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We revisit the contribution to the strong CP parameter θ̄ from leptonic CP violation at one-loop level in
the minimal left-right symmetric model in the case of generalized parity as the left-right symmetry. The
Hermitian neutrino Dirac mass matrixMD can be calculated using the light and heavy neutrino masses and
mixings. We propose a parametrization of the right-handed neutrino mixing matrix VR and construct the
heavy neutrino mass that maintains the Hermiticity of MD. We further apply it to evaluate the one-loop θ̄,
denoted as θ̄loop, as a function of the sterile neutrino masses for explicit examples of VR. By requiring the

magnitude of θ̄loop ≲ 10−10, we derive the upper limits on the sterile neutrino masses, which are within
reach of direct searches at the Large Hadron Collider and neutrinoless double beta decay experiments.
Furthermore, our parametrization is pertinent for other phenomenological investigations.
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I. INTRODUCTION

The standard model (SM) of particle physics has
achieved great success. However, the origin of neutrino
masses and the strong CP problem remains unsolved,
serving as compelling motivations for physics beyond the
SM (BSM). These two problems might have intrinsic
connections, even though they appear in the weak and
strong sectors at low energies.
If neutrinos are Majorana fermions, they could acquire

Majorana masses in the seesaw mechanism [1–5], making
them naturally small. In the type-I [1–5] and type-II [6–11]
seesawmechanisms, right-handed neutrinos and scalar triplet
are introduced, respectively. In the minimal left-right sym-
metricmodel (MLRSM) [5,9,12–15], theneutrinomasses can
receive contributions from both type-I and type-II seesaw
mechanismsMν ¼ ML −MT

DM
−1
N MD [cf. Eq. (11)]. In case

of generalized parity or charge conjugation as the left-right
symmetry [16], dubbed case P or C, respectively, the
MLRSM is highly predictive, which has been extensively
studied [17–26]. Moreover, it was found that in theMLRSM,
one can calculate the neutrinoDiracmassmatrixMD in terms
of the light and heavy neutrino masses and mixings [27–31].
As a contrast, the expression of neutrino Dirac mass matrix

MD in Casas-Ibarra parametrization [32] in type-I seesaw
models is still dependent on an arbitrary complex orthogonal
matrix.
The strong CP problem is about the extremely small

parameter θ̄ ≲ 10−10 [33–35] that violates CP in the strong
sector of the SM. The most popular solution to the strongCP
problem is the Peccei-Quinn mechanism [36,37], which
leads to the existence of the axion [38,39] and has thus
drawn a lot of theoretical attention [40–46] as well as
experimental interest [47]. Additionally, the strong CP
problem can also be addressed by imposing discrete sym-
metries [48–53]. Parity solutions to the strong CP problem
in the left-right symmetric models were considered in
Refs. [48–50], and have been further studied recently
[54–57]. In both SM and BSM scenarios, we can separate
θ̄ ¼ θ þ arg detðMuMdÞ, where θ is the coefficient of GG̃
term in the Lagrangian, and arg detðMuMdÞ is included since
the up-type and down-type quark mass matricesMu andMd
are in general non-Hermitian [58].
In the MLRSM for the case P, θ vanishes at tree level

and θ̄ is equal to arg detðMuMdÞ. It has been shown that
θ̄ ≃ sin α tanð2βÞmt=ð2mbÞ [21,54], where α and β are
defined in Eq. (5), mt and mb denote the masses of top
and bottom quarks, respectively. Thus in order to satisfy the
constraint from measurements of neutron electric dipole
moments [33–35] on θ̄ ≲ 10−10, sin α tanð2βÞ → 0 is
required. Nevertheless, the MLRSM does not provide
any reason why the phase α takes an extremely small
value. Thus, there is no solution to the strong CP problem
provided by the MLRSM, which has the minimal fermion
content, contrasting with the left-right symmetric models
discussed in Refs. [48–50,56,57].
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However, even if the quark mass matrices are (nearly)
Hermitian, leptonic CP violation would induce θ̄ at one-
loop level, which might exceed the aforementioned bound
as pointed out in Ref. [59]. Instead of being a problem,
Senjanovic et al. [60] demonstrated that the one-loop θ̄ in
the MLRSM implies an upper bound on the masses of
sterile neutrinos, which is complementary to the direct
searches at the Large Hadron Collider (LHC) [61].
As obtained in Ref. [60], θ̄loop is proportional to

