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We construct the general two-Higgs doublet model effective field theory where the effects of additional
new physics are parametrized by operators up to mass dimension-six. We further transform this effective
theory to the Higgs basis and provide matching of the Wilson coefficients between the two descriptions. We
illustrate the advantages of the Higgs basis which include the separation of operators that modify standard
model couplings and masses from operators that contribute to scattering processes only, transparent
correlations between scattering processes resulting from the same operator, and derivation of correlations
between different operators in specific UV completions. For completeness, we also construct specific
versions corresponding to four types of two-Higgs-doublet models: type-I, -1I, -X, and -Y, distinguished by
Z, symmetries which restrict the couplings of the Higgs doublets to standard model fermions. Furthermore,
we derive general vacuum and stability conditions of the scalar potential in the presence of higher-

dimensional terms.
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I. INTRODUCTION

The effective field theories are very useful for general
explorations of effects of new physics without relying on
specific complete models. Among these, the standard model
effective field theory (SMEFT) describes possible effects of
new physics, provided that the low energy degrees of freedom
are the known particles in the standard model (SM) and the
new physics enters at a new scale, A, significantly above the
electroweak (EW) scale. Below A, heavy degrees of freedom
are integrated out and their effects are parametrized by
nonrenormalizable, higher-dimensional operators with
Wilson coefficients C; o« A*~?, where d > 4 is the mass
dimension of the operator [1]. Constructing all operators up
to mass dimension-six [2] and up to mass dimension-eight [3]
has led to a broad theoretical and experimental effort to
constrain possible effects of new physics.

The two-Higgs-doublet model (2HDM) is one of the
simplest extensions of the SM [4]. While the new particles
(two neutral and a pair of charged Higgs bosons) may be
very heavy and thus their effects would be well described
by the SMEFT resulting from such a model, they could also
be light, within the reach of the Large Hadron Collider
(LHC) or future colliders, in which case the new particles
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should be kept in the low energy theory. However, the
2HDM could by further extended by new particles, for
example new quarks and leptons, an even richer scalar
sector, or new gauge bosons. Just like for the SMEFT, it is
possible to parametrize the effects of these extra particles
by operators of higher dimensions, provided that the extra
particles are above the scale of additional Higgs bosons.
In this paper, we construct the general 2HDM effective
field theory (2HDM EFT) where the low-energy theory is
that of the 2HDM and the effects of additional new physics,
possibly entering at a scale far above the masses of new
Higgs bosons, are parametrized by operators of mass
dimension-five and -six. We assume the SU(2), x
U(1)y theory is linear and all parameters in the scalar
potential are complex. We also construct specific versions
of 2HDM EFTs, corresponding to four types of 2HDMs:
type-I, -1I, -X, and -Y, distinguished by Z, symmetries that
restrict the couplings of Higgs doublets to SM fermions.
We will show that each model allows a unique set of
operators as a consequence of specific Z, charge assign-
ments for fermions. Furthermore, we transform the general
2HDM EFT to the Higgs basis and provide matching of the
Wilson coefficients between the two descriptions. In the
Higgs basis the SM degrees of freedom are contained in one
doublet, H,, and all additional Higgses are in another
doublet, H, [5-8]. We illustrate the advantages of working
with the 2HDM EFT in the Higgs basis that include the
separation of operators that modify SM couplings and
masses from operators that contribute to scattering proc-
esses only, transparent correlations between scattering
processes resulting from the same operator, and derivation
of correlations between different operators in specific UV
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completions. For completeness, we also derive general
vacuum and stability conditions of the scalar potential in
the presence of higher-dimensional terms.

Previously, the 2HDM EFT has been studied in the case of
a CP-conserving Higgs potential [9]. In this paper, we find
agreement with the results therein, with the exception that in
all four types of CP-conserving 2HDMs, we find twice as
many operators which modify quark and lepton masses, as
well as operators involving covariant derivatives acting on
either doublet contracted with right-handed quark currents.

Other groups have extended this study toward a general
2HDM EFT [10,11], where Ref. [11] has also counted the
independent operators through the Hilbert series method.
We note however several disagreements between these
references, Ref. [9], and this paper, notably on constructing
independent derivative operators involving the Higgs dou-
blets. The 2HDM EFT in the Higgs basis has not been
previously discussed.

Other formalisms include a nonlinear type of EFT, called
Higgs effective field theory, which assumes the Higgs is a
SM gauge singlet and all additional SM scalars such as G
and G*, longitudinal Goldstone modes of the Z and W+,
are placed in an SU(2) triplet [12,13]. Comparisons
between this and the SM effective field theory have been
collected in Ref. [14]. More recently, a 2HDM equivalent
of this has been studied [15]. Furthermore, SMEFT
resulting from theories with extended Higgs sectors has
been presented in Refs. [16—18]. Integrating out the addi-
tional Higgses is accomplished by working in the Higgs
basis where the mass scale of heavy Higgses is the scale of
new physics, A. In this paper, we make no assumptions
about the masses of new Higgses that can be anywhere
between the EW scale and the UV cutoff A.

This paper is organized as follows. In Sec. II, we define
all parameters and conventions, an construct the entire set
of effective operators in the general 2HDM up to mass
dimension-six. In Sec. III, we discuss the four specific
kinds of 2HDM EFTs resulting from specific Z, charge
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assignments and discuss what operators are common to all
2HDMs and what are unique for a specified model. We
transform the general 2HDM EFT into the Higgs basis, and
discuss advantages of working in the Higgs basis in Sec. IV.
We conclude in Sec. V. We also provide two Appendixes: in
Appendix A we derive general vacuum and stability
conditions of the scalar potential in the presence of
higher-dimensional terms; and in Appendix B we list the
complete expressions for all dimension-four, -five, and -six
terms translated to the Higgs basis.

II. CONSTRUCTING THE EFFECTIVE
FIELD THEORY

A. The standard basis definitions and parameters

To start, we adopt the conventions of [2] and construct
the basis of linearly independent operators in a general
2HDM similar to that of the SMEFT Warsaw basis. For a
given UV completion, where heavy degrees of freedom are
decoupled at some high scale A, the effects of new physics
are parametrized by higher-dimensional terms appearing
alongside the fully renormalizable two-Higgs doublet
model. Up to mass dimension-six, the Lagrangian is
defined as

1
L= Lo+ €07+ 0 10 (P) o)

where the superscript denotes the mass dimension of

the interactions. Eé‘gDM is the renormalizable 2HDM

Lagrangian, which contains gauge and Yukawa interactions
(5)

of SM fermions, as well as the scalar potential. C;” and

C,@ are the Wilson coefficients of the mass dimension-five
and -six operators, respectively, and for compactness, the
mass scale is contained in the Wilson coefficients.

The renormalizable 2HDM Lagrangian (summarized
in [19] except for the mixed kinetic term) is given by

1
Ly = — Bu B = Wi W — GG ¢ (D, ®,)" DD, + (D,®,)" D*®, + ((D,®,)" D*®, + H.c.)

4 4

- V(q)l,q)z) + lZLDlL + iéRDER + lZ]LDqL + laRDdR + iﬁRDMR

)7 2)5 1) - 2)- 1) - 2) - o
- < Dler® + 7T e, +)’51 \4Ldr®, + YEJ 40dr®, + 3\ g ug - @] + W aLug - @, + H-C->’ (2)

where the lepton and quark doublets are defined as I; = (v;,e;)" and g, = (u;,d;)?. The gauge covariant derivative
acting on an object charged under SU(3) x SU(2), x U(1)y is defined as

ig a a lg‘ a a H
(DM‘Z)ai = 5aﬁ6ijaﬂ + E5a/i(7 )ijW/l + ) (4 )(l/)'5ijGﬂ + lleqBﬂ(Sa/)’5ij:| qpj- (3)
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TABLE I SU(3) xSU(2), x U(1)y quantum numbers of
standard model leptons, quarks, and Higgs doublets. The electric
charge generated after electroweak symmetry breaking is
Q = T3+ Y. The bold font is to denote the representation of
the object charged under the respective group.

Iy eR qr Ug dg D, )

SU(3) 1 1 3 3 3 1 1
SU(2), 2 1 2 1 1 2 2
LU N N W R S S

where 7%/2 and A*/2 are the generators of SU(2) and
SU(3), respectively, with 7% and 1* being the Pauli matrices
and Gell-Mann matrices. SU(2) and SU(3) fundamental
indices are written with (ij) and (af) where needed,
respectively. The hypercharges of the particle content are
provided in Table I. Field strength tensors of the gauge
fields are defined as

The most general scalar potential in a 2HDM is

V(q)lv (I)2> =

[N R

B,, = 9,B,—9,B

vPu»
Wi, =9,Wy —0o,W; — ge“bCijW,f,
Gy = 0,GY = 9,Gji — 9, GG, (4)

and for later purposes, the dual field strength tensor is
X, = €u,sX?°/2 for each gauge field X =B, W, G
and €0123 = +1

The two Higgs fields @, , are complex SU(2) doublets,

each with hypercharge Y|, = +1/2, defined as [8]

() we(3)

For SU (2) invariant combinations of doublets involving
2x 2 or 2x2, contraction of SU(2) indices with anti-
symmetric  ¢;; “r

are noted with an explicit “”, e.g.
arig - D), = (4L) (®],) + (31) (®],); =
qrugr 12 qdr)1Ur€12\®12)2 qr)2Ur€21\P12)1

ﬁLMRq)(l),*Z — aL”Rch,z’ where €1p = —€r = +1

m}(®[®)) + m3(P)D,) + (m?,®]®, + H.c.)

