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The total 5-loop quantum electrodynamics universal contribution to the anomalous magnetic moments of
the leptons was calculated by the author. The obtained value A(lm) = 5.891(61) provides the first complete
verification of the previously known value obtained by T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio
(AHKN). The discrepancy is So. The computation includes the recalculation of the part that the author
calculated in 2019 using a slightly different method and the calculation of the remaining part of the
coefficient. A comparison with the AHKN values in 32 gauge-invariant classes is provided. In addition, the
results are divided into 95 small gauge-invariant classes that subdivide the former ones. Such a detailization is
provided for the first time. The method described in previous works of the author was used, in general.
However, the Monte Carlo integration method is new and is described in detail. Some useful technical
information and information on numerical cancellations is also given.
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I. INTRODUCTION

The electron anomalous magnetic moment «a, is known
with very high accuracy. The measurement [1] provided
the result

a, = 0.00115965218059(13). (1)

Standard Model predictions for a, use the following
expression:

a, = a,(QED) + a,(hadronic) + a, (electroweak),

a,(QED) =% (%) “an,

n>1

azn :AEZn) +A22n)

+APY

(me/m,) + AS" (m,/m.)
(me/m,w me/mr)7

where m,, m,, m, are the masses of the electron, the muon,
and the tau-lepton, respectively, a is the fine-structure
constant.

The universal QED terms Agzn)
contribution to a,. The value

(a/z)" form the main
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AP =05

was determined by J. Schwinger in 1948 [2,3]. The 2-loop
contribution A<14) was mainly calculated by R. Karplus and
N. Kroll [4]. However, this calculation had an error; the

correct value,

A = —0.328478965579...,

was presented independently in 1957 by A. Petermann [5]

and C. Sommerfield [6]. The value of Agé) was being
calculated in the 1970s by several research groups using
numerical integration ([7-10]); the most accurate value

Agé) = 1.195 £ 0.026 for that era was determined in 1974
by T. Kinoshita and P. Cvitanovi¢; the uncertainty was
caused by the statistical error of the Monte Carlo integra-
tion. At the same time, an analytical calculation of AE(’)
using computers was started. The final value,

Al = 1.181241456...,

was presented in 1996 by S. Laporta and E. Remiddi [11].
This value was the result of the efforts of many researchers
(e.g., [12—-17]). The first numerical estimates for A(IS) were
given in 1981 by T. Kinoshita and W. B. Lindquist [18].

The most precise value presented by T. Kinoshita’s team,

A = _1.91298(84), was published in 2015 [19]. This
value was obtained by Monte Carlo integration. The
semianalytic result of S. Laporta,
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AY = —1.9122457649. ..,

was presented in 2017 [20]. These two calculations of A58>

agree well, as do other independent calculations [21-23].

First, overall computation results for A(llo) were published

in 2012 by T. Aoyama, M. Hayakawa, T. Kinoshita, and
M. Nio (AHKN) in [24]. The last value presented by these
researchers in 2019 [25] is

AU [AHKN] = 6.737(159). (2)

Up to this moment, the coefficient had not been verified,
and a significant computational error could be noticeable

in experiments. In 2019, we recalculated the total con-

tribution of the graphs without lepton loops to Aglo) [26];

the value disagreed with the AHKN one.
In this paper we present new calculation results for A(llo).
Our value for the remaining part is

A{"”[with lepton loops, Volkov] = —0.9377(35).

It agrees with the value

A9 [with lepton loops, AHKN] = —0.933(17)

from [24].

This value was obtained using a method slightly different
from the one used in 2019 (see Secs. III and IV); the
programs for the integrand code generation were also
different. For this reason, we recalculated the contribution
of the graphs without lepton loops with the aim of resolving
the discrepancy. Our new value,

Aglo) [no lepton loops, Volkov, 2024 only] = 6.857(81),

agrees with our number published in [27], but does not
agree with that of the AHKN. The combined value is

AEIO) [no lepton loops, Volkov] = 6.828(60).

Our total value,
A" Volkov] = 5.891(61), (3)

comes from our new calculation in combination with the
old one. The discrepancy with (2) is 5¢.

At the moment, the discrepancy in Aglo) [no lepton loops]
is unresolved, but independent calculations are coming [28].
The values (2) and (3) in combination with the experimental
value (1) and other known contributions [25] lead to

a![a,, AHKN] = 137.0359991663(155)  (4)

and
a’! [a,, Volkov] = 137.0359991595(155), (5)

respectively. The values obtained from the measured ratios
of the atomic masses and the Planck constant,

a~'[Rb-2011] = 137.035998996(85),
a~1[Cs-2018] = 137.035999046(27),
a1 [Rb-2020] = 137.035999206(11),

come from [29-31], respectively. Note that a~! [Rb-2020] is
the largest among these three values and has a discrepancy
of 5.4¢ relative to a~![Cs-2018]. The tensions with (4) are
1.976, 3.860, 2.090; the corresponding tensions with (5) are
1.890, 3.650, 2.450, respectively.

Other results exist for small classes of 5-loop and higher
order graphs [32-34]; they are in good agreement with the
ones mentioned above.

The values for the individual classes and their compari-
son with the AHKN values, as well as the hardware used,
are described in Sec. II. The method of reduction to finite
integrals used was described in detail in [23] and briefly
recapitulated in Sec. III; the chosen modification of the
procedure was also described in this section. The integrals
were evaluated numerically using Monte Carlo integration.
We used a hand-made Monte Carlo. The general ideas of
our Monte Carlo were described in [26]. It is based on
predefined probability density functions obtained from the
combinatorics of Feynman graphs. Since the procedure was
developed in the previous works only for graphs without
lepton loops, a serious modification and improvement is
needed. This is described in Sec. I'V. The information that can
be used for the resolution of the discrepancy, other calcu-
lations, and theoretical investigations is presented in Sec. V.

II. RESULTS IN DETAIL

We extract a, from QED Feynman graphs with N; = 2,
N, =1, where we denote by N; and N, the number of
external lepton and photon lines in the graph; each graph
may contain electron, muon, and tau-lepton lines. We also
assume that all graphs are one-particle irreducible and have
no odd lepton loops (Furry’s theorem). Since the contri-
bution of a QED Feynman graph does not depend on the
arrow directions, we use undirected graphs everywhere in
the calculations. By the number of Feynman graphs we
always mean the number of undirected graphs.

We say that a vertex v is incident to a line [, if v is one of
the ends of /.

Our contributions to A(ll()) are split into 95 gauge-
invariant classes depicted in Fig. 1. One class is the set
of all Feynman graphs that can be obtained from one picture
by moving internal photon lines along lepton paths and
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FIG. 1.

loops, but without jumping over the vertex incident to the
external photon line. The individual class contributions has
to do with the in-place on-shell renormalization; the exact
definition is given in [23] The proof of their gauge
invariance is given in [35]

The newly calculated contributions to A( )[with
lepton loops] with the corresponding technical 1nf0rmati0n
can be found in Table I. The calculation was performed on
the supercomputer “HoreKa” (Karlsruhe, Germany). The
graphics processors (GPUs) NVidia A100 were used for
the Monte Carlo integration (most of the time is taken by
the integrand evaluation); The CPUs Intel Xeon Platinum
8368 were used for the control. To avoid biases caused

"The proof was only given for graphs without lepton loops. It
looks like the whole proof has not been published, but the fact is
widely used; we believe that the ideas of [35] can be extended to
the general case.

Gauge-invariant classes contributing to A<110 .

VI(k)

)

by the pseudorandom number generators, two generators
from the NVidia library were used: MRG32k3a and
Philox 4x32 10. The separate results, as well as the
statistical averages, are listed in the table. The number of the
undirected graphs, of the Monte Carlo samples, the calcu-
lation time are presented in the last three columns. The
corresponding contributions to Aglo) [no lepton loops] are
given in Table II. A comparison with the old values from
[27], as well as the statistical mean values, are presented in
Table III. The new Monte Carlo algorithm described in
Sec. IV takes approximately 1.6 times fewer samples to
achieve the needed accuracy than the previous one [27].
However, this does not affect the computation time as much
since more samples require increased precisions in this case;
see Sec. V.

The comparison of the averaged values with the AHKN
values [24,25] is given in Table I'V. Each class is the union
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TABLE 1. The contributions of all gauge-invariant classes containing lepton loops to A(llo), calculated with

different random number generators; by N, we denote the number of undirected Feynman graphs.

