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We study the scalar and Yukawa sectors of three Higgs doublets models with a generalized CP
symmetry. Imposing the symmetry on the quadratic and quartic couplings of the scalar potential, we show
that there are only four classes of scalar potentials, merely one more than in two-Higgs-doublet models
(2HDM). Two 3HDM cases are analogs of two 2HDM cases, while the other 2HDM case splits here into
two distinct potentials. In 2HDM with generalized CP symmetries extended to the Yukawa sector, there are
only two possible cases: the usual CP, with 18 real Yukawa couplings; and a minimal generalized CP
model, with 12 real Yukawa parameters. In contrast, with three Higgs there is a rich variety of allowed
models. We classify all possible Yukawa textures, showing that there are 40 possibilities, several of which

have only 10 real Yukawa couplings.
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I. INTRODUCTION

The scalar sector responsible for electroweak symmetry
breaking is currently being incisively probed. Since there is
no conclusive theoretical argument constraining the num-
ber of Higgs doublets, ultimately it should be determined
experimentally.

However, models with more than one Higgs introduce
many new parameters, both in the scalar potential and in the
Yukawa couplings. These can be reduced with the intro-
duction of extra symmetries of the type

q)a - Sabq)b’ (1)

or
d)a - Xabq)z» (2)

where S and X belong to SU(ny), ny is the number of
Higgs doublets in the theory, and, unless stated otherwise,
summation of repeated indices will always be implied. The
former are known as family symmetries. The latter combine
unitary transformations with the usual charge-parity (CP)
conjugation and were named generalized CP (GCP) trans-
formations, first analyzed by Lee [1]. Their use in the scalar
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sector was first developed by the Vienna group [2—4] and
their explicit use for quarks first appeared in [5].

It has been shown that applying the GCP symmetry to the
2HDM scalar potential with any possible choice of X leads
only to three classes of scalar potentials [6,7]. In a basis
where X is written as a usual rotation matrix with angle 6, the
three 2HDM cases correspond to 8 =0, 6 = z/2, and
0 ¢ {0,7/2}. Extending that symmetry to the Yukawa
sector involves many new parameters and one might expect
a bonanza of possibilities. As shown by Ferreira and Silva
[8], quite the contrary happens; besides the usual CP
conserving 2HDM, there is only one single GCP symmetric
2HDM with both scalar and Yukawa interactions which is
consistent with nonzero quark masses. It turns out that
model exhibits a new type of spontaneous CP violation [8];
one where the scalar potential by itself is CP conserving
(even after spontaneous electroweak symmetry breaking),
but where the relative phase of the vacua induces CP-
violating phases in the coupling to fermions and in the CKM
matrix. [tis thus interesting to see which of these features are
characteristic of 2HDM and which survive when there are
extra Higgs doublets. To this end we study the scalar sector
and the Yukawa sector of three-Higgs-doublet models
(3HDM) with a generalized CP symmetry.

The implications of family symmetries to the three
Higgs scalar potential were studied in [9], for the case of
symmetry groups with only one generator. Still regarding
the scalar potential, the set of all symmetry/constrained
3HDM was mapped in [10]," their identification in a basis

'One of us (I. B.) proved later that there are a few groups that
should be added to the list; such as U(1) x U(1) % Z3 and O(2) x
U(l) [11].
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invariant fashion proposed in [12,13], a detailed descrip-
tion of their symmetry breaking patterns discussed in [14],
and their decoupling limit properties established in [15].
As for the impact of flavor symmetries on the combined
Higgs and Yukawa sector of the 3HDM, it was first
tackled for the case of symmetry groups with only one
generator in [16], and later generalized into other groups
in [17,18].

Here, we concentrate exclusively on GCP symmetries.
In Sec. II we introduce the conditions for GCP invariance
of the 3HDM scalar potential. When X is written as a
rotation matrix, two 3HDM cases correspond to § = 0 and
6 = x/2 (in complete analogy with the 2HDM), while two
other 3HDM cases correspond to 6 =x/3 and 0 ¢
{0,7/2,7/3} (which can be seen as a branch out of the
0 ¢ {0,7/2} 2HDM case). In Sec. III we propose a much
faster and more elegant method to ascertain symmetry
constraints, and we analyze the scalar potential, in full
detail. The new method is crucial when we extend GCP
into the Yukawa sector in Sec. IV. We show explicitly all
possible Yukawa textures in Sec. V. It turns out that there
are many textures with fewer parameters than present in
the GCP-symmetric 2HDM. We present our conclusions
in Sec. VI. In each section we include only simple
examples of the type of analysis required, so that the
reasoning leading to the conclusions stated is clear. We
relegate some details to the appendixes. In Appendix A we
show how one reaches the conclusion that there are only
four GCP-symmetric 3HDM scalar potentials using a
standard (inefficient) analysis. In Appendix B we state a
mathematical result which greatly simplifies the analysis,
whose detailed proof we supply as Supplemental
Material [19].

II. THE SCALAR POTENTIAL

A. Notation

Let us consider a three-Higgs-doublet model with 3
Higgs-doublets ®;, of the same hypercharge 1/2, and with
vacuum expectation values (vevs)

- (4)-(00)

The index i runs from 1 to 3, and we use the standard
definition for the electric charge, whereby the upper
components of the SU(2) doublets (¢;) are charged and
the lower components ((;5?) are neutral.

The most general 3HDM scalar potential which is
renormalizable and compatible with the gauge symmetries
of the Standard Model (SM), can be written as [20-22]

Vi = Yi(®[®)) + Z;; (P D)) (D] @), (4)

where Y (Z) is a rank-2 (rank-4) tensor in three dimensions
and Z;; ; = Zy,;;- Hermiticity implies that

_ yx
Y, =Y,

Zijn = Ziij = Zj; - (5)

This means that there are only 3 real (and 3 complex) para-
meters in ¥ and 9 real (and 18 complex) parameters in Z.

B. GCP symmetries

The scalar potential in Eq. (4) is invariant under the GCP
transformation in Eq. (2) if and only if

YZb = X;aYaﬁXﬁb = (XTYX)ab,
Zyca = XoaXyeZapysXppXsa- (6)

Solving these equations for every (independent) parameter
in Y and Z is a daunting task if we use a general 3 x 3
unitary matrix in Eq. (2). Fortunately, Ecker, Grimus, and
Neufeld [23] proved that there is always a basis of scalar
fields, for which the GCP transformation matrix X may be
brought to the form

Co So 0
Xg = —S9 Cp 0| = Ra @ 1, (7)
0 0 1

where the @ symbol stands for direct sum, and
0 < 0 < x/2. Notice the restricted range for 6. Henceforth,

R:(fs z) 8)

where ¢ = cos, s = sin and the Greek subindices indicate
the angle. Next, we will study Egs. (6) in the basis where
Eq. (7) holds.

III. A NEW STRATEGY FOR GCP CONSTRAINTS

A. A simple example

Consider a vector of complex entries (a,b)", and a
system of two equations

s

which may be written alternatively as (a, b)" = R} (a,b)".
The system has only 3 distinct solutions:
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i) if @ = 2kx, for integer k, then a, b €R;
ii) if @ = (2k + 1)z, for integer k, thena, b €T;
iii) otherwise,a = b = 0. (10)

This will be the source of the subsequent analysis,
provided one can turn problems into two-dimensional
blocks.

Imagine now that there is a 4-vector subject to the
constraint

a\ * a
b
_RT®RT
c c
d d
CaCﬂ —CaSﬂ —Cﬂsa SaSﬁ a
_ CaSp CoCp —SaSp —CpSq b S an
Cﬂsa _Sasﬂ Cacﬂ _Casﬂ C
SaSp CpSa  CaSp  CoCp d

where ® denotes the Kronecker product of two matrices.
One interesting way to solve Eq. (11) is the following.
Consider the orthogonal matrix

1 0 0 -1
1101 1 O
C,=— 12
V201 0 0 1 (12)
01 -1 0
It is easy to show that
J® RTCT = RM DR, (13)

Again, the @ symbol stands for direct sum and, here, it
means that a 4 x 4 block-diagonal matrix has been built,
such that the 2 x 2 upper-left corner has the matrix Ra +p
the 2 x 2 lower-right corner has the matrix R;_,, and all
other entries vanish. Left multiplying Eq. (11) by C, and
inserting C; C, in between R and C; on the left-hand side

(LHS) of Eq. (13), one finds

a—d\ * a—d
b+c R,,; O b+c
= . (14)
a+d 0 R, a+d
b—rc b—c

effectively decoupling the problem into much simpler two
two-dimensional problems. But now one can use Eq. (10)
for immediate conclusions. This is generalized to higher
dimensions in Appendix B.

It will prove useful to use the vec(-) operator, which
vectorizes by rows.” It can be shown that

VCC(CCkyleld) =C ® DTVCC(YH), (15)

vec(AyCoKiyDig) = A ® C ® D'vec(K; ),  (16)

VeC(AaiCckZij,leijld) —A®B'®CQ® DTV@C(Zij,kl)’

(17)

where A, B, C, and D are appropriately sized matrices,
whereas Y, K, and Z are tensors of rank 2, 3, and 4,
respectively.

