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We consider a U(1) gauge theory on M* x T+ with background magnetic fluxes. We show that a theory
including arbitrary fluxes can always be studied in a theory involving only diagonal fluxes by appropriate
coordinate transformations. It is found that the number of independent magnetic fluxes is equal to the rank
of the classical value of the field strength matrix, rank(F). The number of massless zero modes induced
from extra components of higher-dimensional gauge field (Wilson-line scalar field) is also determined by
rank (F). We explicitly confirm that the quantum corrections due to the matter fermion to the squared mass
of the Wilson-line scalar field cancel out at the one-loop level. For this purpose, we derive the fermion mass
spectrum on M* x T* with arbitrary fluxes. By taking the flux diagonal basis, creation and annihilation
operators for Kaluza-Klein quantum numbers are defined appropriately. Our results are easily generalized

to the case of M* x T?"(n > 3).
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I. INTRODUCTION

The Standard Model (SM) of particle physics well
describes the behavior of elementary particles up to the
tera-electron-volt scale. However, there are still puzzles to
be answered. One of them is the hierarchy problem. This
problem suggests that the electroweak scale is separated
from a scale of an ultraviolet (UV) theory, e.g., the Kaluza-
Klein (KK) scale and the Planck scale. Since quantum
corrections to the mass of the SM Higgs boson are sensitive
to the UV cutoff scale, the measured mass of the Higgs
boson cannot be realized without unnatural fine-tuning
among parameters. To solve the hierarchy problem without
the fine-tuning, we must clarify a UV model as a model of
beyond the SM (BSM).

As a solution to the hierarchy problem, higher-
dimensional gauge theories have been studied [1,2].
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In these theories, zero modes induced from extra compo-
nents of the higher-dimensional gauge field [the so-called
Wilson-line (WL) scalar field] by the compactification of
the extra dimensions can be identified as a Higgs boson in
four dimensions (4D). Regarding a WL scalar field as a
Higgs boson, it obtains the finite mass by the quantum
corrections [2-5]. Since the finite Higgs boson mass is
scaled by an inverse of the size of extra-dimensional space
L~', the finite Higgs mass grows as L~! increases. If there
are no signs of new physics BSM up to a large UV scale,
the scale again causes a fine-tuning of parameters resulting
in the hierarchy problem even in higher-dimensional gauge
theories.

A higher-dimensional theory in a magnetic flux com-
pactification (see for an early work [6]) may give us a
solution to the hierarchy problem even if L~ is large.1 Itis

'In addition, flux compactifications can give the origin of the
flavor structure, the chiral structure of fermions, the number of
generations of fermions, and the hierarchy of Yukawa couplings of
quarks and leptons, where the SM does not explain these problems
from the first principle. Indeed, concrete examples were given in
string theory, e.g., toroidal compactifications of type I and type IIB
superstring theories with magnetized D-branes [7-10] and Eg x Ej
heterotic string theory on smooth Calabi-Yau threefolds with line
bundles [11,12] as well as SO(32) heterotic string theory [13-15].
For more details, see, e.g., Refs. [16,17].
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known that the introduction of a background magnetic flux
affects the WL scalar field in 4D effective theories. A
remarkable feature of the WL scalar field in the flux
compactification is the cancellation of quantum correc-
tions to the mass of the WL scalar field. This has been
shown in Abelian gauge theory on M* x T? at the one-loop
level [18-20] and at a higher-loop level [21], and in non-
Abelian gauge theory on M* x T? at the one-loop level [22].
The cancellation of quantum corrections to the mass of the
WL scalar field is associated with a shift symmetry. This
shift symmetry is understood as a remnant of translational
symmetry of the coordinates on the torus after introducing
the magnetic flux. Thus, the WL scalar field may be
identified as a Higgs boson without conflicting the hier-
archy problem. On the other hand, the WL scalar becomes
an exact massless Nambu-Goldstone (NG) mode in the
flux compactification, and further extensions are necessary
in order to have a finite Higgs boson mass. It has been
shown that the quantum corrections to the mass of the
WL scalar field can be finite by introducing a certain
interaction term in six-dimensional scalar quantum
electrodynamics [23].

When considering the higher-dimensional space
T?"(n >2) as extra dimensions [24-30], the impact of
magnetic fluxes on the 4D theory has not yet been clarified.
In such an extra-dimensional space, not only can multiple
magnetic fluxes be introduced into the diagonal component
of the gauge field strength, but also into the off-diagonal
component. The impact of these different types of magnetic
flux on the 4D theory must be clarified; how many massless
NG modes appear in the 4D theory will greatly affect the
physics of the 4D theory.

This paper is organized as follows: in Sec. II, we review
the magnetized T* model. In Sec. I1T, we discuss the number
of NG modes based on the model with arbitrary magnetic
fluxes. In Sec. IV, we solve the Dirac equation on T* in the
flux diagonal basis to derive the mass spectrum of the
fermions. The relevant interactions to the one-loop calcu-
lation are given in Appendix A. Our developed method is
extended to 7?"(n > 3) in Appendix B. In Sec. V, we
calculate the quantum corrections to the mass of the WL
scalar field in 7% theory, and verify its cancellation. We
summarize our study in Sec. VL.