Class Calc_MRG Calc_Philox Average N graph N amples Time (GPU-hours)
I(a) 0.00047108(23)  0.00047102(23)  0.00047105(16) 1 15 x 101 30.9
I(b1) 0.0046717(16) 0.0046715(16) 0.0046715(11) 2 12 x 10" 25.8
I(b2) 0.00233645(75)  0.00233679(78)  0.00233656(54) 2 12 x 101 26.3
I(c) 0.0234651(35) 0.0234645(41) 0.0234643(26) 3 81 x 10'0 22.8
I(d) 0.00380375(84)  0.00380366(91)  0.00380370(61) 2 10" 22.8
I(e) 0.010293(16) 0.010282(17) 0.010289(11) 9 29 x 10! 70.5
I(f) 0.00757078(67)  0.00757131(66)  0.00757106(47) 2 84 x 10'° 17.6
I(g) 0.0285715(26) 0.0285678(24) 0.0285696(18) 4 15 x 10! 39.8
I(h) 0.001682(10) 0.0016807(91) 0.0016826(63) 11 50 x 10! 114.5
1() 0.01727(43) 0.01718(41) 0.01726(29) 39 85 x 102 1416.2
1) 0.000401(11) 0.0004044(79) 0.0004038(63) 2 74 x 1010 50.0
M(apl) 0.0092489(11) 0.0092448(14) 0.00924758(84) 3 79 x 10'0 239
MM(ap2) —0.0297767(17) —0.0297768(16) —0.0297767(11) 2 85 x 10'° 23.2
IM(ap3) —0.0262168(17) —0.0262195(14) —0.0262183(11) 2 49 x 10'0 21.0
I(asl)  —0.0466165(58) —0.0466065(61) —0.0466111(41) 2 57 x 1010 19.3
(as2) 0.0137932(21) 0.0137901(23) 0.0137916(15) 3 13 x 101 259
IM(as3)  —0.0299263(27) —0.0299284(24) —0.0299276(18) 2 87 x 10'° 13.4
H(bpl) 0.0326220(40) 0.0326252(60) 0.0326223(31) 6 86 x 1010 28.7
II(bp2)  —0.080010(10)  —0.0800158(91) —0.0800129(67) 4 56 x 1010 16.3
MM(bp3)  —0.083589(11) —0.083617(13)  —0.0836017(85) 4 29 x 1010 9.6
I(bsl)  —0.125046(16)  —0.125060(15) —0.125057(11) 4 80 x 10'0 34.0
M(bs2)  —0.125034(21)  —0.125080(19) —0.125056(14) 4 67 x 10'° 16.9
(bs3) 0.088110(14) 0.088118(19) 0.088110(10) 8 20 x 10! 40.4
I(bs4)  —0.180651(20) —0.180611(19) —0.180629(14) 8 13 x 10" 26.2
I(cl) —0.086935(12)  —0.086943(14) —0.0869389(86) 4 63 x 1010 16.2
1(c2) 0.0375586(58) 0.0375556(85) 0.0375573(46) 6 10" 24.8
(c3) —0.067120(11)  —0.067129(11)  —0.0671244(72) 4 102 20.9
(1) —0.18984(16) —0.18988(16) —0.18988(11) 18 47 x 10" 110.9
11(d2) 0.11133(11) 0.11137(10) 0.111341(75) 25 50 x 10! 100.1
1(d3) —0.16439(12) —0.16438(12) —0.164378(83) 18 43 x 10" 76.1
I(el) —1.13784(67) —1.13735(64) —1.13757(46) 30 20 x 10" 730.1
1(e2) —0.20445(41) —0.20506(39) —0.20478(28) 20 69 x 1010 306.6
TI(f1) —0.23991(13) —0.23990(12) —0.239896(88) 3 13 x 10'° 43.9
1(f2) —1.91548(33) —1.91474(32) —1.91510(23) 9 54 x 1010 186.6
1(f3) —0.28090(25) —0.28019(24) —0.28054(18) 6 17 x 10'° 118.1
MI(apl) 0.056150(65) 0.056165(57) 0.056161(42) 10 30 x 10'0 30.6
II(ap2) 0.251177(35) 0.251187(41) 0.251184(26) 12 30 x 1010 39.5
MI(ap3) 0.227933(70) 0.227875(67) 0.227894(47) 20 82 x 1010 45.2
1I(ap4) 0.143148(25) 0.143129(25) 0.143139(17) 4 28 x 1010 26.4
I(ap5) 0.071158(55) 0.071180(51) 0.071170(37) 20 69 x 10'0 39.0
I(ap6) 0.164803(28) 0.164778(32) 0.164795(20) 10 92 x 10'° 28.8
MI(ap7)  0.0275440(43) 0.0275462(35) 0.0275451(27) 3 64 x 10'0 34.3
MI(as1) 0.054626(81) 0.054572(76) 0.054599(55) 10 96 x 10'° 31.3
I(as2) 0.225735(25) 0.225727(25) 0.225730(17) 3 38 x 1010 244
I(as3) 0.05552(10) 0.055647(92) 0.055588(66) 20 12 x 10" 52.9
II(as4) 0.289459(50) 0.289388(50) 0.289427(35) 12 60 x 10'0 26.1
I(as5) 0.439958(81) 0.440098(78) 0.440024(55) 20 16 x 10! 48.2
I(as6) 0.102922(30) 0.103027(28) 0.102979(21) 4 93 x 1010 26.6
I(as7) 0.017024(52) 0.017036(49) 0.017022(35) 10 81 x 1010 222
I(b1) 0.35844(19) 0.35866(18) 0.35850(13) 20 22 x 10! 104.5
MI(b2) 0.55074(11) 0.55070(11) 0.550730(74) 6 51 x 100 28.9
IM(®3) —0.21853(25) —0.21798(23) —0.21825(16) 40 36 x 101 164.2
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TABLE 1. (Continued)

Class Calc_MRG Calc_Philox Average N graph N samples Time (GPU-hours)
I(b4) 0.91605(13) 0.91600(13) 0.916024(91) 24 17 x 10" 69.0
I(b5) 0.43822(15) 0.43817(15) 0.43819(10) 8 13 x 10" 48.3
IMI(b6) 1.35328(23) 1.35317(22) 1.35323(15) 40 42 x 10" 146.5
m®7)  —0.07136(15) —0.07093(14) —0.07113(10) 20 21 x 10" 65.4
M(c1) 1.86016(70) 1.86020(67) 1.86018(48) 12 20 x 101 749.5
I(c2) 3.2810(13) 3.2801(13) 3.28050(91) 27 36 x 10'! 2590.2
IMI(c3) 0.27186(70) 0.27149(66) 0.27166(438) 6 12 x 10" 705.1
M(c4)  —0.7592(11) —0.7596(11) —0.75943(79) 24 23 x 101 1982.5
IMI(c5) 0.22273(75) 0.22339(71) 0.22308(51) 15 13 x 10" 858.0
1I(c6) 0.04462(66) 0.04334(64) 0.04392(46) 18 1012 744.0
V(1) —0.51577(63) —0.51599(59) —0.51586(43) 74 53 x 10! 734.9
IvV(2) —0.64897(40) —0.64858(38) —0.64878(28) 20 18 x 10" 276.2
IV(3) —1.14814(88) —1.14833(84) —1.14824(60) 148 78 x 10! 1544.6
IV(4) 1.19585(56) 1.19608(53) 1.19593(38) 55 32 x 10" 594.6
IV(5) —1.52733(88) —1.52833(83) —1.52785(60) 162 74 x 10! 1605.4
IV(6) 0.50510(44) 0.50550(42) 0.50531(30) 56 19 x 10" 444.5
IV(7) —0.19297(38) —0.19292(36) —0.19295(26) 20 26 x 10! 254.9
IV(8) —0.78534(55) —0.78358(53) —0.78444(38) 40 61 x 101 526.5
IvV(©9) —4.4900(11) —4.4904(10) —4.49029(73) 222 21 x 1012 2075.6
IV(10) 0.19705(47) 0.19693(44) 0.19698(32) 50 40 x 10" 432.6
Iv(11) 0.05155(81) 0.05307(76) 0.05233(55) 148 12 x 1012 1317.3
IV(12)  —0.37235(48) —0.37267(44) —0.37250(31) 54 35 x 10" 476.4
Vl(ap) 0.482912(86) 0.483009(83) 0.482955(59) 5 14 x 10'0 414
VI(as) 0.558642(83) 0.558526(80) 0.558582(57) 5 27 x 1010 37.4
VI(b) 1.34680(17) 1.34710(16) 1.34697(11) 10 10'2 64.7
VI(c) —2.53393(71) —2.53241(67) —2.53312(49) 37 30 x 10" 839.9
VI(d) 1.8426(32) 1.8506(30) 1.8468(22) 127 41 x 10'? 14465.2
Vi(e) —0.43170(25) —0.43094(24) —0.43129(17) 13 55 x 10'0 125.5
VI(f) 0.77156(34) 0.77158(32) 0.77154(23) 46 12 x 10" 295.7
VI(g) —1.5962(14) —1.5968(14) —1.5965(10) 122 108 3221.2
VI(h) 0.1855(10) 0.18576(93) 0.18554(68) 162 12 x 1012 1913.8
VI(i) —0.04398(15) —0.04392(14) —0.04396(10) 16 62 x 10'0 68.3
VIG) —0.22921(63) —0.22917(60) —0.22920(43) 9 63 x 1010 644.1
VI(k) 0.67989(58) 0.67970(56) 0.67974(39) 32 32 x 10! 611.5
TOTAL —0.9438(51) —0.9314(49) —0.9377(35) 2323 32x 10" 45214.1

TABLEII. The contributions of all gauge-invariant classes without lepton loops to A§10

)

, calculated with different

random number generators; by Ny, we denote the number of undirected Feynman graphs.

