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Recently, several normalizing flow-based deep generative models have been proposed to accelerate
the simulation of calorimeter showers. Using CaloFlow as an example, we show that these models
can simultaneously perform unsupervised anomaly detection with no additional training cost. As a
demonstration, we consider electromagnetic showers initiated by one (background) or multiple (signal)
photons. The CaloFlow model is designed to generate single-photon showers, but it also provides access to
the shower likelihood. We use this likelihood as an anomaly score and study the showers tagged as being
unlikely. As expected, the tagger struggles when the signal photons are nearly collinear but is otherwise
effective. This approach is complementary to a supervised classifier trained on only specific signal models
using the same low-level calorimeter inputs. While the supervised classifier is also highly effective at
unseen signal models, the unsupervised method is more sensitive in certain regions, and, thus, we expect
that the ultimate performance will require a combination of these approaches.
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I. INTRODUCTION

In 2012, the final piece of the Standard Model, the Higgs
boson, was discovered at the Large Hadron Collider (LHC)
by the ATLAS [1] and CMS [2] Collaborations. Despite
this milestone, compelling theoretical and experimental
reasons continue to drive the search for physics beyond the
Standard Model (BSM). Regrettably, the extensive search
programs conducted by ATLAS [3–5], CMS [6–8], and
LHCb [9] at the LHC have yet to yield conclusive evidence
for new BSM physics. Given the impossibility of con-
ducting dedicated searches for every conceivable BSM
scenario, most LHC searches target specific signals derived
from theoretical priors, leaving substantial portions of the
LHC phase space unexplored. This limitation has spurred

the development of more model-agnostic search strategies,
with the hope of detecting BSM physics at the LHC. The
advent of deep learning has given rise to various model-
agnostic anomaly detection methods designed to explore
uncharted territories of the LHC phase space—for reviews
and original references, see, e.g., [10–14].
Normalizing flows [15–20] represent a class of deep

learning models particularly valuable for generative mod-
eling and density estimation tasks. A normalizing flow is
characterized by a parametric diffeomorphism fθ mapping
between a latent space, with a known distribution πðzÞ, and
a data space of interest with an analytically unknown
distribution pðxÞ. In the context of a conditional normal-
izing flow, this transformation becomes fθðxjcÞ, where c
denotes the conditional inputs to the flow. It is defined
through a series of invertible functions, parametrized by θ,
that can be trained by maximizing the log-likelihood of the
data following the change of variables formula:

logðpðxjcÞÞ ¼ logðπðfθðxjcÞÞÞ þ log
���det ðJ ðfθðxjcÞÞÞ

���;
where J ðfθðxjcÞÞ represents the Jacobian of the trans-
formation fθðxjcÞ. The allowable transformations must
also have a computationally tractable Jacobian, ideally
efficient to compute, and the probability density of the base
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distribution πðzÞ must be known. A common choice for
πðzÞ is the standard normal distribution.
Recently, normalizing flows have found successful

applications in fast calorimeter simulation tasks [21–27].
Moreover, normalizing flows have demonstrated compa-
rably excellent performance across various tasks within
high-energy physics [28–53]. In this paper, we demon-
strate the utility of these flow-based generative models as
unsupervised anomaly detectors for identifying BSM
physics in calorimeter shower data. Specifically, we apply
CaloFlow [21], a flow-based fast calorimeter simulation
model, to single-photon showers from a new sampling
calorimeter version [54] of the CaloGAN dataset [55–57]. In
this context, single-photon showers serve as the back-
ground events, while the signal events consist of photon
showers originating from a generic BSM particle χ that
undergoes the decay χ → γγ. The χ particle is taken to be
invisible and interacts only indirectly with the calorimeter
through its decay products. By training CaloFlow to maxi-
mize the log-likelihood when evaluated on background
events, we are able to detect the signal events based on a cut
on the log-likelihood. We focus on achieving signal
sensitivity, but the approach could be combined with a
number of background estimation strategies [11,28].
While we believe this is the first unification of simula-

tion and anomaly detection, both subjects have been well
studied with machine learning. Many deep generative
models have been studied for calorimeter simulation
[21–25,27,56–81], including a number of proposals devel-
oped on the CaloChallenge datasets [82], and they are also
now being integrated into experimental work flows [71].
We focus on normalizing flows, since they give direct
access to the likelihood. This information can also be
extracted from diffusion models [83], and it would be
interesting to compare approaches in the future. For
anomaly detection, unsupervised methods have been exten-
sively studied (e.g., Refs. [84–86], and many others) and
also include density-based approaches [12]. Like the
density-based methods, we use the likelihood directly as
the anomaly score.1