ImTrðM†
NMN ½MD;Ml�Þ, where Ml denotes the charged

lepton mass matrix, and the neutrino Dirac mass matrixMD
is determined by the light and heavy neutrino masses and
mixings. However, it was shown that [25] θ̄loop might
vanish in the type-I seesaw dominance scenario for specific
benchmark choices of the right-handed neutrino mixing
matrix VR, which hindered the attempt to search for sterile
neutrinos contributing to θ̄ with neutrinoless double beta
(0νββ) decay [25].
In this work, we propose a parametrization of right-

handed neutrino mixing VR in the MLRSM for the case P
and construct the heavy neutrino mass matrixMN , for which
the Hermiticity of the neutrino Dirac mass matrix MD is
maintained. We then evaluate the one-loop θ̄ for the general
seesaw relation for explicit examples of VR, and obtain
nonvanishing θ̄loop as a function of the sterile neutrino
masses. By using the bound jθ̄loopj≲ 10−10, we can then
obtain the upper limits of the sterile neutrino masses. Our
parametrization of VR is pertinent for other phenomenologi-
cal studies, such as 0νββ decay and LHC searches.1

The remainder of the paper is organized as follows. In
the next section, we provide a brief introduction of
the MLRSM for the case P. Section III delves into the
calculation of neutrino Dirac mass matrix MD in the
Senjanovic-Tello method, and the parametrization of VR

and MN . In Sec. IV, we evaluate the one-loop θ̄ for explicit
examples of VR. We conclude in Sec. V.

II. MINIMAL LEFT-RIGHT SYMMETRIC MODEL

The MLRSM is based on the gauge group SUð3Þc×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L, which was proposed to
explain the origin of neutrino masses [5,9]. Three right-
handed neutrinos νR and scalar triplets ΔL;R are introduced,

lL;R ¼
�
ν

e

�
L;R

; ΔL;R ¼
�
δþL;R=

ffiffiffi
2

p
δþþ
L;R

δ0L;R −δþL;R=
ffiffiffi
2

p
�
; ð1Þ

where the flavor indices of leptons are omitted. Besides, the
scalar bidoublet Φ exists, which is written as

Φ ¼ ½ϕ1; iσ2ϕ�
2�; ϕi ¼

�
ϕ0
i

ϕ−
i

�
; i ¼ 1; 2; ð2Þ

where σ2 is the second Pauli matrix. If generalized parity is
taken as the left-right symmetry, i.e., case P, we have

ΔL ↔ ΔR; Φ ↔ Φ†: ð3Þ

The leptonic Yukawa interactions are

L ¼ −lLðY1Φ − Y2σ2Φ�σ2ÞlR

−
1

2
ðlT

LCYLiσ2ΔLlL þ lT
LCYRiσ2ΔRlRÞ þ H:c:; ð4Þ

where C ¼ iγ0γ2 is the charge conjugation matrix, h.c.
denotes the Hermitian conjugate terms. The left-right
symmetry is spontaneously broken once the right-handed
triplet ΔR develops a vacuum expectation value (VEV),
vR ¼ hδ0Ri. After the electroweak symmetry breaking, Φ
develops VEVs

hΦi ¼ vdiagðcβ;−sβe−iαÞ ð5Þ

with cβ ≡ cos β, sβ ≡ sin β and v ≃ 174 GeV. Then the
left-handed triplet ΔL would get the VEV vL, which is
generally complex [63] and proportional to v2=vR [9,64].
Defining NL ¼ νcR, one obtains the neutrino mass terms

Lν ¼ −
1

2
ðν̄cL; N̄c

LÞMn

�
νL

NL

�
þ H:c:; ð6Þ

where the full neutrino mass matrix is defined as

Mn ≡
�
ML MT

D

MD MN

�
: ð7Þ

The neutrino Majorana and Dirac neutrino mass matrices are

ML ¼ vL
vR

UT
eM�

NU
�
e; ð8Þ

MN ¼ Y�
RvR; ð9Þ

MD ¼ −vðY1cβ þ Y2sβe−iαÞ: ð10Þ

After block diagonalizing the neutrino mass matrix, we can
obtain the light neutrino masses

Mν ¼ ML −MT
D

1

MN
MD; ð11Þ

which is a general seesaw relation including contributions
from both type-I and type-II mechanisms. If vL is negligibly
small, it is reduced to the type-I seesaw dominance scenario.