Class Calc MRG V  Calc Philox V Average N oraph N amples Time (GPU-hours)
V(1) 6.175(30) 6.167(30) 6.169(20) 706 28 x 10'2 4428.0
V(2) 0.962(44) 0.966(45) 0.964(31) 148 40 x 10" 5436.2
V(3) 0.342(29) 0.326(29) 0.334(20) 55 13 x 10" 1942.6
V4) —0.832(53) —0.748(53) —0.789(37) 706 54 x 102 9497.4
V() —2.139(49) —2.174(49) —2.157(34) 370 42 x 10'2 8028.9
V(6) —0.402(51) —0.426(51) —0.415(35) 558 32 x 102 9676.1
V(7) 2.677(33) 2.612(33) 2.644(23) 261 18 x 1012 4360.5
V(®) —1.005(31) —0.942(31) —-0.975(21) 336 14 x 10" 4300.8
V() 1.0807(92) 1.0795(92) 1.0807(63) 73 21 x 101 560.8
TOTAL 6.86(12) 6.86(12) 6.857(81) 3213 24 x 10" 48231.4
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TABLE III. Comparison of the contributions of the classes
without lepton loops to Aglo) with the values from [27] statistical
averages.

Class New value Old value (2019) Average
V(1) 6.169(20) 6.157(33) 6.166(17)
V() 0.964(31) 0.970(33) 0.967(23)
V(@3) 0.334(20) 0.315(20) 0.325(15)
V4) —0.789(37) —0.754(42) —0.774(28)
V() —2.157(34) —2.165(36) —2.161(25)
V(6) —0.415(35) —0.403(34) —0.409(24)
V(7) 2.644(23) 2.625(24) 2.635(17)
V(8) —-0.975(21) —1.011(21) —0.993(15)
V@) 1.0807(63) 1.0902(62) 1.0855(44)
TOTAL 6.857(81) 6.793(90) 6.828(60)

of the classes from Fig. 1 with the corresponding names;
the value is the sum of the corresponding numbers. For
example, II(b) consists of II(bp1), lI(bp2), lI(bp3), I(bsl),
[I(bs2), II(bs3), and II(bs4); here “p” means “parallel” and

TABLE IV. Comparison of the contributions to AEIO) with the
AHKN values [24,25].

Class This value AHKN value
I(a) 0.00047105(16) 0.000470940(60)
I(b) 0.0070081(12) 0.00701080(70)
I(c) 0.0234643(26) 0.0234680(20)
I(d) 0.00380370(61) 0.00380170(50)
I(e) 0.010289(11) 0.0102960(40)
1(f) 0.00757106(47) 0.0075684(20)
I(g) 0.0285696(18) 0.0285690(60)
I(h) 0.0016826(63) 0.001696(13)
1(1) 0.01726(29) 0.01747(11)
1() 0.0004038(63) 0.0003975(18)
II(a) —0.1094945(50) —0.109495(23)
1I(b) —0.473625(27) —0.473559(84)
II(c) —0.116506(12) —0.116489(32)
1I(d) —0.24291(15) —0.24300(29)
II(e) —1.34235(54) —1.3449(10)
II(f) —2.43553(30) —2.4336(15)
III(a) 2.12726(14) 2.12733(17)
III(b) 3.32730(32) 3.32712(45)
III(c) 4.9199(15) 4.921(11)

v —7.7303(16) —7.7296(48)

\" 6.828(60) 7.670(159)
Vi(a) 1.041537(82) 1.04132(19)
VI(b) 1.34697(11) 1.34699(28)
VI(c) —2.53312(49) —2.5289(28)
VI(d) 1.8468(22) 1.8467(70)
Vi(e) —0.43129(17) —0.43120(70)
VI(f) 0.77154(23) 0.7703(22)
VI(g) —1.5965(10) —1.5904(63)
VI(h) 0.18554(68) 0.1792(39)
VIG) —0.04396(10) —0.0438(12)
VI() —0.22920(43) —0.2288(18)
VIk) 0.67974(39) 0.6802(38)

[t

s” means ‘“‘sequential” (it concerns the placement of the
photon self-energy insertions). The names are taken
from [24]. The results agree very well in all sets except
set V. In the latter, a discrepancy of 5¢ remains.

III. REDUCTION TO FINITE INTEGRALS

We work in the unit system with 2=c =1, the
factors of 4z appear in the fine-structure constant:
a = ¢*/(4x), the tensor g,, corresponds to the signature
(+,—,—,—), and the Dirac matrices fulfill the condition
Yulv 7ty = 29u-

We work in the Feynman gauge with the propagators,

l(ﬂ‘l—m) _ig/w
R R S
q - —m- + i€ q- +1e

for leptons and photons, where m is the lepton mass.

The method of reduction of Agzn) to finite integrals is
described in detail in [23]. It gives one Feynman parametric
integral for each Feynman graph. The final value is simply
the sum of these integrals. To make each integral finite, a
subtraction procedure with linear operators applied to the
Feynman amplitudes of ultraviolet (UV) divergent sub-
graphs is utilized before arriving at the Feynman parame-
ters. The use of direct subtraction of divergences under the
integral sign is very important at the 5-loop level: the
amount of computer resources required would be, other-
wise, astronomically large. We focus here only on the
aspects that are important for the current implementation.

There are the following types of UV-divergent subgraphs”
in QED Feynman graphs: lepton self-energy subgraphs
(N; =2, N, =0), vertexlike subgraphs (N; =2, N, = 1),
photon  self-energy subgraphs (N; =0, N, =2), and
photon-photon scattering subgraphs3 (N;=0,N,=4).

We use standard operators like the anomalous
magnetic moment projector and those that define the
on-shell renormalization, but also special operators U
that are applied to the Feynman amplitudes of vertexlike
and lepton self-energy graphs. In terms of [23], we
put U] :U2:U3:U.

The Feynman graphs contributing to the anomalous
magnetic moment contain ultraviolet and infrared (IR)
divergences (and the mixed ones). All divergences cancel
out in the final result since the on-shell renormalization is
applied. However, any direct BPHZ-like" implementation

*We consider only those subgraphs which are one-particle
irreducible and contain all lines connecting the vertexes of the
given subgraph; since odd lepton loops are forbidden, an UV-
divergent subgraph is one-particle irreducible if and only if it is
amyutated.

Photon-photon scattering subgraph divergences cancel out in
the final result without subtraction, but they remain in the
individual graphs.

4By BPHZ we mean the Bogoliubov-Parasiuk-Hepp-Zimmer-
mann renormalization procedure.
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of the on-shell renormalization leaves individual graphs IR
divergent. To remove the IR divergences, the combinatorics
of the subtraction must be modified (it is explained in detail
in [23]). The operators U are used to remove UV diver-
gences without the generation of additional IR divergences
(and sometimes to remove IR divergences without gen-
erating additional UV divergences). All contributions of the
terms containing U operators are cancelled in the final
result. In reality, the U operators only redistribute the
divergences between different graphs and regions in
Feynman parametric space, this is why we have a free
hand in the definition of the U operators.

If T',(p.q) is a vertexlike Feynman amplitude, p —1,
p + % are incoming and outgoing lepton momenta, ¢ is the
photon momentum,

L,(p.0) = a(p*)y, + b(p*)p, + c(p*) Pry
+ d<p2)(p7/ﬂ - yﬂlﬁ)

is satisfied, then put by definition
(UD),(p.q) = a(M?)y,, (6)

where M? is an arbitrary number. Similarly, for a lepton
self-energy Feynman amplitude X(p) = r(p?) + s(p*)p
we define

(UZ)(p) = r(m?) + s(m*)m + s(M?)(p = m). (7)

The preservation of the Ward identity plays an important
role in the equivalence of the subtraction method used with
the on-shell renormalization: If ¥ and I' satisfy

0Z(p)

L(p.0) =—e ap*

9’

where e is the lepton charge, then

o(UZ
(Ur),(p.0) = - XL
is also satisfied. In old calculations we used M> = m?. Here
we use M? = —m?; this slightly reduces intergraph can-
cellations; see Sec. V and [36].

For photon self-energy Feynman amplitudes IT,, (p?) =
hy(p*) g + ha(P?)p,p, We utilize the substitution

H;w(p2) - ng;w[hZ(O) - hZ(pz)]

instead of subtractions. This trick makes the expressions
shorter and has been widely used in literature; see, for
example, [37].

The divergences associated with the photon-photon
scattering subgraphs are removed by subtracting the value
at zero momenta.

IV. MONTE CARLO INTEGRATION

A. General idea

Suppose we have a Feynman parametric integral,

/ I(zy, ... 2x)8(z + -+ + 2z — D)dzy...dzg,
Zyseens 7k >0

corresponding to a graph of A(lz"). Here K = 3n — 1: we use

a trick to reduce the number from 37 to 3n — 1 (see [26]);
each z; corresponds to an internal graph line, except one
corresponding to two lepton lines adjoining the external
photon line.