There may be other ways of reusing the generative model
for BSM searches, including fine-tuning supervised models
based on particular signal hypotheses.
This paper is organized as follows. In Sec. II, we describe

the calorimeter setup and the datasets that were used during
training and evaluation. In Sec. III, we explain how CaloFlow

is used as an unsupervised anomaly detector by placing
cuts on the log-likelihood of background and signal
showers evaluated using CaloFlow. In Sec. IV, we include
the results of performing unsupervised anomaly detection
with CaloFlow. Finally, we conclude in Sec. V.

II. DATASET

For this study, we decided to create a new, more realistic
sampling calorimeter version [54] of the CaloGAN dataset.
The original dataset included energy contributions from
both active and inactive calorimeter layers, whereas our
new dataset includes only energy contributions from the
active layers as would be available in practice. The
sampling fraction of our new calorimeter setup is ∼20%.
The simple detector is a three-layer, liquid argon (LAr)
sampling calorimeter cube with 480 mm side length that is
inspired by the ATLAS LAr electromagnetic calorimeter
[90]. It is simulated as follows: Geant4 [91–93] is used to
generate particles and simulate their interaction with our
calorimeter using the Ftfp_Bert physics list based on the
FRITIOF [94–97] and Bertini intranuclear cascade [98–100]
models with the standard electromagnetic physics package
[101]. While we use this new simulator to create a dataset
for anomaly detection, we expect it should be more
generally useful for a broad variety of tasks.
The calorimeter showers are represented as three-dimen-

sional images that are binned in position space. In this
representation, the calorimeter shower geometry is made
up of voxels (volumetric pixels), and the details of the
calorimeter voxel dimensions are included in Table I.
Figure 1 (taken from [56,57]) shows the three-dimensional
representation of a shower in the CaloGAN calorimeter. The
three longitudinal layers are separated in the figure for
visualization purposes. In thiswork, the center of the detector
is taken to be at z ¼ 0 m, while the front face of layer 0 is
positioned at z ¼ 1 m, which is consistent with an ATLAS-
like configuration.
For the background dataset (single-photon calorimeter

showers), we generate 100 000 showers with incident ener-
gies Einc uniformly distributed in the range [1, 100] GeV.
This dataset was used as the training dataset for CaloFlow

wherewe used a train/validation split of 70%/30%.A second
independent dataset of 100 000 showers with the same range
of Einc was generated and used for evaluation.
To obtain the signal datasets, we defined the hypothetical

χ particle in Geant4, which has the same properties as the η0

particle except having a different mass and being invisible

TABLE I. Dimensions of a calorimeter voxel. The positive z
axis (radial direction in full detector) is the direction of particle
propagation, the η direction is along the proton beam axis, and ϕ
is perpendicular to z and η. For the number of voxels, the first
(second) number is the number of bins in the ϕ (η) direction
(e.g., 12 × 6 refers to 12ϕ bins and six η bins).

Layer index
z length
(mm)

η length
(mm)

ϕ length
(mm)

Number
of voxels

0 90 5 160 3 × 96
1 347 40 40 12 × 12
2 43 80 40 12 × 6

1Note that this is not unique and is sensitive to how the data are
represented or preprocessed [87–89].
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to the detector. Next, we generate multiple sets of 100 000
showers that originate from χ → γγ decay at ten chosen
fixed displacements from the center of detector along the z
axis. The chosen fixed displacements are zi ∈ f0.33; 0.66;
1.00; 1.04; 1.08; 1.16; 1.24; 1.32; 1.40; 1.44g m. Note that
the first two displacements are located in front of the
calorimeter, while the last eight displacements are located
at distinct positions within the calorimeter. The energy of
the χ particle was fixed at 50 GeV. Such a hypothetical
scenario might arise from the decay of a 100 GeV particle
(close to, e.g., the Higgs boson mass), which is at rest, to a
pair of χ particles.
To study how the mass mχ affects the anomaly detection