II. MAGNETIZED T4 MODEL

Following [10,24,27,28], we introduce four-dimensional
torus T#~ C?/A, where A is a lattice spanned by four
independent lattice vectors ¢;, (I = 1, 2, 3, 4) in CZ. In this
paper, we are interested in cases when at least two of the
vectors are perpendicular. By a suitable orthogonal rotation,
we can write €;’s of the form

. 1 - R Q|
e, =2nR, 0) €, =2rm R )
259

ﬁ 0 ) R,Q
€3 = 27Z'R2 s ey = 2r s
1 R,Q2

where the complex structure Q) € C* (i, j = 1,2) and scale
factors R;, R, > 0. We introduce x’ and y’ as real and
dimensionless coordinates along the lattice vectors of the
torus. We introduce dimensionless complex coordinates

77 (i=1,2) as

(2.1)

7 =x +Qly/, 7 =x 4+ Qéyj, (2.2)

where Q’] is a complex conjugate of Q’] The square of the
line element is given by

ds? = 2h;dz'dZ/, (2.3)

with metric

1
hi; == (27R;)*8

: (2.4)

i

where summation is not taken for i. Gamma matrices on the
complex coordinates of T* are given by

0 2
0 0
27R,)IE = 3 = ,
(27R) 6, Q0 0 o
0 0
0
0o 2
(27TR2)F22:[®6+: 5
0 0
0 0
0 0
2 0
27R )% =6_ Q6% = ,
(27Ry) o-Qoc 0 0
-2 0
0 0
i} 0 0
(27TR2)FZZII®O'_: 5 , (2.5)

satisfying {I'", ¥} = 2h% where h'/ is the inverse of hij.
Here, ¢ (a=1, 2, 3) denote the Pauli matrices,
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6, =0c"%xic> and I is a 2 x 2 identity matrix. The
chirality matrix I'® is given by

(2.6)
1

We consider a U(1) gauge theory. The field strength on
T* is given by

1 : o1 : ,

F = EFXixjdxl A dx/ + iFyiyjdyl A dy/

+ Fyidx’ A dy/, (2.7)

where each element is expressed in terms of gauge fields
A, and Ay as

inxj = dxiij - axiji,
inyj = axiij - ay_foi.

Fyiyj = ayiij — 6yjAyi,
(2.8)

In the following, we introduce background magnetic flux.
The background magnetic flux on T* is expressed as the
classical value of a field strength as follows:

1 . | ) .
<F> = prixfdxl A dx/ +§pyiyjdyl A dyj

=+ pxiyjdxi N dyj, (29)
with

Pxixi = <inxf>7 DPyiyi = <Fy"yf‘>7 Pxiyi = <F)c"yf‘>7 (210)

where piyi, pyiyi, and p,i,; are real parameters determined
later. Rewriting the classical value of the field strength (2.9)
in terms of complex coordinate z' and Z', we get

1 . | - -
<F> = 5 <inzj>le A dZJ + E <szzj>dzl A dzl

+ (F ) (idZ’ A dZ), (2.11)
with

(Fii)=Q-Q) Q" pQ+ p,, + pLQ—-Q"p,)

x (Q-Q)7!, (2.12)
<Fz?2}'> = (Q - Q‘)_IT(QTpxe =+ Pyy + PQQ - QTpxy)

(@ —Q), (2.13)
<in27> = I(Q - Q)_IT(QTPMQ + Pyy + p,{yQ - QTPX)?)

x (Q-Q)7. (2.14)

We note that (F ;) and (F;) vanish if supersymmetry is
imposed [31]. In this paper, we do not assume supersym-
metry. However, since the value of the background flux can
be freely chosen as long as it satisfies the equations of
motion, we assume

QTpxe + pyy + p,{)g - QTpxy =0. (215)
In this case, (F) is simplified to
1 A -
<F> = _5 [(pxxg - pxy)(ImQ)_]]i](ile A dzj) (216)

To further simplify the discussion, we choose p,, and p,,
to be zero values;

Pxx = Pyy = 0. (217)

Then, (F) becomes

(F) = 5 [p.y (m@)1](id2! A d2)).