For the integration we use the predefined probability
density functions of the form

g(é) = Crnain X g()(g) + Ciin X Imin (Z)

1 N
+ Cuniform X Guniform (5) + Cmodify X N Z gi(é)’
i=1

where = (Zlv ‘“vZK); Cma.in» Cmina Cuniformv Cmodify are
arbitrary non-negative numbers,

Cmain + Cmin + Cuniform + Cm()dify = 1;

N is an arbitrary natural number.
The function g, has the form

9o(z) =C ’
2122...2k

where

i) (ji,...,jg) is a permutation of 1,...,K such that
T, 22y, 2 22y (this splitting of the integration
area is called the Hepp sectors);

(ii) Degy(s) are arbitrary positive real numbers defined
for any set s C {1,2,..., K} (except the empty and
full sets);

(iii) C is a constant such that

/ go(g)é(ZI+"'+ZK—1)dZ1...dZK: 1.
21

The algorithm for determining Deg, for each set of internal
graph lines is described in Sec. IV B; each set s C
{1,...,K} can easily be mapped to the set of internal
graph lines.

The functions g;, 1 <i < N, and g,;, have the same form
as gy, but with the numbers Deg;(s) and Deg,;,(s) instead
of Degy(s) (and with different C). We use

Deg;(s) = max(S3™, S™Degy (s) - S°).
Degmin (S> = D’
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where D, Sgt, §mul) §ub (1 < j < N) are arbitrary positive
real numbers. The function gt corresponds to the
uniform distribution (constant).

We use the following constant values:

Cmin = 0.002, Cuniform = 0.06, Cmodify = 0.02,
Cmain =1- Cmin - Cuniform - Cmodify = 0918’
D - 0.75, N = 27
Sit=06,  SM=10. S =13,
S;at = 1.0, SIZHUI =04, SZUb =0.6.

The algorithm for generating the random samples with
the probability density functions of this form is described
in [26]. The function gy(z) is designed in such a way to be
“near” to C|I(z)|. The remaining terms of g¢(z) are
stabilization terms; they prevent from significant under-
estimation of |/(z)|, which can lead to poor Monte Carlo
convergence.

The choice of S, ST, §%® is the result of experiments
after the discovery of poor convergence for some Feynman
graphs from set I(i).

We have several integrals in our calculation. They are
evaluated simultaneously by blocks of samples in random
order. The probabilities of choosing each integral are
adjusted in real time to make the overall convergence as
fast as possible. The algorithm is described in [27]
(Sec. IVA).

B. Obtaining Deg(s)

1. Preliminaries

This construction is based on [38] (ideologicallyi) and
on numerical experiments with 4-loop graphs. It would be
great if the integral

1 2
/ ) 8(zy+ -+ 25— Ddzy...dzg
21002k >0 90(5)

was finite and not so large (see [26]). However, we cannot
guarantee this for all orders; moreover, examples of high
order are known that result in an infinite integral.

To write a formula for Deg(s), we need some additional
definitions.

Two subgraphs are called overlapping if they are not
contained in each other and the intersection of their line sets
is not empty.

A set of subgraphs of a graph is called a forest if any two
elements of this set do not overlap.

°In fact, a serious improvement of the theory is needed to
justify this procedure.

12

FIG. 2. Example of a Feynman graph without lepton loops.

For a vertexlike graph G, we denote by &[G] the ser of all
forests F consisting of UV-divergent subgraphs of G and
satisfying the condition G € F.

If s is some set of internal graph lines, then by Loop(s)
we denote the number of independent loops in s; by Lept(s)
we denote the set of all lepton lines in s; by Ph(s) we
denote the set of all photon lines in s; by V(s) we denote
the set of all vertices incident to at least one line in s.

If G is an arbitrary Feynman graph, then we denote by
E[G] the set of all internal lines of G, by V|G| we denote
the set of all vertices of G. If, additionally, G has two
external leptons, then by LPath[G] we denote the lepron
path connecting the external lepton lines of G (as a set
of lines).

A subgraph G’ of a graph G is said to lie on LPath[G], if
G’ has external lepton lines, and each of these lines is in
LPath[G] or coincides with an external line of G.

A set s C E[G] is called cyclo-complete, if

(Lept(E[G])\LPath[G]) C s.

2. Auxiliary functions

For convenience, we mark each new definition of global
scope with italic lettering.
The ultraviolet degree of divergence is defined as

1
wg(s) =2 x Loop(s) — |s| + 3 |Lept(s)

’

where s C E[G]. For example, for the graph G in Fig. 2
we have

06({1,2,3,4,5,6,7,8,9,10,11}) =6 — 11 +4 = —1,
wG({1.3,4.5,8,9.10,11,12}) =6 — 9 + 2.5 = —0.5.

A graph G” is called a child of G’ in a forest F (G’ € F),
if G” is a maximal (with respect to inclusion) element of F
properly contained in G'.
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If feB[G] and G’ €F, then by G'/F we denote the
graph that is obtained from G’ by shrinking all children of
G’ in F to points. We will also use the symbols like w for
graphs like G’/ F and for sets s C E[G]. This means that we
really apply it to the set s’ that is the intersection of s and
the set of all internal lines of G’/F.

Let us consider an example. Suppose G is the graph from
Fig. 2; the UV-divergent subgraphs are
G = bedefgh, G, = cdef,

G5 = cde, G4 =def

(each subgraph is given by vertex enumeration). Suppose
F ={G,G,,G,,Gs}.
In this case,

wg,/r({1,2,3,4,5,6,7,8,9,10,11})

= OJGI/F({2, 6,7, 11})
=2-4+15=-05

(G, is the only child of Gy in F).

Let us define @(s), s C E[G]. It is defined only for G with
two external fermion lines (vertexlike or lepton self-energy
graphs). The set s N LPath[G] can be considered as a union
of nonintersecting paths. Suppose 11, ..., I; are the sets of
vertices corresponding to these paths (it is obvious that
|I;/] >2 for any j). The empty set gives /=0. By
definition, put

Iy = LPath[G]\(I; U ... U I)).

We say that two vertices vy, v, from V(LPath[G]) are
l-equivalent, if there is a path in E[G]\LPath[G] from v,
to v, (we consider all lines as undirected). Suppose
B|.B,,...,B, are classes of equivalence of V(LPath[G])
with respect to 1-equivalence. We say that v, and v, are
2-equivalent, if there is a path in s\LPath[G] from v, to v,
(we consider all lines as undirected). By N, we denote the
number of equivalence classes in /; N B, with respect to
2-equivalence (the number is O if the set is empty). By
definition, put

s if0<ij<Z£=()Nih9
) ifl:ij:Z£:0Nibv

, 1nthe other cases.

1
ajb_ %
0

The function @ is defined as

FIG. 3.
length 4.

Example of a Feynman graph with a lepton loop of

1
@¢(s) =2 x Loop(s) — |s| + 3 |Lept(s)\LPath[G]|
1 1 1 l r l r 1
SO BTSSR0 ) SR
23 e =1 b=1 2

Let us examine several examples. If G is the graph from
Fig. 3, then we have

r=2, By ={a,b,d,e}, B, = {c}.

For s = {1,2,3,9,10, 11, 12}, we have

=1, I,={ab,cd}, Iy={e},
IOOBIZ{G}, NOIZI, IIOBIZ{a,b,d}, N11:3,
IonBZZQ, NOZZO, I]nBQI{C}, N12:1,
1
ap =1, 01225,

wG(s)=0-T+0+242—-15-0.5=-5.

For s = {1,2,3,5,6,7.8,9,10, 11, 12} we have the same
l, I(), 119

NOI:L N]l:L NO2:Ov Nl2:17

ajj, are the same,
wg(s) =6—-114+2+24+1-15-05=-2.
Fors = {1,2,3,6,9,10, 11, 12} we have the same [, I, I,
Nop =1, Ny =2, Np =0, N =1,
aj, are the same,

wG(s) =2-8+05+2+15-15-05=-4.
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a b c

4

FIG. 4. Example of a Feynman graph with special vertices.

