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We consider a Uð1Þ gauge theory onM4 × T4 with background magnetic fluxes. We show that a theory
including arbitrary fluxes can always be studied in a theory involving only diagonal fluxes by appropriate
coordinate transformations. It is found that the number of independent magnetic fluxes is equal to the rank
of the classical value of the field strength matrix, rankhFi. The number of massless zero modes induced
from extra components of higher-dimensional gauge field (Wilson-line scalar field) is also determined by
rankhFi. We explicitly confirm that the quantum corrections due to the matter fermion to the squared mass
of the Wilson-line scalar field cancel out at the one-loop level. For this purpose, we derive the fermion mass
spectrum on M4 × T4 with arbitrary fluxes. By taking the flux diagonal basis, creation and annihilation
operators for Kaluza-Klein quantum numbers are defined appropriately. Our results are easily generalized
to the case of M4 × T2nðn ≥ 3Þ.
DOI: 10.1103/PhysRevD.110.035032

I. INTRODUCTION

The Standard Model (SM) of particle physics well
describes the behavior of elementary particles up to the
tera-electron-volt scale. However, there are still puzzles to
be answered. One of them is the hierarchy problem. This
problem suggests that the electroweak scale is separated
from a scale of an ultraviolet (UV) theory, e.g., the Kaluza-
Klein (KK) scale and the Planck scale. Since quantum
corrections to the mass of the SM Higgs boson are sensitive
to the UV cutoff scale, the measured mass of the Higgs
boson cannot be realized without unnatural fine-tuning
among parameters. To solve the hierarchy problem without
the fine-tuning, we must clarify a UV model as a model of
beyond the SM (BSM).
As a solution to the hierarchy problem, higher-

dimensional gauge theories have been studied [1,2].

In these theories, zero modes induced from extra compo-
nents of the higher-dimensional gauge field [the so-called
Wilson-line (WL) scalar field] by the compactification of
the extra dimensions can be identified as a Higgs boson in
four dimensions (4D). Regarding a WL scalar field as a
Higgs boson, it obtains the finite mass by the quantum
corrections [2–5]. Since the finite Higgs boson mass is
scaled by an inverse of the size of extra-dimensional space
L−1, the finite Higgs mass grows as L−1 increases. If there
are no signs of new physics BSM up to a large UV scale,
the scale again causes a fine-tuning of parameters resulting
in the hierarchy problem even in higher-dimensional gauge
theories.
A higher-dimensional theory in a magnetic flux com-

pactification (see for an early work [6]) may give us a
solution to the hierarchy problem even if L−1 is large.1 It is
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1In addition, flux compactifications can give the origin of the
flavor structure, the chiral structure of fermions, the number of
generations of fermions, and the hierarchy of Yukawa couplings of
quarks and leptons, where the SM does not explain these problems
from the first principle. Indeed, concrete examples were given in
string theory, e.g., toroidal compactifications of type I and type IIB
superstring theories withmagnetizedD-branes [7–10] andE8 × E0

8
heterotic string theory on smooth Calabi-Yau threefolds with line
bundles [11,12] as well as SOð32Þ heterotic string theory [13–15].
For more details, see, e.g., Refs. [16,17].
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known that the introduction of a background magnetic flux
affects the WL scalar field in 4D effective theories. A
remarkable feature of the WL scalar field in the flux
compactification is the cancellation of quantum correc-
tions to the mass of the WL scalar field. This has been
shown in Abelian gauge theory onM4 × T2 at the one-loop
level [18–20] and at a higher-loop level [21], and in non-
Abelian gauge theory onM4 × T2 at the one-loop level [22].
The cancellation of quantum corrections to the mass of the
WL scalar field is associated with a shift symmetry. This
shift symmetry is understood as a remnant of translational
symmetry of the coordinates on the torus after introducing
the magnetic flux. Thus, the WL scalar field may be
identified as a Higgs boson without conflicting the hier-
archy problem. On the other hand, the WL scalar becomes
an exact massless Nambu-Goldstone (NG) mode in the
flux compactification, and further extensions are necessary
in order to have a finite Higgs boson mass. It has been
shown that the quantum corrections to the mass of the
WL scalar field can be finite by introducing a certain
interaction term in six-dimensional scalar quantum
electrodynamics [23].
When considering the higher-dimensional space

T2nðn ≥ 2Þ as extra dimensions [24–30], the impact of
magnetic fluxes on the 4D theory has not yet been clarified.
In such an extra-dimensional space, not only can multiple
magnetic fluxes be introduced into the diagonal component
of the gauge field strength, but also into the off-diagonal
component. The impact of these different types of magnetic
flux on the 4D theory must be clarified; how many massless
NG modes appear in the 4D theory will greatly affect the
physics of the 4D theory.
This paper is organized as follows: in Sec. II, we review

the magnetized T4 model. In Sec. III, we discuss the number
of NG modes based on the model with arbitrary magnetic
fluxes. In Sec. IV, we solve the Dirac equation on T4 in the
flux diagonal basis to derive the mass spectrum of the
fermions. The relevant interactions to the one-loop calcu-
lation are given in Appendix A. Our developed method is
extended to T2nðn ≥ 3Þ in Appendix B. In Sec. V, we
calculate the quantum corrections to the mass of the WL
scalar field in T4 theory, and verify its cancellation. We
summarize our study in Sec. VI.

II. MAGNETIZED T4 MODEL

Following [10,24,27,28], we introduce four-dimensional
torus T4 ≃ C2=Λ, where Λ is a lattice spanned by four
independent lattice vectors e⃗I , (I ¼ 1, 2, 3, 4) in C2. In this
paper, we are interested in cases when at least two of the
vectors are perpendicular. By a suitable orthogonal rotation,
we can write e⃗I’s of the form

e⃗1 ¼ 2πR1

�
1

0

�
; e⃗2 ¼ 2π

�
R1Ω1

1

R2Ω2
1

�
;

e⃗3 ¼ 2πR2

�
0

1

�
; e⃗4 ¼ 2π

�
R1Ω1

2

R2Ω2
2

�
; ð2:1Þ

where the complex structure Ωi
j ∈C2 ði; j ¼ 1; 2Þ and scale

factors R1, R2 > 0. We introduce xi and yi as real and
dimensionless coordinates along the lattice vectors of the
torus. We introduce dimensionless complex coordinates
zi; z̄ī ðī ¼ 1; 2Þ as

zi ¼ xi þΩi
jy

j; z̄ī ¼ xī þ Ω̄ī
j̄y

j̄; ð2:2Þ

where Ω̄ī
j̄ is a complex conjugate of Ωi

j. The square of the

line element is given by

ds2 ¼ 2hij̄dz
idz̄j̄; ð2:3Þ

with metric

hij̄ ¼
1

2
ð2πRiÞ2δij̄; ð2:4Þ

where summation is not taken for i. Gamma matrices on the
complex coordinates of T4 are given by