B. GCP constraints on Y

Here, we apply the technique of the previous section in
order to solve Eqs. (6) and derive the GCP constraints on Y.
We include the study of the GCP symmetry conditions on
the scalar potential using a different strategy, which mimics
[8], in Appendix A. Employing the strategy in Appendix A
to the Yukawa sector, however, becomes greatly
error prone.

Due to the simple form of Eq. (7), the tensor is divided
into 4 regions: mn, m3, 3n, and 33 (m,n =1,2). But,
thanks to Hermiticity, we need not solve the system for 3n.
For 33, we have that Y3; = Y335 © Y33 €R, which we
already knew.

Henceforth, we will be using the notation

Yy = (Y13, Y3) T,
Yian = (Y31, Y3) ",
Yy = (Y11, Y12, Y21, Y) T (18)

For m3 and 3n, we have

Vi = Ry Y (3} Y = RjYm.  (19)

As seen in Egs. (10) and given the restricted range for 6, we
find that

L =0
ii. 0#0

N3 =T)3, V)3 = (Y)n €R,
(Y)IS = (Y)Sl (Y)zs = (Y)az =0.

For mn, we use Eq. (15), in order to rewrite Eq. (6) as
Yifmn} = Rg ® R;— Y{m”}' (20)

To solve this system we use Eq. (13). The mn sector then
simplifies to

*The usual vec(-) operator vectorizes by columns [24]. Here,
we vectorize by rows.

035028-3



BREE, CORREIA, and SILVA

PHYS. REV. D 110, 035028 (2024)

(Yll —Y22>* _ gl (Yu —Y22>
= Ry ;
2Re(Y 1) 2Re(Y 1)
Im(le) = 0, (21)

and solving it results in the following two options:

i 60=0
ii. 0+#0

1> (Y)aas (Y1 = (Y), ER,
(Y)n = (Y)zz, (Y)IZ = (Y)Zl =0.

In conclusion: for @ =0, all of Y’s entries are real,
otherwise Y = diag(u,, 1, y3)-

C. Summary of GCP constraints on Z

The full simplifying power of the new method comes to
light when we deal with the quartic Z couplings.3 As
before, our choice of basis decouples the third entries from
the rest, but now we have a total of 16 separate regions,
those being ijkl, ijk3, ij31l, i3kl, 3jkl, ij33, i3k3, i33/,
3jk3, 3531, 33kl, i333, 333, 33k3, 333/, and 3333 (here i,
J,» k, 1 =1, 2). And thanks once again to Hermiticity, we
need not solve all of them. We just need to solve 7: ijkl,
ij33, i3kl, i3k3, i331, i333, and 3333, since these contain
all independent entries for Z.

The case for 3333 just tells us that Z3335 is a real entry,
which we already knew. For i333, we will have the same as
Egs. (19), and so these entries are always real, and equal to
0if @ # 0. The sectors 733, i33/ and i3k3 will be the same
as Eq. (20). Although the first two cases are identical to
Eq. (21), the latter is a bit more interesting, as we discover a
new region of 1nterest when 0 = 7/2.

Fma]ly, we have' Z. k) =Ry ®Z;31y and Zian =
R Z{, jkiy> With a de 1n1t10n analogous to Eq. (18). As
before, there are orthogonal matrices C; and C, such that

C3R)®3C] =R}, ®R) ® R, ® Ry, (22)

and

C,R)®'C] =R}, ® R, ®R); ® 1, DR),

This technique is quite useful since it turns an R$" matrix, a
2" x 2" system, into 2"~! 2 x 2 systems, which are trivial to
solve. The i3kl system provides us with the final region of
interest, that being when 0 = /3.

At last, we have our four regions of interest: 6 = 0,

=7r/2,0 =z/3 and 0 € (0,z/2)\{x/3}, which we will
denote as CPa, CPb, CPc, and CPd, respectlvely Let us
compare this result with what one has in the 2HDM. In the
scalar potential of the 2HDM there are 2 real and 1 complex
parameters in the quadratic couplings and 4 real and 3
complex parameters in the quartic couplings. Imposing
GCP we find only three classes of 2HDM potentials,
corresponding to 8 =0, 0 = /2, and 6 € (0, z/2). In the
3HDM there are 3 real and 3 complex parameters in the
quadratic couplings and 9 real and 18 complex parameters
in the quartic couplings. Despite the enormous increase in
the number of parameters, there is only one more class of
GCP-symmetric potentials: corresponding to the singling
out of the 8 = /3 case.

D. Proof of GCP constraints on Z
Using Eq. (17), we can write

Zi333 = 233330 (24)

Z?i333} = R;)rz{i333}7 Zizzy = (Z1333: Z2333) "5 (25)

Ziinay = Ry®*Z 33, Ziizzy = (Z1133- Z1233: Zo133: Zoo33)

Zisny = Ry ®*Z 331y, Zian = (Zi331: Zi3sas Zos31: Zo33n) |

Ziniay = Ry®*Z 13, Ziay = (Zi313: Zi3s Zoz13: Zo3s) | (26)
Ly = Ry®Z 1. Zinay = (Zis11> Zi312: Zi3a1s Zi3oas Zosin Zozias Zozats Zosn) s (27)

Z*

_ pTe4
{i/kl}—Re Zijutys

Ziiy = (Zinns Zina Zoons Zioes Zioins Zioins Ziots Zions

T
ZQ] 11> ZZ] 12> 22121 ’ 22122’ ZZZI] ’ 222121 22221 ’ 22222) . (28)

*We included the messier alternative in Appendix A for comparison.

Hencefonh we use the notation R@’2

Ry ® Ry, and similarly for higher powers.

*In the notation of the 2HDM case in [8], these would be written as, respectively, CP1, CP2, with both ¢ and d corresponding there

to CP3.
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Equation (24) tells us that Zj333 is real which we Zi313 —Zy33 \ * + (21313 — Zoa3
already knew. In Eq. (25), due to the restricted range for ( 27133 ) - R29< 27135 )’
0, we have

Ziziz +Zyppn ER. (30)
i 0=0 Zi333: L33 €R,
ii. 0#0 Zy333 = 22333 = 0. For Egs. (29) we find
For Egs. (26), we shall use the result in Eq. (B1) for 0=0 Zyjays Zisy €R,
n =2, along with the following relations: Ziy33=25,33; i 0#0 Zy133 = Zm33, Z1331 = L33,
Zi330 = Ziza15 Z1323 = 203135 Z 11330 L2335 Z1331. Loz ER. Ziyz3 = Zoiz3 = Zizsa = Zy331 = 0,
We find

and, similarly, for Egs. (30),

(le33 - 22233)* _RT <le33 —22233>
= Ry ;
2Re(Z1233) 2Re(Z1233)

i 0=0 Ziisin) ER,
(Zl33l —22332)* _RT <Zl33l —22332> i, 0=r/2 Zigs = Zy3is €L Zi313 = Zisps,
2Re(Z1337) 2Re(Z133,) iii.  0#{0,7/2}  Ziz3=Zyn€R, Zizp = Zy3=0.
Im(Z1533) = Im(Zy33,) = 0. (29) For Egs. (27), we shall use the result in Eq. (B1) for n = 3.
We find
|
< (Zi3n1 = Zi3m) = (Zasia + Zazn) > ( Zi3 — Zism) — (Zoaia + Zosn) >
(Z1312 + Zi321) + (Zozi1 — Zosm) (Z1312 + Z1321) + (Zozi1 = Zosm)
<(Zl3ll —Zism) + (22312‘1'22321)) —R] ((21311 —Zi3m) + (22312‘1'22321))
(Zisin+ Zisn) = (Zosii = Zon) ) (Z1312 + Z1321) = (Zoan1 = Zo3m)
( (Zizi + Zisn) = (Zos12 = Zazm) > _R] < (Zizi1 + Zisn) = (Zos12 = Zazn) >
(Zisi2 = Zis) + (Zosi + Zos) ) (Z1312 = Ziso) + (Zosn + Zazm)
<(Zm1 +Zi3m) + (Zos1n - Zz321>> _ R9< Zisn + Zisn) + (Zoznn — 22321)> (31)
(Zi312 = Zism) = (Zosn + Zozm) (Z1312 = Ziam) — (Zosn + Zoan)
The solution to these equations is
i 0=0 Ziisu) €R,
ii. 0=n/3 Ziuy €L Zi31y = —Zizp = —Zyzn = —Zozp1s Ziziz = Ziza1 = Loz = —Zozps
ii. 0+ {0,7/3) Ziisay = 0.

