to the hard
diagram of the two-loop six-edged Wilson loop in general
kinematics and the one-loop N-point Feynman integrals
for which new analytic results have been derived for the
first time due to this new technique. Many other applica-
tions will come in the future as it is clear that this novel
approach and its powerful Mathematica implementation
open an entirely new computational perspective not only in
Feynman integral calculus, but also in all the fields where
MB integrals appear.
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TABLE II. Computation times of the one-loop N-point integral
with the triangulation method. We show only the time taken to
find a single triangulation and the corresponding set of poles
associated to its series solution.

N
Number
of folds

Number of terms
of the series solution

Computation
time

4 5 11 0.384 sec.
5 9 26 0.574 sec.
10 44 1013 1.35 min.
13 77 8178 55.4 min.
15 104 32752 8.9 h.

TABLE I. Speed comparison of the conic hulls and triangulation methods.

Conic hulls method Triangulation method

Feynman integral MB folds Total solution number One solution All solutions One solution All solutions

Conformal triangle 3 14 0.186 sec. 1.44 sec. 0.205 sec. 0.483 sec.
Massless pentagon 5 70 1.276 sec. 1.25 h. 0.318 sec. 2.78 sec.
Conformal hexagon 9 194160 1 min. … 0.489 sec. 40 min.
Conformal double-box 9 243186 1.9 min. … 0.635 sec. 1.8 h.
Hard diagram 8 1471926 6 min. … 1.4 sec. …
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