ð2πR1ÞΓz1 ¼ σþ ⊗ σ3 ¼

0
BBB@

0 2

0 0

0 −2
0 0

1
CCCA;

ð2πR2ÞΓz2 ¼ I ⊗ σþ ¼

0
BBB@

2 0

0 2

0 0

0 0

1
CCCA;

ð2πR1ÞΓz̄1 ¼ σ− ⊗ σ3 ¼

0
BBB@

0 0

2 0

0 0

−2 0

1
CCCA;

ð2πR2ÞΓz̄2 ¼ I ⊗ σ− ¼

0
BBB@

0 0

0 0

2 0

0 2

1
CCCA; ð2:5Þ

satisfying fΓzi ;Γz̄j̄g ¼ 2hij̄ where hij̄ is the inverse of hij̄.
Here, σa (a ¼ 1, 2, 3) denote the Pauli matrices,
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σ� ¼ σ1 � iσ2 and I is a 2 × 2 identity matrix. The
chirality matrix Γ5 is given by

Γ5 ¼ σ3 ⊗ σ3 ¼

0
BBB@

1

−1
−1

1

1
CCCA: ð2:6Þ

We consider a Uð1Þ gauge theory. The field strength on
T4 is given by

F ¼ 1

2
Fxixjdx

i ∧ dxj þ 1

2
Fyiyjdy

i ∧ dyj

þ Fxiyjdx
i ∧ dyj; ð2:7Þ

where each element is expressed in terms of gauge fields
Axi and Ayi as

Fxixj ¼ ∂xiAxj − ∂xjAxi ; Fyiyj ¼ ∂yiAyj − ∂yjAyi ;

Fxiyj ¼ ∂xiAyj − ∂yjAxi : ð2:8Þ

In the following, we introduce background magnetic flux.
The background magnetic flux on T4 is expressed as the
classical value of a field strength as follows:

hFi ¼ 1

2
pxixjdx

i ∧ dxj þ 1

2
pyiyjdy

i ∧ dyj

þ pxiyjdx
i ∧ dyj; ð2:9Þ

with

pxixj ¼hFxixji; pyiyj ¼hFyiyji; pxiyj ¼hFxiyji; ð2:10Þ

where pxixj , pyiyj , and pxiyj are real parameters determined
later. Rewriting the classical value of the field strength (2.9)
in terms of complex coordinate zi and z̄ī, we get

hFi ¼ 1

2
hFzizjidzi ∧ dzj þ 1

2
hFz̄īz̄j̄idz̄ī ∧ dz̄j̄

þ hFziz̄j̄iðidzi ∧ dz̄j̄Þ; ð2:11Þ

with

hFzizji ¼ ðΩ̄ −ΩÞ−1TðΩ̄TpxxΩ̄þ pyy þ pT
xyΩ̄ − Ω̄TpxyÞ

× ðΩ̄ −ΩÞ−1; ð2:12Þ

hFz̄īz̄j̄i ¼ ðΩ̄ −ΩÞ−1TðΩTpxxΩþ pyy þ pT
xyΩ −ΩTpxyÞ

× ðΩ̄ −ΩÞ−1; ð2:13Þ

hFziz̄j̄i ¼ iðΩ̄ − ΩÞ−1TðΩ̄TpxxΩþ pyy þ pT
xyΩ − Ω̄TpxyÞ

× ðΩ̄ −ΩÞ−1: ð2:14Þ

We note that hFzizji and hFz̄īz̄j̄i vanish if supersymmetry is
imposed [31]. In this paper, we do not assume supersym-
metry. However, since the value of the background flux can
be freely chosen as long as it satisfies the equations of
motion, we assume

ΩTpxxΩþ pyy þ pT
xyΩ − ΩTpxy ¼ 0: ð2:15Þ

In this case, hFi is simplified to

hFi ¼ −
1

2
½ðpxxΩ − pxyÞðImΩÞ−1�ij̄ðidzi ∧ dz̄j̄Þ. ð2:16Þ

To further simplify the discussion, we choose pxx and pyy

to be zero values;

pxx ¼ pyy ¼ 0: ð2:17Þ
Then, hFi becomes

hFi ¼ 1

2
½pxyðImΩÞ−1�ij̄ðidzi ∧ dz̄j̄Þ: ð2:18Þ

Note that, by imposing Eq. (2.17), the condition (2.15)
becomes

ðpT
xyΩÞT ¼ pT

xyΩ: ð2:19Þ

The value of the background flux is quantized by the
boundary conditions as [24]

pxy ¼ 2πNT ð2:20Þ

with N being a 2 × 2 integer matrix. By substituting
Eq. (2.20) into Eq. (2.18), we get

hFziz̄j̄i ¼ π½NTðImΩÞ−1�ij̄: ð2:21Þ

From Eq. (2.21), we see that the classical value of Fziz̄j̄

takes a constant value. Hence, it is easy to see that hFi
satisfies the equation of motion. Note that, by applying
Eq. (2.20), the condition (2.19) becomes

ðNΩÞT ¼ NΩ: ð2:22Þ

The field strength can be expressed using gauge fields as

Fziz̄j̄ ¼
1

i
ð∂ziAz̄j̄ − ∂z̄j̄AziÞ: ð2:23Þ

It is easy to check that Eq. (2.21) can be reproduced by taking
the classical value of the gauge component as follows:

hAzii ¼ −i
π

2
z̄j̄½NTðImΩÞ−1�j̄i;

hAz̄īi ¼ i
π

2
zj½NTðImΩÞ−1�jī: ð2:24Þ
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Giving Eq. (2.24), Azi and Az̄ī can be expanded around the
flux backgrounds as