For s = {1,2,3,4,5,6,7,8} we have

=1, I, ={a,b,c,d, e}, Iy =@,

Ny, =0, N, =4, Ny, =0, Ny, =1, FIG. 5. Example of a Feynman graph with an external photon
1 on a lepton loop.
ay =0, ap = bR
w(s) =2-8+2+25+25-05-0.5=0. =1, Li={abc}, =02

NOIZO’ N“:2, NO2:Oa N12:1’

For s = {1,2,3,4,5,6,7,8,9,10, 11} we have the same /, 1

Iy, 1y, ap =0, a2 =75-
No; =0, Ny =2, Noy =0, Ny =1, wG(s)=0-24+0+15+15-05-05=0.
a;, are the same, For s = {1,2,3,4,5}, we have the same [, Iy, I,
B6(s) =6—11+2+2.5+1.5-05-05=0. Nm:(l” NU:;’ Nop =0, Np=1,
For s={1,2,3,4,5.6,7.8,9,10,11,12} we have the = dnTa
same [, Iy, I w(s) =2-5+0+154+1-1-05=-2.
No =0, Ny =1, Np =0, Nip =1, If G is the graph from Fig. 5, then we have
a”—%, 012:%’ r=2, B, = {a,c,d}, B, = {b,e}.

wg(s) =8—-1242+254+1-1-05=0.
If s ={1,2,4,5,6,7,8,9,10,11, 12}, th h
If G is the graph from Fig. 4 containing special vertices, s =1 } then we have

then we have =2, I,={abyc}, L={de}, I[,=0.

r=2, B, = {a,c}, B, = {b}. Noy=0, Npy=1. Ny=1 Nyp=0,
N12:1, N22:1,

For s = @, we have ay =ay =ap=day=1,
Do(s) =6-1142+25+2—4—-05=-3.
[=0, Iy ={a,b,c},
@6(s) =0-0+0+0+0-0—-0.5=—0.5. If s ={1,2,4,5.6,7,8,9,11, 12}, then we have the same

L, 1y, 1y, I,
For s = {3,4,5}, we have the same [ =0,
NOIZO, N11:2, N21:17 NOZZO’
@6(s) =0-3+0+0+0-0-05=—35. Np=1, Nyp=1,

For s = {1,2}, we have aj, are the same,

036001-10



CALCULATION OF THE TOTAL 10TH ORDER QED ...

PHYS. REV. D 110, 036001 (2024)

WG(s) =4—-1042+25+25-4-05=-35.

If s = {2,3,4, 12}, then we have

=1, I, ={bcde}, I,={a},
Noy =1, Ny =2, Npp =0, Nip =1,
ap =1, ap :E’

@6(s) =2—-44+0+2+15-15-0.5=-05.
If s ={2,3,4,6,10, 11}, then we have the same [, I, I,

Ny =1, Ny =1, Ny, =0, Ny =2,

(111:1, 6112:0,

Do(s) =2-6+05+2+1.5-1-05=—L15,
If s ={2,3,4,5,6,9, 11}, then we have the same [, I, I,
Noy =1, Ny =2, N, =0, N, =12,
the same Ajps
@6(s) =0—T+1+2+42-1-05=-35.
If s ={1,2,3,4,5,6,7,8}, then we have

=1,
N()]IO,

I, ={a,b,c,d, e},
N11:3, N02:O,

I() = @9
N12 = 2,
ayp =ap =0,

WG(s) =2-8+2+254+25-0-0.5=05.

If s=1{1,2,3,4,5,6,7,8,12}, then we have the same
la IOa Ilv

NOIZO, N11:3, N02207 N12:1,
1
:05 —
apy ap )

wG(s) =4-9+2+25+2-05-05=05.
If G is the graph from Fig. 6, then we have
r=2,

B, ={a,b,c,e,f, g}, B, = {d}.

FIG. 6. Example of a Feynman graph with a lepton loop of
length 6.

If s ={1,2,3,4,5,6,7,8,9,10, 11,12}, then we have

l:], Ilz{avbvc’dveaf’g}7 ]OIQ’
Ny =0, Ny =6, Ng =0, Np =1,
1
a;; =0, 6112:5’

@G(s) =2-12+3+35+35-05-05=—1.

The sequence (I{,Gy,l,...,G,,1,.1), where n>1,
Gy,...,G, are self-energy subgraphs of G, [i,...,
l,,1 €E[G], is called a chain in G, if the following
conditions are satisfied:

(i) V[G,],...,V|[G,] do not intersect;

@) Iy,...,[l,, are pairwise different;

(iii) for all i (1 <i < n), each of the lines [;, [, is

incident to at least one vertex of V[G;];

(@iv) the set {/y,...,1,. 1} is maximal with respect to
inclusion (among all the sets obtained from the
objects satisfying the conditions above).

Chains can be leptonic or photonic (according to the type of
li,....1,41). Analogously, the chain lies on LPath[G], if
li....,1,;1 €LPath[G]. The chains that are obtained from
each other by reversing the order are considered as the same.

For example, we have the following chains in the graph

G from Fig. 7:

(6,G,,7,G4,8), (15,G3,16), (1,G1,3), (18,Gs,20),

where

G,=bc, G,=fghijk, G;=jk, G,=Imno, Gs=no.
(8)

If G is a Feynman graph, FeE[G], G'€F, by
Chains|G’, F] we denote the set of all chains
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5 (1,Gy,...,1,.1) in G such that each G; is a child of G’
. é\/»% PR
3 For example, for the graph G in Fig. 7 and (8), for the
forest
F: {G,Gl,Gz,G3,G4,G4}, (9)
we have

Chains[G. F] = {(1,G,.3), (6,G,.7,Gy,8)},
Chains[G,, F| = {(15,G3,16)},
Chains[G,, F] = {(18,Gs,20)}.

For a fixed Feynman graph G, a forest F € §[G], and

FIG. 7. Example of a Feynman graph with chains. G' € F, we define the function Chg £ (s) for all s € E[G] in
the following way:
|
Chg r(s) = Z g(c.s),
¢ € Chains[G' F]
where
f(e,s), if cisafermionic chain, and ¢ does not lie on LPath[G], and s is cyclo — complete in G,
f(c,s), if cisafermionic chain, and c lies on LPath[G], and s is cyclo-complete in G,
g(c,s) ]‘(c s), if cisafermionic chain, and s is not cyclo-complete in G,
p(c,s), if cisaphotonicchain, and s is cyclo-complete in G,
p(c,s), if cisaphotonicchain, and s isnot cyclo-complete in G,
—%, if llv"wln-&-les’
f((ll’le""ln+l)’s): 1 .
5 (A(Gy.s) +---+ h(G,.s)) otherwise,
1, if E[G'] Cs,
HGs) = ]
0 otherwise,
— —ﬂ, if ll,...,ln+1€S,
1,Gy, ool iy)s) =< 2
PG o). ) { o
B _%’ if llv"-vln-&-lesv
f((ll’le"'vllH»l)’s): 1 .
3 ‘{llv ey ln+1} N S| + h(Gl, S) + B h(G}h S) 0therw1$e,
—-n, if ll,...,ln+1€S,
L,Gyy .0 lyy),s) = )
P(( 1, U +1) ) { 0 otherwise.
—n, if ll,...,ln+1€S,

p((L1, Gy lyyr),s) = i
p((1. G, +1):5) {h(Gl,s)+---+h(G;1,S) otherwise.
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The auxiliary functions f, f, f, p, p are illustrated by the following examples concerning the graph G from Fig. 7 and the
subgraphs (8):
F((1.G1.3){1.2.3}) = =05, f((1.G\.3).{1.2}) =
£((1.G1.3).{1.2.5}) = 05,
F((1.G1.3).{1.2.3}) = =05, F((1.G,.3).{1.2}) =
F((1.G1.3).{1.2.5)) =
F((1.61.3).{1.2,3}) = =05, F((1.G.3).{1.2}) = 05,
F(1.G1.3).{1.2,5}) = L5,
p((6,G,,7,G4,8),{6,7,9,10,11,12,15,16}) =
p((6,G,,7,G4,8),{6,7,9,10,11,12,15,16}) =
p((6,G,,7,G4,8),{6,7,8,9,10,11,12,15,16}) =
p((6,G,,7,G4,8),{6,7,8,9,10,11,12,15,16}) =
p((6,G,,7,G4,8),{6,7,9,10,11,12,13,14,15,16}) =
p((6,G,,7,G4,8),{6,7,9,10,11,12,13,14,15,16}) =
|
The set s = {1, 3,9, 10, ...,20} is cyclo-complete in G. If Chg r(s) = ]7((1 G1.3).5) + p((6,G,,7,G4.8). 5)
(9) is satisfied, then we have —0+0=0,
Chg, r(s) = p((15,G3,16),5) = 1,
Chg, r(s) = f((18.Gs,20),s5) = 0.5.

Chg r(s) = F((1,G1,3),5) + p((6,G2,7,Gy.8), 5)

-0.5+0=-0.5, For another not cyclo-complete set s={2,5,6,8,

Cth_F(S) = p((15,G5, 16),5) = —1, 9,10,11,12,17,18,19,20}, we have

Chg, r(s) = f((18.Gs,20),5) = =0.5. Chg r(s) = F((1,G1.3).5) + p((6,G.7,G4.8), )
=14+0=1.

Suppose the Feynman graph G is fixed. Let us define the
functions @ ¢ (s), @ p(s), where FeEF[G], G'€F,
s CE[G]:

For the not cyclo-complete set s = {13, 14, 19,20}, we
have

. max (&g r(s), g /r(s)) — Chg p(s), if siscyclo-completein G, and G’ lies on LPath[G],
Borls) = wG’/F(s) — Chg £ (s) otherwise,
d)’G,’F(s) = min(0, &g (s) + Csup[G', 5]),

where
Csuispop(s), if G’isalepton self-energy subgraph, and G’ lies on LPath[G],
CswiseoL(s), if G’isalepton self-energy subgraph, and G’ does not lie on LPath[G],
ConlGs] Csupi($), if G'isvertexlike, and G’ lies on LPath[G], and the external photon of G is incident to some v € V[G'],
N

Cswvop(s),  if G'isvertexlike, and G’ lies on LPath[G], and there is no v € V[G'] incident to the external photon of G,
Cswvor(s),  if G'isvertexlike, and G’ does not lie on LPath[G],

0, in the other cases,
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TABLE V. The constants that are used for obtaining Degy (). The values depend on whether s is cyclo-complete
in the whole graph G and whether the external photon of G is incident to v € LPath[G] (“on path”) or not (“on

loop”).