S (@I@) +3 (@0,)? 4 (@], (@10,) + 4,(@] @) (@)

1
+ (5,15 (®]®,)% + 16(D[ D)) DD, + 1;(D;D,)D D, + H. c) (6)

where the parameters m?, m3, 1, 4y, A3, and 14 are real by
Hermiticity, while m?,, A5, A, and 1; are in general com-
plex and can introduce CP-violating interactions in the
scalar sector. Moreover, specifying a Z, symmetry on <I>1
and @, restricts the potential to contamlng only A5 (and m?,
if soft-breaking terms are allowed)." Enforcing a Z,
symmetry will be discussed in detail in the next section.
This scalar potential will be modified in the presence of
higher-dimensional terms, affecting the vacuum conditions
of the extrema, concavity, and stability of the potential for
asymptotically large values in field space. These conditions
are collected in Appendix A and should be compared to the
corresponding ones resulting from Eq. (6) only [21].

The mixed kinetic term containing 7 can be rotated away
via the nonunitary transformation

- \/’F‘DH'\/_(D? VI — /1P
(01, 22) <2\/Inl(1+lf1| 2\/|n|1—77|> 7

'The softly broken term is vital as it allows for a large mass
spectrum for additional Higgses while respecting unitarity and
perturbativity. When m?, > 8zv? for sufficiently heavy masses,
tan / becomes largely unconstrained by direct searches [20].

however, in the most general sense (e.g. in the
CP-violating 2HDM where m?,,4567 €C), n will be
complex and generated at the loop level even in this
diagonal basis. The renormalization of the 2HDM with a
softly broken Z, symmetry was discussed in great detail
in [22]. A general 2HDM can include this kinetic term or
not by choosing different renormalization schemes,
where these are related by scale-dependent field
redefinitions [23]. This detail about considering the
mixed kinetic term was not mentioned previously
in [10,11] and we do so here to make the reader aware
as we choose to include it. Including the mixed kinetic
term in the Lagrangian is relevant for the equations of
motion of ®; and ®,, and after electroweak symmetry
breaking (EWSB), the proper canonical definitions of
scalar and vector boson fields.

After EWSB, the neutral components of the scalar
doublets develop vacuum expectation values (VEVs)
(@Y%) = v, and (@) =wv,, whereby v=/v}+v5=
174 GeV and their ratio is parametrized by v,/v; =

tanf. The angle & rotates the CP-even scalars & and

H to the physical basis, while j diagonalizes the
CP-odd scalars G and A, and ﬁi diagonalizes the
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TABLE II.

Operators with left- and right-handed fermions with either scalar doublets or vector bosons in the standard basis for a

general 2HDM. Each operator has a distinct Hermitian conjugate, giving a total of 80 operators. Dipole operators are defined with

o = il v]/2.

v’ OE(;) =l ep®(D]®;) Ol = q,dp®, (@], 0%3 = Grug - O} (D] D))
05313]) =l ep® (D)D) O = 4, dp®, (0}D,) 0%3 = qpug - O} (DID,)
O%) = 7LeRq>1(q)J2r(D1) Odq> = qLdp®P ((D;(Dl) 05,2413 ={qLug - q;T ‘DT @)
05313]) =l ep®, (‘I’Iq’z) Oizg) = qpdr® (‘qu)z) O%,) =qLug - ‘DT(q)Tq)z)
Ol = 1,5, (®LD,) O = §,dp®,(D}D,) O%) = GLug - O} (®L,)
Ol = Tex®(®]®)) O, = 41 dx®:(®]®1) Ol = dvitg - DY(®]))
Oﬁfpl) = I eg®; (D] D)) 01(1%12 = g, dg®,(D]®;) OEEZ) = qpug - DY (DID))
Oy = I,.ex®, (] ;) O%Z) = G dg®,(P]D,) (9%2) = gpug - }(D]D,)
.0 Oipo, = [,6" ex®\B,, Oupo, = 410" dg®B,, Oupo, = G0 ug - <I)le,
Owe, = l 0" egt*® Wy, Ouwae, = qro"dgt*® Wy, Ouwwo, = Gr0" ugt® (DIWZV
Oipo, = [,6" ex®,B,, Ouco, = G0 A dr®,Gy, Ougo, = 40" Mug - @G,
Owe, = l0" egr" @, W4, Oupo, = G0"dr®,B,, Oupo, = qL0"ug 'QDEB,IW
Ouwe, = qro"drr’ @, Wy, Ouwwe, = GLo* ugt® - ®We,
Ou6o, = qL0" A dg®, Gy, Ouce, = 40" Aupg - CD;G,‘:,,

charged fields G* and H*, yielding the following doublet
components’:

1
@Y = v +—=(~hsina + Hcosq)

V2

i A LA
—|—7§(Gcosﬂ—Asmﬂ),

1
@Y = vy +—=(hcos& + Hsin &)

V2

i A A
+—(Gsinf + Acosp),
\/5( p B)

®F = G* cos f* — H* sin 5™,
®F = G*sin ¥ + H* cos f*, (8)

where h is the SM Higgs field, G and G* are the
longitudinal Goldstone modes for the Z and W+ bosons,
respectively, and H, A, and H* are the additional Higgs
degrees of freedom.

In the mass sector, note that the presence of two doublets
does not guarantee a simultaneous diagonalization of the

(1 2 :
(e.du) and y(e du)® This

introduces so-called flavor changing neutral currents of SM

lepton and quark mass matrices y

“The presence of dimension-six terms affects the physical Higgs
spectrum; canonical field redefinitions and corrections to their
masses must be considered. The vacuum angle f thus no longer
diagonalizes the CP-odd scalars and charged fields in Eq. (8) as in
the dimension-four theory. The difference between the vacuum and
each diagonalization angle is § — 5) ~ O(v*/ A2M?), where M>
is either m3 or mlzqi depending on the angle.

fermions, where tree-level vertices involving scalars are
nondiagonal in flavor space. These can be large due to tan
enhancements, but are highly constrained by many exper-
imental measurements.

B. The complete set of operators up to dimension-six

Given the quantum numbers of SM fields in addition to
two new doublets defined in Table I, we now proceed to
construct the entire set of independent operators. The
procedure is a straightforward extension of [2], notably,
one can imagine replacing the SM Higgs doublet with
either ®; or @, since they all have identical quantum
numbers. However, this generalization introduces non-
Hermitian terms which mix @, and @, currents, generating
new singlet combinations.

In the SMEFT, there is only one dimension-five operator,
the so-called Weinberg operator [24]. However, in the
general 2HDM, there are three dimension-five operators
present [25] which may affect the mass generation of the
three neutrinos. They are defined as

Ol = (@, - 1,)TC(@, - 1,).
0%3 = (®y-1,)C(D, - 1),
O = (@) - 1,)7C(®, - 1), 9)

where C is the charge conjugation matrix in the
Dirac representation, C = iy’y°. The combination of
(@, - [;)TC(®, - 1) is redundant with the last operator.
Now, we proceed with constructing operators at mass
dimension-six. Operators involving fermions and either
scalar doublets or vector bosons are provided in Table II,
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TABLE III.

Operators with left- or right-handed fermion currents involving covariant derivatives in the standard

basis for a general 2HDM. There are a total of 34 operators.

wieD OEI:J = (q)TiBuq)l)(éRV”eR)
04 = (®LiD,D,) (exr*ex)
ng = (CDTiB <I>2)(‘Ry”eR) +H.c.
OSDIII V= (o] liD @) (LLr*lL)
= (®}iD,®,)(I,7"1;)
Oglz (‘DT’D ®,)(I.y"1,) + He.
Ogblll U= (o] ’D @) (I, 7"1,)
Oglz ((Dle D,)( LTQY”IL)
(dDJrlD ®,) (I, w%"1,) + H.c.

Ot = (@]iD,®,)(dxr"dg)

O = (@5iD,®,) (dr"dy)

Oéblj) (q)IiBMd%)(aRJ’”dR) +H.c

O = (@]iD,®,) (g7 ug)

Og? = (@iBﬂ@z)(ﬁRWuR)

042 — (@}iD,®,)(@igr" ug) + H.e

OEDI;)[I] = ((I)-i-ile)ﬂq)l)(‘_]LYHQL)

Ogjm = (qDEiBu(Dz)(Z]LV”C]L)

Og?[l] = (@’Bﬂ)z)(fiw"%) +Hec

O<11>[3] _ ((bilD:q,l)(qua},ﬂqL)

aﬁ?” (®}iD,®;)(3,77q,)

OW2F = (]iDy®,)(q177q,) + Hee.
OLY) = (@, - iD,®, ) (igydg) + Hoc.
Oy = (@, iD @) (igy*dy) + H.c.
ORY) = (@,i - D,®,)(agy"dg) + Hec.

whereas purely bosonic operators are displayed in
Tables III and IV, and four-fermion currents in Table V.
There are a total of 80 + 34 + 76 + 38 = 228 operators
(including Hermitian conjugation when needed); 144 more
than the operators present in the SMEFT Warsaw basis.
This agrees with the independent counting introduced via
the 2HDM Hilbert series in Ref. [11]. The 38 four-fermion
operators [including baryon-number (B)-violating terms]
and 4 pure gauge operators are identical to the SMEFT
Warsaw basis and are unaffected by the additional Higgs
doublet. However, we will see in the next section that the
four-fermion operators become restricted once couplings to
fermions are specified by a Z, symmetry in different types
of 2HDMs.