performance, we generated signal datasets with different
mχ ∈ f5 × 10−3; 5 × 10−2; 5 × 10−1; 5g GeV. For each
choice of mχ , we generate 100 000 showers at each of
the ten fixed displacements. The results for these fixed
displacement signal datasets are shown in Sec. IVA.
To consider particles with fixed lifetimes, we construct

new signal datasets using the fixed displacement samples.
In particular, we use the probability that the χ particle
decays at various positions along the z axis to determine the
proportion of showers originating from decays at each of
the ten fixed displacements. Generating directly with fixed
lifetimes would have been too inefficient, since we are
discarding decays after the calorimeter volume, which can
happen often for these lifetimes that we consider. More
details of the fixed lifetime signal datasets are included in
Sec. IV B.
We also generated 100 000 signal showers with kinetic

energy2 uniformly distributed in the range [1, 100] GeV for

a χ particle with mχ ¼ 5 × 10−3 GeV and lifetime
τ ¼ 1.00 ns. A second set of 100 000 signal showers
was generated with the same range of kinetic energies
but for a χ particle with mχ ¼ 5 GeV and lifetime
τ ¼ 1.00 ns. Each of these two datasets (together with
the background dataset) was used to train a supervised
classifier described in Sec. IV C. Using a range of kinetic
energies ensured that we obtain showers with a range of
Einc such that the Einc would not be used as a discriminating
factor by the supervised classifier. This allows for a fairer
comparison between performance of the supervised clas-
sifier and our unsupervised method, since CaloFlow learns
the likelihood conditioned on Einc.

III. CaloFlow

CaloFlow [21,22] is an approach to fast calorimeter
simulation based on conditional normalizing flows. In
the context of fast calorimeter simulation, CaloFlow uses a
two-flow method to learn to generate the voxel-level
shower energies I⃗ conditioned on the corresponding
incident energies of the showers Einc denoted by
pðI⃗ jEincÞ. Flow I is constructed to learn the probability
density of calorimeter layer energies3 Ei conditioned on the
incident energy p1ðE0; E1; E2jEincÞ, while flow II is
designed to learn the probability density of the normalized
voxel-level shower energies conditioned on the calorimeter
layer energies and incident energies p2ðÎ jE0; E1; E2; EincÞ.
By normalized, we mean that the voxel energies in each
layer are made to sum to unity. The dimensions of the
conditional inputs and outputs of the two flows are shown
in Table II. Importantly, these flows were trained using only
single-photon showers.
One important difference from the original CaloFlow is

that in this application to anomaly detection we do not have
direct empirical access to Einc. For a given shower, we do
not know a prioriwhat the corresponding Einc is and would
instead have to use a reconstructed estimate of Einc which

we denote as EðrecÞ
inc . In this work, we use a simple regression

method to reconstruct Einc given the total deposited energy
in the calorimeter Edep. The reconstructed incident energy is

TABLE II. The conditional inputs for each flow and the
features whose probability distributions are the output of each
flow.

Conditionals
Dimension

of conditional Output
Dimension
of output

Flow I Einc 1 E0, E1, E2 3
Flow II E0; E1; E2; Einc 4 Î 504

FIG. 1. Three-dimensional representation of the shower in the
CaloGAN calorimeter; figure taken from [56,57]. Not-to-scale
separation among the longitudinal layers is added for visualiza-
tion purposes.

2We distinguish between kinetic energy and incident energy
for massive particles. The incident energy is the sum of the kinetic
energy and rest mass energy of the particle. This distinction
becomes noticeable only in the case of mχ ¼ 5 GeV.

3The layer energy of a given calorimeter layer is the sum of all
the voxel energies in that layer.
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defined as EðrecÞ
inc ¼ λEdep, where λ is the mean of Einc=Edep

in the single-photon training dataset. Note that the true Einc

is still used for training CaloFlow, while EðrecÞ
inc is used when

performing anomaly detection.
The architecture and training of CaloFlow are outlined in

the Appendix. Some modifications were made to the
original CaloFlow, while most of the main algorithm remains
unchanged.