5 (2.18)

Note that, by imposing Eq. (2.17), the condition (2.15)
becomes

(PHQ)" = pLQ. (2.19)
The value of the background flux is quantized by the
boundary conditions as [24]

Pyy = 2aNT (2.20)
with N being a 2 x 2 integer matrix. By substituting
Eq. (2.20) into Eq. (2.18), we get

(Fz) = ﬂ[NT(ImQ)“]ﬁ. (2.21)
From Eq. (2.21), we see that the classical value of F i
takes a constant value. Hence, it is easy to see that (F)
satisfies the equation of motion. Note that, by applying
Eq. (2.20), the condition (2.19) becomes

(NQ)T = NQ. (2.22)

The field strength can be expressed using gauge fields as

F (0.A5 — 0 5A.). (2.23)

1
77 = i
Itis easy to check that Eq. (2.21) can be reproduced by taking
the classical value of the gauge component as follows:

(As) = =iZZNT (1mQ) ']

(A) = ing INT (ImQ)~"] ;. (2.24)

Z
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Giving Eq. (2.24), A, and A can be expanded around the
flux backgrounds as
A=A+ 22

Z

E
As = (Ag) +—=.

V2 : V2

The factor of 1/+/2 is introduced to canonically normalize
@i and @;. Hereafter, we call @i (¢.:) WL scalar fields. It is
also clear that because (F ;) is real, the following relation
holds:

(2.25)

<FZ[Z]> - <FZ[Z'7> - _<FZEZ-/'> - <szzi>. (226)
That is, (F ;) is symmetric.

Before closing this section, we introduce the eight-
dimensional (8D) Weyl fermion W¥. The free Lagrangian

for ¥ with background magnetic fluxes is given by

LD = Wil*9,¥ + ¥iD, ¥, (2.27)
with
iD. = (D, +T¥D,)
0 plDzl ID2DZZ 0
D. 0 0 D.
—2i| 17 PEe 0 (2.08)
pZDZZ 0 O _pIDzl
O p2D22 _pIDZ] 0

where p; = 1/(2zR;). The covariant derivatives with the
gauge field replaced by its classical value are given by

Dzilp = (azi + iq<Azi>)\P,

DY = (0 + iq(A:)¥, (2.29)

where ¢ is the 8D gauge coupling times a charge of W. The
Y is expressed in terms of four-component fields

(Wi Wk Wi wi) as

wi
wh
wr
wi

, (2.30)

where the subscripts L and R, respectively, correspond to
the left- and right-handed chiralities in 4D after integrating
the extra dimension T*.

III. COUNTING NAMBU-GOLDSTONE MODES

As pointed out in Refs. [19,21], the WL scalar fields
become NG modes since the introduction of the magnetic
flux leaves a constant shift symmetry for the WL scalar

field. This shift symmetry is a remnant of the spontaneous
breaking of the translation of the coordinates on the torus
due to the magnetic flux. It is confirmed that the quantum
corrections to the mass of the WL scalar field are
canceled out.

In the case of the higher dimensions of 7%'(n > 2),
contrary to 72, multiple magnetic fluxes can be introduced
to the theory. In general, the field strength matrix (F) also
has nonzero values for the off-diagonal elements. In the
following, we extend the formulation of the shift symmetry
on T2 in Refs. [19,21] to those in T*.

The original 8D Lagrangian in a U(1) gauge theory is
invariant under the following transformations, which are
obtained by combining gauge and translational transforma-
tions on the 7% with magnetic fluxes. The translational
operators in T* are expressed as 4 = € 0. + €055, where
€j,€; are infinitesimal parameters. First, we consider the
infinitesimal transformation for the WL scalar field. The
breaking of translational symmetry by the magnetic flux can
be compensated by a constant shift. Thus, the translational
transformation for the WL scalar field is described as

_ i
Opnp,i = (ejaz_/ + Ejazj)(pzi - E€j<szz;>. (31)

The gauge transformations for the WL scalar field are
given by

i
5A(pzi = —\/EaZ[A = —7§aj<szZY>,

i . r
A:5<szzf>(ajzl —O!jZ'), (32)
where a;, a; are complex parameters. Second, we consider
the infinitesimal transformation for the fermion. The trans-
lation of the fermion is given by:

oV = (6 0, + éjaz;)‘l‘.

: (3.3)

The gauge transformation for the fermion is given by

From Egs. (3.3) and (3.4) with ¢; = a;, a combined trans-
formation for the fermion can be expressed by using
covariant derivatives:

5lP = (5T2n + 6A)‘P = (GjDzj + EJDZ])lP (35)
On the other hand, from Egs. (3.1) and (3.2) with ¢; = a;, the
combined transformation for the WL scalar field corresponds
to a constant shift:

O, = — 2i€‘j<Fij;>. (3.6)
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Note that derivative terms in Eq. (3.1) vanish since ¢, are
independent of complex coordinates. Thus, the WL scalar
fields are identified as NG modes. Conversely, if the WL
scalar fields do not feel the magnetic flux in Eq. (3.6), they
have a mass and cannot be an NG mode.” This formulation in
T*is easily extended to one in 72" (n > 2); e.g., the index i of
complex coordinates runs from one to three in 7°°.