While keeping the notation as close as possible to SMEFT
operators in the Warsaw basis, we choose a simple labeling
of operators where the superscript (--) represents the con-
traction of Higgs doublets, where the first entry corresponds
to the doublet under Hermitian conjugation (except for

operators containing € in charged quark currents, e.g. Og;;
in Table III). Labels containing square brackets denote
operators contracting SU(2) doublets with 6;;, [1], or with
(7%);j» [3] Subscripts labeled first with the lepton doublet, /; ,

or quark doublet, g; = (u;,d;)T followed by a scalar
doublet are contracted together in operators such as

(11)
O(l,u,d)d)l

we suppress flavor indices in Tables 11, III, and V. Note that
the counting of the 228 operators (as well as any subset of
operators) does not include flavor indices.

in Table II. Furthermore, for simplicity, note that

Operators containing covariant derivatives acting on the
Higgs doublets @, , are constructed in an antisymmetric
way, i.e.

q’T,ziDu‘I)l,z = i(‘DT,z(Dﬂ‘Dm) - (DMQI,Z)Tq)ll),
T s ¥
D, ,iD,®, = l(‘bl,zfa(qu)Lz) - (Duq)1,2) T“q)1.2>-
(10)

If the doublets in the operator are identical, the above
equations are Hermitian. However, because ®; and ®, have
the same quantum numbers, non-Hermitian combinations

such as <I>-1"il<_))”¢>2 are also permitted. Other combinations
involving antisymmetric € and covariant derivatives appear
as @, - iBM‘I’l,z =2®,, - iD,®, ,. The symmetric combi-
nation, (®] ,(D,®@, 5) + (D, @) ®,5) = 9,(®] ,P, ,),is
used to construct the other independent combination of
operators. All other conventions and definitions on objects
other than the new Higgs doublets are defined in [2].

In general, the Wilson coefficients of operators in
the class of y?¢> and y?X¢ are complex, and any operator
labeled Og " contained in y2¢?D is non-Hermitian.
Derivative operators involving the same fermion object
and same @, , currents are Hermitian. For purely bosonic
operators X3 and X2¢?, all operators are Hermitian with the

exception of those labeled with (’)g b, ¢° operators labeled
with an odd number of @, or @, in the label are complex.
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TABLE IV. All purely bosonic operators in the standard basis for a general 2HDM. There are a total of 76

operators.
X3 OW — eaberyar ybo W Oy = ebeWa Wb
_ fathavaaGcﬂ Op = fachZUGlljoGg_M
X2¢? OED(} = (0]®,)GY,G™ og;; = (®]®,)Ws, W
% = (D)®,)Gy, G <1>W = (<I>Td>z)W“ wen
Obd) = (@5®,)G4,G™ + Hec. = (®L®,) W4, W™ + H.c.
Ofpg;) = (®]®,)Gyl,G™ (dﬁd)l) wane
= (®L®,)G4, G (c1> cpz)wa wanv
02 = (@}®,)G4,G* + Hec. = (®I®,)We, W + H.c.
Ol — (@]®,)5,, 5 OW = (®]7® )Wy, B
Oy = (@318, B" Onyy = (B15°: Wi, B
04y = (®i®,)B,,B" + H.c. OGhs = (®ir°® )W, B + H.c.
o) = (@]®,)B,,B OEDWB (qﬁracb )We, B
Qw = (q>§q>2)3,w OWB (D79 D,) W, B
o) = (ol®,)B,,B" + He. o2 = (@l ®,)Wi,B* + H.e.
¢*D? o) = 0,4@1’T )0 (@] Py) O — (@iD,®,)(®]D D))
O ™ = 0,(@302)0/ (@3;) O™ = (®1D,®,) (@D ®,)
04y ) = 0,(@]@))0(@),) O — (0]D,®,)(®;D ®,)
ORI — g, (®]®,)0" (®;®,) + Hoc O — (0iD,®,)(®iD"®,) + H.c
O = o, (@l@,)o (@] @,) 0212 = (0iD,®,)(®] D ®,)
Op) = 9, (@}®))o# (@]®;) + Hee. OV = (@iD,®,)(®]D'®,) + Hee
Ol® = 0,(@]®))o# (@}d;) + Hec. O — (0D, ®,)(@;D"®,) + H.c.
e OENINIY _ (@ig 3 ONENEYD _ (g, )(@ld,)? + He
05" = (@@, 2 (@]@,) O PV = (@) (@], (@]2)
olnE@ (<1>*<1> )(®)D,)>2 oY — (@ld,)(did,)? + Hec.
O MY = (@] @))2(@]d)) + Hee 0571 = (@] @,) (@] ) (@] @,)
0y e — (q)zq)Z)z(q)z(Dl) +He 0, = (@]@))* + Hec.
ng)(ﬂ)(zz) (¢;®2)3 Ogl)(zl)(lz) _ (cDT(Dl)Z((D ®,) + Hee.
0V = (@]0))(®]0,)(®]®,) + H.e
Lastly, w* operators with identical pairings of fermion (')Ilj' (Zz)z(qfl'q)l)g(q) ®,) and (')22 (an = (i) D(@] D))

fields in the first row of Table V are Hermitian.

Before we move forward, some special care is needed to
construct the ¢*D? operators. Notably, there seems to be
disagreements between Refs. [10,11] for the general
2HDM EFT, while in the limit the 2HDM is CP-conserv-
ing, there is an additional disagreement with [9] on those
operators. Disagreements between Refs. [9-11] were dis-
cussed in the last reference. However, we find disagreement
with all three references, and here we focus on the
disagreements with Ref. [11].

Through the counting of independent operators in the
Hilbert series of the 2HDM, [11] has correctly counted the
14 + 6 (Hermitian conjugation) = 20 operators predicted.
However, operators containing the [J = ¢ operator called

therein are not independent from each other due to
integration by parts, yielding a total derivative and the
latter combination. Furthermore, their operator labeled

(93;)(])(2) = (@] ®@,)[(D*®,)"(D,®,)] can be rewritten via
equations of motions in terms of box operator

(®!®,) (D ®,), terms involving w?¢?, ¢°, and ¢4

which the first is the Hermitian conjugate of their (’)21 @ =

(®]®,)C(D)dD,) operator. A proper way to construct
linearly independent combinations is by separating
SU(2) invariant combinations through the derivative
operator [Eq. (10)] and its symmetric counterpart. We
can begin with constructing all 16 of the following triplet
combinations:
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TABLE V. All four-fermion operators for a general 2HDM, identical to the SMEFT Warsaw basis. There are 38
operators, where entries in the second column of the second row are B-violating terms.

w' Oll = (I LY”ZL)(ILV;JL)

(gL )(‘IL}’,#]L)

= (qr7 V”qL)(Z]LTayﬂQL)
Q v IL)(‘]LWIL)
(ILy*1L)(@ryuer)
Lyl

(1

)(C_I'RJ’ﬂdR)

L71) TRy ug)

y”qL)(é meR)
)G r,qL)

=(q
=

Oledq = (I eg)(drqr) + Hee.
quqd = (Grug) - (grdg) +H.c.

quqd - (qL/lauR) . (QLladR) +H.c.

errer)(eryuer)

= (iigy"ug)(dgy,dg)
Ol = (g2 ug) (dpiy,dr)
Oy = (aur*aL) (e, dg)
O( | = (.47 q,.) (dgd Yudr)
ngu) = ((ZLJ’"‘IL)(MR}’,MR)
Ogﬁl) = (qLAr"qL) (gAY 4utg)

Ouug = eaﬂyejk((d%)TC”g)((‘IZj)TClLk) +H.c.
O = € ey ((q5)7Cy) (1) Ce) + Hec.
Oy = € €€ ((a5,)7Cal ) ((],,) Cly,) + Hee.

Oﬁe;u = (Iex) - (@Lug) + He. O = € ((dg) Cutg) (i) Cer) + He,
(’),equ (Io*eg) - (gro,ug) +Hee.
(@@, ) (D, @) 2 (D" D)), (@7°®,) (D, @,) (D' D,)),
(@7°®)) (D, Dy) 2 (D' D,)), (@5e®,)((D, @) 2 (D' ®y)),
(@37®,) (D, D,) 2 (D'Dy)) + Hee.,  (BLe°®y)((D,Py) (D' D,)) + Hec.,
(c1>T “®,)((D,®,) 7*(D'®))) + He.,  (@)°®,)((D,®@,) % (D*®,)) + Hee.,
(@37°®,) (D, @) 2 (D*®y)) + Heeo,  (BLe°®y)((D,®,) (D' D)) + Hee. (11)

By exploiting the SU(2) relation (z%),;(7%)y = 28,0 —
0;j0r;, we obtain singlet terms in which by separating
derivatives in symmetric and antisymmetric combinations,
we then find the results listed in Table IV. These are
independent from one another and free of ambiguity from
where the partial derivatives act on. Note that operators

Og’:;;)(pq) in the class of ¢*D?, d,(®},®,)d"(®,®,), can
be equivalently written with box operator on either sin-
glet pair via a total derivative: (®;,®,)0(®,®,) or
(DD 20 (@}, ®, ). However, we favor our notation not only

because it is the symmetric combination of covariant

derivative operators which is by deﬁnition orthogonal to

mn Pq)

the antisymmetric combination, (9 , but also writing

= v(vea cos f + yia sin B)d,
-3 (cos3ﬂ(C§é,ll>)ab + sin?f cos B(

(Me)ab

5N B(Clay )ap + 5in feosB(Clat )y + S 08 B(Clo )y + sin2Beos B(ClG) )y ).

C;éz))ab + sin ﬁcoszﬂ(C%z))ab + sin fcos?B(

those kinds of operators in that form helps collect dimension-
six terms contributing to field redefinitions of the physical
scalar spectrum after electroweak symmetry breaking.