A. Unsupervised anomaly detection with CaloFlow

After training CaloFlow on background single-photon

showers, we evaluate the log-likelihood logpðÎ ; EijEðrecÞ
inc Þ

of the background and signal showers by using the trained
flows. Using both flow I and flow II, we are able to obtain the
full log-likelihood:

logpðÎ ;EijEðrecÞ
inc Þ ¼ logp1ðEijEðrecÞ

inc Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
flow I

þ logp2ðÎ jEi;E
ðrecÞ
inc Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

flow II

:

ð1Þ

Figure 2 shows an example of a plot of the full log-
likelihood of the signal showers from χ decays at the ten
fixed displacements and background photon showers.
We see from Fig. 2 that the signal showers generally have

log-likelihoods that are distinguishable from that of the
background showers. Hence, we can use CaloFlow as an
unsupervised anomaly detector by placing cuts on the full
log-likelihood to discriminate signal from background
showers. The results are detailed in Sec. IV. Though not
explained here, the main features found in Fig. 2 can be
understood from the discussion in Sec. IVA.
Despite the possibility of data-MC differences affecting

the sensitivity of our approach, we note that the accuracy
would not be affected, since one would presumably apply

standard downstream background estimation. Furthermore,
experiments usually calibrate their fast simulation and
those calibrations could be applied to improve the
sensitivity.

IV. RESULTS

A. Decay at fixed displacement

In this section, we study the effect of varying the
displacement from the center of the detector at which
the decay occurs on the evaluated likelihood. In reality,
particles do not decay at fixed positions, but instead the
probability of a particle decaying at a given displacement
from where it was created is related to its lifetime τ.
Nevertheless, studying the showers produced by the par-
ticle χ at fixed decay positions is interesting from an
experimental perspective, and doing so also helps us
interpret the more physical results in Sec. IV B.
Our performance metric for anomaly detection will be

the significance improvement which is defined as the signal
efficiency (i.e., true positive rate or tpr) divided by the
square root of the background efficiency (i.e., false positive
rate or fpr). The maximum significance improvement
corresponds to the best possible4 multiplicative factor by
which the signal significance can be improved with a cut on
the anomaly score. Figure 3 shows a heat map of maximum
significance improvement for each of the four different
particle masses mχ and the ten fixed displacements where
the decay occurs. In general, we find that showers from
decays at larger z are more anomalous. However, there is a
clear exception in the case of mχ ¼ 5 GeV, where the
showers originating from decays that occur before the χ
particle reaches the calorimeter (e.g., z ¼ 0.33, 0.66 m) are
more anomalous than those from decays occurring at the
front face of the calorimeter (i.e., z ¼ 1.0 m). This is due to
the fact that the 5 GeV particle is less boosted compared to
the other lighter particles that we consider in this study. As
a result, the decay of the 5 GeV particle often results in a
wider angle between the produced pair of photons which
CaloFlow is better able to distinguish from the background
single-photon showers. See Fig. 4 for an example of such a
shower and comparison with a regular photon shower. On
the other hand, if a decay occurs right at the front face of the
calorimeter, there is insufficient time for the pair of photons
to propagate and create two distinct blobs of energy in the
calorimeter. The sudden jump in maximum significance
improvement for all mχ when going from z ¼ 1.32 m to
z ¼ 1.4 m is due to the discretization of the calorimeter
voxel geometry in the longitudinal direction described in
Sec. II. The transition between the second and third
longitudinal layers occurs at z ¼ 1.437 m. Hence, showers
from decays at z ¼ 1.4m, which have more energy

FIG. 2. Plot of log-likelihood comparison between signal
showers from χ decays at the ten fixed displacements (lines)
and background photon showers (filled). This example is for a χ
particle with mχ ¼ 5 GeV.

4This is signal model dependent but still provides a useful
bound on the achievable performance.
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deposited in the third layer, are flagged as significantly
more anomalous.
For the three lowestmχ , we find that CaloFlow struggles to

detect signal showers that originate from decays occurring

before the front face of the calorimeter (i.e., z ≤ 1.0 m).
These lower-mass particles are highly boosted, which
results in showers from highly collimated photon pairs
that are more similar to the background photon showers.