Since the constant shift in Eq. (3.6) associates with the
magnetic flux, it is natural to expect that the number of
massless WL scalar fields is controlled by the number of
independent magnetic fluxes. To extract the information
of the independent magnetic fluxes, we consider the
diagonalization of the flux matrix (F). The field strength
two-form F is invariant under the coordinate transforma-
tion as

F =F_;d Ad2l = (UFUT)5dz" A dZ
= F;dz' A dF, (3.7)

where the coordinate transformations of z as well as Q are
given by

= UTZ = U+ UTQUU"Y = ¥ + Q7.

IS
=l

(3.8)
with

G=UvTQu, F=UT:x, §=UTy. (3.9)
Using this coordinate transformation, we take the flux

diagonal basis as

- 0 in@
(F)=UT(FU. U= ( o
—sinf cosé

>, (3.10)

where (F) is a diagonal matrix, and

2<F122'>

tan 26 = Fo) = (Fo)| (3.11)
From Eq. (2.21), we define N in the new basis as
(F) = aNT(ImQ)~", (3.12)
with
N=U'NU. (3.13)

By this procedure, any theory on T* with an arbitrary flux
matrix satisfying Eq. (2.15) can always be brought to a
theory with only diagonal fluxes by performing the
appropriate coordinate transformation. Since the number

’In the case of T2 without a flux, the WL scalar field receives
the quantum correction to the mass. See Refs. [3,5,18].

of nonzero eigenvalues is equal to the rank of the matrix,
the number of independent magnetic fluxes is determined
by the rank of the flux matrix, rank(F). In the following, we
will consider the theory in the flux diagonal basis. For
the sake of simplicity, the tilde symbols, which indicate the
theory in the flux diagonal basis, are omitted below. In the
M* x T* theory, there are two complex WL scalar fields.
Equation (3.6) is written as

0@, = —V2iE, <lezl >,

5§0Z2 =—V2ie, <Fzzzz>. (314)

Defining nyg as the number of NG mode ¢.:, we conclude

nng = rank(F). (3.15)
There are no NG modes in a T* theory without magnetic
fluxes, i.e., rank(F) = 0. In this case, the quantum cor-
rections to the mass of two WL scalar fields both diverge.
For rank(F) = 1, a WL scalar field has the same properties
as that in the previous study for the 72 theory with a
magnetic flux. Namely, the WL scalar field, which corre-
sponds to the direction of the magnetic flux, becomes an
NG mode. The quantum corrections to the mass of this WL
scalar field cancel out. On the other hand, the other WL
scalar field receives divergent quantum corrections to the
mass. For a T theory with two independent fluxes, i.e.,
rank(F) = 2, there are two NG modes. In this case, the
quantum corrections to the mass of the two WL scalar fields
are both canceled. In the next section, we will explicitly
show the cancellation of the quantum corrections to the
mass of WL scalar fields at the one-loop level.

IV. MATTER SPECTRUM ON MAGNETIZED T*

In this section, we derive the mass spectrum for the
fermion in 4D effective theory by solving the Dirac
equation. From Eq. (2.27), we obtain the following
equation of motion:

(iT"0,)*¥ + (iP,)*¥ = 0. (4.1)

In the flux diagonal basis, the commutation relations for
covariant derivatives are given below:
[Dz' ’DZ'] = _LI<FZ'Z' >’

[D2.Dz] =—q(F2z). (4.2)

[D.1,D.2])=[Dz1,Dx]| = [D.1,D2|=[D.,Da]=0. (4.3)
Based on the above commutation relations, we define
creation and annihilation operators by normalizing the
covariant derivatives,

a, = ! D1, a}L = ! D1,
q<Fz'z'> Q<le7'>
Uy=——Ds,  ah = D. (4.4)

035032-5
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for g(F.iz1) >0 and g(F.») > 0. The above operators

satisfy ordinary commutation relations [a;, aJT-] =6y,
a1, ay) = [a],d}) = [ay,a}) = [a], as] = 0. When q(F iz1)
is negative, the definitions of the corresponding creation
and annihilation operators are switched. Using the above
annihilation operators a;, the ground state mode function
oo 18 defined by a;&yo = 0.> Mode functions $nyom, are

and

constructed by acting on the creation operators alT as

1 i

v = \/’W(al)nl(a;)nzfo,o-

(4.5)

Note that &, ,, is an eigenstate for the number operator

ala, and aja,,

a.lralfnl,nz = nlénl.nzv a;a2§n1,n2 = n2€n1,n2' (46)

The mode function satisfies the following relations:

¥
alénl,nz =V nlénl—l,nzv algnl,nz =\/n+ 1€n1+1,n27

+ /
a2§n1,n2 = n2§n1,n2—1 s azénl,nz =\/ny+ 15111,n2+1 . (47)

It also satisfies an orthonormal condition,

/ d4Z \% deth_nl,nzén’ n, — 5n1n’ 5n2n’ . (48)
- 1°1 1 2

Note that mode functions &, ,, have a normalization factor
proportional to Vol(T#)~!/? with Vol(T*) being the volume
of T%.