Cyclo-complete Not cyclo-complete
Constant On path On loop On path On loop
CsubLseop(S) 0 0 0.293 0
CSubLSEOL(S) 0021 0 0 O
Csupi(s) 0 0.011 0.228 0.622
Csupvop($) 0.085 0 0.041 0.394
CSubVOL(S) 0.185 0 0 0
Cgigz 0.695 1.079 e e
Cgigr 0.285 0.38 e e
Caga(s) 0.199 -0.122 0 0.187
Csu(s$) 0.46 0.716 0.785 0.684

the values Csuprseop(S)s CsuwiseoL(5)s Csupi (), Csupvor(s), Cswvor (s) are taken from Table V depending on whether s is cyclo-
complete in G and whether the external photon of G is incident to v €LPath[G]. The table constants were obtained by numerical
experiments with the Monte Carlo convergence speed at the 4-loop level.

Let us examine several examples. Suppose the graph G is taken from Fig. 7, the conditions (8) and (9) are satisfied. If
s = {13,14,19,20}, then we have for

S
Q
o

2]

I

)

(s)
(s)
(s) = wg, r(s) = Chg, p(s) =0-0=0,
(s) = min(0, Csypi(s)) = min(0, Csuprseop(s)),
@6, r(s) = wg, p(s) =Chg, p(s) =0—-1=—1,
(s) = min(0, -1) = -1,
(s) = wg, r(s) = Chg, p(s) = -05-0.5 = -1,
(s) = min(0,-1) = —1,
(s) G5,F(S) - ChG5,F(s) =-05-0=-05,
(s) = min(0, =0.5 + Csubrskor(s))-

)
S
%

[72)

Il

)

If F={G,G,,G,,G3,Gy4,Gs,Gg} with Gy, ..., G5 from (8) and G4 = ghijk, s = {9, 12, 15, 16}, then we have

¢, r(5) = wg, p(s) = Chg, p(s) = =2 —=(=1) = -1,

g, p(s) =min(0, =1 + CsypyoL(s))-
Suppose G is from Fig. 2,

Fi ={G.G\.G,.G3},  F, ={G.G\.G1.Gy}, (10)

G, = bedefgh, G, = cdef, G5 = cde, G, = def. (11)

If s = {4,5,10, 11}, then we have
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@6.r,(8) = @cr,(s) =0,

@, (8) = @ f,(s) = min(0, Csypi(s)).

@6, r,($) = &g, r,(s) = max(&c, r, (5). 06, F,(5))
= max(—1.5,-1) = —1,

s) = g, r,(s) = min(0, =1 + Cgypi(5)),

d)Gz»Fl S) = maX(&)GZ.Fl (S), wGZsFl (S)) = maX(O.S, —05) = 05,

Il
8
)
>

—

S

S
5
—
[
S—
S
S
5
—
[
~—
S—

Il
8
)
>

0

o
N
(=)
~—

Il
>

ax(@g, r, (5), 0g, F,(s)) = max(—1,-0.5) = -0.5,
= min(0, 0.5 + Csupvor(s)),

= max(@g, r,(5), 0g, r,(s)) = max(0,0) = 0,

e
S
M

@

I

8

= min(0, Csupvop(s))-
Suppose G is taken from Fig. 6,

F ={G}, s={1,2,...,12}.
We have

¢ F(s) = max(@g p(s), wg p(s)) = max(=1,-4) = -1,

@ p(s) = min(0, =1 + Cgypi(s))-

3. The formula

Suppose G is a vertexlike Feynman graph.
By @max[G] we denote the set of all maximal sets from $[G] (with respect to inclusion).
By definition, put

Cigz + (Cigr — Cigz) %, if Lept(E[G]) C s, and
Degy(s) = there exists F € Fyx [G] such that @g p(s) > 0for all G’ €F,
mingeg 161DF(s) otherwise,

where

Dr(5) = 1= X 0 (). Ca(5): Csals) ).

G eF

Chigz> Chigk> Cada(s), Csy(s) are taken from Table V,

1 x = C
T()C,Caacs) :E(Ca_"cs)xl’t((j +C>’
a s

u(t) =2+1t+Vr*+0.25.

Here, the table constants were determined by numerical experiments with the Monte Carlo convergence speed at the
4-loop level; u(t) is a smooth approximation for 2 + max(0, 2¢); the function z(x, C,, C,) is a smooth approximation
for max(x, Cy) + C,.
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Let us examine several examples. Suppose G is Feynman
graph from Fig. 2. In this case,

%max[G] = {FlvFZ}’

where (10) and (11) are satisfied. If s = {4,5, 10, 11}, then
we have

Degy(s) = min(z(=@ f, (s) = @G, r, (s) = @G, r, (5)
- 5)/G3,F| (5), Cadaa(s). Csals)),
T<_5)/G,F2 (s) = Cb/Gl,Fz (s) = (7)/(;2,F2 (s)

— &g, r,(5): Caaa(s), Csu(s)))

Since all the constants CSubLSEOP7 CSubLSEOL’ CSubI’
Csupvor, Csupvor are non-negative, we have

Degy(s) = 7(max(0, I — Cgypi(5)), Caqa(s), Csar(s))-

If s = {4,5,10}, then we have

@6 F,(5) = g, r,(5) = &g, r,(5) = &g, r,(s) =0,

but we still use D, because s does not contain Lept(E[G]):

Degy(s) = Dy, (5) = 7(0, Caga(s), Csa(5))-

If s ={1,2,3,4,5,6,7,8,10}, then we have

1 3
Degy(s) = 1 Cigr + 1 Cigz-

Suppose G is Feynman graph from Fig. 6. In this case,
we have

%maX[G] = {F}’ F= {G}

If s ={1,2,...,12}, then we have Lept(E[G]) C s, but we
use Dy, because &g p(s) =—1 <0:

Degy(s) = 7(max(0, Csypi(s) = 1), Caaa(s), Csa(s))-

C. Additional stabilization techniques

During the integration, we perform the summation of the
values 1(z)/g(z), where I is the integrand and g is the

probability density function. Since these values are
unbounded, it is very important to prevent from occasional
emergence of very large values, but to allow their systematic
occurrence; we used the technique described in Sec. III. D
of [26] adapted to GPUs. The presence of acute peaks in the
integrands can lead to an error underestimation; to prevent
from this, we used the heuristic described in Sec. IV.F
of [39].

V. TECHNICAL INFORMATION
AND NUMERICAL CANCELLATIONS

In our approach, all divergences are numerically
cancelled at the level of the integrands. This cancellation
leads to round-off errors. We evaluate the integrand
values using interval arithmetic to control the errors.
The samples that result in too large intervals are evaluated
with increased precision. The algorithm of interval accep-
tance and rejection was described in detail in [27]
(Sec. IV. A). It is constructed so that the round-off error
is small relative to the Monte Carlo statistical error even in
the worst case and takes into account that the round-off
error can have a nonzero mean value, and we cannot add
them as statistical errors. In this calculation, it was
modified so that it also provides correct values for the
needed graph subsets.

The integrand expressions at the 5-loop level are huge.
Special tricks are required to evaluate them on GPUs. The
general scheme of the realization, as well as the interval
arithmetic, are described in [27]. We have generated the
integrand code for different precisions separately:

(1) “Eliminated interval arithmetic” (EIA) is an ap-
proach that works with the machine double
precision, but significantly faster than the usual
interval arithmetic (the price for this is larger
intervals). It is described in Sec. IV. C of [39].

(i) The usual machine double precision interval
arithmetic.

(iii) Arbitrary-precision interval arithmetic with the man-

tissa size as a parameter.

The code generator for the integrands was written in the
D programming language. The generation took a couple of
months on ITP KIT office computers. The code was
generated in c++° with CUDA, the size is 136 GB and
294 GB for graphs with lepton loops and without lepton
loops, respectively. The size in the compiled form is
191 GB and 393 GB, respectively. The compilation with
Nvee was performed on the supercomputer “HoreKa”
(Karlsruhe, Germany) with the help of the processors Intel
Xeon Platinum 8368 (38 cores) and took about 1
core-month.