For Eqgs. (28), we shall use the result in Eq. (B1) for n = 4 along with the following relations: Z;125 =Z»11; Z1221 = Z2112;

J— J— * J— * . P J— * J— * . J— * .
Znn=2Zon =2 = Lo Lon=Zunn=2yn=2m15 Z1212 = Zo1015 ZinsZa22 Zno2s Zoonns Zinan s Zoe €R.
We find

<(Z1111 +Z2220) = 2(Z 1120 + Zipo1 + Re(zmz)))* _RT ((21111 + Z2220) = 2(Z1120 + Zioo1 + Re(21212))> (32)
4(Re(Zy112) —Re(Z122)) " 4(Re(Zy112) = Re(Z122)) ’

((21111 —Zym) - 2iIm(21212)>* _RT ((21111 —Zyom) — 2iIm(21212)>
2(Zinz + Zin) » 2(Zin + Ziny) ’
<(Z1111 = Zym) + 2iIm(21212)>* _RT ((21111 = Zym) + 2iIm(21212)>
2(Z3 10+ Zim) * 2(Zi112 + Zian) 7
Im(Zy112) = —Im(Z22). (33)

Finally, the conditions that solve these equations are
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i. 9 - 0 Z{ijkl} (S [R,
ii. 0=n/2 Ziiy €C, Zinn=2Zon =Zjn =2y = —Zion = —Znn = —Zyn = —Zinys Zin = Zon,
1ii. 0 #{0,7/2} Zyijuy €C. Zin =Zp =Zun =Zoy = Zion = Zypin = Zoim = Zoyy =0,

Zioio =Zi —Znoe — Zinis Zin = Zop-

This concludes the analysis for the scalar sector. If one were to try to do these calculations in models with more doublets,
the trick would remain much the same; but, then, one would have to decouple the entries with 1 and 2 from the ones with 3
and 4, 5 and 6, etc. Since it always involves a rank-2 tensor and a rank-4 tensor, there is no need in N-Higgs-doublet models
(NHDM) to go further than C,4, which we write explicitly in Eq. (B9) below.

E. The four GCP-constrained 3HDM potentials

We now write the scalar potential for the several classes of models in the basis of Eq. (7). The CPa (0 = 0) scalar
potential, corresponding to the usual CP, is of the general form of Eq. (4), except all the coefficients are real.
The CPb (0 = /2) scalar potential has the form

Vi = [(®]®)) + (DD,)] + 3 (D D3) + 1 [(R] D)) + (P, )?] + 13 (D] D)2
+2ry (D] D)) (PID,) +2r5[(D] D)) + (D] D) | (DID3) + 279 |D] @, 2 + 215 | D] D5 + | D] D3]
+201 [(@]D)) — (PJD,)| (D] @) + ¢3(P]Dy)? + ¢5[(P] D3)> + (DL D, )?] + 2iyy (B[ D3 ) (PJD3) +Hec.,  (34)

where H.c. stands for Hermitian conjugation. We follow the notation of Ref. [9]: the coefficients ¢, = x; + iy, are complex,
while 7y, x;, and y, are real.
The CPc (6 = n/3) scalar potential has the form

Vi = i [(@]®) + (PI0,)] + pu3 (@ D3) + r [(@] 1) + (D3D,)?] + r3(PiDs)?
+ 21y (D] D)) (DD, + 2r5[(P]Dy) + (D3 D) (PID3) + 277 | D] Dy | + 275 [| D] D3 + | D5 ]
+ 1 [(@] D)2 + (D307 )] + x5[(@]3)? + (P03)7 + Hec]
+ 20, [[(D]®,) + (PID))|(PID;) + (O] D)) (D] D3) + (PLD,)(PDy)] + Hec,
+ 21y [[(P]@;) + (PJP))](P]D3) + (] D, ) (D] D3) + (PD,)(P]D,)] + Hec., (35)

where ryy;7 =1 —ry — 1.
Finally, the CPd potential (0 # 0, z/2, z/3) has the form

Vi = m[(®]0;) + (BID,)] + p3(PID3) + 11 [(@]@)) + (@J0,)] + r3(DiD3)>
4 21y (@D ) (DID,) + 275[(D] D)) + (PLD,)|(DPLD3) + 27| DD, 2 + 2r5[| D] D52 + | DI D42
P [(@],)2 + (B3,)2] + x5 [(@]05)° + (P3Ds)? + Hecl. (36)

We have built a Mathematica program implementing the basis-invariant techniques of Refs. [12,13], and checked that our
CPa, CPb, CPc, and CPd potentials obey basis invariant conditions, allowing them to be identified, respectively, as® CP2,
CP4, S3 x GCPy_,, and O(2) x CP.

Notice that, by construction, all potentials are explicitly CP conserving. One may wonder whether they may
lead to spontaneous CP violation. We do not address here the issue of the possible global minima when the symmetry
is exact. Aspects of spontaneous symmetry breaking in 3HDM with an exact symmetry have been discussed in [14]. When
accessing a model’s parametric viability, we take the view that one may wish to add soft-symmetry breaking terms to the
potential, thus allowing for general v;. This allows us to map all possibilities, even in that more general context.

IV. THE YUKAWA COUPLINGS

A. Yukawa Lagrangian and mass basis

The scalar-quark Yukawa interactions of the 3HDM may be written as

—Ly = q (1@, + 1@ + [303)ng + G, (A D) + Ay D, + A3;d;) pr + Hee., (37)

We are very grateful to Igor Ivanov for several discussions on this issue, especially pertaining to the identification of 3 x GCPy_,.
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where q; = (py,n.)" (ng and pg) is a vector in the
3-dimensional generation space of left-handed doublets
(right-handed charge —1/3 and +2/3) quarks, and
@, = ic,®}, with o, the second Pauli matrix. T'; and A,
(k=1, 2, 3) are completely general 3 x3 complex
matrices.

After spontaneous symmetry breaking, the Lagrangian’s
quadratic terms in the quark fields include

v
—Ly 2 A (2, Tng + pLApg) +Hec., (38)

where v=1/v;0; = (V2Gp)™/2, T = %“T;and A = " A,.
We can define

v v
M,=—T, M, =—A,
d \/E u \/E
as the mass matrices for the down-type and up-type quarks,
respectively. Since the fields we are working with are not
mass eigenstates, these matrices will not be diagonal. But
we can always perform a unitary change of basis

(39)

_ S
pr =1u Uy,

Pr = UuR Ug, (40)

}TZL - dLUjiL’

np = UdeRv

which leaves the kinetic terms unchanged in the
Lagrangian, to bidiagonalize the mass matrices. The mass
matrices then become

UZLMdUdR = Dd = diag(md, myg, mb),
Ui, M,U,, =D, =diag(m,, m.,m,). (41)

Writing the interaction terms of the physical fields with the
W+ boson,

ig _ f
Ly D —=u, (U, U Hd, W, 42
w \/§ L( 3 dL)V LYWy ( )

one notices the emergence of the 3 x 3 unitary matrix
Cabibbo-Kobayashi-Maskawa (CKM) matrix [25,26],
V=U,U a, - It reflects the fact that the interaction basis
is distinct from the physical mass basis. And it describes the
quark mixing, responsible also for all CP-violating phe-
nomena in theSM.

We can also define

2
_ PV et T
Hy= MM} == TT" = U, DU},
2
L T

showing that the left-handed transformations are the
matrices that diagonalize H; and H,,.

B. GCP symmetries for the Yukawa Lagrangian

For the quark fields, the GCP transformations take the
form

qrL — XaVOCC]z,

ng = Xz°Cnj,

Pr = X,1°Cpi. (44)
where y° (C) is the Dirac (charge-conjugation) matrix, and

X, X5, and X, belong to SU(3). With a suitable basis
choice, these can be changed into the simplified form [23]

Co Sq O
X,=|-s, ¢, 0], (45)
0O 0 1

where 0 <a < 7z/2, with similar expressions for Xj
and X,.

Under the transformations in Eqgs. (44), the Yukawa
Lagrangian becomes

—Ly = Ag[X&(To)(Xp) s @} X5l a1,
+ PrIXa(8.)(X0);®3X,Jq, + Hee.  (46)
Hence, in order for the Lagrangian in Eq. (37) to be

symmetric under GCP, we must compare each of these
terms with their respective Hermitian conjugate

—LyD ﬁf'e[(rk)ji‘bkﬁqz + p{?[(Ak)ji(i)k]TQZ
= R (Ty);;®tqh + Pr(Ay);Pid)- (47)

Thus, the Yukawa Lagrangian in Eq. (37) is invariant under
the GCP transformations in Eqgs. (44) if and only if

[ = X6(Xo) s (Ta) X .

A, = XE(X())Zb(Aa)X (48)

/e
Since we are taking all X matrices to be real, the condition
for the charged +2/3 quark matrices A will yield the same
equations as the charged —1/3 quark matrices I, under the
substitution  — y. Therefore, we will focus on the down-
type quarks, and subsequently compute the results for the
up-type quarks.
We may write conditions (48) as

X I} = (col'y = sg12) Xy = 0,
XoI'5 = (soI'1 + col2) X = 0, (49)

and
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Xal—‘g - F3Xﬂ - O, (50)
where the basis choices of Eqgs. (7) and (45) are implied.7
Equations (49) give us 36 equations in the 36 unknown
real and imaginary parts of the various entries of the I'; and
I, matrices. In each block we have a system of homo-
geneous linear equations; the parameters are zero unless the
determinant of the system vanishes. Recall that our choice
of basis decouples the third entry from the other two, like
we did for the scalar potential, except that now we may
think of I'; as one rank-3 tensor. It is for the analysis of the
Yukawa matrices that we see the full power of the new
|

[ = [(R] ® RI ® R)) @ (R} ® R]) @ (R} ® R}) @ R} IT(12). Ty = [(R] ® R}) @ (R]) &

where

strategy discussed in Sec. III and Appendix B. Next, we
turn to a detailed view of this analysis.