B. Varying lifetime

To assess the performance of our unsupervised
anomaly detector on realistic scenarios, as mentioned
in Sec. II, we construct new datasets consisting of
showers from χ particles with fixed rest frame lifetimes.
In particular, for each chosen mass mχ and lifetime τ, we
have a total of 100 000 events that are made up of
showers from χ decays at fixed displacements. The
proportion of showers associated to decays at each fixed
displacement is determined based on the lifetime τ.
Particles that decay after the calorimeter volume are
not included in the events, since they are not detected
within the calorimeter.
The probability for a particle to survive for time t before

decaying is given by PsðtÞ ¼ expð− t
γτÞ, where the relativ-

istic boost factor γ ¼ Eparticle=Mparticle. Equivalently, the
probability that a particle decays before reaching displace-

ment z is given by PdðzÞ ¼ 1 − exp
�
− z

cτ
ffiffiffiffiffiffiffi
γ2−1

p
�
. Since

we consider ten fixed displacements indexed by
i∈ f1; 2;…; 10g, the fraction of the total showers that
originates from χ decay at displacement zi is set to be ŵi,
which is defined by

FIG. 3. Heat map of maximum significance improvement
ðtpr= ffiffiffiffiffiffi

fpr
p Þ for different masses of the χ particle mχ and the

ten fixed displacements where the decay occurs.

FIG. 4. Top row: example of a shower with two distinct blobs of energy originating from a 5 GeV χ particle that decayed at z < 1.0 m.
Bottom row: example of a typical photon shower with centralized energy core. The energy deposition in each of the three layers is shown
here with layer 0 on the left, layer 1 in the center, and layer 2 on the right.
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wi ¼
�
Pdðz1Þ; i ¼ 1;

PdðziÞ − Pdðzi−1Þ; otherwise

and ŵi ¼
wiP
10
j¼1 wj

:

In other words, the number of showers originating from
the decay at z ¼ zi is equal to 105 × ŵi.

5 In this work, we
consider three possible lifetimes τ∈ f0.01; 0.1; 1g ns for
each choice ofmχ . A visualization of how the fixed lifetime
datasets are constructed from showers in the fixed dis-
placement datasets is shown in Fig. 5. In Table III, we show
the percentage of χ decays that occur before and within the
calorimeter volume and also the average flight length of the
χ particle for different mχ and lifetimes τ.
Figure 6 shows the significance improvement of our

CaloFlow anomaly detector as a function of the background
rejection (1=false positive rate) for various types of signal
showers originating from χ particles with different mχ

and τ.
Overall, we find that CaloFlow is able to achieve signifi-

cantly better performance compared to a random classifier
which we take to be the baseline. One exception is for
ðmχ ; τÞ ¼ ð0.5 GeV; 0.01 nsÞ, where the performance
closely matches that of the random baseline. The poorer
performance here is due to the lower boost factor γ for the
0.5 GeV particle compared to the two lower particles
masses which results in the majority of the decays occur-
ring close to the center of the detector (z ¼ 0 m).
Meanwhile, the mass is still low enough that the photons
are not widely separated by the time they reach the
calorimeter. As we have seen in Fig. 3, such showers
are mostly not detected as anomalous by CaloFlow. At longer
lifetimes, the showers are more anomalous, as a larger
proportion of them originate from decays occurring within
the calorimeter.
For the three lowest mχ , the significance improvement

generally increases with background rejection. Also, we
find that the significance improvement curves are similar
across lifetimes for the two lowest mχ . In these cases,

z
cτ

ffiffiffiffiffiffiffi
γ2−1

p is small, which implies that PdðzÞ ≈ z
cτ

ffiffiffiffiffiffiffi
γ2−1

p .

Hence, the lifetime τ cancels out when computing ŵi. In
other words, at fixed mχ , the large boost of these particles
results in a similar proportion of particles decaying at a
given fixed displacement before and within the calorimeter
for different lifetimes τ.
The best performance among all the (fixed mass and

lifetime) signal models we considered in this study was
achieved in the cases with the largest mass ofmχ ¼ 5 GeV.
As explained in Sec. IVA, showers from early decay of
these more massive particles are quite anomalous according
to CaloFlow due to the wider angle between the produced pair
of photons. In this case, going to higher lifetimes actually
makes these showers slightly less anomalous (which is
opposite to the trend seen at lower masses), since it gives
the photons less time to separate before interacting with the
detector.
There is a local maximum in each of the significance