1The latter is in the vein of the methodology of Ref. [62],
which studied the impact of general textures of the right-handed
quark mixing matrix without manifest left-right symmetry on the
production of right-handed gauge boson at the LHC.
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As shown in Ref. [29], in the MLRSM for the case P we
have

MD − UeM
†
DUe ∝ sαt2β; ð12Þ

where sα ≡ sin α, t2β ≡ tanð2βÞ, Ue is the matrix that
diagonalizes the charged lepton mass matrix. Thus, in
the limit sαt2β → 0, MD is Hermitian and Ue ¼ �1.

III. CALCULABLE NEUTRINO DIRAC
MASS MATRIX

A. Senjanovic-Tello method

It has been shown by Senjanovic and Tello [28,29] that
the neutrino Dirac mass matrixMD can be determined with
the light and heavy neutrino masses and mixings in the
limit sαt2β → 0. In the following, we will briefly introduce
the general method they proposed in Ref. [29].
From MD ¼ M†

D, Eq. (11) can be expressed as

HHT ¼ vL
vR

1 −
1ffiffiffiffiffiffiffiffi
MN

p M�
ν

1ffiffiffiffiffiffiffiffi
MN

p ; ð13Þ

where the Hermitian matrix H is defined as

H ¼ 1ffiffiffiffiffiffiffiffi
MN

p MD
1ffiffiffiffiffiffiffiffi
MN

p : ð14Þ

One can then decompose HHT as

HHT ¼ OsOT; ð15Þ

using the fact that HHT is symmetric. In the above, O is a
complex orthogonal matrix and s is the symmetric normal
form. The matricesO and s are obtained from Eqs. (13) and
(15). The matrix H itself can be expressed as

H ¼ O
ffiffiffi
s

p
EO†; ð16Þ

with E being determined by the Hermitian condition
H ¼ H†,

ffiffiffi
s

p
E ¼ E

ffiffiffiffiffi
s�

p
; ET ¼ E� ¼ E−1: ð17Þ

Comparing Eq. (16) with Eq. (14), one readily gets

MD ¼
ffiffiffiffiffiffiffiffi
MN

p
O

ffiffiffi
s

p
EO†

ffiffiffiffiffiffiffiffi
M�

N

p
: ð18Þ

Notice thatO, s, and E depend onMν andMN , the neutrino
Dirac mass matrix, we can calculateMD once the light and
heavy neutrino masses and mixings are known.
Although the above method is applied to the general

seesaw relation in the Hermitian case [cf. Eq. (11)], no
generalMD could be obtained sinceMN is arbitrary [29]. In
terms of the physical masses and neutrino mixing matrices,

Mν ¼ V�
LmνV

†
L; MN ¼ VRmNVT

R; ð19Þ

thus we should have a priori knowledge of VR and mN
besides the inputs of mν and VL ¼ U�

PMNS with UPMNS

being the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix from the measurements of neutrino oscillation [65].
If VR ¼ VL is assumed, we could obtain [28,29]

MD ¼ VLmN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vL
vR

−
mν

mN

r
V†
L: ð20Þ

While it is straightforward to calculateMD for a different
VR, the following condition:

ImTr

�
vL
vR

−
1

MN
M�

ν

�
n
¼ 0; n ¼ 1; 2; 3; ð21Þ

makes it more complicated, which results from the
Hermiticity of H. The above relation implies that the
phases of light and heavy neutrino mass matrices are not
independent [28].
That is to say, for any VR being assumed, it is necessary

to verify the condition in Eq. (21) with the resulting heavy
neutrino mass matrixMN . Therefore, an appropriate choice
of VR is crucial and nontrivial.2

B. Parametrization of VR and MN

Notice that if vL is real, the condition in Eq. (21) is
reduced to ImTr½M−1

N M�
ν�n ¼ 0. This enables us to obtain

possible forms ofMN and VR, the details of which are given
in the Appendix.
We find that for Hermitian MD and real vL in the