Mass operators, y2¢?, found in the first row of Table II
now modify the masses of the SM fields, in addition to
the dimension-four Yukawa terms in Eq. (2). The mass
matrices for each type of fermion with explicit flavor
indices are given by

Ly =—e1,(M,)perp —dpo(My)pdr

- ﬁL.a(Mu>abuR,b + H-Cw (12)

where

21
C;q)]))ab

035026-7



RADOVAN DERMISEK and KEITH HERMANEK

PHYS. REV. D 110, 035026 (2024)

(Md)ab = U(yfi],i COS/)) + ijZ()l Sinﬁ)éab

- (cos%(C&?)ab + sin2ﬂcosﬂ(C%))ab + sinﬂcoszﬁ(C(d?)ab + sin fcos?3( chl)) b

53 B(Clg) )y + 5in Be05B(Cl) )y + S0 008 B(Cl) ) + 5in2B 03 B(Clg) )y ) (14)

and

(M) = 0(y'% o8+ Y0 sin )3,

— 0 (cos'B(Clly) )y + Sin?B oS B(CT) oy + sin feosB(Cliy) )y + sin feos(C )

+ sin%(C%B)ab + sin ficos2B(Cll ))ab + sin2B cos A(C!

Rotating the fields to the mass eigenstate basis can be
done via bi-unitary transformations w; — U, ¥, and
wr — Ugrg, whereby the unitary matrices U, y are such
that the diagonal entries of

M, = U,efMeUfe = diag(m,, m,,m),
Md = UZTMdU% = diag(md, myg, mh),
= U]'i"'MMUI"2 = diag(m,, m., m,), (16)
are real and positive. To obtain the operators in Tables II

and III after field rotations, one can redefine the Yukawa
couplings and Wilson coefficients to ones with carrots via

~(1,2) (e.d,u)t ( 2) (e.d,u)
(y(edu)) (UL (edu)UR )ab’

(@, = (vl D)
(C.Ellldzu2122l a _ (U(cdu lliizuzl(zz)l)Use d,u))ab’
(Cl - (U UR) ab’

(Cd(BWG = (U d(B.W,G)® UR> W
(C. (B.W.G)® = (U BWG<I><|2)UR> b’

( nezdz;z a _ (Uedu nezdzul)z U%du))ab’
(C112212 1] _ (Ued1c112212)[1]U(Le,d))ub’
(C112212 [3 _ (U(LedTCIIZZIZ [3]UL ))ab’

<c$i;,”'2”>ab = (U§ i ug) - (17)

Four-fermion operators in V are rotated just as in SMEFT
and can be found in Ref. [26].

Similarly, the Majorana neutrino mass matrix generated
by the dimension-five operators is given by

)ab + sin?f cos f( uq,z) b) (15)
1
EM = _Eyz,a(Ml/)abCDL.b + H.C., (18)
where
_ (11) -2 (22)
(MU) - _21} (COS ﬂ(CUU(D)llb =+ sin ﬂ(cwé)ab
+sin 08 A(CLL)un ) (19)

The diagonal mass matrix is given by
M, = UM, Uy = diag(m,, ,m,,,m,,). (20)

We can also introduce 7§ = v¥ C, in which case £, can be
written as —2{M,v; /2 + H.c. (note that the Majorana
condition is v = vy + 1] = 1°).

III. SPECIFIC TYPES OF 2HDMS

Different types of 2HDMs are motivated by a variety of
reasons. The type-I 2HDM is unique in the sense that all
fermionic masses are generated by a single Higgs doublet
®,, while the remaining ®; doublet affects the generation
of Z and W* masses [27]. The type-Il 2HDM is among
the most simple and well studied; phenomenologically
popular [28] and well motivated in supersymmetric
models [29] where masses of the down quarks and leptons
are generated from @, while up-type quarks acquire masses
from @,. The lepton-specific type of 2HDM (known also as
type-X) has been attractive in explaining neutrino mass
generation and dark matter [30,31]. In this case, the doublet
@, is responsible for generating the lepton masses while the
remaining ®, generates all quark masses. For example,
both type-II and -X models have been known to generate
enhanced lepton couplings by factors of tan 3, useful for
explaining anomalous magnetic dipole moments of the
electron and/or the muon [20,32-35] (note that type-X
models require a light scalar spectrum to accomplish this
while simultaneously, couplings of additional Higgses to
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quarks are suppressed, allowing for weaker constraints than
in type-II models). The last type of model is known as a
flipped 2ZHDM (or type-Y), where ®, is responsible for
generating the masses of the up and lepton sectors, while
®; couples only to down-type quarks [36,37]. In this
model, lepton and up-type couplings can be suppressed
while down-type couplings can be simultaneously
enhanced. For a comprehensive review of all types of
2HDMs and their phenomenology, see [19].

In all types of 2HDMs, we assume the standard Z,
symmetry on the doublets ®; - —®; and ®, - +o, [8].
This requirement restricts terms involving 4¢ and 45 in the
scalar potential [Eq. (6)] (and possible softly broken effects
if enforced exactly). Note that there is a difference between
Refs. [9,10] with respect to resulting operators in CP-
conserving 2HDMs, where the former mandates no mixed
contracted pairs (®],®, ) and the latter uses the con-
vention ®; - +®; and ®, —» —®,. Specifying how each
of the doublets couple to SM fermions is provided in
Table VI, where we use the convention that ®, always
couples to the up-type sector. In any of the four models, the
Z, symmetry prevents flavor changing neutral currents
among fermionic species at the tree level. The Yukawa
interactions for each type of model are

Type-1: L=yl ex®:—y .41 dp®>—y,qrug- @} +H.c.,
Type-Il: L2 =y, I, eg®; —yG,dg®y —y,drug- P +H.e.,
Type-X: L=yl ex®i —y 44, dp®s —y, g ug- ®y+H.c.,
Type-Y: LD =yl ex®; —y,q;dp®, —yquuRJD;—i—H.c.,

(21)

where the superscripts (1,2) on the Yukawa couplings are
omitted since there is only one type of Yukawa matrix for
each fermion. Under the Z, symmetry of ®@; and ®,, there
are a total of 76 operators common in all 4 types of
2HDMs, collected in Table VII, and includes operators
involving left- or right-handed fermion currents. Note that
operators of those kinds in the general 2HDM which

involved odd pairs of @ 1CD§) or CD(IT)CIJZ are now forbidden.
Model-specific operators are then collected in Table VIII

TABLE VI. Z, charge assignments of leptons, quarks, and
Higgs doublets in each type of 2HDM. The middle column
indicates which scalar doublet couples to each sector, where
by convention, ®, always couples to the up-type sector, while
(Dl g _q)l and (I)z - +(D2

Model u d e lL €r (. UR dR (Dl @2
Type-1 D, O, D, + + + + + - +
Type-II D, 0 D + - + + - - +
Type-X (Lepton-specific) ®, ®, &, + — + + + — +
Type-Y (Flipped) D D D, + + + + - - +

for type-I couplings, Table IX for type-II couplings,
Table X for type-X couplings, and Table XI for type-Y
couplings. A type-II 2HDM EFT is the most restrictive,
containing 24 + H.c. = 48 specific operators, whereas the
type-I model is less restrictive having 31 + H.c. = 62
specific operators. Note that all type-specific operators
are non-Hermitian.

In the case that m3, and 15 are real, the Higgs potential is
CP-conserving, which was first studied in the context of a
2HDM EFT in [9]. The authors comment on the couplings
of doublets to SM fermions, restricting the couplings to
only right-handed fields. After translating to their notation,
we find agreement with the operators in Ref. [9], with the

exception of several: (’)gjzi, which should be present in
type-II and -Y models and moreover, they report only

the mass operators OEIZEJ).M)% and 0211,11),”><1>

1 2 2 1) .
Eled))d)l , Ogl,d))dh , OE@Z), and (’)E@z) in a type-II,

qulpll), and O§<21>21) in a type-X and finally in

0y O, Olig)» and O The
additional y%¢® operators we find were perhaps overlooked
by mandating no mixed contracted pairs (®] 2®, ) in the
operators. We find twice as many mass operators in every
type of model.

| are present ina
type-I model, O
0(22) 0(11)

(du)®y " (d.u)®y’
a type-Y model, O

A. Comments on H; and H, notation
for the type-1I 2HDM

It is well known that the Higgs potential of the minimal
supersymmetric SM (MSSM) is that of a type-1I 2HDM
(see [38] for definitions). In the MSSM, the doublets are
defined in a more suggestive way by