improvement curves for mχ ¼ 5 GeV. To understand the
local maximum, we have to look at the log-likelihood plot
for mχ ¼ 5 GeV shown in Fig. 7. The peaks at the log-
likelihoods of −1000 and −500 are due to showers from
decays occurring at z ¼ 0.33 and 0.66 m, respectively,
which can also be seen in Fig. 2. Sliding the cut on log-
likelihood in the direction of decreasing log-likelihood is
equivalent to increasing the background rejection (1=fpr).
Notice that sliding the cut in the direction of decreasing log-
likelihood across peaks in the χ shower log-likelihood
curve would create a local maximum in the plot of
significance improvement vs background rejection
(1=fpr), since the tpr decreases faster than the increase
in 1=

ffiffiffiffiffiffi
fpr

p
.

C. Comparison with supervised anomaly detection

The previous section showed that the unsupervised
anomaly detector has broad coverage across the various
model parameters. An important question to ask is how this
compares to a dedicated search for the χ → γγ signal. For a
particular signal model, we would expect the dedicated
search to outperform the unsupervised approach. However,
it is not possible to have a dedicated search for every
possible signal, and so the key question to ask is how well a
supervised model trained on one signal would perform on
other signals not seen during training.

FIG. 5. Visualization of how the fixed lifetime datasets are
constructed by sampling from the fixed displacement datasets.
The fraction of total showers in each fixed lifetime dataset
originating from χ decay at displacement zi is set to be ŵi.

TABLE III. Percentage of χ decays (left number) that occur
before and within the calorimeter volume and the average
flight length (right number) of χ particles for different mχ and
lifetimes τ.

mχ

τ (ns) 5 × 10−3 GeV 5 × 10−2 GeV 5 × 10−1 GeV 5 GeV

0.01 5% / 30 m 38% / 3 m 99% / 0.3 m 100% / 0.03 m
0.1 0.5% / 300 m 5% / 30 m 38% / 3 m 99% / 0.3 m
1 0.05% / 3000 m 0.5% / 300 m 5% / 30 m 38% / 3 m

5In some cases, we had to round ŵi to ensure that the total
number of showers is equal to 100 000.
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In this section, we compare the performance of our
method against two supervised classifiers. Each super-
vised classifier was trained on a combined dataset with
100 000 signal showers and 100 000 background showers.

The showers originate from particles with kinetic energy
uniformly distributed in the range [1, 100] GeV. The
signal showers originate from χ particles with lifetime
τ ¼ 1.00 ns. The first (second) supervised classifier was
trained on a dataset with mχ ¼ 5 × 10−3ð5Þ GeV. These
models were chosen because they are sufficiently different
that they would likely be covered by different dedicated
searches. It is, thus, interesting to ask if a search optimized
for one of the models would still be sensitive to the other,
since the unsupervised approach has some sensitivity to
both models.
The supervised classifier is a fully connected neural

network with two hidden layer with 512 nodes each. We
have a 505-dimensional input consisting of the voxel
energies normalized by the reconstructed incident energy

I⃗=EðrecÞ
inc (504-dim) and the reconstructed incident energy

EðrecÞ
inc (1-dim). The output layer returns a single number

which is passed through a sigmoid activation function. All
other activation functions are rectified linear units. The
supervised classifier was trained for a total of 50 epochs
with a train/test/validation split of 60%/20%/20%. These
parameters were not extensively optimized, but we found
little gain from small variations in the setup. CaloFlow

has a total of ∼38 000 000 parameters, while the supervised

FIG. 6. Plots of significance improvement of our unsupervised (unsup) CaloFlow anomaly detector as a function of background
rejection (1=false positive rate) for various types of signal showers originating from χ particles with different mχ and τ. Top left:
mχ ¼ 5 × 10−3 GeV; top right:mχ ¼ 0.05 GeV; bottom left:mχ ¼ 0.5 GeV; bottom right:mχ ¼ 5 GeV. The performance of a random
classifier is drawn with black dashed lines to serve as a baseline.