In terms of creation and annihilation operators, the
square of the Dirac operator is*

LiRs = / d*zV/det "I, ¥
T4

(iP.)? =4qdiag (p%(lezl)(aIal +1) —|—p%<FzzZz>(a;a2—|— 1),

p%<FZIZI>aIal —|—p%<Fzzzz><a;a2+l),
p%<Fz'2'>(a-{al+1)+p%<FZZZZ>a;a27
p%<lezl >a1ra1 +p% (Fzzzz>a;a2> . (49)
Since we take g(F.i;1) >0 and g(F.») >0, the 4D
fermion w9} is expected to have a massless mode, while
the others are not. Each component of the 8D fermion

(2.30) is expanded by using the mode functions ¢, ,,
introduced above as follows:

h
[]s
[]s

1
4 wL.n]Jrl,anr]gnl,nz’

S

=

Il

o

3

;i.o
NgE
[]s

2
WRJll.anrlf"ls"z’

=
Il
=)
3
S
=)

ﬁu
NgE
[]s

3
WR,"1+1J!2§”1~"2’

3
Il
o
3
S
Il
=}

ﬁh
[M]s
N

W s (4.10)

3
Il
=
3
I
=}

1 2

where the 4D fermions l//i/ZR?,:l n, are defined to have

masses of

M, = 2\/q (P (Faadm + 3 (Fazims).  (411)

On the other hand, the fermion mass term in the 4D
Lagrangian appears in the form of a single power of iP,. To
see the fermion mass spectrum in 4D, we need to move the
mass eigenbasis at the Lagrangian level. The mass terms in
the 4D effective Lagrangian are given by

[ee] [ee]
_ -1 2 _ -3 4 -2 1 -4 3
=+ E E Mg o [‘/’L.f,,nzH‘//R,f,,nzH YR e, m¥YLrm TVRE 1V Lt 41 l//L.f,,nzl//Rfl,nZ:|

¢1=1n,=0

(o] (o]
-1 3 ) 4 3 1 4 2
+ E : E :MO,t’z [WL.n]+l,f2WR,n]+1,f2 TR VL ts T VR 416V L +1.6, T ’//L,nl,fz'//R,nl,fz]

n=07¢,=1

(4.12)

In performing the integration with respect to the extra-dimensional coordinates, we used Eq. (4.8). The above Lagrangian is
equivalent to the description of the following three types of Dirac fermion:

*This function &) is described by the Riemann 9-function, and its degeneracy is determined by [Det(N)| [10,24].
“The mass spectrum in SU(n) gauge theory on M* x T2 is known by Refs. [10,32].
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N | 2
Wflfz - l'ULflfz + ll/Rfufz’
2 _ .4 3
Vot =Wie e, TWRe £00
_ 4 3
Xe,0 =WieoTVre o0

Xo.t, = _Wi.o,fz + W%?,O,fz’ (4.13)

and constitute the mass terms given below,

[c] [s]
4D _ - _
Linass = — E Mfl,tol,o)(fl,o - E Mo,fzﬂ(o,fz)(o,fz
£1=1 £r=1

1
ahays _ Ve e
_ZZ(W}I,&’W%KJMKK( 21 2)’ (4.14)

s | Ve

where the mass matrix Mgy is given by

-M -M,
My = ( £,.0 . 0.4, )
2.0

My,
The mass matrix My is diagonalized by orthogonal matrix
UKK:

(4.15)

MyiE = UgkMyx Uxg. (4.16)
with
di .
My = diag(=My, ¢, My, ¢,),
cosf —sinf
Uk = ( o ”"“) (4.17)
sinfy ,,  cosby ,
The mixing angle 6, ,, is given by
M
tan20,, , =20 (4.18)
My, o

The mass eigenstates denoted by yj , and y7 , are
expressed by the linear combination of 1//}1’/7 and 1//%1 7
in the interaction basis as

75)(}0 £ _ ‘I/}’ £
( X§K> _ U&(W%:f:). (4.19)
Xni1+1,0
P m === e Pt oo
Xn1,0 Xo,¢,
(a)

FIG. 1.
third terms in the right-hand side of Eq. (5.1).

(b)

We finally get

Lo = — Z Mg oXe oXe0— Z Moz, 20.0.%0.,

=1 /=1
o0 [Se]
1 1 72 2
=D My, (Zfl,f/(fl,fz +)(f1f2)(f].fz)'
=1 fy=1

(4.20)

From the third and fourth terms in the right-hand side of
Eq. (4.20), we find that ) , and y} , are degenerate in
mass. There is no right-handed partner for 1//2.0,0 = X0.0-
This is consistent with the mass spectrum (4.11) obtained
from the Dirac equation. In the same way, we also obtain
Yukawa interactions between 4D WL scalar and fermion
fields. The expression for the Yukawa term is lengthy so we
show it in Appendix A. We will use the Yukawa inter-
actions to calculate quantum corrections to the mass of the
WL scalar field in a later section.