Azi ¼ hAzii þ
φziffiffiffi
2

p ; Az̄ī ¼ hAz̄īi þ
φz̄īffiffiffi
2

p : ð2:25Þ

The factor of 1=
ffiffiffi
2

p
is introduced to canonically normalize

φzi and φz̄ī . Hereafter, we call φziðφz̄īÞWL scalar fields. It is
also clear that because hFziz̄j̄i is real, the following relation
holds:

hFziz̄j̄i ¼ hFziz̄j̄i ¼ −hFz̄īzji ¼ hFzjz̄īi: ð2:26Þ

That is, hFziz̄j̄i is symmetric.
Before closing this section, we introduce the eight-

dimensional (8D) Weyl fermion Ψ. The free Lagrangian
for Ψ with background magnetic fluxes is given by

L8D
free ¼ Ψ̄iΓμ

∂μΨþ Ψ̄i =DzΨ; ð2:27Þ

with

i =Dz ¼ iðΓzjDzj þ Γz̄j̄Dz̄j̄Þ

¼ 2i

0
BBB@

0 ρ1Dz1 ρ2Dz2 0

ρ1Dz̄1 0 0 ρ2Dz2

ρ2Dz̄2 0 0 −ρ1Dz1

0 ρ2Dz̄2 −ρ1Dz̄1 0

1
CCCA; ð2:28Þ

where ρj ¼ 1=ð2πRjÞ. The covariant derivatives with the
gauge field replaced by its classical value are given by

DziΨ ¼ ð∂zi þ iqhAziiÞΨ;
Dz̄īΨ ¼ ð∂z̄ī þ iqhAz̄īiÞΨ; ð2:29Þ

where q is the 8D gauge coupling times a charge of Ψ. The
Ψ is expressed in terms of four-component fields
ðψ1

L;ψ
2
R;ψ

3
R;ψ

4
LÞ as

Ψ ¼

0
BBB@

ψ1
L

ψ2
R

ψ3
R

ψ4
L

1
CCCA; ð2:30Þ

where the subscripts L and R, respectively, correspond to
the left- and right-handed chiralities in 4D after integrating
the extra dimension T4.

III. COUNTING NAMBU-GOLDSTONE MODES

As pointed out in Refs. [19,21], the WL scalar fields
become NG modes since the introduction of the magnetic
flux leaves a constant shift symmetry for the WL scalar

field. This shift symmetry is a remnant of the spontaneous
breaking of the translation of the coordinates on the torus
due to the magnetic flux. It is confirmed that the quantum
corrections to the mass of the WL scalar field are
canceled out.
In the case of the higher dimensions of T2nðn ≥ 2Þ,

contrary to T2, multiple magnetic fluxes can be introduced
to the theory. In general, the field strength matrix hFi also
has nonzero values for the off-diagonal elements. In the
following, we extend the formulation of the shift symmetry
on T2 in Refs. [19,21] to those in T4.
The original 8D Lagrangian in a Uð1Þ gauge theory is

invariant under the following transformations, which are
obtained by combining gauge and translational transforma-
tions on the T4 with magnetic fluxes. The translational
operators in T4 are expressed as δT4 ¼ ϵj∂zj þ ϵ̄j∂z̄j̄ , where
ϵj; ϵ̄j are infinitesimal parameters. First, we consider the
infinitesimal transformation for the WL scalar field. The
breaking of translational symmetry by the magnetic flux can
be compensated by a constant shift. Thus, the translational
transformation for the WL scalar field is described as

δT2nφzi ¼ ðϵj∂zj þ ϵ̄j∂z̄j̄Þφzi −
iffiffiffi
2

p ϵ̄jhFzjz̄īi: ð3:1Þ

The gauge transformations for the WL scalar field are
given by

δΛφzi ¼ −
ffiffiffi
2

p
∂ziΛ ¼ −

iffiffiffi
2

p ᾱjhFzjz̄īi;

Λ ¼ i
2
hFzjz̄īiðᾱjzi − αjz̄īÞ; ð3:2Þ

where αj, ᾱj are complex parameters. Second, we consider
the infinitesimal transformation for the fermion. The trans-
lation of the fermion is given by:

δT2nΨ ¼ ðϵj∂zj þ ϵ̄j∂z̄j̄ÞΨ: ð3:3Þ

The gauge transformation for the fermion is given by

δΛΨ ¼ iqΛΨ ¼ iqðαjhAzji þ ᾱjhAz̄j̄iÞΨ: ð3:4Þ

From Eqs. (3.3) and (3.4) with ϵj ¼ αj, a combined trans-
formation for the fermion can be expressed by using
covariant derivatives:

δΨ ¼ ðδT2n þ δΛÞΨ ¼ ðϵjDzj þ ϵ̄jDz̄j̄ÞΨ: ð3:5Þ

On the other hand, fromEqs. (3.1) and (3.2)with ϵj ¼ αj, the
combined transformation for theWLscalar field corresponds
to a constant shift:

δφzi ¼ −
ffiffiffi
2

p
iϵ̄jhFzjz̄īi: ð3:6Þ

HIROSE, OTSUKA, TSUMURA, and UCHIDA PHYS. REV. D 110, 035032 (2024)

035032-4



Note that derivative terms in Eq. (3.1) vanish since φzi are
independent of complex coordinates. Thus, the WL scalar
fields are identified as NG modes. Conversely, if the WL
scalar fields do not feel the magnetic flux in Eq. (3.6), they
have amass and cannot be anNGmode.2 This formulation in
T4 is easily extended to one inT2nðn ≥ 2Þ; e.g., the index i of
complex coordinates runs from one to three in T6.
Since the constant shift in Eq. (3.6) associates with the

magnetic flux, it is natural to expect that the number of
massless WL scalar fields is controlled by the number of
independent magnetic fluxes. To extract the information
of the independent magnetic fluxes, we consider the
diagonalization of the flux matrix hFi. The field strength
two-form F is invariant under the coordinate transforma-
tion as