FIG. 7. Plot of log-likelihood of χ showers for mχ ¼ 5 GeV at
the different χ particle lifetimes.
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classifier only has ∼522 000 parameters. However, we
found that increasing the number of parameters for the
supervised classifier does not help to increase its perfor-
mance. CaloFlow has a larger number of parameters because
it has a more difficult task of learning the likelihood of
the data.
After training the supervised classifiers, they were

evaluated on the signal showers discussed in Sec. IV B.
Figure 8 shows the comparison plots between the
performance of our CaloFlow anomaly detector (unsup)
and the supervised classifiers (sup). We see from the
figure that the supervised classifier always outperforms
CaloFlow on showers originating from χ particles that have
the same mass as what it was trained on (see top left and
bottom right plots). However, the performance of the
supervised classifier usually decreases when evaluated on
signal showers originating from χ particles that have very

different masses from what it was trained on (see top
right and bottom left plots). Whether the supervised
classifier or CaloFlow achieves better performance depends
on mχ .

(i) For the upper right plot (trained on mχ ¼
5 × 10−3 GeV and evaluated on mχ ¼ 5 GeV), Calo-
Flow easily outperforms the supervised classifier, as
the supervised classifier did not see training exam-
ples of anomalous showers that are characteristic of
larger mχ (e.g., early decay resulting in two blobs)
and is unable to generalize its performance.

(ii) However, in the lower left plot (trained on mχ ¼
5 GeV and evaluated on mχ ¼ 5 × 10−3 GeV), Calo-
Flow does not outperform the supervised classifier.
This is likely due to CaloFlow not being able to fully
discriminate against signal showers that decay only
after the first longitudinal layer (i.e., E0 ¼ 0 GeV),

FIG. 8. Comparison plots of significance improvement of our CaloFlow anomaly detector as a function of background rejection (1=false
positive rate). The plots for the performance for the mχ ¼ 5 × 10−3 GeV and mχ ¼ 5 GeV cases are shown on the left and right,
respectively. Top row: a supervised classifier was trained on signal showers originating from χ particles with mχ ¼ 5 × 10−3 GeV and
lifetime τ ¼ 1.00 ns. Bottom row: a supervised classifier was trained on signal showers originating from χ particles with mχ ¼ 5 GeV
and lifetime τ ¼ 1.00 ns. The performance of our unsupervised CaloFlow anomaly detector (unsup) is shown as solid lines, while that of
the supervised classifier (sup) is shown as dotted lines. The performance of a random classifier is drawn with black dashed lines to serve
as a baseline.
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whereas such showers are usually perfectly distin-
guished by the supervised classifier.6 As noise is
added to the voxel energies when using CaloFlow, this
artificially causes E0 > 0 GeV7 and prevents such
showers from being perfectly distinguished by
CaloFlow.

Finally, let us also comment on some other interesting
features in Fig. 8. When the classifier or anomaly detector
is evaluated onmχ ¼ 5 × 10−3 GeV (left column in Fig. 8),
the performance is the same for all the lifetimes considered.
This is because, for mχ ¼ 5 × 10−3 GeV, the particles are
highly boosted, so there is a similar proportion of the total
number particles decaying at a given fixed displacement
before and within the calorimeter for different lifetimes.
(Keep in mind that we consider only particles decaying
before and within the calorimeter.) Interestingly, the fully
supervised classifier is also the same for all lifetimes for the
bottom right plot (trained and evaluated on mχ ¼ 5 GeV).
Here, the reason is that the signal showers look extremely
different from the background photon showers and are
perfectly distinguished by the classifier. Thus, we see that
the significance improvement is equal to 1=

ffiffiffiffiffiffi
fpr

p
.

This comparison of our unsupervised anomaly detection
method against a supervised classifier highlights the
potential limitation of model-specific anomaly detection,
as the supervised model is unable to generalize its excellent
performance to signal that is too different from what it was
trained on. We note that it is possible to train a supervised
classifier on all the types of signal showers we have
considered here. Doing so would likely result in the
supervised classifier outperforming CaloFlow when evalu-
ated on all the signal showers. However, the point is that,
even if one is to train a supervised classifier on a large
number of signal types, it is impossible to exhaust the space
of all possible signals. Hence, there may be an advantage in
using model-agnostic, unsupervised anomaly detection
methods such as the one we proposed in this work. This
is especially true when using flow-based fast calorimeter
simulators, as no additional training has to be performed to
use them as unsupervised anomaly detectors.