C. GCP constraints on Yukawas for down-type quarks

As mentioned, our choice of basis for the X matrices
decouples the system for I'; and I', from that of I'5, and in
each we will have 4 distinct regions mn, m3, 3n. and 33.
Thenceforth, we will use the notation I'; (k =1, 2) when
we wish to refer collectively to I'; and I',. If we vectorize
each block, we can turn Eq. (48) into

(R/D @ 1T,
(51)

L2y = (T gy T2) gnnys (T g3y T2) gnzys (T 3y (T2) g (T35, (T2)33) 7

F{?} - ((F3){mn}’ (F3){m3}’ (F3>{3n}’ (F3)33)T’

[T

using the notation in Eq. (18). To be specific, in (I';),,, “i
refers to the Higgs-family index of Eq. (37), while “a, b”
refers to the entries of this matrix in down-type quark
generation space.

Let us start by looking at the 33 regions. Immediately, we
see that

(F3)§3 = (F3)33,

and, thus, (I';);; is always real. As for (I';);3, we have

(F/})§3 :R;rr (F/‘c)§3v (T3 = (1), (F2)33)T-

These equations are the analog of Egs. (19), applied here to
the Yukawa couplings. Using Eq. (10) and the restricted
range for 6, we conclude that either 6 = 0, in which case
(T'1)33 and (I, )55 are also real, or, else, & # 0, in which case
(I'1)33 = (I'2)33 = 0. This constitutes conditions i and ii,
respectively, for the (I';);5 region:

(53)

(54)

i 0=0
ii. 0+#0

(T1)33, (M)33 €ER,
(T1)33 = (T2)33 = 0.

Dim

Tz ){m3} = RT ® R, (FE)?m3}’ (r
(T8) {3ny = Ro ® R () (35
(T3) ) = Ry ® R (T3) (.

(r ){’%n} = (T3 (T)ags (M) (M2)3)
(I3) guny = (T

(52)

The m3 (3n) region in I'5 is similar under the substitution
0 — a (0 — p). Indeed,

(T3) {3y = ((T3)13: (T3)23) "
(F3>{3n} = ((F3)31’ (F3)32)T-
(55)

(T3 )iy = RE (T3 ().

(T3)iamy = R} (T) (-

The conditions for the (I'3),,; region, then, become

i a=0

ii. a#0

(T3)13 (T3)23 €ER,
(F3)13 = (F3)23 =0,

whereas, in the (I'z), region, we find

i. B=0
i. B#0

(T3)31, (M3)3 €R,
(T3)31 = (T3)3, = 0.

Now looking at systems involving two angles, we have

= ((T1) 13, (T1)23s (T2) 13, (T2)3) T

Dirs (T3)12: (T3)21: (T3)2) (56)

"Notice that Eq. (50) is identical to Egs. (49) in the limit of 8 = 0.
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For Egs. (56), we shall use the result in Eq. (B1) for n = 2, which simplifies the equations to

((FI)IS = ()
(Ti)as + (
<(F1)13 +(
(Iy)ys — (I°
((F1)31 - (I
(T)p + (T
((Fl)31 + (
()3, = (I
<<F3)11 — (I
([3)1, + (T
<(F3)11 +
(T3)1 = (T3)y

(59)

These systems of equations lead to different textures in the cases where the respective rotation angle is either zero, z or any
different value. In Eqgs. (57), if @ + a equals zero, the only possibility is that they are both zero, which means that @ — @ is
also equal to zero in this case. If instead 6 + a equals 7, the only possibility is that they both equal z/2, which again means
a — 0 equals zero. In fact, @ — 0 can only be either zero, if @ = 6, or different than zero, if a # 0, but never actually z. This
means that this region has only 4 possible textures: 0 = a = 0;0 = a = 7/2;0 = a # {0, 7/2}; 6 # a. Equations (58) and
(59) are solved in identical fashion. For the former we have 8 = =0, 0 = =x/2; 0 =  # {0,7/2}; 6 # j5. For the
latter we have a = =0, a=p=7/2; a = #{0,7/2}; a # p.

Each condition fully determines the amount of free parameters in each region. For the m3 region in I';, we have

i O=a=0 (F/’(){mﬂ;} € R,

ii. 0=a=nx/2 (T%) 3y €C. ()13 = (T2)35. (T1)23 = =(T2)13,
ii. 0=a+#{0,7/2} (T&) {m3y ER. (T3 = T2)23. (T1)o3 = —(T) 13,
iv. 0 56 a (FI;){m?)} 0

Likewise, for the 3n region in I'z,

i. 0=4=0 (T 3y ER,

ii. 0=p=n/2 (T7)3ny EC, Tz = ()5, (T1)3 = ()3,
ii. 0=p+#{0,7/2} (7)) 3ny ER, (T1)31 = M), (T1)32 = =(T2)3y
iv. OFp (i) any =0

And, the conditions for the mn block in I'; are

i a = ﬂ =0 (r3){mn} ER,

ii. a=p=n/2 (T3) fun} €C. (T3)11 = (T3)35, (T3)1, = —(T'3)3.
iii. a=p#{0,7/2} (T3) () ER, (T3)11 = ([3)2, (T3)1 = =(T3)a1,
iv. a# ﬂ (FS){mn} 0

Finally, we turn to the mn sector of 'z, k = 1, 2. We find

(F%)?mn} = Rg ® R(-ll— ® R;(Fl_c){mn}’
(T8 gy = (T 11> (C1)125 (T1)ags (T1)azs (T2) 115 (T2) 125 (T2)215 (T2)20) ™ (60)
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For Egs. (60), we shall use the result in Eq. (B1) for n = 3, which simplifies the equations to

< [T = T)2] = [(T2)1p + (T2)y]
(T + )] + [(T2) 1y — (T2)22]
([(Fl)ll = (T2 + [(T2) 12 + (T2)]
(T2 + T)a) = [(T2)1 = (M)
( [T+ T)ae) = [(T2) 12 = (T2)y]
(T2 = T)2] + [(T2) 1y + (T2)22]
<[(F1)11 + (T)] + [(T2) 12 = (T2)]
(T2 = T)a] = [(T2)11 + (T2)y)]

- (T = (T)a) = [(T2) 12 + (T2)o1]
R (e (o) (o ()
>* _RT <[(F1)11 = (T)p) + [(T2)12 + (F2)21]>
N1+ (C)a] = [(T2) 1y = (Ta)na)
>* _RT <[(F1)11+(Fl)22]_[(F2)12_(F2)21]>
PPN 1 = (T2 ]+ [(T2) 1+ (T2)po) )

* [T+ T)oo] + [(T2) 12 = (T2)24]

R S e oy

As before, each angle can either be 0, 7z, or some other value in order to give a unique texture in the Yukawa matrices. Naively,
there would be a total of 3 x 3 x 3 x 3 = 81 different combinations. But, like before, if for example & + a + f = 0, the only
possibility is that § = @ = = 0 and therefore all the angle combinations would also give zero. The conditions that the other
combinations equal zero are, respectively, a + f = 0, 6 4+ f = a, and § + a = f. These conditions make the real part of the
respective entries in the Yukawa matrices nonzero. The conditions for non-zero imaginary parts are, respectively,
O+a+p=na+p=0+n0+p=a+x and a+ 60 =+ z. However, the last three can only be achieved if the
two angles on the left-hand side equal z/2 and the other one equals zero, which means that 6 + « + f also equals z.
Performing all valid combinations results in just 15 different textures for the mn system in I'; and I'5:

i O=a=p=0 (Te) ) ER,
i B=0,0=a=nx/2 (I't) fmn} €C,
iii. p=0,0=a+#{0,7/2} (%) () ER,
iv. a=0,0=p=x/2 (T%) ny €C,
v a=0,0=p+{0,7/2} (T&) {ny ER,
Vi. 0=0,a=p= 77«'/2 (Fk){tnn} eC,
Vii. =0,a=p+#{0,7/2} (Te) ) ER,
viii. 0=n/2 a+p=nx/2 (I't) gmn} €C,
a,p#{0,7/2}
ix. a=n/2,0+p=rn/2, (T%) mny €C,
0.p#{0,7/2}
N B=n/2,0+a=n/2, (%) fny €C,
0,a#{0,7/2}
Xi. a+p=6,0+#{ap.x/2} (T&) {mn) ER,
Xii. 0+p=a, as{0,pr/2} (T&) ) ER,
xii.  O+a=p#{0.a,7/2}  (T)pum ER,

Xiv. O+ta+p=m0a/p+ 7[/2 (F]_c){mn} €l
XV. a+ﬁ#9,9+ﬁ#a,9+a¢ﬁ, (r/_c){mn}:()
O+a+p#n

(Fl)ll = (Fz)§1v (FI)IZ = (Fz)Ez’ (Fl)Zl = _(FZ)TI’ (Fl)zz = _(F2)12
(Fl)ll = (Fz)zh (Fl)lz = (Fz)zzs (Fl)zl = _(Fz)nv (F1)22 = _(FZ)IZ
(Fl)ll = (Fz)Tzv (Fl)lz = —(Fz)Tl’ (Fl)21 = (F2)§2» (Fl)zz = —(I"; 31
T =T2) 12 T = =T2)11s (T)ay = (Ta)an, (T1) 22 = =) a1,
(Fl)ll = (Fl)zzv (Fl)lz = —(Fl)él, (FZ)II = (F2)§2» (FZ)IZ = —(Fz)%
T =T T = =)o M) = M), (M) 12 = =(T2) 1
Ty =-T)yp = (Fz)Tz = (Fz)zl’ T = @)y = —(Fz)ﬁ = (Fz)zz’
Ty =—M2)1p = )5 = ()31, (T1)1 = (M) T3 = M),
) =—T2)y = (T1)5 = )1, —(C1) 12 = (T2)yp = (T1)3; = (T2)74s
(Fl)n = _(FI)ZZ = (FZ)IZ = (FZ)ZI’ (F1)12 = (FI)ZI = —(Fz)n = (Fz)zz’
T =T)n=-T2)1n =02, T)pn==T1)y =T2) = [2)n,
(Fl)ll = (rl)zz = (FZ)IZ = _(rz)zla _(rl)IZ = (Fl)2l = (FZ)II = (Fz)zz’
T =Tn=02)n= 02 )= 1)y = T2 =—T2)n.