6Formally it is C++, but for the most part the constructions
from c were used.
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TABLE VI. Contributions of the Monte Carlo samples with round-off errors and with the probability density out of machine double.
Class Value O oy o o) o

I(a) 0.00047105(16) —0.00069 23 %1073 5.7 x 10714 3.0x 107% —2.1 x 1073
I(b) 0.0070081(12) —0.0013 0.00058 -9.2x 10713 1.0 x 1072 1.1 x 1073
I(c) 0.0234643(26) 0.0074 0.0029 7.3 x 10712 -3.0x 10724 —1.4x1073
I(d) 0.00380370(61) 0.00076 0.00071 1.2x107° —6.6 x 1071 —2.9x 1072
I(e) 0.010289(11) 0.0051 0.0018 6.8 x 1077 1.1 x 107" ~7.8 x 10720
1(H) 0.00757106(47) 0.0045 0.0019 58x 1078 3.3x 1071 —4.0x107%
I(g) 0.0285696(18) 0.014 0.0051 2.4 %1078 —-1.9x 10714 —59x107%
I(h) 0.0016826(63) 0.0016 —0.00067 -2.9 x 1077 2.9 x 10713 1.8 x 10723
1G) 0.01726(29) —-0.010 —0.0050 -9.9 x 1073 -1.9x 1078 9.6 x 10713
1G) 0.0004038(63) 0.0037 —0.0014 -1.1x107° -1.2x 107" 2.2 x 10722
I(a) —0.1094945(50) —0.0070 —0.0012 1.4 x107° —1.4x1072! 5.0 x 10710
1(b) —0.473625(27) —-0.052 —0.0082 45x 1078 -5.0x 10714 -1.6 x 10712
TI(c) —0.116506(12) —0.041 —-0.0052 6.3 x 1078 —1.1x 107" 32 %1071
1I(d) —0.24291(15) —0.042 —0.0078 4.9 % 10°° -3.1 x 10716 -3.6x 10714
II(e) —1.34235(54) -0.77 -0.014 0.00014 3.9 x 1078 —6.0x 10713
10(f) —2.43553(30) -1.8 0.097 0.00095 3.4 x 1077 —2.5x 10714
(a) 2.12726(14) 0.68 —0.11 —0.00038 -1.6 x 1076 —1.1x107°
11(b) 3.32730(32) 0.99 -0.20 —0.00026 —1.1x107°° -5.5x 1077
IMI(c) 4.9199(15) 4.9 1.3 0.0010 4.6 x 1077 —-12x 1071
v —=7.7303(16) —4.1 0.81 0.0056 -3.6x 107 —5.7x107°
\Y% 6.857(81) 11.4 2.7 0.12 —0.00053 1.9 x 10~10
VI(a) 1.041537(82) 0.45 —-0.078 —0.00060 52 %1078 1.9 x 10710
VI(b) 1.34697(11) 0.26 —0.17 —0.0013 —1.1x10°° 1.3x 10713
VI(c) —2.53312(49) -1.2 0.039 0.0032 3.9x 106 —7.2x 10713
VI(d) 1.8468(22) 1.5 1.6 —-0.013 -1.5x 107 -1.0x 107!
VI(e) —0.43129(17) —-0.28 —0.00087 1.1 x 1077 —3.1x 10716 3.2 x 107"
VI(f) 0.77154(23) 0.59 —-0.11 —-0.0011 —5.1 x 1077 -1.6x 1071
VI(g) —1.5965(10) -14 —0.018 —0.0056 -1.0x 107 —3.6x 10712
VI(h) 0.18554(68) 0.070 —0.0019 0.00017 2.1 x 1077 —6.6 x 10713
VI(i) —0.04396(10) -0.13 —0.038 -3.6 x 107 2.2x107° —5.1x 10714
VI(j) —0.22920(43) 0.032 —0.083 —0.00064 —6.0 x 1077 1.7 x 10712
VI(k) 0.67974(39) 0.43 0.80 0.00064 7.9 x 1077 —22x1071

We evaluate all Feynman graphs directly; we never use
known lower-order formulas for the vacuum polarization.
These substitutions could significantly improve the pre-
cision for classes such as set I(a), but the impact on the
overall accuracy is negligible, and the individual precision
achieved is enough for verification. For example, it is
dominated by set V that has no vacuum polarizations at all.’
On the other hand, the use of explicit formulas makes the
code more complicated and unreliable.

"There are many graphs that have only one 1-loop vacuum
polarization insertion. They provide a significant contribution (if
we ignore set V), but we do not believe that using explicit one-
loop formulas would significantly improve the speed and
precision: the dimensionality of the integrand would be reduced
by 2 (from 13 to 11), but the integrand structure would become
more complicated.

Table VI contains the information about the contribu-
tions of the Monte Carlo samples that required increased
precisions. Note that Al =~ Afl - Afal = AR are the
contributions of the samples for which the following
precision failed: eliminated interval arithmetic, the usual
machine double precision interval arithmetic, 128-bit-
mantissa interval arithmetic, 192-bit-mantissa interval
arithmetic, respectively. The integrands and the probability
density functions tend very quickly towards infinity at the
boundary; sometimes the situation arises that the proba-
bility density value is too large to be stored in the machine
double precision. This is not a problem for our integra-
tion program, but the contribution A% - of these
samples is also given in the table.

The corresponding numbers of the Monte Carlo samples
are given in Table VIIL. The table also includes the number
Nl of the samples for which the 256-bit-mantissa
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TABLE VII.  Statistics of round-off errors in the integrand evaluations and the Monte Carlo samples with the probability density out of
machine double.

Class N total N ]fiflll/l\ N %\ﬂ N %2% N %)112 N %16 N (ieclfguble
I(a) 15 x 10'! 38 x 10'° 15 x 10° 19 x 107 36 x 10* 3620 5
I(b) 24 x 101 54 x 1010 40 x 10° 25 x 107 15 x 10* 1171 6
I(c) 81 x 100 18 x 1010 23 x 10° 22 x 10° 3037 8 6
I(d) 10'2 19 x 1010 31 x 10° 21 x 10° 5452 11 85
I(e) 29 x 10!! 51 x 1010 69 x 10° 77 x 10° 42129 114 57
I(f) 84 x 1010 11 x 10'° 19 x 10° 96 x 10° 4829 8 99
I(g) 15 x 10'! 25 x 1010 46 x 10° 16 x 10° 5962 2 1057
I(h) 50 x 10!! 61 x 10'° 58 x 10° 87 x 10° 3513 3 3040
IG) 85 x 102 1013 12 x 10! 23 x 107 13 x 10* 199 19304
1G) 74 % 100 25 x 10'° 46 x 10° 43 x 107 19 x 10° 25355 3096
I1(a) 49 x 101 12 x 10! 95 x 10° 72 % 107 23 x 10° 55926 6528
II(b) 65 x 10! 18 x 10! 13 x 1010 29 x 107 50 x 10* 3981 22909
I1(c) 26 x 101 61 x 10'° 54 x 10° 87 x 10° 682 0 23303
11(d) 14 x 102 29 x 10! 11 x 1010 24 x 10° 4433 3 52772
II(e) 27 x 10" 13 x 101 69 x 10° 68 x 107 27 x 10° 20662 11 x 10*
1I(f) 85 x 10%° 52 x 1010 43 x 10° 28 x 107 11x10° 10002 27199
IMI(a) 1013 44 x 10! 24 x 1010 12 x 108 42 x 105 45636 22 x 10*
I11(b) 15 x 102 54 x 10!! 38 x 1010 17 x 108 57 x 10° 41232 54 x 10*
I1I(c) 11 x 102 63 x 101 56 x 1010 77 x 108 43 x 10° 49 x 10* 13 x 10°
1AY 78 x 102 35 x 10'? 29 x 10! 21 x 10° 108 13 x 10° 63 x 10°
A 24 x 1013 51 x 102 90 x 10" 19 x 100 10° 50 x 10° 45 % 10°
VI(a) 41 x 10'° 21 x 10'° 25 x 10° 47 x 10° 46527 457 4932
VI(b) 1012 44 % 1010 36 x 10° 70 x 10° 13 x 10* 1745 30089
VI(c) 30 x 10! 21 x 10! 11 x 10 20 x 107 11x10° 23583 40 x 10*
VI(d) 41 x 102 26 x 1012 12 x 10! 36 x 108 28 x 10° 72 x 10* 107
VI(e) 55 x 1010 35 % 100 20 x 10° 28 x 10° 12 x 10* 2736 37778
VI(f) 12 x 10" 69 x 10'° 48 x 10° 108 68 x 10* 16916 31312
VI(g) 103 60 x 10" 26 x 10'° 54 x 107 30 x 10° 65104 11 x 10°
VI(h) 12 x 102 40 x 10! 27 x 1010 57 x 107 22 x 108 50017 22 x 10*
VI(i) 62 x 1010 18 x 1010 100 13 x 10° 20159 281 5509
VI(j) 63 x 1010 40 x 1010 28 x 10° 99 x 10° 61 x 10* 11317 11062
VI(k) 32 x 10! 13 x 10! 20 x 10° 26 x 10° 507 0 361

precision failed. It is the highest precision in our integra-
tion, these samples are considered as giving 0.

Table VIII contains information about oscillations in
individual graph contributions and in integrands. This
concerns only the new calculation. The part referring to
the graphs without lepton loops can be compared with the
corresponding table in [27]. The use of M?> = —m? instead
of M? = m? in (6) and (7) reduced the oscillations by about
1.5 times.