F ¼ Fziz̄j̄dz
i ∧ dz̄j̄ ¼ ðUF̃UTÞij̄dzi ∧ dz̄j̄

¼ F̃ziz̄j̄dz̃
i ∧ d ¯̃zj̄; ð3:7Þ

where the coordinate transformations of z as well as Ω are
given by

⃗z̃ ¼ UTz⃗ ¼ UTx⃗þUTΩUUTy⃗ ¼ ⃗x̃þ Ω̃ ⃗ỹ; ð3:8Þ

with

Ω̃ ¼ UTΩU; ⃗x̃ ¼ UTx⃗; ⃗ỹ ¼ UTy⃗: ð3:9Þ

Using this coordinate transformation, we take the flux
diagonal basis as

hF̃i ¼ UThFiU; U ¼
�

cos θ sin θ

− sin θ cos θ

�
; ð3:10Þ

where hF̃i is a diagonal matrix, and

tan 2θ ¼ 2hFz2 z̄1i
jhFz1 z̄1i − hFz2 z̄2ij

: ð3:11Þ

From Eq. (2.21), we define N in the new basis as

hF̃i ¼ πÑTðImΩ̃Þ−1; ð3:12Þ

with

Ñ ¼ UTNU: ð3:13Þ

By this procedure, any theory on T4 with an arbitrary flux
matrix satisfying Eq. (2.15) can always be brought to a
theory with only diagonal fluxes by performing the
appropriate coordinate transformation. Since the number

of nonzero eigenvalues is equal to the rank of the matrix,
the number of independent magnetic fluxes is determined
by the rank of the flux matrix, rankhFi. In the following, we
will consider the theory in the flux diagonal basis. For
the sake of simplicity, the tilde symbols, which indicate the
theory in the flux diagonal basis, are omitted below. In the
M4 × T4 theory, there are two complex WL scalar fields.
Equation (3.6) is written as

δφz1 ¼−
ffiffiffi
2

p
iϵ̄1hFz1 z̄1i; δφz2 ¼−

ffiffiffi
2

p
iϵ̄2hFz2 z̄2i: ð3:14Þ

Defining nNG as the number of NG mode φzi , we conclude

nNG ¼ rankhFi: ð3:15Þ
There are no NG modes in a T4 theory without magnetic
fluxes, i.e., rankhFi ¼ 0. In this case, the quantum cor-
rections to the mass of two WL scalar fields both diverge.
For rankhFi ¼ 1, a WL scalar field has the same properties
as that in the previous study for the T2 theory with a
magnetic flux. Namely, the WL scalar field, which corre-
sponds to the direction of the magnetic flux, becomes an
NG mode. The quantum corrections to the mass of this WL
scalar field cancel out. On the other hand, the other WL
scalar field receives divergent quantum corrections to the
mass. For a T4 theory with two independent fluxes, i.e.,
rankhFi ¼ 2, there are two NG modes. In this case, the
quantum corrections to the mass of the twoWL scalar fields
are both canceled. In the next section, we will explicitly
show the cancellation of the quantum corrections to the
mass of WL scalar fields at the one-loop level.

IV. MATTER SPECTRUM ON MAGNETIZED T4

In this section, we derive the mass spectrum for the
fermion in 4D effective theory by solving the Dirac
equation. From Eq. (2.27), we obtain the following
equation of motion:

ðiΓμ
∂μÞ2Ψþ ði =DzÞ2Ψ ¼ 0: ð4:1Þ

In the flux diagonal basis, the commutation relations for
covariant derivatives are given below:

½Dz1 ;Dz̄1 � ¼−qhFz1 z̄1i; ½Dz2 ;Dz̄2 � ¼−qhFz2z̄2i; ð4:2Þ

½Dz1 ;Dz2 � ¼ ½Dz̄1 ;Dz̄2 � ¼ ½Dz1 ;Dz̄2 � ¼ ½Dz2 ;Dz̄1 � ¼ 0: ð4:3Þ

Based on the above commutation relations, we define
creation and annihilation operators by normalizing the
covariant derivatives,

a1 ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qhFz1 z̄1i
p Dz1 ; a†1 ¼

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhFz1 z̄1i

p Dz̄1 ;

a2 ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qhFz2 z̄2i
p Dz2 ; a†2 ¼

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhFz2 z̄2i

p Dz̄2 ; ð4:4Þ2In the case of T2 without a flux, the WL scalar field receives
the quantum correction to the mass. See Refs. [3,5,18].
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for qhFz1 z̄1i > 0 and qhFz2 z̄2i > 0. The above operators
satisfy ordinary commutation relations ½ai; a†j � ¼ δij, and

½a1; a2� ¼ ½a†1; a†2� ¼ ½a1; a†2� ¼ ½a†1; a2� ¼ 0. When qhFziz̄īi
is negative, the definitions of the corresponding creation
and annihilation operators are switched. Using the above
annihilation operators ai, the ground state mode function
ξ0;0 is defined by aiξ0;0 ¼ 0.3 Mode functions ξn1;n2 are

constructed by acting on the creation operators a†i as

ξn1;n2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n1!n2!
p ða†1Þn1ða†2Þn2ξ0;0: ð4:5Þ

Note that ξn1;n2 is an eigenstate for the number operator

a†1a1 and a†2a2,

a†1a1ξn1;n2 ¼ n1ξn1;n2 ; a†2a2ξn1;n2 ¼ n2ξn1;n2 : ð4:6Þ

The mode function satisfies the following relations:

a1ξn1;n2 ¼
ffiffiffiffiffi
n1

p
ξn1−1;n2 ; a†1ξn1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
n1þ1

p
ξn1þ1;n2 ;

a2ξn1;n2 ¼
ffiffiffiffiffi
n2

p
ξn1;n2−1; a†2ξn1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
n2þ1

p
ξn1;n2þ1: ð4:7Þ

It also satisfies an orthonormal condition,

Z
T4

d4z
ffiffiffiffiffiffiffiffiffiffi
det h

p
ξ̄n1;n2ξn01;n02 ¼ δn1n01δn2n02 : ð4:8Þ

Note that mode functions ξn1;n2 have a normalization factor
proportional to VolðT4Þ−1=2 with VolðT4Þ being the volume
of T4.
In terms of creation and annihilation operators, the

square of the Dirac operator is4

ði =DzÞ2¼4qdiag

�
ρ21hFz1 z̄1iða†1a1þ1Þþρ22hFz2 z̄2iða†2a2þ1Þ;

ρ21hFz1 z̄1ia†1a1þρ22hFz2 z̄2iða†2a2þ1Þ;
ρ21hFz1 z̄1iða†1a1þ1Þþρ22hFz2 z̄2ia†2a2;

ρ21hFz1 z̄1ia†1a1þρ22hFz2 z̄2ia†2a2
�
: ð4:9Þ

Since we take qhFz1 z̄1i > 0 and qhFz2 z̄2i > 0, the 4D
fermion ψ4

L is expected to have a massless mode, while
the others are not. Each component of the 8D fermion
(2.30) is expanded by using the mode functions ξn1;n2
introduced above as follows:

ψ1
L ¼

X∞
n1¼0

X∞
n2¼0

ψ1
L;n1þ1;n2þ1ξn1;n2 ;

ψ2
R ¼

X∞
n1¼0

X∞
n2¼0

ψ2
R;n1;n2þ1ξn1;n2 ;

ψ3
R ¼

X∞
n1¼0

X∞
n2¼0

ψ3
R;n1þ1;n2

ξn1;n2 ;

ψ4
L ¼

X∞
n1¼0

X∞
n2¼0

ψ4
L;n1;n2

ξn1;n2 ; ð4:10Þ

where the 4D fermions ψ1;2;3;4
L=R;n1;n2

are defined to have
masses of

Mn1;n2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
�
ρ21hFz1 z̄1in1 þ ρ22hFz2 z̄2in2

�r
: ð4:11Þ

On the other hand, the fermion mass term in the 4D
Lagrangian appears in the form of a single power of i =Dz. To
see the fermion mass spectrum in 4D, we need to move the
mass eigenbasis at the Lagrangian level. The mass terms in
the 4D effective Lagrangian are given by

L4D
mass ¼

Z
T4

d4z
ffiffiffiffiffiffiffiffiffiffi
det h

p
Ψ̄i =DzΨ

¼ þ
X∞
l1¼1

X∞
n2¼0

Ml1;0

h
ψ̄1
L;l1;n2þ1ψ

2
R;l1;n2þ1 − ψ̄3

R;l1;n2
ψ4
L;l1;n2

þ ψ̄2
R;l1;n2þ1ψ

1
L;l1;n2þ1 − ψ̄4

L;l1;n2
ψ3
R;l1;n2

i

þ
X∞
n1¼0

X∞
l2¼1

M0;l2

h
ψ̄1
L;n1þ1;l2

ψ3
R;n1þ1;l2

þ ψ̄2
R;n1;l2

ψ4
L;n1;l2

þ ψ̄3
R;n1þ1;l2

ψ1
L;n1þ1;l2

þ ψ̄4
L;n1;l2

ψ2
R;n1;l2

i
: ð4:12Þ

In performing the integration with respect to the extra-dimensional coordinates, we used Eq. (4.8). The above Lagrangian is
equivalent to the description of the following three types of Dirac fermion:

3This function ξ0;0 is described by the Riemann ϑ-function, and its degeneracy is determined by jDethNij [10,24].
4The mass spectrum in SUðnÞ gauge theory on M4 × T2 is known by Refs. [10,32].
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ψ1
l1;l2

¼ ψ1
L;l1;l2

þ ψ2
R;l1;l2

;

ψ2
l1;l2

¼ ψ4
L;l1;l2

þ ψ3
R;l1;l2

;

χl1;0 ¼ ψ4
L;l1;0

þ ψ3
R;l1;0

;

χ0;l2 ¼ −ψ4
L;0;l2

þ ψ2
R;0;l2

; ð4:13Þ

and constitute the mass terms given below,

L4D
mass ¼ −

X∞
l1¼1

Ml1;0χ̄l1;0χl1;0 −
X∞
l2¼1

M0;l2
χ̄0;l2

χ0;l2

−
X∞
l1¼1

X∞
l2¼1

ðψ̄1
l1;l2

; ψ̄2
l1;l2

ÞMKK

�ψ1
l1;l2

ψ2
l1;l2

�
; ð4:14Þ

where the mass matrix MKK is given by

MKK ¼
�−Ml1;0 −M0;l2

−M0;l2 Ml1;0

�
: ð4:15Þ

The mass matrixMKK is diagonalized by orthogonal matrix
UKK:

Mdiag
KK ¼ U−1

KKMKKUKK; ð4:16Þ
with

Mdiag
KK ¼ diagð−Ml1;l2 ;Ml1;l2

Þ;

UKK ¼
�
cos θl1;l2 − sin θl1;l2
sin θl1;l2

cos θl1;l2

�
: ð4:17Þ

The mixing angle θl1;l2 is given by

tan 2θl1;l2
¼ M0;l2

Ml1;0
: ð4:18Þ

The mass eigenstates denoted by χ1l1;l2
and χ2l1;l2

are
expressed by the linear combination of ψ1

l1;l2
and ψ2

l1;l2
in the interaction basis as

� γ5χ
1
l1;l2

χ2l1;l2

�
¼ U−1

KK

�ψ1
l1;l2

ψ2
l1;l2

�
: ð4:19Þ

We finally get

L4D
mass ¼ −

X∞
l1¼1

Ml1;0χ̄l1;0χl1;0 −
X∞
l2¼1

M0;l2
χ̄0;l2

χ0;l2

−
X∞
l1¼1

X∞
l2¼1

Ml1;l2

�
χ̄1l1;l2χ

1
l1;l2

þ χ̄2l1;l2χ
2
l1;l2

�
:

ð4:20Þ

From the third and fourth terms in the right-hand side of
Eq. (4.20), we find that χ1l1;l2 and χ2l1;l2 are degenerate in

mass. There is no right-handed partner for ψ4
L;0;0 ¼ χ0;0.

This is consistent with the mass spectrum (4.11) obtained
from the Dirac equation. In the same way, we also obtain
Yukawa interactions between 4D WL scalar and fermion
fields. The expression for the Yukawa term is lengthy so we
show it in Appendix A. We will use the Yukawa inter-
actions to calculate quantum corrections to the mass of the
WL scalar field in a later section.
The method shown above can be straightforwardly

applied to cases with T2n (n ≥ 3). We show the derivation
of the mass spectrum for a case with T6 in Appendix B as
an example.