MLRSM for the case P, the right-handed neutrino mixing
matrix VR can be parametrized as

VR ¼ PVL
ffiffiffiffiffiffiffiffiffiffiffiffi
mNmν

p −1; ð22Þ

where P is a Hermitian or anti-Hermitian matrix,

P ¼ �P†: ð23Þ

For convenience, we can further write VR as

VR ¼ P̂VL; P̂≡ PVL
ffiffiffiffiffiffiffiffiffiffiffiffi
mNmν

p −1V†
L: ð24Þ

Note that P has the mass dimension one, while P̂ is
dimensionless. As VL and VR are unitary [29], it follows
that P̂ must also be a unitary matrix, thereby imposing
constraint on P. If VR ¼ VL, P̂ ¼ 1, we readily get the
Hermitian matrix P ¼ VL

ffiffiffiffiffiffiffiffiffiffiffiffi
mNmν

p
V†
L.

2Very recently, an explicit closed form solution for the neutrino
Dirac mass matrix in the MLRSM for the case C was obtained
using the Cayley-Hamilton theorem [31].
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From Eq. (22), one can construct the heavy neutrino
mass matrix,

MN ¼ PM−1
ν PT; ð25Þ

which satisfies the condition in Eq. (21).
If VR ¼ VL, andmN ¼ vR=vLmν, using Eq. (25), we can

readily get MN ¼ vR=vLM�
ν. Thus, the above parametriza-

tion of MN is compatible with the type-II seesaw domi-
nance scenario.

IV. ONE-LOOP θ̄

As pointed out in Ref. [59], θ̄ can be generated from the
leptonic CP violation, which contributes to the Higgs
potential at one-loop level,

V ⊃ ½α2TrðΔ†
RΔRÞ þ H:c:�TrðΦ̃†ΦÞ; ð26Þ

where the coupling α2 is complex and Φ̃≡ σ2Φ�σ2. It is
shown that [59,60]

θ̄loop ≃
1

16π2
mt

mb
ImTrðY†

RYR½Y1; Y2�Þ ln
MPl

vR
; ð27Þ

where the Dirac Yukawa couplings YR and Y1;2 are defined
in Eq. (4), and MPl ¼ 1.22 × 1019 GeV denotes the Planck
scale. In terms of the mass matrices, we have [60]

θ̄loop≃
1

16π2
mt

mb

1

v2Rv
2
ImTrðMT

NM
�
N ½MD;Ml�Þ ln

MPl

vR
: ð28Þ

where the charged lepton mass matrix Ml is diagonal due
to Ue ¼ �1. If VR ¼ VL, by using the expressions of MN
and MD given in Eqs. (19) and (20), we can easily verify
that θ̄loop is exactly zero. This also applies when VR ¼
1 [25].
In order to evaluate θ̄loop for other choices of VR, we use

the parametrization in Sec. III B, and consider VR ¼ P̂VL

with the following textures of P̂:

P̂1 ¼ i

0
B@

1 0 0

0 0 1

0 1 0

1
CA; P̂2 ¼ i

0
B@

0 1 0

1 0 0

0 0 1

1
CA;

P̂3 ¼ i

0
BBB@

1
2

1
2

−
ffiffi
2

p
2

1
2

1
2

ffiffi
2

p
2

−
ffiffi
2

p
2

ffiffi
2

p
2

0

1
CCCA: ð29Þ

One can directly verify that for these textures the matrix
P ¼ P̂VL

ffiffiffiffiffiffiffiffiffiffiffiffi
mNmν

p
V†
L is anti-Hermitian. In Eq. (29), we

have included the factor of i to maintain the Hermiticity of
the neutrino Dirac mass matrix MD.