The method shown above can be straightforwardly
applied to cases with 72" (n > 3). We show the derivation
of the mass spectrum for a case with 7% in Appendix B as
an example.

V. ONE-LOOP CORRECTIONS
TO THE WL SCALAR MASS

In Sec. III, we clarified that the number of massless WL
scalar fields is determined by rank(F). To confirm this
statement, we calculate the quantum correction to the mass
of the WL scalar field at the one-loop level in the case of
rank(F) = 2. Throughout this section, we assume that the
extra-dimensional space is 7*. In the case of T°"(n > 3),
the same procedure can also be applied using the similar
fermion mass spectrum summarized in Appendix A. We
also comment on the case of rank(F) = 1 at the end of this
section.

We calculate the quantum correction to the squared mass
of @, at the one-loop level, denoted by 5m§,71. The
Feynman diagrams that contribute to the quantum correc-
tion are listed in Fig. 1. Extracting relevant interaction
vertices from Eq. (Al), 51713,71 is calculated as

1 2 1 2
Xl,ez ’ Xl,lz Xel+1,£2 Ll X£1+1,22

1 2
Xey, b5 X0y 00

(©)

One-loop diagrams for quantum corrections to the squared mass of ¢_1. (a), (b), and (c¢) correspond to the first, second, and
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d*k k* + s290_f2 Szal.fz Mov"ﬂZleZ
(2n)* (K + M3, ) (kK> + M3 ,)

ny=

% e
+2(v2¢,)? Z/ N )(k2+M"1+10)+4(\f2q1)2;

) 2
4(v2¢,)? Z Z/ d4k4k 520, 520, 10, Moy M1, fz’

e (K +M; ) +M; )

(5.1)

where ¢; = gp;/\/Vol(T*). The charge g; is dimensionless in 4D since g has a mass dimension —3. The first, second,
and third terms in the right-hand side of Eq. (5.1) correspond to the one-loop amplitudes for Feynman diagrams in
Figs. 1(a), 1(b), and 1(c), respectively. From Eq. (4.18), we also have the following relations:

Replacing s, o by mass ratios in Eq. (5.1), we obtain

Mo,
Szgt P = sin 29f] fz Mf ; (52)
1,62
d* & K?
5m2 = +2(\/§C]1)2/
i (2”)4,;)(1(2 + My ) (KM o) e
= e & K?
sy [ ’ (53)
r;) (27)* Z (K> + M5, o) (K* + M} o) k- =R+,

where the second and third terms in Eq. (5.1) are combined appropriately. To evaluate these quantum corrections, we

decompose the integrand into partial fractions:

00 K2 0

Z (K2 + Mn O)(K2 +M%1+1.0) B Z

n;=0

Using the shift n; — n; 4+ 1 in the second term, we find
that quantum corrections to ¢_1 cancel out completely at the
one-loop level as

(5.5)

We also confirm the cancellation of the one-loop contri-
bution to the squared mass of .. The corresponding
Feynman diagrams are shown in Fig. 2. The one-loop
corrections are obtained by replacing M,, o with My, n
|

( I’l1+1 ny
(K> +M;, 1) K2+ M

(5.4)

3].0)) -
|

with n,, and ¢; with g, in Eq. (5.3). Note that 520, ., is
converted to €20, under this replacement. Following the

above procedure, we find

(5.6)

We comment on the case of rank(F) = 1. In this case,
the quantum corrections to the squared mass for ¢, are
given by

=4(V2q,)
I, m=-o00 n=
XO,TL2+1
S
XO,ng Xel’

Ak & K?
/ 2714Z K2+M )([(24-M2 ) Pip?]
= n+1.0/ | K=k +5
2

_____ Q

(5.7)

Xel,l Xel, le,e2+1 Xél,ez+1

_____ Q

leyé2 ) XZ1 Lo

FIG. 2. One-loop diagrams for quantum corrections to the squared mass of ¢_..

035032-8



NAMBU-GOLDSTONE MODES IN MAGNETIZED 72" ...

PHYS. REV. D 110, 035032 (2024)

where [, m € Z. Therefore, we obtain

5’”5),1 =0. (5.8)
On the other hand, that for ¢ is calculated as
om2 = +2(V2
mf/’zz i (\/_qz lLm=— oo/ k2 + 12+m )2
4(V2q,)? —
<mm;3;ﬂw4
4+ M;
x aty . (5.9)

2 2 Pin?)?
(420 +527)

These corrections do not cancel out and do diverge.” This
means that ¢ cannot be a NG mode.