V. ONE-LOOP CORRECTIONS
TO THE WL SCALAR MASS

In Sec. III, we clarified that the number of massless WL
scalar fields is determined by rankhFi. To confirm this
statement, we calculate the quantum correction to the mass
of the WL scalar field at the one-loop level in the case of
rankhFi ¼ 2. Throughout this section, we assume that the
extra-dimensional space is T4. In the case of T2nðn ≥ 3Þ,
the same procedure can also be applied using the similar
fermion mass spectrum summarized in Appendix A. We
also comment on the case of rankhFi ¼ 1 at the end of this
section.
We calculate the quantum correction to the squared mass

of φz1 at the one-loop level, denoted by δm2
φz1
. The

Feynman diagrams that contribute to the quantum correc-
tion are listed in Fig. 1. Extracting relevant interaction
vertices from Eq. (A1), δm2

φz1
is calculated as

FIG. 1. One-loop diagrams for quantum corrections to the squared mass of φz1 . (a), (b), and (c) correspond to the first, second, and
third terms in the right-hand side of Eq. (5.1).
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δm2
φz1

¼ þ2ð
ffiffiffi
2

p
q1Þ2

X∞
n1¼0

Z
d4k
ð2πÞ4

k2

ðk2 þM2
n1;0

Þðk2 þM2
n1þ1;0Þ

þ 4ð
ffiffiffi
2

p
q1Þ2

X∞
l2¼1

Z
d4k
ð2πÞ4

k2 þ s2θ0;l2 s2θ1;l2M0;l2M1;l2

ðk2 þM2
0;l2

Þðk2 þM2
1;l2

Þ

þ 4ð
ffiffiffi
2

p
q1Þ2

X∞
l1¼1

X∞
l2¼1

Z
d4k
ð2πÞ4

k2 þ s2θl1 ;l2 s2θl1þ1;l2
Ml1;l2Ml1þ1;l2

ðk2 þM2
l1;l2

Þðk2 þM2
l1þ1;l2

Þ ; ð5:1Þ

where qi ¼ qρi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðT4Þ

p
. The charge qi is dimensionless in 4D since q has a mass dimension −3. The first, second,

and third terms in the right-hand side of Eq. (5.1) correspond to the one-loop amplitudes for Feynman diagrams in
Figs. 1(a), 1(b), and 1(c), respectively. From Eq. (4.18), we also have the following relations:

s2θl1 ;l2 ¼ sin 2θl1;l2 ¼
M0;l2

Ml1;l2

: ð5:2Þ

Replacing s2θl1 ;l2 by mass ratios in Eq. (5.1), we obtain

δm2
φz1

¼ þ2ð
ffiffiffi
2

p
q1Þ2

Z
d4k
ð2πÞ4

X∞
n1¼0

K2

ðK2 þM2
n1;0

ÞðK2 þM2
n1þ1;0Þ

����
K2¼k2

þ 4ð
ffiffiffi
2

p
q1Þ2

X∞
n2¼0

Z
d4k
ð2πÞ4

X∞
n1¼0

K2

ðK2 þM2
n1;0

ÞðK2 þM2
n1þ1;0Þ

����
K2¼k2þM2

0;n2þ1

; ð5:3Þ

where the second and third terms in Eq. (5.1) are combined appropriately. To evaluate these quantum corrections, we
decompose the integrand into partial fractions:

X∞
n1¼0

K2

ðK2 þM2
n1;0

ÞðK2 þM2
n1þ1;0Þ

¼
X∞
n1¼0

�
n1 þ 1

ðK2 þM2
n1þ1;0Þ

−
n1

ðK2 þM2
n1;0

Þ
�

¼ 0: ð5:4Þ

Using the shift n1 → n1 þ 1 in the second term, we find
that quantum corrections to φz1 cancel out completely at the
one-loop level as

δm2
φz1

¼ 0: ð5:5Þ

We also confirm the cancellation of the one-loop contri-
bution to the squared mass of φz2 . The corresponding
Feynman diagrams are shown in Fig. 2. The one-loop
corrections are obtained by replacing Mn1;0 with M0;n2 , n1

with n2, and q1 with q2 in Eq. (5.3). Note that s2θn1 ;n2 is
converted to c2θn2 ;n2 under this replacement. Following the

above procedure, we find

δm2
φz2

¼ 0: ð5:6Þ

We comment on the case of rankhFi ¼ 1. In this case,
the quantum corrections to the squared mass for φz1 are
given by

δm2
φz1

¼ 4ð
ffiffiffi
2

p
q1Þ2

X∞
l;m¼−∞

Z
d4k
ð2πÞ4

X∞
n1¼0

K2

ðK2 þM2
n1;0

ÞðK2 þM2
n1þ1;0Þ

����
K2¼k2þl2þm2

R2
2

; ð5:7Þ

FIG. 2. One-loop diagrams for quantum corrections to the squared mass of φz2 .
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where l; m∈Z. Therefore, we obtain

δm2
φz1

¼ 0: ð5:8Þ

On the other hand, that for φz2 is calculated as

δm2
φz2

¼ þ2ð
ffiffiffi
2

p
q2Þ2

X∞
l;m¼−∞

Z
d4k
ð2πÞ4

k2�
k2 þ l2þm2

R2
2

�
2

þ 4ð
ffiffiffi
2

p
q2Þ2

X∞
l1¼1

X∞
l;m¼−∞

Z
d4k
ð2πÞ4

×
k2 þM2

l1;0�
k2 þM2

l1;0
þ l2þm2

R2
2

�
2
: ð5:9Þ

These corrections do not cancel out and do diverge.5 This
means that φz2 cannot be a NG mode.

VI. SUMMARY AND DISCUSSIONS

We have studied a Uð1Þ gauge theory on M4 × T2n with
background magnetic fluxes. For n ≥ 2, multiple magnetic
fluxes can be introduced, including off-diagonal fluxes. We
have shown that even in the presence of off-diagonal fluxes,
one can always take a basis with only diagonal fluxes by an
appropriate coordinate transformation. It is found that the
number of independent magnetic fluxes is determined by
the rank of the classical value of the field strength matrix,
rankhFi. The number of NG modes (WL scalar fields) is
also determined by rankhFi, where WL scalar fields are
zero modes induced from extra components of the higher-
dimensional gauge field. We have constructed a Landau
level of fermions by introducing creation and annihilation
operators in the flux diagonal basis. As examples, we
derived the mass spectrum of four-dimensional fermions in
T4 and T6 extra-dimensions.
In Ref. [19], the cancellation of the quantum corrections

to the mass of the WL scalar field were proven in a Uð1Þ
gauge theory on M4 × T2. In this paper, we have explicitly
shown that the quantum corrections to the mass of the WL
scalar field cancel out in the case of T4 with arbitrary

magnetic fluxes. Using our developed procedure, this result
is easily extended to the case with T2n.
We comment on an issue that needs to be resolved when

interpreting this theory as a realistic model for the Higgs
boson in the SM. As a mechanism to give a mass to the WL
scalar field, we will consider three possibilities. First,
when we extend our analysis to toroidal orbifolds, the
mass will be generated by the breaking of the shift
symmetry. We will leave a comprehensive study about
NG modes on toroidal orbifolds in the future. Second, these
WL scalar fields would acquire their masses by the
Hosotani mechanism [1]. However, it was pointed out in
Ref. [21] that the effective potential is independent of the
WL phase in a six-dimensional Uð1Þ theory on T2 with
magnetic flux. Thus, it would be interesting to analyze the
effective potential in T2n and its orbifold backgrounds.
Finally, from the viewpoint of string theory, the stabiliza-
tion of such massless modes (open string moduli) would be
realized in M-theory and F-theory compactifications with
background four-form fluxes (see, e.g., [33–37]). However,
an arbitrary value of background fluxes including magnetic
fluxes discussed in this paper is not allowed by the
cancellation of D-brane charges. Rather, it is bounded
from above in string models [38]. It would be interesting to
realize the stabilization of WL scalar fields in string
models, which is left for future work.
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APPENDIX A