It is noted that in the type-I seesaw dominance scenario
of the MLRSM for the caseP, where vL is negligibly small,
MD in Eq. (20) is anti-Hermitian if we assume VR ¼ VL, a
fact that appears to have been overlooked. We find that
VR ¼ iVL, namely P̂ ¼ i1, leads to θ̄loop ¼ 0, which can be
analytically verified.3

We assume that the active neutrino masses mν ≡
diagðm1; m2; m3Þ are in the normal hierarchy, and that
the sterile neutrino masses mN ≡ diagðm4; m5; m6Þ are
correlated with mν,

m1m4 ¼ m2m5 ¼ m3m6; ð30Þ

which is analogous to the assumption in Ref. [66].
Furthermore, we choose the central values of the mixing
parameters including the Dirac CP phase [65] whereas the
Majorana phases are set to be zero, and assume

m1 ¼ 10−3 eV; vL ¼ 1 eV; vR ¼ 15 TeV: ð31Þ

For the textures in Eq. (29), we obtain the magnitude of
nonvanishing θ̄loop as a function of the heaviest sterile
neutrino mN max ¼ m4 in Fig. 1. Since θ̄loop approximately
increases with the sterile neutrino masses ðmNmaxÞ5=2, by
requiring jθ̄loopj ≲ 10−10 as an estimate,4 we obtain the
upper bound on the sterile neutrino masses, which was

FIG. 1. The magnitude of θ̄loop as a function of the heaviest
sterile neutrino mass mNmax, which is assumed to be m4.

3In another study within the context of the left-right symmetric
model with double seesaw [66], VR ¼ iVL was considered.

4We obtain that θ̄loop has definite sign for P̂ being given in
Eq. (29). Following Refs. [59,60], we take the bound jθ̄loopj≲
10−10 without taking into account the tree-level contribution to θ̄.
This can be achieved by making the ad hoc assumption that α2 is
real at tree level [59]. Note that θ̄ ¼ arg detðMuMdÞ is propor-
tional to the overall imaginary part of α2 [60]. If tree-level Imα2 is
much larger than the one-loop value generated from leptonic CP
violation, the upper limits on the sterile neutrino masses would
be more stringent than those obtained using jθ̄loopj≲ 10−10.
If, however, the tree-level and one-loop contributions are com-
parable and have opposite signs, their cancellation would
invalidate the quoted limits, potentially allowing for heavier
sterile neutrinos.
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highlighted in Ref. [60]. For P̂ ¼ P̂1, P̂2, and P̂3, we obtain
mN max ≲ 2.5 TeV, 6 TeV, and 2 TeV, respectively. The
sterile neutrinos with mass up to approximately 3 TeV
are within reach of direct searches at the LHC [67], while
the light sterile neutrinos with masses in the MeV–GeV
range could make significant contributions to 0νββ
decay [25].
On one hand, θ̄loop varies with different choices of P̂. On

the other hand, we emphasize that a small deviation from

the chosen unitary matrix VR in our parametrization would
not lead to an unacceptably large value of θ̄loop. This is
because the smallness of θ̄loop is attributed to the loop factor
1=ð16π2Þ as well as the suppression by the ratios M2

N=v
2
R

and MDMl=v2, as indicated in Eq. (28).
As a benchmark, we take P̂ ¼ P̂1 and assume

m4 ¼ 2.86 TeV, m5 ¼ 3.32 GeV, and m6 ¼ 57.2 MeV.
The heavy neutrino mass matrix is given by

MN ¼

0
B@

−1.95 × 1012 − 7.05 × 105i −1.16 × 1012 þ 5.60 × 1010i 6.38 × 1011 þ 6.47 × 1010i

−1.16 × 1012 þ 5.60 × 1010i −6.96 × 1011 þ 6.69 × 1010i 3.85 × 1011 þ 2.03 × 1010i

6.38 × 1011 þ 6.47 × 1010i 3.85 × 1011 þ 2.03 × 1010i −2.09 × 1011 − 4.24 × 1010i

1
CA eV:

Using the Senjanovic-Tello method, we obtain the matrices in Eq. (16),

O ¼

0
B@

−0.1344þ 0.04691i −0.4861 − 0.006028i 0.8648þ 0.003902i

0.6396 − 0.0002750i 0.6240þ 0.01683i 0.4499 − 0.02296i

0.7584þ 0.008545i −0.6125þ 0.02193i −0.2263 − 0.03073i

1
CA;

E ¼ 1; s ¼

0
B@

8.576 × 10−7 0 0

0 4.602 × 10−10 0

0 0 6.867 × 10−13

1
CA;

and the neutrino Dirac mass matrix

MD ¼

0
B@

545380: 343623:þ 13636:i −204348:þ 16763:i

343623: − 13636:i 272102: −116364:þ 17374:i

−204348: − 16763:i −116364: − 17374:i 109404:

1
CA eV;

and the resulting value of θ̄loop is −1.241335 × 10−10.
It is worth noting that due to sαt2β ∝ Imα2 [31], the

neutrino Dirac mass matrixMD is not exactly Hermitian. A
delicate examination of non-Hermitian MD was recently
conducted in Ref. [30]. Nevertheless, the correlation
between MD and θ̄ poses a challenge for recursive
evaluation. Unless there is accidental cancellation, assum-
ing that MD is exactly Hermitian, as we have done, is
adequate for estimating the upper limit on the sterile
neutrino masses.

V. CONCLUSION

In this work, we have proposed a parametrization of
right-handed neutrino mixing VR ¼ PVL

ffiffiffiffiffiffiffiffiffiffiffiffi
mNmν

p −1 with P
being a Hermitian or anti-Hermitian matrix in the MLRSM
for the case P, and constructed heavy neutrino mass matrix
asMN ¼ PM−1

ν PT . In this parametrization, the Hermiticity
of the neutrino Dirac mass matrix MD is maintained.
We then evaluate the one-loop θ̄ generated from leptonic

CP violation for the general seesaw relation with explicit

examples of VR and obtain nonvanishing θ̄loop as a function
of the sterile neutrino masses. By requiring jθ̄loopj≲ 10−10,
we obtain the upper bound on the sterile neutrino masses.
Our parametrization of VR and MN is pertinent for other

phenomenological investigations. Specifically, it remains to
explore the impact of the texture of VR, or equivalently P̂,
on the LHC searches and 0νββ decay. Their interplay might
be able to disentangle different VR’s beyond the prevailing
choices currently adopted in the literature.
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APPENDIX: HERMITICITY OF H

In Sec. III B, we have provided the parametrization of the
right-handed neutrino mixing VR and heavy neutrino mass
matrix MN , which guarantees the Hermiticity of the matrix
H hence neutrino Dirac mass matrix MD. In this appendix,
we will give more details.
From Eq. (21), we expand

�
vL
vR

−
1

MN
M�

ν

�
n

¼ C1 þ C2

1

MN
M�

ν þ � � � þ Cn

�
1

MN
M�

ν

�
n
; ðA1Þ

where all the Cn for n∈N are real numbers. So all we need
to check is ðM−1

N M�
νÞn.

First, we assume

MN ¼ PM−1
ν Q; ðA2Þ

where Q is a matrix with dimension one.
We observe that if Q ¼ �P�,

ImTr

��
1

MN
M�

ν

�
n
�
¼ �ImTr½ðP−1�MνP−1Mν� Þn�: ðA3Þ

Defining A ¼ P−1�Mν, we have

Tr½ðAA�Þn� ¼ Tr½A�ðAA�Þn−1A�
¼ Tr½ðA�AÞn�; ðA4Þ

so that

ImTr

��
1

MN
M�

ν

�
n
�
¼ ImTr

��
1

MN
M�

ν

�
n��

; ðA5Þ

which implies that

ImTr

��
1

MN
M�

ν

�
n
�
¼ 0: ðA6Þ

Therefore, the condition in Eq. (21) is satisfied.
From Eq. (A2), we have

MN ¼ PVLm−1
ν VT

LQ

¼ VRmNVT
R: ðA7Þ

To find a possible form of VR, we define

F ¼ ffiffiffiffiffiffi
mν

p
X

ffiffiffiffiffiffiffi
mN

p
; ðA8Þ

where X is an orthogonal matrix, XXT ¼ 1, and obtain

mν ¼ Fm−1
N FT: ðA9Þ

Then Eq. (A7) becomes

PVLðFTÞ−1mNF−1VT
LQ ¼ VRmNVT

R: ðA10Þ

If

VR ¼ PVLðFTÞ−1; VT
R ¼ F−1VT

LQ; ðA11Þ

the relation in Eq. (A10) must be satisfied. Hence, Q ¼
PT ¼ �P� with P being a Hermitian or anti-Hermitian
matrix. Without loss of generality, we assume X ¼ 1, and
then F ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

mνmN
p

. Other choices of X can also yield
appropriate VR and P, which may also be of interest.
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