Hy o
Hi=\ 0 |=P1=1{ 5 )
HY @

HO (DO*
H,=| " ic?® = 2 ), (22)
H- 2

_Q)E
where the subscripts denote which doublet explicitly
couples to the down (H,;) and up (H,) sectors, and
ic> = e. The hypercharges are then Y ,=+1/2 and
Yy, = —1/2. For a type-Il 2HDM, one can make the
appropriate replacements in Table IX to this notation. These
notations and definitions in the context of a type-1I 2HDM
as a low energy effective field theory were previously used
in [20,39], the former in the context of generating electric
and magnetic dipole moments of the muon after integrating
out heavy vectorlike leptons and the latter for signals of a
modified Yukawa coupling. The notation of the mass
operators therein are slightly different than presented here,

utilizing H,,, explicitly: Olg) — Oy, = IexH (HiH,),
22 1 3
qua,) - OgH) =l exH (HLH,),

u
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TABLE VII.  Common operators in all types of 2HDMs. Note that all X> (4) and the first row of y* operators (20)
are present, giving a total of 76 common operators.
¢'D? R AC L REACIE N o) = g, (@l@)) o (@]D,)
o) = a,,(opzq)z) (®fd,) oY = g, (lo) )0 (®l@,) + Hc.
04 = 0,(@] @) (@),
Oy = <d>i5ﬂq>1><d>*0 ) Ogp" = (®1D,®,)(®]D"®,)
O™ = (93D, 0,) (@30 ®,) 0Ly = (@}D,®,)(®;D"®,) + He.
Ohp™ = (@]D,®,)(@;D"®,)
¢° Op "M = (0]@))? O "*) = (@]@))(@]®,)? + Hae
05 = (0lw,) 0y PV = (0],)(@]®,)? + Hic.
0p"1V) = (@@, 2 (@]d,) 0, = (@) (®]®)) (@] ®,)
0, = (0]@))(@]®,) 0571 = (@]@,)(@]0,) (@] ®,)
X Obe = (@}@))Gg, G Oh) = (®]@1)Gr, G
Ot = (@}®,)G4, G 0 = (@}, Gy, G
Oy = (®] @)W, W Obp) = (@] @)W, we
O = (@)W, W O2) — (@}, )ie, wem
04y = ((DI(Dl)BﬂDB” OEDI;;) = (®]®,)B,, B"
o) = (d®,)B,,B o) = (ol@,)B,,B"
Oy = (®}79®,) W, B Ol = (@]r®,)We, B
Os = (@'®;)Wp, B Oy = (@) Wi, B
W2¢2D Ogel) = ((D-ltiguq)l)( RJ/”eR) 051311)“] = (q)TiBﬂ@l)(zLyﬂlL)
052 = (@}iD,®y) (2xr"ex) O = (©1iD,®,)(1,71,)
Olt! = (@]iD,®1)(drr*dy) Op" = (®]iD,®))(G,7"q,)
0L = (®}iD,®,)(dxr*d) OGN — (@}iD,®,)(717"41)
Oh,) = (®}iD,®)(itxr" ug) 04 = (@]iD,®,) (1, 7r1;)
0% = (®}iD,®,) (itxr" ug) OV = (@}iD),®,) (T, w7#1,)
(9513;)[3] = (q)IiBZ‘Dl)(C_]LT”J’MQL)
OG5 = (@D, ®,)(7,77"q,)

21 2 5 12 3
Olar) = Ol =Trex - Hl(Hy - H,), and Ol — O] =
I, er- Hj (HZ; -H}). By exploiting the SU(2) algebra
€jj€x = 6ix0j; — 6510 on the second and third operators,
one can perform a basis change and define a new operator
as a linear combination of the two:

Oy, = Ol = Off) =TpexH, (HiH,),  (23)
where indices are contracted purely with §;;. After EWSB,
this operator does not contribute to the lepton’s mass. Note
that in the standard notation, this operator corresponds to

O = Ogézl) - Olcbz) [Leg - @YD) - @,). (24)

One can also perform this basis change through the SU(2)
algebra on other operators in favor of new combinations.
Considering different bases may be useful when consid-
ering specific UV completions, for example, different
representations of vectorlike leptons restrict which kind
of (mass) operator can be generated at tree level. In a model
where only the operator in Eq. (23) is generated, one can
immediately see that working in the basis that contains this
operator shows that there is no contribution to the lepton’s
mass. Otherwise, in the standard basis, one would find a
precise cancellation after writing all contributions. Note
that in all kinds of models, it is expected that each mass
operator can be generated via loop corrections [20,39].
Furthermore, in the MSSM, the couplings to SM
fermions may appear as a type-II; however, they are not
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TABLE VIII. Type-I 2HDM-specific operators, each with a distinct Hermitian conjugate.
Type-I 31 + H.c. = 62)
243 21) 5 21) 21 _
v Ogcb,) = lLeRq)l(q);(Dl) 0(<1> = qLdRq)l( ) OE@? =qLug- QI(QZ‘DI)
12) 5 12 12) _ _
Oly) = 1,ex®, (@] ®,) Olo) = 4,dp®, (®],) Ole) = gLug - O} (@]®,)
2) 5 2 @
Oﬁ%) = I ®,(DLD,) OE{J = QLdRq)z(‘D q’z) Ou([)z) = qrug - O} (P}D,)
1) _ 3 ¥ 11) 1 Fremt
0§¢2) = lLeR‘I’z(‘D:‘Dl) O(cp = ‘]LdR‘I’z( ) OE@B ={qLug- ‘I’é(q’:@l)
wX¢ Oipo, = 116" ex®,B,, Oupo, = 40" dr®,B w Oupo, = Gr0"ug - ®1B,,

Ouwae, = qro" dgt* @, Wy, Ouwwe, = 40" ugt® - ®;W4,
_ T
Ouce, = 10" A dr®,Gy, Oue, = 410" A ug - ®3GY,

242D O4L) = (@, - iD, D, ) (tgy"dy) 002 = (@, - iD,D, ) (" dy)
y Oleag = (ILer)(drqy) Oug = € e ((d%)TCil) ((];) Clyy)
O = @Lur) - (@.de) O = €P1e;((45,)7Cal) (1) Ceg)
O = (q12%ug) - (q,2dg) Oq = ere,((48,)7Cql) - ((4})7Cly,)
O, = (I ex) - (Gru) feaﬂw(da)TCué)((u@TCeR)
quu = (I,0"eg) - (qL0,uR)

TABLE IX. Type-II 2HDM-specific operators, each with a distinct Hermitian conjugate.

Type-1I (24 + H.c. = 48)

wre? Oy = T,ex®, (P]®)) Ol = 4Ldp®, (®]P)) O%) = g up - @} (Ol
Ol = T,ex®, (@} D,) o) = qLthbl(d) ®,) Ol = guug - @} (®]@,)
0%12) = I eg®, (D} ®;) Oﬁ) = §p.dp®,(P}®;) (9%2) = quug - PY(D]D)
0531)2) = I e ®, (]| D;,) O(Z = g, dgD;(D]D,) Oilqiz) = Grug - D}(P]D)
w X O, = 110" ex® B, Oupo, = G0"dr® B, Oupo, = G10"ug - @B,
Owe, = [ 0" egr'® W4, Ouwe, = qr0" drt*@ Wy, Ouwe, = 416" ugt® - ) W/‘jb
Oucw, = qro"1dg®,Gy, Ouo, = 40" Aug - tbzG,“,
VD Ol = (@i D, @) (i di)
y Oreag = (ILer)(drqr) Ogaq = € e;u((q8;)7Cqt) - ((q7)"Cly,)

Oduu = Saﬂy((d%)Tcug)((ug)TceR)

enforced by a Z, symmetry but rather the condition that the
superpotential is holomorphic with respect to doublets H,
and H, in Eq. (22). Holomorphicity in the operators will
drastically reduce the general list of 2HDM EFT operators

to 31 operators containing only ®; — H, and (I); - H,.

which in general can have masses anywhere from the EW
scale up to the scale of new physics A. It is convenient to
work in the Higgs basis [5-8] where, in the alignment limit,
the SM fields and additional scalars are separated into two
doublets H, and H,. We can rotate the doublets (®;, ®,)
via angle f by

IV. THE 2HDM EFT IN THE HIGGS BASIS

From Eq. (8), one can see that the SM degrees of
freedom h, G, G* are mixed with new scalars H, A, H*,

cos f}

H, - sin } (OF
<H2) a (—sinﬁ 005ﬂ> (%)’

(25)
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TABLE X. Type-X 2HDM-specific operators, each with a distinct Hermitian conjugate.

Type-X (26 + H.c. = 52)

243 1 5 21) 2)
v Ogcb,) = lLeRq)l(‘DJ{‘Dl) OE@I = ‘ILdR‘Dl(‘D ) OE@? =qLug- QI(QZ‘DI)
2) 5 12 12)
Olg) = 1,ex®, (3 D,) Olo) = 4,dp®, (®],) Ole) = gLug - O} (@]®,)
21) 5 2 @
Ofa) = Toex®y(@®)) Ol) = 21.dg®,(®}®y) Ol) = Grug - O} (®]0,)
12) 5 t 1) 1 o
Ol = 1,ex®; (D] D,) Olo) = 41.dp®, (@) Ol) = GLug - OY(@]D))
V/2X¢ OZBQ)] :_ZLU”DeR(D]B/w OdBCI)z = qLGH dRq)Z Hv OHBCDZ = qLO'”DMR . (DéByy
Owe, = lL6"egt'® Wy, Ouwae, = qro" dgt* @, Wy, Ouwe, = 40" ugt® - ®W4,
Ouce, = 10" A dr®,Gy, Ougo, = 40" M ug - ®3GY,
11 . _ 2 . _
W'D Oyt = (@1 iD,®1) (g7 di) Oyt = (@1 - iD, D) (x7"di)
4
v 0% 1 = (GLug) - (3udg) Ouig = € eju((d)T Cul)((g])TCly)
Ofiga = (@A) - (aL4"dy) Oaq = €¥'e;0((a1,)7Cal) - ((4])"Cl)
TABLE XI. Type-Y 2HDM-specific operators, each with a distinct Hermitian conjugate.
Type-Y (25 + H.c. = 50)
243 2 5 1 1
v Ol = Tpex® (®}0,) Olly) = 21dp®,(@]®)) Ol = quup - ®}(@}0))
12) 5 2) 12 o
O§q>,) [Lep®(D]®,) 051@. = Gdp® (P)D,) OE@? = Grug - O} (P]D,)
2) 5 2)
(9}% I, ep®, (P]®,) OE@E = G, dg® (D] D) OE@Z) = Grug - O} (DID,)
1 5 12 |
Oy =1 eRch( @) Ol = 4,dp®,(®]D,) Ol = gLug - OH(®]@))
wX¢ Oiso, _7LU” er®,B, Oupo, = 40" dr®,B,, Oupo, = 40" ug - @;BM
Owe, = ZLU””ERT”q)z Ouwe, = q0" dgt*@ Wy, Ouwwe, = 40" ugt® - ®IW4,
OdG(DI = QLaﬂylladR@lG;b O“GCDZ = qLO'MDﬂaMR . (D;GZD
21 .2 _
w>$*D Oil)m)l = (@i - D, @) (iigy"dg)
4
v Oleg = (ILer) - (aLug) Oyqu = €ejx((qf)"Cayy) (k)" Cer)
quu - (lLa"”eR) ’ (QL"W”R) Ogqq = ea/ys ((qL])TCqL) ((‘IZ)TCan)

which leads to the following new doublets H, and H,:

Gt cos(fp— ) + H sin(p — fF) G+ ”
H] = ( 1 . n n . A . . A > i < 1 . ) +O(ﬁ>
v+ 5 (hsin(f — &) + Hcos(f — &) + iG cos(f — ) + iAsin(p — j)) + 5 (h+iG) AN*M
—G*sin(f — pF) + H* cos(f — ) H* v
2= (%(hcos(ﬂ — &) — Hsin(f — &) — iGsin(f — ) + iA cos(p —ﬁ))) - (%(—H + l'A)> + O(AzMz>’ (26)

where the arrow denotes evaluating f — & — /2 in the  fields, up to terms of order »*/A>M?. Misalignment of
alignment limit [21]. The alignment limit also enforces that  pe angles f§ # B is expected when additional higher-
couplings to the light eigenstate s are SM-like, and the  gimensional operators are present. Contributions from the
masses of H, A, and H* are comparable. In this new basis  dimension-six operators are suppressed by »2/A? in
(HY) = v and (H3) =0, where H, now only contains  addition to »?/M?2, where M? is mj or m7,. depending

the SM degrees of freedom and H; the remaining Higgs o which rotation angle is present in the approximation of
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cos(f — p*)

)= 1+ O((v*/A2M?*)?) and sin(ﬂ—ﬁ<i>) ~  The complete lists of operators in the Higgs basis are

O(v*/A2M?). Inverting the transformations in Eq. (25), we provided in Tables XII-XVII, and their Wilson coefficients

have

@&, = cosfH; — sin fH,,

@, =sinfH,| + cos fH,.

written in terms of the coefficients in the standard basis are
provided in Appendixes B 3-B 8, for each table, respec-
(27) tively. Since dimension-five and -six operators scale as 1/A
and 1/A?, respectively, the effects of the mismatch between
(28) diagonalization angles are of higher order. There are

TABLE XII. Mass operators in the Higgs basis, all of which have a distinct Hermitian conjugate.

O;H, =1 ( H,)
O :7 I(H Hz)
OEH]) =1 1( H))
(’) A (H H2)
OEH) :7 2(

Oy =T, exH,(H] )
oﬁHz = IpexH(HLH,)
OIH =1 eRHz(HTHz)

Ot(ilhlfl = qrdgH, (’)E,l,;? = quug - H{(H H,
02213 = qrdgH, 05,2,3,? = quug - H(H}H,
Off}]) = qrdgH, (91(421113 = Grug - H{(H}H,
02113) =qrdrH O%? = Guug - H}(H H,

(H\H,) i )
(H3H,) i )
(H3H,) i )
1(H\H,) i )
Od]-] = qrdrHy(H ;H ) Oizbz{z = qLUgR 'H;(H; 2)
0511111{) = qudgH,(H{H)) OE,IHIE = grug - H( )
05121;) = g dgH,(H}H,) 051212 = qrug - H( )
Oy, = GudgHs (H{Hy) OLiy) = Grug - Hy(H Ho)

TABLE XIII. Dipole operators in the Higgs basis, all of which have a distinct Hermitian conjugate.

Oy, = 0" egH B,
Own, = ZLO'””eRT”H Wﬂb
O, = 1,6 egH,B,,
Own, = ZL(r”beRT"HZWﬁ,,

Oupr, = qr0"drH B, Oupn, = 10" ug - HB,,
Oawn, = qro"drt"H,\Wj, Ouwwi, = qLo" ugt® - H{W4,
Oucn, = qro**A*drH,Gy, Ougi, = qLo" A ug - H GY,
Oupn, = G0"drH,B,, Oupn, = 40" ug - HyB,,
Ouwn, = qro*dgr*H Wy, Ouwwn, = Gro™ ugt® - HyW4,
Oucn, = qro"A*drH, Gy, Ouer, = G1.0" A ug - HyGS,

TABLE XIV. Derivative operators with fermionic currents in the Higgs basis.

11 +, 2 _
Oy = (H[iD,H,)(2gr"e)

o) = <H§iD,,H2><éRweR)

0N = (H{iD,H,)(2xy"ex) + Hec.

O = (H{iD,H,) (1,r1,)

O = (H3iD,H,) (1,r1,)
(H*zD H,)(1,y"1,) + H.c.
(HTzD Hy) (I 7%"1;)
= (H}iDyHy) (I, 771,
(HUD H,)(I,7"1,) + H.c.

02111) = (HJ{iDyHl)(_RV”dR)
0 = (H}iD,H,)(dgy"dg)
042 = (H}iD,H,)(dgy"dg) + H.c
nglt) = (HIiDﬂHl)(ﬁRy”uR)
ng) = (H;iD/tz)(ﬁRV”MR)
(925) = (H|iD,H,)(iigy"ug) + H.c.
02;)[1 = (HTiDyHl)(QL}/”QL)
2)l © B
O<Hq)[ = (H;lDqu)(QLV”QL)
023)[1] = (H}iD,H,)(Grr"q.) + H.c
3 a B ¢
Oy = (H}iD,H\)(q,77q,)
L .(_>a _ a
Oz = (HiD, H,) (@17 v q,)
023”3] = (H}iD,H,)(q,7"7"q,) + H.c.
Hud = (H, -iD,H,)(iigy*dg) + H.c.
Hud = (H, - iD,H,)(iigy*dg) + H.c.
Hud - (HZl D H )(ﬁ V”dR) + H.c
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TABLE XV. Derivative operators with scalar doublets in the Higgs basis.

Oy = O,(H{H\)0*(H]H,) = (H|D,H,)(HD"H))
O = o, (HHy) 0 (H) ) = (H}D,H,)(H}D" Hy)
@$M:¢<Wﬂwwm> = (H|D,H,)(H}D" H,)
0P = o, (HH\)o" (H}H,) + H.c. — (HiD,H,)(HD'H,) + H.e
0p ) = o, (HH, )0 (H] ) (H}D,Hy)(H| D' Hy)
O = o,(H}H,)o" (H{H,) + H.c. (HiD,H,)(HD'H,) + H.c.
ORI = o, (HYH )0 (HYHy) + . (1D, H,)(HiD"Hy) + Hee
TABLE XVI. Scalar operators in the Higgs basis.
oY — (HTH, ) = (H{H))(H}H)) + Hc
OV _ (1, (o = (H{Hy)(H3H, ) (H]Hy)
0P = WWMMm> = (H}Hy)(H}H,)? + He.
Oy = (H1H ) (H}H)) + Hee. = (HYHy)(HYH Y ) (H{ H))
OGP — (HiH, )2 (H}H,) + H.e. = (HSH,)? + Hec.
07" = (H]H,)? = (H3H,)*(HHy) + H.c
0y = (H{H,)(H}H,)(H}H,) + He

TABLE XVII. Mixed bosonic operators in the Higgs basis.

IillG) — ( )Ga Gaﬂl/
;@—WHQ”“W
04 = (HIH,)G4,G™ + Hee.
11) (H Hl) a Ganv
= (H}H,)Gy, G
(H Hl) G% G + H.c.
(H HI)B”DB”’“
HB _( )B;ll/Bﬂb
=(H éHl)B}wB””-FH.C.
(HIHI) ;w B
(H;HZ) ;w B
— (HJH))B,B" + He.

o®

Ol = (H{H )W, W
Ol = (HyHy) W, W
04y = (HIH\)We, W 1 H.,
Ol = (H{H,)Wg, W
0(22 (HTHZ)WG W
oﬁqw) = (HSH,)Wé, W 1 Hec.

Olwg = (HizH,)Wa, B
OGns = (Hie Hy)Wa, B
Olis = (Hy"H,)W4,B™ + H.c.
Oy = (H{z"H)) ;:

HWB (HETGHZ)
o) = (HbH,)W4,B" + H.c.

exactly the same number of operators

in the Higgs basis as

the standard basis at dimension-six, 228 (including

Hermitian conjugates). However, in

2HDM, all of the operators except four-fermion operators
are identical; the type of model only restricts which Wilson

coefficients contribute to operators

a specified type of

in the Higgs basis.

A. Advantages of the Higgs basis
The convenience of the Higgs basis originates from the
separation of the SM fields (contained in H; with the
characteristic scale M; ~ v) from the additional scalars,
H, A, and H* contained in H, with masses at a different

For convenience, the notation is identical to the general ~ scale M. In addition to numerous calculations in the

2HDM of the main text with the replacement of ® — H in

the label.

2HDM, the Higgs basis has also been used to obtain

SMEFT from the 2HDM in the alignment limit [16—-18]

035026-14



TWO-HIGGS-DOUBLET MODEL EFFECTIVE FIELD THEORY

PHYS. REV. D 110, 035026 (2024)

by integrating out the H, doublet at the scale M, ~ A > v.
Here we will point out further advantages of the Higgs basis
when working within the 2HDM EFT. These include the
separation of operators that modify SM couplings and
masses from operators that contribute to scattering proc-
esses only, transparent correlations between scattering
processes resulting from the same operator, and derivation
of correlations between different operators in specific UV
completions.