VI. SUMMARY AND DISCUSSIONS

We have studied a U(1) gauge theory on M* x T" with
background magnetic fluxes. For n > 2, multiple magnetic
fluxes can be introduced, including off-diagonal fluxes. We
have shown that even in the presence of off-diagonal fluxes,
one can always take a basis with only diagonal fluxes by an
appropriate coordinate transformation. It is found that the
number of independent magnetic fluxes is determined by
the rank of the classical value of the field strength matrix,
rank(F). The number of NG modes (WL scalar fields) is
also determined by rank(F), where WL scalar fields are
zero modes induced from extra components of the higher-
dimensional gauge field. We have constructed a Landau
level of fermions by introducing creation and annihilation
operators in the flux diagonal basis. As examples, we
derived the mass spectrum of four-dimensional fermions in
T+ and T® extra-dimensions.

In Ref. [19], the cancellation of the quantum corrections
to the mass of the WL scalar field were proven in a U(1)
gauge theory on M* x T2, In this paper, we have explicitly
shown that the quantum corrections to the mass of the WL
scalar field cancel out in the case of 7% with arbitrary

|

/ d*zVdet hPiD ‘I’|¢ = +\/_q1 Z @ +10P 10, 0

n;=0

magnetic fluxes. Using our developed procedure, this result
is easily extended to the case with T%".

We comment on an issue that needs to be resolved when
interpreting this theory as a realistic model for the Higgs
boson in the SM. As a mechanism to give a mass to the WL
scalar field, we will consider three possibilities. First,
when we extend our analysis to toroidal orbifolds, the
mass will be generated by the breaking of the shift
symmetry. We will leave a comprehensive study about
NG modes on toroidal orbifolds in the future. Second, these
WL scalar fields would acquire their masses by the
Hosotani mechanism [1]. However, it was pointed out in
Ref. [21] that the effective potential is independent of the
WL phase in a six-dimensional U(1) theory on T2 with
magnetic flux. Thus, it would be interesting to analyze the
effective potential in 72" and its orbifold backgrounds.
Finally, from the viewpoint of string theory, the stabiliza-
tion of such massless modes (open string moduli) would be
realized in M-theory and F-theory compactifications with
background four-form fluxes (see, e.g., [33—-37]). However,
an arbitrary value of background fluxes including magnetic
fluxes discussed in this paper is not allowed by the
cancellation of D-brane charges. Rather, it is bounded
from above in string models [38]. It would be interesting to
realize the stabilization of WL scalar fields in string
models, which is left for future work.
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APPENDIX A

We derive the Yukawa interactions among WL scalar
fields and fermions. The Yukawa interactions in four-
dimensional theory are given by

+v2¢, Z @, {)?}fz(cal_fz Pr— SHI_KZPL))(O,KZ ‘H?%,,,g (SGMZPR - Celfsz))(o,fz}

=1

+ \/ECII Z Z (22 {)?I}p1+1,fz(+cet’l+l.f2 CHfIfZPR

=1 62=1

PL)Z;I £

TS0, 110,500, 0,

’An expression similar to the first term in Eq. (5.9) is found in T? without the magnetic flux case. See Refs. [3,18].
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1 _ 2
+)(f,+lf2< 69f1+1.f2S9f1f2PR + S0s, 1.0, Cat’l.szL))(flfz

= _ i
+)(f]+1,)f’2 (+s9f,+1,f2 Cop, 0, Pg COp 10,502, ¢, PL))(KI,KZ

=2 _ 2
+)(f1+1f2( S9f1+1./2s9/1f2PR + C9f1+lf2CaflszL))(f].fz}

(o)
— V2420270012000 + V242 Z @ 2X0.,41PLX0.2,
2

o0
+V2q, Z @2 {Z;I,I(CHKI_IPR - Cefl,IPL))(fol,o +)_(fo,,1(50,,1,1PR + Safl_IPL))(él,o}
/=l

o0 ()

=1 1

+ \/EQZ E E @2 {)(fl,f2+l (+C6/1,t’2+] Sgl,l £ Pg+ cgfl./zﬂsgflfz PL)Xfl-fz
P |

. _ 2
+)(fwf’z+1 (+C9f1,f2+l Cop, 0, Pg COs, £,110¢, 0, PL))(flfz

-2 _ 1
+ Xy 6541 <+s9f1f2+1 56, ¢, P 560, 0141507, 2, PL)ZL”] N2

=2 2
+)(f],f2+l (+S9f]f2+l cﬂ/l’fz PR + sﬁf],f2+] CHfI/ZPL))(fl,fz} + H‘C" (Al)

where ¢; = gp;/+/ Vol(T*).

APPENDIX B

In this appendix, we derive the fermion mass spectrum on M* x T° with background magnetic fluxes as a demonstration.