V. CONCLUSION AND OUTLOOK

Using CaloFlow as an example, we demonstrated how fast
calorimeter surrogate models with access to the data
likelihood can double up as unsupervised anomaly
detectors.

By studying the anomaly detection performance of
CaloFlow on showers from χ particle decays occurring at
fixed displacements in the detector, we found that CaloFlow
is generally more sensitive to signal showers from decays
that occur deeper in the calorimeter. However, in the case of
more massive, less highly boosted χ particles, CaloFlow still
has significant discriminative power for showers from
decays occurring in front of the calorimeter.
By reweighting the proportion of showers originating

from decays at each fixed displacement, we constructed
signal datasets corresponding to fixed particle lifetimes. We
found that CaloFlow has discriminative power for most of the
models we tested. In particular, CaloFlow achieves the best
performance in the case withmχ ¼ 5 GeV and τ ¼ 0.01 ns
where the particle is less highly boosted and the majority of
the particles decay close to the center of the detector.
Finally, we compared the performance of our unsuper-

vised CaloFlow anomaly detector against a supervised classi-
fier. We found that a supervised classifier trained on signal
showers from highly boosted χ particles performed signifi-
cantly poorer on showers from more massive, less highly
boosted particles compared to our unsupervised method.
When trained on signal showers from more massive χ
particles and applied to signal showers from less massive
χ particles, the supervised classifier still performs well. This
highlights the complementarity of different approaches and
reaffirms the need to have a diversity of methods in order to
achieve broad sensitivity.

The datasets used in this study can be found at [54], and
the software to generate these datasets are located at [102].
The machine learning software is at [103].
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APPENDIX: ARCHITECTURE AND TRAINING

Here, we briefly describe the architecture and training
procedure used for CaloFlow (see [21,22] for more details).
There are some differences compared to the implementa-
tion in the original CaloFlow papers [21,22], but most of the
main algorithm remains the same.
Both flow I and flow II are masked autoregressive flows

[104] with compositions of rational quadratic splines
(RQS) [105] as transformations. The RQS transformations
are parametrized using neural networks known as Masked
Autoencoder for Distribution Estimation (MADE) blocks
[106]. The details of the architecture of flow I and flow II
are summarized in Table IV.

6Here, the point is that CaloFlow is not able to distinguish
showers from late decays as well as the supervised classifier can.
Nevertheless, for mχ ¼ 5 × 10−3 GeV, CaloFlow still has a better
anomaly detection performance on late decay (larger z) showers
compared to early decay (smaller z) showers.

7We checked that a different treatment of the layers with zero
energy deposition does not improve the performance.

ANOMALY DETECTION WITH FLOW-BASED FAST … PHYS. REV. D 110, 035036 (2024)

035036-9



The incident energy of the incoming photon is prepro-
cessed as

Einc → log10ðEinc=10 GeVÞ: ðA1Þ
The inputs to the flows are preprocessed as follows.

(i) Flow I: Ei → 2ðlog10ðEi þ 1 keVÞ − 1Þ.
(ii) Flow II:

Ei → log10ðEi þ 1 keVÞ − 2,
I ia → ulogit;iaðI ia=EiÞ,
where ulogit;ia ¼ log ũia

1−ũia
,

ũia ¼ αþ ð1 − 2αÞuia, and α ¼ 10−6.
The index i denotes the layer number, while the index a
specifies the voxel within the given layer. In the original
CaloFlow, a different preprocessing was used for the layer

energies Ei in flow I where Ei were transformed to unit
space (see [21]).
As in Refs. [21,22], uniform noise in the range [0, 1] keV

was applied to the voxel energies during training and
evaluation. The addition of noise was found to prevent
the flow from fitting unimportant features. The training
of both flows in this work is optimized using indepen-
dent Adam optimizers [107]. Flow I was trained by
minimizing − logpðE0; E1; E2jEincÞ for 75 epochs with a
batch size of 200. Flow II was trained by minimizing
− logpðÎ jE0; E1; E2; EincÞ for 100 epochs with a batch size
of 200. The initial learning of 1 × 10−4 was chosen for the
two flows, and a multistep learning schedule was used
when training the flows which halves the learning rate after
each selected epoch milestone during the training.
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