The next step is to combine these 15 conditions with the 18 from the other blocks and then we should have all different
combinations of angles 6, a, and  that produce unique textures on I';, and thus on M ;. Recall that, in the spirit that adding
to the scalar potential soft breaking terms might be useful for some model building, we are using the most general vevs v;.

Excluding combinations that lead either to null or degenerate eigenvalues, using the notation (0, @, #), we have the results

in Table 1.

An asterisk here means that the third quark decouples, i.e., M, is block diagonal. A diamond here means that the quarks

couple only to @5, ie., '} =1, =0.

D. GCP constraints on the whole Yukawa sector

Now, we must combine the cases from the down-type I'; matrices with the ones from the up-type A; matrices, which, for
our choice of basis, are the same under the replacement # — y. The final cases (6, a, 3, y) must have the same value of 8 and
a for the up and down matrices simultaneously, and we must not combine two cases bearing an asterisk, as that would lead
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TABLE 1. Combinations of (6, a, ) and respective conditions for the 33, m3, 3n, and mn blocks of I'; and T';.
(rl_c)33 (F3)m3 (r3)3n (Fl_c)m?a (Fl_c)Sn (F3)mn (rk)mn

1. (0,0,0) i i i i i i i
2. (z/2,7/2,0) ii ii i ii iv iv ii
3. (6,0,0) ii ii i iii iv iv iii
4. (z/2,0,7/2) ii i ii iv ii iv iv
5. (6,0,0) ii i ii iv iii iv v
6. (0,7/2,7/2)* i ii ii iv iv ii vi
7. 0,a,)* i ii ii iv iv iii vii
8. (n/2,m/4,/4)* ii ii ii iv iv iii viii
9. (7/2,0,7/2 — a)* ii ii ii iv iv iv viii
10. (z/4,7/2,7/4) ii ii ii iv iii iv ix
11. (0,7/2,7/2 - 0)* ii ii ii iv iv iv ix
12. (z/4,7/4,7/2) ii ii ii iii iv iv X
13. (0,7/2-0,7/2)* ii ii ii iv iv iv X
14. (0,0/2,0/2)* ii ii ii iv iv iii Xi
15. (0,a,0 —a)* il il il iv iv iv xi
16. (6,20,0) ii ii ii iv iii iv xii
17. (0,0, — 6)* il ii il iv iv iv xii
18. (6,0,20) ii ii ii iii iv iv xiii
19. 0,a,0 4+ a)* ii ii ii iv iv iv Xiii
20. (z/3,7/3,7/3) ii ii ii iii iii iii Xiv
21. (0,0, 7 —20) ii ii ii iii iv iv Xiv
22. (0,7 —20,0) il il il iv iii iv xiv
23. 0, (x—0)/2,(r—0)/2)* il ii il iv iv iii xiv
24. @,a,m—0—a) ii il ii iv iv iv xiv
25. (6,0,0)° ii i i iv iv i XV
26. (z/2,7/2,7/2) ii ii ii ii ii ii XV
27. (0,0,0) ii ii ii iii iii iii XV

to a block-diagonal CKM matrix, which is ruled out
experimentally. We exclude those textures leading to a
massless quark or to a block-diagonal CKM matrix. Thus,
we have the results in Table II.

These 51 combinations of angles (0, a, 3, y) for the GCP
transformations are all the combinations that lead to unique
textures on the mass matrices M, and M ,, consistent with
nonzero and nondegenerate quark masses and a CKM
matrix which is not block-diagonal.

But there is one further simple constraint, regarding CP
violation. Experiments in B decays prompt the conclusion
that there must be CP violation in the CKM matrix, which
is related to a physical quantity called the Jarlskog invariant
Jep [27,28]. In terms of the CKM matrix elements this
invariant is given by [29]

Jep =Im(V, Vo, Vi, VE) = (3.081013) x 107, (62)

One can construct another related CP-violating, basis
invariant, quantity [5,27,28]
J:Tr[HLqu] _6l(mt —-m )( 2)( )

x (my = m3)(mjy — m3)(m3 — mg)J cp. (63)

We have already excluded models with quarks bearing zero
mass or equal mass among each other. Therefore, J = 0 if

and only if the CKM matrix conserves CP, i.e., Jop = 0,
which is ruled out experimentally.

If we compute H,, H,, and J for each of our 51 models,
we find that for (z/6,7/3,7/2,7x/6), (0,720,
30 —n,0), (x/6,7/3,7/6,7/2), (0,20,0,30), (0,26,0,
n—30), (0,7 —20,7 —30,6), (0,20,30,0), (6,7 — 20,0,
30 —n), (0,7—-20,0,x—30), (0,20,7—36,0) and
(0,0,0,0), J is always zero. Therefore, we can eliminate
these models from our list, leaving us with just 40 models.

Finally, we can list every GCP symmetry that can be
imposed on the 3HDM consistent with nonzero and non-
degenerate quark masses and with nondiagonal and CP-
violating CKM matrix. For each model we note the allowed
values for 0, from which we can deduce the form of the scalar
potential (CPa, CPb, CPc, or CPd), along with the amount
of real independent parameters in the down-type and up-type
Yukawa matrices. This is shown in Table IIl. An asterisk
means that, for that Yukawa matrix, the third quark decouples
from the first two and a diamond means that the quarks couple
only to @5. [Recall that we are always considering the basis of
Eq. (7) for the GCP transformation X of Eq. (2).]

Table III is one main result from our work. Notice the
dramatic reduction in the number of unknowns. Indeed, in
each charge sector we would generally have 3 matrices,
with 9 complex entries for a total of 54 (real) parameters.

035028-11



BREE, CORREIA, and SILVA PHYS. REV. D 110, 035028 (2024)

TABLE II. Combinations of (6,a,f,y) and respective con- TABLE III. All 40 GCP-symmetric 3HDM compatible with

straints on the up and down Yukawa sectors. nonzero and nondegenerate quark masses as well as a non-
vanishing Jarlskog invariant.
(6. a.B.7) (0.a.p) (0.a.7)
0. 0.0.0) 1 1 Number of real Number of real
(77,'/2 7[/2 0 0) ) ) R ) parameters parameters
ange for in down-type n up-type
(7/2,7/2.0,7/2) 2 26 0,a,p,7) 0 Yukawa Yukawa
(6,6.0.,0) 3 3 AL
(z/4.7/4.0,7/2) 3 12 (0,0,0,0) 0 27 27
(6.0.0,20) 3 18 (%,0,0,%) z 9° 15
(n/3.7/3,0,7/3) 3 20 (%,0,%,0) 15 9°
6008 ; S i 3
(7/2,0,7/2,7/2) 4 4 (i 0 1) 15 13
(7/2,0,7/2.0) 4 25 é’%’%’é) 13 15
(0.0.0.0) 5 5
(6,0,6,0) 5 25 (Z’Z’i’z) . 13 13
(n/4,m/2, /4, 7/4) 10 10 (339’5) 3 ? ?
(z/4,7/4,7/2,0) 12 3 (5.5.5.0) 9 9
(n)4,m/4, 7/2,7)2) 12 12 (5.5.5.5) 9 9
(n/4.7/4.7)2.7/4) 12 27 (5.%.0.9) i 9 7
(z/6.7/3, n/z 7/6) 13 16 (5.4.5.0) 7 9
(¥.7/5,7/5.%) 14 22 (5.5.5.2) 7 7
(0.7-20.30 - 7.0) 15 2 (5.5.5.9 7 7
(n/6,m/3,7/6,7/2) 16 13 4.%2.5.%) 7 7
(6.20.0.0) 16 16 (z,%,2.1) 7 7
(0,26, 0,30) 16 19 (32‘5_”,%,25_”) z 5 5%
(n/5.% . 7/5.%) 16 23 (z,2 2 ) 5 5
(0.20.0. 7 — 30) 16 24 (e 2) o 5 5+
(0,7 20,7 —30,0) 17 22 (25,,’,5,’,,5 ’22) 3 5 s
0.0.20,0 18 3 5050505
Ea,e 20, 2)9) 18 18 (6.0,0.6) 0.3) 9° 4
(0.6.20.0) 18 27 (6.0.0.0) 9 o
(0.26.30.0) 19 16 (6.0.0.0) ? 9
(z/3,7/3,7/3,0) 20 3 (6.6.0,0) o 9 9
(n/3,7/3,7/3,7/3) 20 20 (6.6.0.0) (0.9\{5} 9 7
(0.0, 7 —26,0) 21 3 (6.6.6.0) 7 9
(0.0.7 —20.7—20) 21 21 (0.6.6.0) ) 7 7
(0.6, 7 —20.0) 21 27 (6.0.0,20) 0.3) 9 5
(Z.7/5.2 . 1/5) 2 14 Ez’ z’z ’233 g g
(6’71' 20,0.360 — 1) 22 15
(0.7 —20,0.1 — 30) 22 17 EZ’ Z’ iZ’ gé) 2 z
(0.7 —20.6.0) 22 22 (60.20.60.0) s s
(x/5.%.% ./5) 23 1 (0.0.02-20) (I 9 5
Ei/zzeoﬂo 3/92)9 ! % . (00r-20 > .
(0.0.0.0) 25 S ontmg ; ;
0,1 — ,
(6.0.0.0) 25 25 0.0,m—20,17—20 5 5
(ﬂ/2 7[/2 7'[/2 0) 26 2 Eg’ﬂ._zg’g,e) ) 5 5
(z/2,7/2,7/2,7/2) 26 26
(6.6.0,0) 27 3
(n/4,n/4,7/4,7)2) 27 12
EZ oo 2, . 7 " V. YUKAWA TEXTURES CONSISTENT WITH
6.6.6.6) el - EACH GCP IMPLEMENTATION