An example of the separation of operators that modifies
the SM couplings and masses is given in Fig. 1. In the
standard basis, there are 8 mass operators, y>¢>, for each
fermion type (see Table II). Correspondingly, there are 8
mass operators in the Higgs basis. However, although all 8
operators in the standard basis modify the fermion mass
and the Yukawa coupling, only one operator in the Higgs
basis [Fig. 1(a)] does this. All other operators contribute
only to scattering processes involving at least one addi-
tional Higgs boson.

Furthermore, the correlations between different scatter-
ing processes resulting from the same operator are obvious
in the Higgs basis. The coefficients under the diagrams in

]
11 :
O,
(5
oo Hoomomp Mom
YR JL VR %
cos® sin 3 cos? 3
(a) (b)
ap Momow o
Ur Y, Ur Uy,
sin 3 cos? B sin? (8 cos 3

() (f)

Fig. 1 are proportionality factors assuming the operators
result from the (’)l(//lql))] operator in the standard basis.
Proportionality factors for other cases can be easily read
out from Appendix B 3. Thus, if the Ol(lll(ll:‘)] is the dominant
operator (as already mentioned, specific UV completions
often generate only one mass operator at tree level [20,39]),
we can immediately see a number of interesting correla-
tions. For example, o(y — HHH)/o(yr — hhh) xtan®j,
and similar tan® # enhancement is expected for other heavy
tri-Higgs final states: AAA, HAA, AHH, HH H~, or
AH™H~. Correlations with many other processes featuring
mixed h, H, A, and H* final states can be readily obtained.
Enhancements of this type were recently studied in the
connection with the sensitivity to the muon Yukawa
coupling at a muon collider [39], but are clearly not limited
to muons.

Working in the Higgs basis is also crucial when deriving
correlations between different operators in specific UV
completions. To illustrate this, consider a specific UV
completion that generates O%’z via tree-level mixing of
SM fermions with new vectorlike fermion fields, depicted

H|

YR v VR vy,
sin 3 cos? 3 sin’ 3 cos 3
() (d)
wp omow ™o
wR EL "/)R @L
sin® 3 cos 3 sin® 8

()

FIG. 1. Top: diagram of the Ol(qu]))l dimension-six mass operator. Bottom: the same operator decomposed in the Higgs basis. There are
a total of eight diagrams (a)—(h), and their corresponding Wilson coefficients are proportional to factors of cos 3 for each H and sin f for

every H, (indicated under the diagrams).
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@I b,
11 . o
Yr s
H H
i : ! H H H, HI :2 H
R cos® 3 CA sin 3 cos® B Vi Yr sin /3 cos? 3 Ui
(a) (c)
H H
ol :2 H, H} H, H} : ! H,
VR sin? B cos 3 v VR sin B cos? 3 Vi Yr sin? B cos 3 VL

(0

(2)

sin? § cos 3 Vi

(f)

H,

vn sin® 5 G2

(h)

FIG. 2. Top: tree-level diagram generating (’)%? mass operator in a UV completion with vectorlike fermions. Bottom: The same
operator decomposed in the Higgs basis. There are a total of eight diagrams (a)—(h), and their corresponding Wilson coefficients are
proportional to factors of cos f for each H; and sinf for every H, (indicated under the diagrams).

in Fig. 2 [40]. Such a UV completion will also generate
dipole operators leading to dipole moments of the fer-
mion that mixes with new fermions. To calculate the
dipole operators, consider a subset of the diagrams gen-
erating mass operators with H, and close the loop on pairs
of remaining H{H, and HYH, in an SU(2), x U(1),-
invariant way when possible. Then, dress the loop of each
diagram with the B and W* fields. The resulting diagrams
are shown in Fig. 3 where the labels indicate the diagrams
from which they were obtained. These diagrams generate
the dipole operators O, w)y, in Table XIII. Moreover,
since dipole operators are obtained from the mass

operators, their Wilson coefficients are correlated.® This
connection between mass and dipole operators, and
the resulting correlations between the modification of the
Yukawa coupling and electric and magnetic dipole

The loop functions can be evaluated thanks to the separation
of SM fields from heavy Higgses. Note also, that it is straightfor-
ward to see that the loops involving H, are tan’ 8 enhanced
compared to loops involving H,;. The same results can be
obtained by the complete calculation in the mass eigenstate
basis in a given UV completion [20,34,35] which is however
much more complicated and does not provide a simple under-
standing of the results.
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B,We B,We B,We
H il il P H
. f ! HYH, (HLH) - f . f’J g
> 1 \ 1 7 > 1 \ 7= > 1 \ 1 7
Ur Uy, Ur Uy, Ur v

YR

sin? 3 cos 3

(2)

H,
cos® 3 (sin? B cos )
(a (1))

H,

= OyB,w)m

U

FIG. 3. A subset of diagrams in Fig. 2, where H TH yorH ;H » pairs are closed in SU(2)-invariant ways. The loops are dressed with a B

or W¢ fields, generating the dipole operators Oy, w)n, -

moments was extensively studied for the muon in
Refs. [20,40,41]. Similarly, we may also consider the
subset of mass diagrams containing H, and dress the

closed loops of the remaining HIH . and H;Hz pairs with
B and W fields, generating the O, w)y, oOperators in
Table XIII. However, these operators will only affect
scattering processes since H, does not acquire a VEV in
this basis. This is yet another example of the separation
of operators that illustrates the usefulness of the
Higgs basis.

V. CONCLUSIONS

We have constructed the general 2HDM EFT in a
Warsaw-like basis and found 228 linearly independent
operators of mass dimension-six. We have also constructed
specific versions of 2HDM EFTs, corresponding to four
types of 2HDMs: type-I, -II, -X, and -Y, distinguished by
Z, symmetries that restrict the couplings of Higgs doublets
to SM fermions. We demonstrated that in all specific types
of 2HDM EFTs, there are 76 common operators due to
imposing a Z, symmetry on the Higgs doublets, ®; —
—®, and ®, — +D,, while the Z, charges of fermions lead
to a different number of model specific operators: the type-I
model predicts 62 operators, type-II predicts 48 operators,
type-X comes with 52 operators, and type-Y has 50 model
specific operators. We have also discussed disagreements
with previous works on 2HDM EFT [9-11]. These include
most notably twice as many operators which modify quark
and lepton masses, as well as operators involving covariant
derivatives acting on either doublet contracted with right-
handed quark currents in the case of a CP-conserving

Higgs potential, compared to Ref. [9], and disagreements
with Ref. [11] in constructing independent derivative
operators involving only the Higgs doublets.

Furthermore, we have transformed the general 2HDM
EFT to the Higgs basis and provided matching of the
Wilson coefficients between the two descriptions. In the
Higgs basis, in the alignment limit favored in all types of
2HDMs [42], the SM degrees of freedom are contained in
one doublet, H;, and all additional Higgses are in another
doublet, H,. There is exactly the same number of inde-
pendent dimension-six operators, 228, as in the general
2HDM in the standard basis. For specific types of 2HDM
EFTs, all of the operators except four-fermion operators are
now identical; the type of model only restricts which
Wilson coefficients contribute to operators in the Higgs
basis. On specific examples, we have illustrated the
advantages of working with the 2HDM EFT in the
Higgs basis that included the separation of operators that
modify SM couplings and masses from operators that
contribute to scattering processes only, transparent corre-
lations between scattering processes resulting from the
same operator, and derivation of correlations between
different operators in specific UV completions.

Generally, ¢° terms affect the scalar potential, and thus
the vacuum and stability conditions are modified compared
to those in the renormalizable 2HDM [21]. For complete-
ness, we have derived general vacuum and stability
conditions of the scalar potential in the presence of
dimension-six terms.

The SMEFT, parametrizing possible effects of new
physics with characteristic scale far above the EW
scale has led to a broad theoretical and experimental
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effort to constrain possible effects of new physics. New
contact interactions resulting from nonrenormalizable
operators [26] could lead to numerous signals at the
LHC and future colliders [43]. By power counting, proc-
esses mediated by these contact interactions grow with
energy, and can supersede the SM background, until the
theory breaks down by perturbativity and unitarity, con-
straining the involved Wilson coefficients [44—46].
Traditional techniques of partial wave analysis and analy-
ticity of the amplitude [47-49] have been successful in
limiting the parameter space of these energy-growing
processes in the SMEFT and could be tailored to 2HDM
EFT that predicts a significantly larger number of new
contact interactions. Furthermore, studying the effects of
renormalization group equations and one-loop mixing of
the SMEFT operators [50-55] could be also extended to the
2HDM EFT.