We derive the Yukawa interactions among WL scalar
fields and fermions. The Yukawa interactions in four-
dimensional theory are given by

Z
T4

d4z
ffiffiffiffiffiffiffiffiffiffi
det h

p
Ψ̄iDzΨjφ ¼ þ

ffiffiffi
2

p
q1

X∞
n1¼0

φz1 χ̄n1þ1;0PLχn1;0

þ
ffiffiffi
2

p
q1

X∞
l2¼1

φz1

�
χ̄11;l2ðcθ1;l2PR − sθ1;l2PLÞχ0;l2 þ χ̄21;l2ðsθ1;l2PR − cθ1;l2PLÞχ0;l2

	

þ
ffiffiffi
2

p
q1

X∞
l1¼1

X∞
l2¼1

φz1

�
χ̄1l1þ1;l2

ðþcθl1þ1;l2
cθl1 ;l2PR − sθl1þ1;l2

sθl1 ;l2PLÞχ1l1;l2

5An expression similar to the first term in Eq. (5.9) is found in T2 without the magnetic flux case. See Refs. [3,18].
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þ χ̄1l1þ1;l2
ð−cθl1þ1;l2

sθl1 ;l2PR þ sθl1þ1;l2
cθl1 ;l2PLÞχ2l1;l2

þ χ̄2l1þ1;l2
ðþsθl1þ1;l2

cθl1 ;l2PR − cθl1þ1;l2
sθl1 ;l2PLÞχ1l1;l2

þ χ̄2l1þ1;l2
ð−sθl1þ1;l2

sθl1 ;l2PR þ cθl1þ1;l2
cθl1 ;l2PLÞχ2l1;l2

	

−
ffiffiffi
2

p
q2φz2 χ̄0;1χ0;0 þ

ffiffiffi
2

p
q2

X∞
l2¼1

φz2 χ̄0;l2þ1PLχ0;l2

þ
ffiffiffi
2

p
q2

X∞
l1¼1

φz2

�
χ̄1l1;1ðcθl1 ;1PR − cθl1 ;1PLÞχ2l1;0 þ χ̄2l1;1ðsθl1 ;1PR þ sθl1 ;1PLÞχ2l1;0

	

þ
ffiffiffi
2

p
q2

X∞
l1¼1

X∞
l2¼1

φz2

�
χ̄1l1;l2þ1ðþcθl1 ;l2þ1

sθl1 ;l2PR þ cθl1 ;l2þ1
sθl1 ;l2PLÞχ1l1;l2

þ χ̄1l1;l2þ1ðþcθl1 ;l2þ1
cθl1 ;l2PR − cθl1 ;l2þ1

cθl1 ;l2PLÞχ2l1;l2

þ χ̄2l1;l2þ1ðþsθl1 ;l2þ1
sθl1 ;l2PR − sθl1 ;l2þ1

sθl1 ;l2PLÞχ1l1;l2
þ χ̄2l1;l2þ1ðþsθl1 ;l2þ1

cθl1 ;l2PR þ sθl1 ;l2þ1
cθl1 ;l2PLÞχ2l1;l2

	
þ H:c:; ðA1Þ

where qi ¼ qρi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðT4Þ

p
.

APPENDIX B

In this appendix, we derive the fermion mass spectrum onM4 × T6 with background magnetic fluxes as a demonstration.
The extension of the method to T2n is straightforward. Let us introduce dimensionless complex coordinates zi; z̄ī

ðī ¼ 1; 2; 3Þ as
zi ¼ xi þ Ωi

jy
j; z̄ī ¼ xī þ Ω̄ī

j̄y
j̄; ðB1Þ

where xi, yi are real and dimensionless coordinates, andΩi
jð∈C3Þ denotes the complex structure. A free Lagrangian for the

Weyl fermion Ψ on M4 × T6 with background magnetic flux is given by

L10D
free ¼ Ψ̄iΓμ

∂μΨþ Ψ̄i =DT6

z Ψ; ðB2Þ

with

i =DT6

z ¼ i
X3
j¼1

ΓzjDzj þ i
X3
j̄¼1

Γz̄j̄Dz̄j̄ ¼ 2i

0
BBBBBBBBBBBBB@

0 ρ3Dz3 ρ2Dz2 0 ρ1Dz1 0 0 0

ρ3Dz̄3 0 0 −ρ2Dz2 0 −ρ1Dz1 0 0

ρ2Dz̄2 0 0 ρ3Dz3 0 0 −ρ1Dz1 0

0 −ρ2Dz̄2 ρ3Dz̄3 0 0 0 0 ρ1Dz1

ρ1Dz̄1 0 0 0 0 ρ3Dz3 ρ2Dz2 0

0 −ρ1Dz̄1 0 0 ρ3Dz̄3 0 0 −ρ2Dz2

0 0 −ρ1Dz̄1 0 ρ2Dz̄2 0 0 ρ3Dz3

0 0 0 ρ1Dz̄1 0 −ρ2Dz̄2 ρ3Dz̄3 0

1
CCCCCCCCCCCCCA

; ðB3Þ

where ρi ¼ 1=ð2πRiÞ for all i ¼ 1, 2, 3 andRi are scale factors in T6. We use the following Gammamatrices on the complex
coordinates of T6:

Γz1 ¼ σþ ⊗ σ3 ⊗ σ3; Γz2 ¼ I ⊗ σþ ⊗ σ3; Γz3 ¼ I ⊗ I ⊗ σþ;

Γz̄1 ¼ σ− ⊗ σ3 ⊗ σ3; Γz̄2 ¼ I ⊗ σ− ⊗ σ3; Γz̄3 ¼ I ⊗ I ⊗ σ−: ðB4Þ
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Note that Ψ is expressed in terms of four-component
fields as