In this section we list the Yukawa textures for all possible
GCP implementations in the scalar and down-type quark

Imposing the various GCP symmetries reduces these ;
Yukawa sectors of the 3HDM. (As mentioned, for the

numbers to those shown in Table III.
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up-type quark Yukawa matrices one simply makes the
replacement f — y). This has been performed in two
independent ways. The first used the method described
in the previous section. For the second, we have developed
an extensive Mathematica program that automatically tests
all possible GCP assignments. This is done by solving
Egs. (49) and (50) through the method described in
Appendix A. Through this strategy, we can obtain, for
each aforementioned block, a homogeneous system of
equations M(0, a, /)I” = 0, where M is a matrix which
depends on the angles of the GCP symmetry assignment
and I"” is a vector containing the real (imaginary) part
of the entries of I'; and I'; for each block. To find the
solutions for the system, the program evaluates which sets
of (6, a, ) nullify the determinant of M and subsequently
calculates I'"" such that it is in the null space of M. It then
performs all possible logical combinations of these sol-
utions, as well as the trivial solution, and simplifies the
result excluding redundant and impossible cases. Finally, it
computes de eigenvalues of H; and H, as well as the
Jarlskog invariant for each possible case, and excludes
nonphysical results.

We have confirmed that Table III is correct and complete.
Moreover, the program also identifies automatically all
relevant Yukawa matrices; they are shown explicitly in this
section.

A. CPa: Consistent Yukawa textures

CPa (the usual type of CP) implies simply that all
parameters are real:

ap dpp 4 11 €12 €33
Uy= | ay an axy |, h=|cu cn 3|,
daz; dzp 43z €31 C3 (33

€11 €12 €13
[3=1 e exn exn|. (64)

€31 €3 €33
Here and in the following subsections, the parameters a;;,

bij, cij» d;j, e;j, and f;; are all real. Imaginary numbers will
be shown explicitly.

B. CPb: Consistent Yukawa textures

1 (0. a B)=(n/2. 0. 0)

Here,

€11 €12 €33
[3=1| ey exn ex3|. (65)

€31 €3 €33

035028-13

2.0, a p)=

apy +ibyy
ayy + iby;
az + ibs
—ay, + ibyy
—ay + iby
—az + ibs,
0 0 e3
0 0 exn
0 0 ex

3. (0.a.8)=

ap +iby

ayy + iby
0

—ay + iby

ap —iby
0

0 0 0

rs=|0 0o o

€31 €3 €33

[230) + ib12

[25%) + ibzz

—dj) + ibzz

(x/2, 0, =/2)

ap+iby, 0
ay + iby 0) .
azp +iby 0
aj —iby 0
0
0

ayy — iby;

asy — ibz;

(66)

(x/2,7/2,0)

a3 +iby;

ary +ibys |,

0 0

—ay; + iby;

ap —ibp
0 0

a3 —ibys )

(67)

4. 0,a,p)=(n/2,7/2,7/2)

0
r, = 0
asy + ibs
0
r, = 0
—az +ibsy
en +ifi
—eptifn
0

0 apz + ib13
0 a3 + ib23 ,

az + ib32 0

0 —dajs + ib23

0 a3 — ibl3 s

Cl31 —ib31 0
ep+ifi, O
en—ifuy 0 [. (68)

0 €33

C. CPc: Consistent Yukawa textures

L (0.a.p)=(x/3.0.0)

r=r,=0, T,

= e en exs|. (69)
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ar
asy

asy

ap dp

dz; dxp

iby
ibyy

asy

iby,
I = —iby,

asp

iby
iby,

ibyy
—ib,
0

2. 0,a,p)=(n/3,0,7/3)

an O —ajp apy O O 0 €13
ay 01, =1 -an ay 0], I3=10 0 ey (70)
ap 0 —ayp az 0 0 0 e3
3 0,a,p)=(n/3,7/3,0)
as —dy —dp —dy; 0 0 0
ax |, I, = apy ap aps |, I'; = 0 0 0 (71)
O 0 O 0 631 632 633
4. 0,a.p)=(x/3,7/3,7/3)
ai ibyy —iby  —ans ep e 0
ay; |, Iy = | —=ibyy —ibyp  ap |, 3= -en en O (72)
0 —daszp asy O O 0 €33
D. CPd: Consistent Yukawa textures
1. 0,a,p)=(n/4,7/4,7/2)
ay +ibyy  ap+iby ap
—ap +iby, ay —iby axp
0 0 0
—ap +ibyy  ay —ibyy  —an 00 0
—ayy —iby  —ap—iby ap |, I5=10 0 0 (73)
0 0 0 O 0 €33
2. 0,a,p)=(n/4,7/2,7/4)
ar + ibll app + ib12 0
—ayp +iby, ay —iby 0],
asy aszp 0
a12+ib12 —ai _ibll O 0 O
ap _ibll alz—iblz O s F3 = 0 0 (74)
—dadsp asy 0 0 O €33
3. 0,a,p)=(n/5,2r/5 2x/5)
O iblz _ibll 0 €11 €12 O
1 0. Iy = | —ibyy —iby 0|, I3=1-en en O (75)
0 0 0 0 0 0 e
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4. 0.a,p)=12xn/5,7/5,7/5)

ay ap 0 —ap a0 e ep 0
I''=1|a, —ay 0}, I, = ay  ap 0], [3=1| —enn e 0 1. (76)
0 0 0 0 0O 0 0 0 e
5.0¢{0,n/3,n/2} and (a,f)=(0,0)
€11 €12 €13
r=r,=0, [3=1| e en exy|. (77)
€31 €3 €33
6.0¢ {0,n/3,7n/2} and (a,p)=(0,6)
ap ap 0 —ap a0 0 0 e
I=1|a; a»n 0], b=\ —-an ay 0], [3=10 0 ey (78)
ay; axn 0 —azp az 0 0 0 es3
7.0¢ {0,7/3,7/2} and (a.p)=(0,0)
app dpp dps —dy; —dpyp —dy; 0 0 0
Iy=1|ay an axj |, I, = ag ajn ags ) I'; = 0 0 0 |. (79)
0 O O 0 O 0 631 632 633
8.0c{0,n/3,7/2} and (a,p)=(0,0)
O O ags 0 0 —dajs3 €11 €12 0
Fl = 0 0 ans s Fz = 0 0 aps s F3 = —€12 €11 0 . (80)
ay ap 0 —azp az 0 0 0 es3
9.0€(0,7/4) and (a,p)=(0,20)
app  dpp dis —dip  dyp —dps 0 0 O
y=1|-an an ax |, y=|-an —ap aps |, I3=10 0 0 ]. (81)
0 0 0 0 0 0 0 0 exs3
10. 0 (0,7/4) and (a,f)=(260,0)
ag ain O an —dai 0 0 O 0
Fl = —daj;p dadp 0 s F2 = ap apn 0 s F_o, = 0 0 0 . (82)
ay  axp 0 —azp az 0 0 0 es3
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11. 0€ (n/4,x/2)\{n/3} and (a,p)= (0,7 -26)

ibll iblz ags iblz _ibll 0k} 00 0
Fl = ib12 _ibll ajy s Fz = _ibll —iblz as s F3 = 0 0 0 . (83)
0o 0 0 0 0 0 0 0 ey

12. 0 (n/4, 7/2)\{n/3} and (a,p)=(x—-26,0)

ib,, iby 0 ib, —ib; 0 00 0
Fl = iblZ _ibll 0 5 F2 - _ibll _ibIZ 0 N F3 - 0 0 0 (84)
asy ap 0 —das; a0 0 0 e3

VI. CONCLUSIONS

We have studied the implementation of a generalized CP
symmetry on the scalar and Yukawa sectors of the 3HDM.
By introducing a key mathematical result, we simplify the
analysis, especially in the Yukawa sector.