VI. CONCLUSION

The universal QED expansion coefficient A(llo) of the
lepton magnetic moments was successfully calculated and
compared with the previously known value obtained by
T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio. The
results agree very well in 31 out of 32 classes, but remain

inconsistent in the remaining class. The deviating class
value agrees with the value presented by the author in 2019,
but not with the AHKN one.

Other calculations of A(llo) are either not accurate enough
to resolve the discrepancy or affecting only a very small
part of the contributions.

The results presented are divided into 95 gauge-invariant
classes, which subdivide the 32 classes mentioned above.
The results at this level of detail were presented for the
first time.

The author’s method for removing divergences under the
integral sign in Feynman parametric space was used. The
method yields a finite integral for each Feynman graph.
However, the contributions of individual graphs remain
large and oscillating relative to the final value. Changing
the subtraction point to the off shell, one reduces the
oscillations slightly, but does not solve the problem
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TABLE VIII. Oscillations in the individual graph contributions and integrals; here, a; = f I;(z)dz is the
contribution of the ith graph to the value; /; is the corresponding Feynman parametric integrand.

Class Value =}, g > i lail max; |a;| D f 11;(z)|dz N graph
I(a) 0.00047105(16) 0.00047 0.00047 0.021 1
I(b1) 0.0046715(11) 0.0047 0.0027 0.12 2
1(b2) 0.00233656(54) 0.0023 0.0014 0.061 2
I(c) 0.0234643(26) 0.023 0.012 0.23 3
I(d) 0.00380370(61) 0.0038 0.0033 0.051 2
I(e) 0.010289(11) 0.074 0.022 0.76 9
1(H) 0.00757106(47) 0.0076 0.0073 0.037 2
I(g) 0.0285696(18) 0.029 0.015 0.15 4
I(h) 0.0016826(63) 0.13 0.036 0.63 11
1(1) 0.01726(29) 1.5 0.12 5.8 39
1) 0.0004038(63) 0.12 0.061 0.67 2
I(apl) 0.00924758(84) 0.011 0.0073 0.067 3
I(ap2) —0.0297767(11) 0.030 0.024 0.11 2
I(ap3) —0.0262183(11) 0.026 0.022 0.096 2
II(asl) —0.0466111(41) 0.047 0.031 0.28 2
II(as2) 0.0137916(15) 0.017 0.013 0.15 3
II(as3) —0.0299276(18) 0.030 0.023 0.17 2
(bpl) 0.0326223(31) 0.033 0.011 0.23 6
1(bp2) —0.0800129(67) 0.080 0.045 0.36 4
I(bp3) —0.0836017(85) 0.084 0.045 0.36 4
II(bs1) —0.125057(11) 0.13 0.063 0.86 4
II(bs2) —0.125056(14) 0.13 0.062 0.86 4
II(bs3) 0.088110(10) 0.093 0.050 0.96 8
1I(bs4) —0.180629(14) 0.18 0.048 1.1 8
II(cl) —0.0869389(86) 0.087 0.063 0.42 4
II(c2) 0.0375573(46) 0.041 0.024 0.25 6
II(c3) —0.0671244(72) 0.067 0.054 0.29 4
1I(d1) —0.18988(11) 1.6 0.43 6.8 18
1(d2) 0.111341(75) 0.87 0.16 43 25
11(d3) —0.164378(83) 1.3 0.37 49 18
II(el) —1.13757(46) 20.5 2.0 65.0 30
II(e2) —0.20478(28) 24.2 3.0 38.5 20
II(f1) —0.239896(88) 0.32 0.27 2.5 3
1I(f2) —1.91510(23) 3.8 0.99 14.9 9
II(f3) —0.28054(18) 8.6 2.8 10.3 6
I(apl) 0.056161(42) 0.51 0.16 1.4 10
MI(ap2) 0.251184(26) 0.45 0.14 0.89 12
M(ap3) 0.227894(47) 1.0 0.12 2.5 20
II(ap4) 0.143139(17) 0.36 0.14 0.64 4
M(ap5) 0.071170(37) 0.83 0.15 2.1 20
II(ap6) 0.164795(20) 0.37 0.067 1.1 10
II(ap7) 0.0275451(27) 0.075 0.051 0.15 3
IM(as1) 0.054599(55) 1.4 0.47 2.6 10
ITI(as2) 0.225730(17) 0.47 0.35 0.79 3
III(as3) 0.055588(66) 2.4 0.51 4.9 20
II(as4) 0.289427(35) 0.78 0.20 1.7 12
III(as5) 0.440024(55) 1.2 0.13 4.0 20
1II(as6) 0.102979(21) 0.33 0.12 1.1 4
I(as7) 0.017022(35) 0.45 0.088 2.0 10
II(b1) 0.35850(13) 4.0 0.76 10.7 20
II(b2) 0.550730(74) 1.7 0.74 34 6
III(b3) —0.21825(16) 8.9 0.78 224 40
1I1(b4) 0.916024(91) 3.3 0.50 8.1 24
III(b5) 0.43819(10) 2.8 0.48 6.3 8
III(b6) 1.35323(15) 5.1 0.25 16.7 40

(Table continued)
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TABLE VIIL (Continued)

Class Value = 3, a; > i lail max;|a;] > J i(2)ldz N grapn
I(b7) —0.07113(10) 2.8 0.31 10.1 20
I(cl) 1.86018(48) 13.0 2.7 37.4 12
1I(c2) 3.28050(91) 433 5.8 104.7 27
1I(c3) 0.27166(48) 14.3 3.8 32.7 6
1I(c4) —0.75943(79) 33.1 3.7 89.8 24
I(c5) 0.22308(51) 36.5 6.6 66.4 15
1I(c6) 0.04392(46) 314 4.8 50.3 18
V(1) —0.51586(43) 15.7 1.0 29.9 74
IvV(2) —0.64878(28) 7.1 0.86 12.5 20
IvV(3) —1.14824(60) 30.9 1.5 63.8 148
IV(4) 1.19593(38) 15.1 1.3 27.5 55
IV(5) —1.52785(60) 324 1.3 67.4 162
IV(6) 0.50531(30) 8.4 0.59 174 56
IV(7) —0.19295(26) 4.6 0.46 11.0 20
IV(8) —0.78444(38) 10.0 0.63 25.6 40
IvV(©9) —4.49029(73) 334 0.64 84.4 222
IvV(10) 0.19698(32) 8.3 0.66 21.9 50
Iv(11) 0.05233(55) 18.7 0.48 60.7 148
v(12) —0.37250(31) 6.6 0.43 19.0 54
V(1) 6.169(20) 599.3 6.9 1208.7 706
V() 0.964(31) 2077.2 46.2 2454.3 148
V(3) 0.334(20) 737.9 38.0 861.2 55
V(4) —0.789(37) 2029.2 333 3126.1 706
V(5) —2.157(34) 22533 58.7 3060.7 370
V(6) —0.415(35) 1948.0 43.6 2780.9 558
V(7) 2.644(23) 1062.3 51.1 1493.4 261
V(8) —0.975(21) 1028.0 43.0 1460.4 336
V(©9) 1.0807(63) 137.5 17.0 200.4 73
VI(ap) 0.482955(59) 0.75 0.49 2.9 5
Vi(as) 0.558582(57) 1.3 0.70 39 5
VI(b) 1.34697(11) 29 1.1 154 10
VI(c) —2.53312(49) 39.5 3.9 72.0 37
VI(d) 1.8468(22) 352.6 12.1 703.1 127
Vi(e) —0.43129(17) 4.5 1.1 11.5 13
VI(f) 0.77154(23) 9.8 0.63 33.7 46
VI(g) —1.5965(10) 137.8 3.8 341.1 122
VI(h) 0.18554(68) 84.0 22 239.3 162
VI3) —0.04396(10) 2.9 0.49 10.0 16
VI() —0.22920(43) 16.3 4.7 60.0 9
VIk) 0.67974(39) 56.2 5.1 75.4 32
With lepton loops —0.9377(35) 1174.7 12.1 2656.6 2323
No lepton loops 6.857(81) 11872.6 58.7 16646.1 3213

completely. These oscillations occur regardless of the
subtraction method used and still require a comprehensive
explanation.

A nonadaptive Monte Carlo integration algorithm was
used for the numerical integration. This nonadaptivity means
that the probability density function for each integral is
predefined and remains fixed during the integration.
However, this algorithm has 42 real parameters that can
be chosen arbitrarily. Thirty-two of them were adjusted
during the experiments with the 4-loop calculations. Six of
them were chosen after poor convergence was observed for

set I(i), and some adjustments were made to make the
convergence for this set as good as possible. Reasonable
values were chosen for the remaining 4 parameters.

The definition of the probability density functions
used is based on the combinatorics of the Feynman
graphs. The procedure suitable for all Feynman graphs,
including those with lepton loops, was presented for the
first time. The description looks cumbersome at first
glance, but it is accompanied by a number of examples
that provide the opportunity to check and improve the
algorithm.
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