Ψ ¼

0
BBBBBBBBBBBBBBB@

ψ1
L

ψ2
R

ψ3
R

ψ4
L

ψ5
R

ψ6
L

ψ7
L

ψ8
R

1
CCCCCCCCCCCCCCCA

; ðB5Þ

where L and R, respectively, correspond to the left- and
right-handed chiralities in 4D after integrating the extra
dimension T6. The chirality matrix Γ5 is given by Γ5 ¼
σ3 ⊗ σ3 ⊗ σ3.
Similar to Sec. IV, the commutation relations for

covariant derivatives are given below,

½Dzi ;Dz̄j̄ � ¼ −qhFziz̄j̄i: ðB6Þ

In the following, we take the flux diagonal basis. Based on
the above commutation relations, we define creation
and annihilation operators by normalizing the covariant
derivatives,

a1 ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qhFz1 z̄1i
p Dz1 ; a†1 ¼

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhFz1 z̄1i

p Dz̄1 ;

a2 ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qhFz2 z̄2i
p Dz2 ; a†2 ¼

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhFz2 z̄2i

p Dz̄2 ;

a3 ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qhFz3 z̄3i
p Dz3 ; a†3 ¼

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhFz3 z̄3i

p Dz̄3 ; ðB7Þ

where qhFz1 z̄1i > 0, qhFz2 z̄2i > 0 and qhFz3 z̄3i > 0 are
assumed. The operators satisfy ½ai; a†j � ¼ δij, and ½ai; aj� ¼
½a†i ; a†j � ¼ 0. The ground state mode function ξ0;0;0 is
defined by aiξ0;0;0 ¼ 0. Acting ξ0;0;0 on the creation
operators a†i , the mode function ξn1;n2;n3 is obtained as

ξn1;n2;n3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1!n2!n3!
p ða†1Þn1ða†2Þn2ða†3Þn3ξ0;0;0: ðB8Þ

This mode function ξn1;n2;n3 is an eigenstate for the number

operators a†1a1, a
†
2a2, and a†3a3,

a†i aiξn1;n2 ¼ niξn1;n2;n3 ði ¼ 1; 2; 3Þ; ðB9Þ

where repeated indices on the left side are not summed.
The mode function ξn1;n2;n3 is normalized and satisfies an
orthogonality condition,

Z
T6

d6z
ffiffiffiffiffiffiffiffiffiffi
det h

p
ξ̄n1;n2;n3ξn01;n02;n03 ¼ δn1n01δn2n02δn3n03 : ðB10Þ

The mode function satisfies the following relations:

a1ξn1;n2;n3 ¼
ffiffiffiffiffi
n1

p
ξn1−1;n2;n3 ;

a†1ξn1;n2;n3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ 1

p
ξn1þ1;n2;n3 ;

a2ξn1;n2;n3 ¼
ffiffiffiffiffi
n2

p
ξn1;n2−1;n3 ;

a†2ξn1;n2;n3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
ξn1;n2þ1;n3 ;

a3ξn1;n2;n3 ¼
ffiffiffiffiffi
n3

p
ξn1;n2;n3−1;

a†3ξn1;n2;n3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n3 þ 1

p
ξn1;n2;n3þ1: ðB11Þ

The squared Dirac operator becomes

ði =DT6

z Þ2 ¼ 4qdiag
�
ρ21hFz1 z̄1iða†1a1 þ 1Þ þ ρ22hFz2 z̄2iða†2a2 þ 1Þ þ ρ23hFz3 z̄3iða†3a3 þ 1Þ;

ρ21hFz1 z̄1iða†1a1 þ 1Þ þ ρ22hFz2 z̄2iða†2a2 þ 1Þ þ ρ23hFz3 z̄3ia†3a3;
ρ21hFz1 z̄1iða†1a1 þ 1Þ þ ρ22hFz2 z̄2ia†2a2 þ ρ23hFz3 z̄3iða†3a3 þ 1Þ;
ρ21hFz1 z̄1iða†1a1 þ 1Þ þ ρ22hFz2 z̄2ia†2a2 þ ρ23hFz3 z̄3ia†3a3;
ρ21hFz1 z̄1ia†1a1 þ ρ22hFz2 z̄2iða†2a2 þ 1Þ þ ρ23hFz3 z̄3iða†3a3 þ 1Þ;
ρ21hFz1 z̄1ia†1a1 þ ρ22hFz2 z̄2iða†2a2 þ 1Þ þ ρ23hFz3 z̄3ia†3a3;
ρ21hFz1 z̄1ia†1a1 þ ρ22hFz2 z̄2ia†2a2 þ ρ23hFz3 z̄3iða†3a3 þ 1Þ;
ρ21hFz1 z̄1ia†1a1 þ ρ22hFz2 z̄2ia†2a2 þ ρ23hFz3 z̄3ia†3a3

�
: ðB12Þ

From the above, we see that only right-handed fermion ψ8
R;n1;n2;n3

has a massless mode ψ8
R;0;0;0. Note that ten-dimensional

fermions are expanded with the mode function ξn1;n2;n3 as
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ψ1
L ¼

X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

ψ1
L;n1þ1;n2þ1;n3þ1ξn1;n2;n3 ;

ψ2
R ¼

X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

ψ2
R;n1þ1;n2þ1;n3

ξn1;n2;n3 ;

ψ3
R ¼

X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

ψ3
R;n1þ1;n2;n3þ1ξn1;n2;n3 ;

ψ4
L ¼

X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

ψ4
L;n1þ1;n2;n3

ξn1;n2;n3 ;

ψ5
R ¼

X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

ψ5
R;n1;n2þ1;n3þ1ξn1;n2;n3 ;

ψ6
L ¼

X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

ψ6
L;n1;n2þ1;n3

ξn1;n2;n3 ;

ψ7
L ¼

X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

ψ7
L;n1;n2;n3þ1ξn1;n2;n3 ;

ψ8
R ¼

X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

ψ8
R;n1;n2;n3

ξn1;n2;n3 ; ðB13Þ

where the 4D fermions ψ1;2;3;4;5;6;7;8
L=R;n1;n2;n3

are defined to have masses of

Mn1;n2;n3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
�
hFz1 z̄1in1 þ hFz2 z̄2in2 þ hFz3 z̄3in3

�r
: ðB14Þ
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