In the scalar sector, we identified four classes of
potentials, just one more than the two Higgs doublet
models. We were also able to identify that these four
potentials are classified as CP2, CP4, S5 x GCPy_,, and
O(2) x CP in a notation close to [13].

Additionally, we categorize all possible Yukawa tex-

in [8]. We show the result in the special basis in which X
has the form in Eq. (7). This is to be contrasted with the
much simpler and elegant method we establish in
Appendix B and use in Sec. III.

Introducing [7]

AYp =Yo — XaaYZz}X;;h = [Y_ (XTYX>*]ab’

AZypca = Zab,cd - XaaXyCZ::[)’,y(SX[t’ijgd’

(A1)

we may write the conditions for invariance under GCP as

tures, excluding those that result in null or degenerate quark AYq, =0, (A2)
masses, or a null Jarlskog invariant. We found that there are

40 different possible implementations of GCP symmetry in AZupca = 0. (A3)
the Yukawa sector. This is in contrast with the 2HDM case

with generalized CP symmetries extended to the Yukawa  Given Egs. (5), it is easy to show that

sector, where only two scenarios exist. While many of these

cases have a large number of parameters in the Yukawa AY . =AY},

sector, there are 8 models which entail only 10 parameters AZupead = AZegay = AZ}, 4. (A4)

and, therefore, may be more easily tested against exper-
imental constraints.
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Eqgs. (A2)-(A3) becomes tedious but systematic. Let us
look at the quadratic terms. We find
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APPENDIX A: GCP CONSTRAINTS ON THE
SCALAR POTENTIAL

In this appendix we discuss how one would show that
there are four classes of GCP-symmetric scalar potentials
in the 3HDM, using the classical method already used

The determinants of the three systems are sg, 2(1 = ¢y), and
2(1 4 ¢g), respectively. Given the restricted range
0 <0 < /2, the first two are zero if and only if 8 =0,
while the third never vanishes. As a result, we conclude that
there are two possibilities: either & = 0 (corresponding to
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the usual definition of CP, denoted here by CPa), and
all quadratic coefficients are real; or § #0, and Y =
diag(py, uy, p3), with u; and p3 real. The first case
corresponds to 6 real parameters; the second case corre-
sponds to 2 real parameters.

The study of the GCP symmetry conditions on the
quartic couplings using this strategy is more involved. To
see the impact on the quartic potential, we follow Ref. [9]
and organize the Z;; ;; tensor into a matrix of matrices. The
uppermost-leftmost matrix corresponds to the phases
affecting Z;; ;. The next matrix along the same line
corresponds to the phases affecting Z;,,;, and so on...
We use the following notation for the various entries [9]

rn ¢ G €1 €3 (4 Cy €4 Cs
€] Ty Ce r; €7 Cg Cg Cio Cyy
¢ ¢ Ts Cy € Cr3 rg Cia Cis
cf 7 Co [rs ¢; cw] [ec ¢ cn
3 €7 c; I Ci €y Cis €17
€y €y Ci3 [ Clo €16 Te] Lcia To cCig]
© Cy Iy [cg cin cu| [rs ciz cis]
€y Clo Cia cg Clg T9 ¢l3 Ts Cig
cs iy Cs ¢ ci7 cig] Leis cig T3

5
>
N
N

|
>
N
E

0 (
0] ( )
[0] [Tm(AZ; 53 + Ale,sl)]
L0} Im(AZ 503 — AZy 13)
(0] [Im(AZs33,43) [l+ce
L0 ] ( ] a [ So

[
=
>

N

-

—S9 ] [Ms]
L+ ¢ Yis

where r, (k=1...9) are real and ¢; (k=1...18) are
complex. We will write ¢, = x; + iy, with x; and y, real.

We now wish to study Egs. (A3). Due to Egs. (A4), we
only need the 9 real coefficients AZ; 11, AZy 25, AZ3333,
AZy1 2, AZ1133, AZy sz, AZ1po1, AZ1331, AZys 3, and
the 18 complex coefficients AZyy 5, AZyy 13, AZj) 03,
AZyia, Ay, Ay, AZsyzy, AZszys, Az,
AZy 12, AZpps, AZygos, AZyzi, AZps, AZp s,
AZI3,23, AZ13’32, and AZz3’23. HOWeVer,

—28Z11 0 =AZy 1 +AZyy
AZysy = —AZy 33,
AZ353; =0,

AZyy01 = AZyy 0,
AZy; 30 = —AZy3 31,
Re(AZy ;) = Re(AZ) ),

Re(AZy303) = —Re(AZ33), (A7)

simplifying the analysis. One then proceeds as for the
quadratic terms finding systems such as, for example,

1+ ¢y —Se] {)’4—%]

S 1+ ¢y Yo+ Y12

I+¢y —59] {%‘%}

So 1+ ¢ Yg — Y10

(A8)

These systems have determinant 2(1 4 ¢), which never vanishes due to the restricted range 0 < 6 < /2. As a result, any
GCP symmetry will force yi5 = y15 =0, y4 = y¢ = Y9, and yg = y19 = —V12.

A more challenging example is

0 [ Im(AZ;; 3)
0 Am(AZp13 + AZy1 03 — AZ1n31)
0| | 4Im(AZy05 + AZy 13— AZjs )
0 L Im(AZ5; ;)
1+ o —cksg oS5 —s3 v,
_ 12¢2s9 4+ co+3c39 59— 3539 12¢4s5 Y4+ Ve + Vo (A9)
12¢4s5 3539 =59  4+cot3cz —12¢5 Y8+ Yo~ Yi2
55 oS} c3sg 1+c} Y16
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with determinant  64(1 + ¢4)?(1 —2¢4)?.  Given the
restricted range 0 < 6 < /2, this determinant can only
vanish if ¢, = 1/2, that is, 0 = z/3.

We have checked explicitly that this procedure does
reproduce the results for the scalar potential obtained in the
main text, although in a much more tedious way.

APPENDIX B: A MATHEMATICAL RESULT ON
KROENECKER PRODUCTS OF ROTATIONS

In this appendix we state and use a result that greatly
simplifies systems of equations involving tensors and
rotation matrices. If we work in the scalar field basis
where the GCP transformation matrix is of the form in
Eq. (7), with @ denoting the direct sum operation, we can
use this result to solve the equations regarding GCP
invariance in both the scalar and Yukawa sectors of the
SM Lagrangian with great ease.

1. Result

Suppose we have a 2" x2" matrix, with neN,
defined as

R§ = ®1 Rg,=Ro, ® Ry, @ -~ ®Ry. (Bl)
P

Then, Vn>14d Cn EMznxztt: CnCnT = Izn, and

2n-1-
CnR%C;Lr = @ R(uf, = Ru)g 7] Rw'f DD R“’;n—l ?
p=0 -
(B2)

where

=

) (—I)MOd(LZ‘lL"JQ)H

b ¢ (B3)
qg=1

I, is the identity 2" x 2" matrix, and || is the floor
function, which yields the previous largest integer. For

example, for n =3 we have @} =60, +0,+ 603, @} =
—91 +92+93, w%z&l —92+93, and a)g = —91 - 92 +93
The C, matrices are defined as follows:

2” n
C = (@1 U—1> P,) <,,®1 U), (B4)

s =
where
P L {pis odd and g¢g= "TH

n)pg — L» 1 . B
P piseven and ¢=2"-5+1
(Py)pq =0, otherwise, (B5)
and
1 1 i

We include in the Supplemental Material [19] a proof of
Egs. (B3)—(B4). In addition, using the first few C, matrices,

10 0 -1
1 lo1 1 o
“=75l10 0o 1 (B7)
01 -1 0
10 0 -1 0 -1 -1 0
01 1 0 1 0 0 -1
10 0 -1 0 10
I -
372110 0 1 0 -1 1 0
01 -1 0 1 0 0 1
10 0 1 0 -1 0
01 -1 0 -1 0 0 -1
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10 0 -1 0 -1 —1
01 1 0 1 0 0

10 0 -1 0 -1 —I

01 1 0 1 0 0

10 0 -1 0 1 1

01 1 0 =1 0 0

10 0 -1 0 1 1
1lo1 1 0 -1 0o o0
“=%l10 0 1 0 -1 1
01 -1 0 1 0 0

10 0 1 0 -1 1

01 -1 0 1 0 0
100 1 0 1 -l

01 =1 0 =1 0 0
100 1 0 1 -I

01 =1 0 =1 0 0

S = O = O = O = O

|
—_

PHYS. REV. D 110, 035028 (2024)
0 -1 -1 0 -1 0 0
1 0 0 -1 0 -1 -1 0
0 1 0 1 0 0 -1
-1 0 o0 0 1 1 0
0 -1 -1 0 1 0 0 -I
0 0 -1 0 1 1 0
0 1 0 -1 0 0
-1 0 0 1 0 -1 -1 0
, (B9)
0 -1 1 0 -1 0 0 -I
o0 0 1 0 -1 0
0 -1 0 1 0 0 1
-1 0 0 -1 0 1 -1 0
0 -1 0 1 0 0 1
0 0 0 1 -1 0
0 -1 0 -1 0 0 -I
-1 0 0 -1 0 -I 0

we have confirmed by explicit construction of the corresponding matrices that Egs. (B2)—(B4) hold up to the highest n = 4

case needed for our article.