The extension of the method to 72" is straightforward. Let us introduce dimensionless complex coordinates z’ 7
(i=1,2,3) as

d=x+Qy, 7 =x+Qhy, (B1)

where x', y' are real and dimensionless coordinates, and Q;( € C?) denotes the complex structure. A free Lagrangian for the
Weyl fermion ¥ on M* x T® with background magnetic flux is given by

LI = Pil¥9, ¥ + Pipl'y, (B2)
with
0 p3DZ3 pzDZZ 0 pIDz] 0 0 0
p3D23 0 0 —pzDZZ 0 _pIDzl 0 0
pZDZZ 0 0 p3D13 0 0 _pIDzl 0
3. 3. 0 —pD2 p3D. 0 0 0 0 D
Pl =iy 19D, +iY 19D, =2 P2 P P (B3
= f mDs 0 0 0 0 pDs  pDy 0
0 -pDs O 0 pDs 0 0 —p,D,
0 0 -pDs 0 pD2 0 0  pDy
0 0 0 pDa 0 —pDn psDa 0

where p; = 1/(2zR;) forall i = 1,2, 3 and R; are scale factors in 7°. We use the following Gamma matrices on the complex
coordinates of T°:

FZI:6+®03®63, FZ2:I®O'+®63, FZ3=I®I®G+,
I =6. ® 6 ® o>, I =I1Qo ® o, MF=I1QIQos._. (B4)
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Note that W is expressed in terms of four-component
fields as

<
=

where L and R, respectively, correspond to the left- and
right-handed chiralities in 4D after integrating the extra
dimension 7. The chirality matrix I"® is given by I =
o’ (03] o’ X o,

where g(F.iz1) >0, q(F22) >0 and g(Fsz») >0 are

assumed. The operators satlsfy [a;,a’ ] 5ijn and la;,a;] =
[cfr a]] =0. The ground state mode function &)n, is
defined by a;&opo = 0. Acting &yoo on the creation

operators a , the mode function &, ,, ,, is obtained as

1 .
Enmny = W(ai)"‘ (ab)m(ah)m&no.  (BB)

This mode function &, is an eigenstate for the number

1,13
operators a’{al, a;az, and a§a3,
+ .

a; aién],nz = nién,,nz,m (l = 1’ 2’ 3)’ (B9)

where repeated indices on the left side are not summed.
The mode function &, ,, ,, is normalized and satisfies an

orthogonality condition,

Similar to Sec. IV, the commutation relations for
covariant derivatives are given below, .
/ d*zvdeth ny.ny, ngén nyanl = n,n’lénzn’zén_;ng' (B]O)
[Dzi,DZ;-} = —q(Fz,-Z;>. (B6)
. . . Th de functi tisfies the followi lations:
In the following, we take the flux diagonal basis. Based on © mode function salisties the Tolowing relations
the above commutation relations, we define creation
and annihilation operators by normalizing the covariant & nymy = VM En—Lnynys
derivatives, aT‘Sn,,nz,n3 =vn + 15111+1,n2,n3»
g 1 D aT aan],nz,m =V n2§n1,n2—1,n3v
1 = Zl s 1 =
q<é2121> q<}.72121> a;fn,,nz,m =V + 15111.n2+1,n3’
ay = ﬁpxz’ a; - T 72 38y, = V/13En mymi=15
q 252 q 252
; o . ; o a;r‘fnl.nz,@ =/ N3+ 1€n1,n2,n3+1- (Bll)
az = = D, a; = 7FD23, (B7) .
q(F32) q(F ) The squared Dirac operator becomes
|
(iP1°)? = 4qdiag (pH(F.z)(afar + 1) + p3(Faz)(@las +1) + p3(Foo) (alas + 1)
PUFaz)(aay + 1) + p3(Faz) (a3as + 1) + pi{Fap)alas.
PHF .z 1) (aja; + 1) + <Fz2’2>aza2 +p3(Fa: ‘>(“3a3 +1).
p%<Fz] 1>( Cl] + ) :0 <Fz 2>612a2 +p3<Fz3 3>Cl
p%<le 1>a a +p2<Fz 2>(a; )+p3<FZz 3>(a3a3 + 1)
pr(Foz ‘>aTa1 + p3(F22)(a ;az +1) + p3(F 5. ‘>“3“%,
PUF.z)aiay + ph(F ow)alay + pH(F ) (afas + 1),
p(F s 1>a ay + p3(F - z)dzaz + p3( Zzzz>a3a3) (B12)

From the above, we see that only right-handed fermion W%,nl n,.n, N1as @ massless mode ¥ 0.0.0- Note that ten-dimensional

fermions are expanded with the mode function &, ,. ,, as
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where the 4D fermions WL Ronymyms

% ¢
WR,nl,"zJﬁ ny,ny,n3°

W}‘,n1+1.n2+1,n3+1§"1 WMp,N30
lez,n]+1,n2+1,n3 5”1»"2,"3 ’
W;’Q,n1+1,n2,n3+1§ﬂ| Np,n30
Wz,n1+l,n2,n3§”| WMo,n3 0
w%,nl.f’l2+].ﬂ3+l 5”1’"2-"3 ’
l//g,nl,nz-&-l,ngé"] RORUKR

WLJH My, ns+1 5"1 RERIEN

(B13)

are defined to have masses of

M”ls’h»”} = 2\/6](<le21>”1 + <F1222>n2 + <FZ3Z3>n3)-

(B14)
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