[1] T.D. Lee and G. C. Wick, Space inversion, time reversal,
and other discrete symmetries in local field theories, Phys.
Rev. 148, 1385 (1966).

[2] G. Ecker, W. Grimus, and W. Konetschny, Quark mass
matrices in left-right symmetric gauge theories, Nucl. Phys.
B191, 465 (1981).

[3] G. Ecker, W. Grimus, and H. Neufeld, Spontaneous CP
violation in left-right symmetric gauge theories, Nucl. Phys.
B247, 70 (1984).

[4] H. Neufeld, W. Grimus, and G. Ecker, Generalized CP
invariance, neutral flavor conservation and the structure of
the mixing matrix, Int. J. Mod. Phys. A 03, 603 (1988).

[5] J. Bernabeu, G. C. Branco, and M. Gronau, CP restrictions
on quark mass matrices, Phys. Lett. 169B, 243 (1986).

[6] I.P. Ivanov, Minkowski space structure of the Higgs
potential in 2HDM. II. Minima, symmetries, and topology,
Phys. Rev. D 77, 015017 (2008).

[7] P.M. Ferreira, H. E. Haber, and J.P. Silva, Generalized
CP symmetries and special regions of parameter space in
the two-Higgs-doublet model, Phys. Rev. D 79, 116004
(2009).

[8] P. M. Ferreira and J. P. Silva, A two-Higgs doublet model
with remarkable CP properties, Eur. Phys. J. C 69, 45
(2010).

[9] P.M. Ferreira and J.P. Silva, Discrete and continuous
symmetries in multi-Higgs-doublet models, Phys. Rev. D
78, 116007 (2008).

[10] L. P. Ivanov and E. Vdovin, Classification of finite repar-
ametrization symmetry groups in the three-Higgs-doublet
model, Eur. Phys. J. C 73, 2309 (2013).

[11] L. Brée, Some aspects of symmetry constrained multi-Higgs
models, Master’s thesis, IST, University of Lisbon, 2023,
https://fenix.tecnico.ulisboa.pt/cursos/meft2 1/dissertacao/
1972678479055825.

[12] L. P. Ivanov, C. C. Nishi, J. P. Silva, and A. Trautner, Basis-
invariant conditions for CP symmetry of order four, Phys.
Rev. D 99, 015039 (2019).

[13] I. de Medeiros Varzielas and I.P. Ivanov, Recognizing
symmetries in a 3HDM in a basis-independent way, Phys.
Rev. D 100, 015008 (2019).

[14] L P. Ivanov and C. C. Nishi, Symmetry breaking patterns in
3HDM, J. High Energy Phys. 01 (2015) 021.

[15] S. Carrolo, J. C. Romaio, J. P. Silva, and F. Vazao, Symmetry
and decoupling in multi-Higgs boson models, Phys. Rev. D
103, 075026 (2021).

[16] P. M. Ferreira and J. P. Silva, Abelian symmetries in the two-
Higgs-doublet model with fermions, Phys. Rev. D 83,
065026 (2011).

[17] H. Serddio, Yukawa sector of multi Higgs doublet models in
the presence of Abelian symmetries, Phys. Rev. D 88,
056015 (2013).

[18] L. P. Ivanov and C. C. Nishi, Abelian symmetries of the N-
Higgs-doublet model with Yukawa interactions, J. High
Energy Phys. 11 (2013) 069.

035028-19


https://doi.org/10.1103/PhysRev.148.1385
https://doi.org/10.1103/PhysRev.148.1385
https://doi.org/10.1016/0550-3213(81)90309-6
https://doi.org/10.1016/0550-3213(81)90309-6
https://doi.org/10.1016/0550-3213(84)90373-0
https://doi.org/10.1016/0550-3213(84)90373-0
https://doi.org/10.1142/S0217751X88000254
https://doi.org/10.1016/0370-2693(86)90659-3
https://doi.org/10.1103/PhysRevD.77.015017
https://doi.org/10.1103/PhysRevD.79.116004
https://doi.org/10.1103/PhysRevD.79.116004
https://doi.org/10.1140/epjc/s10052-010-1384-5
https://doi.org/10.1140/epjc/s10052-010-1384-5
https://doi.org/10.1103/PhysRevD.78.116007
https://doi.org/10.1103/PhysRevD.78.116007
https://doi.org/10.1140/epjc/s10052-013-2309-x
https://fenix.tecnico.ulisboa.pt/cursos/meft21/dissertacao/1972678479055825
https://fenix.tecnico.ulisboa.pt/cursos/meft21/dissertacao/1972678479055825
https://fenix.tecnico.ulisboa.pt/cursos/meft21/dissertacao/1972678479055825
https://fenix.tecnico.ulisboa.pt/cursos/meft21/dissertacao/1972678479055825
https://fenix.tecnico.ulisboa.pt/cursos/meft21/dissertacao/1972678479055825
https://doi.org/10.1103/PhysRevD.99.015039
https://doi.org/10.1103/PhysRevD.99.015039
https://doi.org/10.1103/PhysRevD.100.015008
https://doi.org/10.1103/PhysRevD.100.015008
https://doi.org/10.1007/JHEP01(2015)021
https://doi.org/10.1103/PhysRevD.103.075026
https://doi.org/10.1103/PhysRevD.103.075026
https://doi.org/10.1103/PhysRevD.83.065026
https://doi.org/10.1103/PhysRevD.83.065026
https://doi.org/10.1103/PhysRevD.88.056015
https://doi.org/10.1103/PhysRevD.88.056015
https://doi.org/10.1007/JHEP11(2013)069
https://doi.org/10.1007/JHEP11(2013)069

BREE, CORREIA, and SILVA

PHYS. REV. D 110, 035028 (2024)

[19] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevD.110.035028 for proof of a result relating
tensor products of 2 x 2 rotation matrices with direct sums of
(related) 2 x 2 rotation matrices.

[20] F.J.BotellaandJ. P. Silva, Jarlskog-like invariants for theories
with scalars and fermions, Phys. Rev. D 51, 3870 (1995).

[21] G. C. Branco, L. Lavoura, and J. P. Silva, CP violation, Int.
Ser. Monogr. Phys. 103, 1 (1999).

[22] S. Davidson and H. E. Haber, Basis-independent methods
for the two-Higgs-doublet model, Phys. Rev. D 72, 035004
(2005); Phys. Rev. D 72, 099902(E) (2005).

[23] G. Ecker, W. Grimus, and H. Neufeld, A standard form for
generalized CP transformations, J. Phys. A 20, L807 (1987).

[24] K.M. Abadir and J.R. Magnus, Matrix Algebra
(Cambridge University Press, Cambridge, England, 2005),
10.1017/CB0O9780511810800.

[25] N. Cabibbo, Unitary symmetry and leptonic decays, Phys.
Rev. Lett. 10, 531 (1963).

[26] M. Kobayashi and T. Maskawa, CP violation in the
renormalizable theory of weak interaction, Prog. Theor.
Phys. 49, 652 (1973).

[27] C. Jarlskog, Commutator of the quark mass matrices
in the standard electroweak model and a measure of
maximal CP nonconservation, Phys. Rev. Lett. 55, 1039
(1985).

[28] C. Jarlskog, A basis independent formulation of the con-
nection between quark mass matrices, CP violation and
experiment, Z. Phys. C 29, 491 (1985).

[29] R.L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083CO1
(2022).

035028-20


http://link.aps.org/supplemental/10.1103/PhysRevD.110.035028
http://link.aps.org/supplemental/10.1103/PhysRevD.110.035028
http://link.aps.org/supplemental/10.1103/PhysRevD.110.035028
http://link.aps.org/supplemental/10.1103/PhysRevD.110.035028
http://link.aps.org/supplemental/10.1103/PhysRevD.110.035028
http://link.aps.org/supplemental/10.1103/PhysRevD.110.035028
http://link.aps.org/supplemental/10.1103/PhysRevD.110.035028
https://doi.org/10.1103/PhysRevD.51.3870
https://doi.org/10.1093/oso/9780198503996.001.0001
https://doi.org/10.1093/oso/9780198503996.001.0001
https://doi.org/10.1103/PhysRevD.72.035004
https://doi.org/10.1103/PhysRevD.72.035004
https://doi.org/10.1103/PhysRevD.72.099902
https://doi.org/10.1088/0305-4470/20/12/010
https://doi.org/10.1017/CBO9780511810800
https://doi.org/10.1103/PhysRevLett.10.531
https://doi.org/10.1103/PhysRevLett.10.531
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1103/PhysRevLett.55.1039
https://doi.org/10.1103/PhysRevLett.55.1039
https://doi.org/10.1007/BF01565198
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097