1 oV’
(] dd>1

v

— o (eI | 3430, CRIEICY | g3, cRIRNI) 4 g3
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APPENDIX A: CORRECTIONS
TO THE SCALAR POTENTIAL

In this appendix, we provide details and conditions about
how the presence of higher-dimensional terms affect the two
vacua and stability of the scalar potential. The inclusion of
higher-dimensional operators from the class ¢° in the theory
will introduce corrections to the potential, which now reads
as V/(q)l s q)z) = V(CD] s (I)Q) - Zi:(ﬁ(’ CiOi' EXtemiZing the
potential of Eq. (6) while including all ¢° operators in
Table I1I and defining sin # = s4, cos f = ¢ and tan f = 15,
we find at the vacuum v

= m; 4 tp(miy)* + 07 (cjhy 4 5523 + Ay + A3) + spcp(A6 + 225) + 55t55)

21)(21)(12)*
3¢,CEDE0

T 253, CANEE) 4 g cUNEIED | o2 2cDINE) 4 30 s cnENED

11)(21)(21)*
+ 2ecinene

+ Séch)(Zl)(u) + 3sﬁc?3c$1)(ll)(21) + 2S/;C?3C$l)<“)(21)* + sétﬂch)(ZZ)(Zl)) -0,

1 oV’
Uy 6@2

v p

— 1)4 (3S2C‘(§2)(22><22) + 3sﬂczcgl)(21)(

3
+SﬂCﬂ D D

T ACUDEND | 22 canEe

) AR

22)(21)(12
2533 CpPP 5

21)x
clin@)e1) i 2sﬂc2C<1 1)(22)(21)%
+ 5/2;‘7/25C<1> @) + 3s12}c/2,C(I>

4
c . %
D CIINRD® | 953, RN | 3g3c, LR )=o.

pp-o@ plpto

+ 28/230%},C((1,11)(21>(12) + s4ﬂC<(1>11)(22>(22> + 2S2C5§2>(21)(21)

m2 c3
— m% + t_lz + 2 (S%lg + 6/21(13 + 14 + 15) + 75/16 + SﬁCﬂ(2/17 + /1;))

+ s/;c;ng])(lz) + 2sﬂczc‘(§l)(21)(12)*

n c?jcgl)(n)(zz) n 26_ng1)(21)(21)*
(22)(21) (22)(21)(21)%
(A2)

(11)(11)(11) C(22)(22)(22) C(ll)(ll)(22) C(ll)(Zl)(]Z)

Since the parameters m%, m%, A1, 22,43, and 44 and Wilson coefficients Cg, , Co , Co , Co ,

C((I>ll)(22)(22), and C((;2)(21)(12)

condition:

—Im[mi,] = v*(spcplm[as] + czlm[6] + s5Im[4;])
+ (3s§c§lm[C$l>(2]>(2])} + s,%cﬁlm[c

+2s5c3tm[Cl VPV 4 253, Im[CGP VY] 4 e[l VY] s;‘,Im[ng)m)(m]).

are Hermitian, the phases of the remaining contributions can be constrained from either extrema

gl)(Zl)(lZ)] + sécﬁlm[C(] l)(22)(2])}

0]

(A3)

For a complex scalar function of two variables, the conditions for positive concavity needed to guarantee these extrema are truly

minima are
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V' V!
0BT oD, 9D 0D, ( o*V! )( o*V’ > ' >*v' |2
2V 2V = + T - + ’
s s || 00! od, ) \od;0d,/) |odiod,| |,
>V VN
0D 0D,|, (acbgaq)l)
*V’
———| >0. (A4)
0D} L0, 5,

The partial second derivatives at the vacuum are

a(;;;l = mi +v* (25 + 55(23 + A4) + 4spcyRelAq))
_ {902@51)(“)(“) 1453 Re[CEINI) 4 43c Re[CHIEIE] | 422 cNINED) | g @)
+ 6s§c§Re[Cgl)(21)(2l>} + 4S/%C/23C£I,11)(21)(12) + s;CS§2><21>‘12> + 12sﬁc2Re[C$l)(“)(2l)] , (AS5)
>V’ 2, 202 2
m ) = m3 + 0> (2554 + cj(d3 + 44) + dspcpRelds])
o {9s;§cf§2>‘22>(22> + 4y SR[CEIPII2)] 4 45, SRe[CHIEIR] | ACUNINE gz cacneE
+653c2Re[Cy VY] 4 eacG VNI 4 a2 2G4 126 Re[CSY POV (A6)
and
66(;;‘3/(/1)1 = (6((;2}‘6/(/1)2)* = (miy)* + 07 (spep(As + Ag + 205) 4 2¢506 + 25345)

21)(21)(21 21)(21)(12 21)(21)(12) 1)(22)(21
-t |:9S/%C§C£D )21 )+4s[2jc/3CSD )21)( )+5/2;C§C<<1> )(21)(12) +4S[2;C§Cfp )(22)(21)

+ s[zjcécgl)(QZ)(Zl)* + 2SﬂC2C$])<1 1)(22) + 2S2CﬂC$])(22)(22) + 6SﬁC;C£Dl 1)(21)(21)

12) (22)(22)(21)

+653¢,C5 7 VY 25,3 VD) 4 agde, gD 4 3eaci VIR asde . (A7)

Finally, the presence of ¢° operators may asymptotically grow over the dimension-four terms in the potential, provided the
Wilson coefficients of the operators are sufficiently large. Mandating the modified potential V' is bounded below in all

directions by large values of fields, we can marginalize over them in field space. Defining A = <I)J{<I)1,B = CI);<I>2,
C = Re[®]®,], and D = Im[®]®,] whereby C = £D and AB > C? + D? and keeping terms which grow asymptotically,
we first set C = D = 0 and find

1 1
5AIAZ +§/12B2 +/13AB _ A3C<(1>11)(11)(“) +Bch2>(22)(22) +A2Bcgl)(ll)(22) +A32CEI>11)(22)(22) > 0. (AS)

If we define A’ = /1}/ A= VA% + B"s;, B' = /1;/ B=VA% ¥ B'?¢; by parametrizing on a right triangle, this condition
can be written as
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(122)*/2 + 22 MWQ = 2V/A% + BR3Py

+ ey cgVHFE] > 0.
By setting { = z/2 and 0, respectively, we find

Ay = 24cyVII 5 o,

and by setting { = /4, we have A’ = B’ and the above condition can be written in terms of either A’ = /1}/ AorB =

For all values of A and B, we find

(1112)3/2 +ﬂ'l/12)v3 _A[Cgl)(ll)( >11/2,13/2 + C( 2)(2 )(22))4% + C$1)<11)<22)/11/12 + Cgl)@z)(zz)/ﬁ/zﬂé/z] > 0,

(M22)3% + 2 A3 — B [Ct(bll)(”

Marginalizing over other values of field space when AB =

C? + D? for /1{/ A= ﬂl/ *B leads to a complicated poly-
nomial in & that cannot be solved analytically for all values
of £. Notice that in the limit all Wilson coefficients are zero,
we recover the same conditions on the dimension-four
scalar potential [21].

APPENDIX B: MATCHING TO THE
HIGGS BASIS

In this appendix, we list the translation of all terms from
the standard basis to the Higgs basis using Egs. (27) and
(28). For dimension-six terms, once the type of 2HDM is

V(H,.H,) = M}(H\H,) + M3(H}H,) +

62 /1‘? 2 ng)(zz)(zz) Cg /11/2 /12 1)(11)(22)
(A9)
)y —2BCIP 5, (A10)
AY?B.
)(11)/1% + C((;Z)(Z )(2 )13/211/2 + C(ll)(ll )(22) /11/2/13/2 + Cgl)(zz)(zz)ﬂq/{z] =0 (All)

specified in Tables VI and VIII-X, or XI, one can set the
irrelevant Wilson coefficients to zero in this basis. For
compactness, we suppress flavor indices for higher-dimen-
sional operators, where we define wC;y = w,(C;) ,y; and
wCiy =w,(CP),.wp- Note that for flavor-diagonal terms
below, the combination of Wilson coefficients reduces to
C; + C; = 2Re[C;]. For convenience, the notation is iden-
tical to the general 2HDM of the main text with the
replacement of ® — H in the label.

1. Dimension-four terms

The scalar potential [Eq. (6)] translated to the Higgs
basis is

1 1
(M},H H, + He.) +§A1(HTH1)2 +§A2(H;H2)2 + As(H Hy ) (HyH))

+ Ay (HHo) (HRH, ) + (; As(H{Hy)? + Ag(H{H\)H{Hy + Mg (HyHo) HHy + H.c.> ; (B1)
where the new quartic couplings are, if we use the shorthand notation Ays = A3 + 44 + Re[4s],
A= ilcf, + /Izsé + 2/1345s[23c§ + 4s/,»c/;(c/23Re[/16] + s[%Re[/h]),
Ao = Ai8§ + ey + 22345555 — 4spcp(siReldg] + ciRe[d7]),
Az = (4 + Ay = 2345555 + A3 — 255¢4(cj — s5)Re[d — A7),
Ay = (4 + Ag = 2345555 + Ay — 255¢4(ch — s5)Re[d — A7),
As=A + 14— 2/1345)s/23c’/2} + c/%/15 + s/%A; - 2sﬁcﬂ(c/23(/16 — A7) - s/%(lg -2)).
No = —(h = A3 = 4 = As)spc) + (A = A3 — Ay — A3)sjcp + cj((cf — 55)46 — 25548) + s5((cj = $5)45 + 2¢jq),
Ay = (A = A3 = g = A5)s5c5 + (A — A3 — Ay — As)spcy + s5((cj — 55)26 + 2¢56) + cj((c — s5)q — 25343). (B2)
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Note that in general, each doublet @, ; can contain possible
phases and by performing a U(1), rotation on ®,, the
phase & can be placed on the VEV of ®,: v,e. Additional
symmetries of the scalar potential in the Higgs basis
include U(1) transformations of Higgs flavors H; —
e™” and H, — e H,, introducing another arbitrary phase
. For our discussion, it suffices to neglect all possible
phase factors. Otherwise, these would introduce additional
phase factors on m3,, s, Ag, A7, and M3,, As, Ag, and A,
(see [8] for a detailed discussion). The dimensionful
parameters listed below can be simplified as

M} =micy+mis;+2spcRe[mty] =07 Ay,
M3 =mis;+ms5c;—2sgcsRe[my,]
M%z:_(’"%_m@sﬁcﬂ"‘m%zc/zj_(m%z)*sf;:—ﬂzf\ﬁ- (B3)
Kinetic terms involving the doublets H; and H, are
LD (1+ 2sgcgReln])(D,H,) D*H,
+ (1 - 2SﬁCﬂRe[1’]]>(D”H2)TD’MH2
+ (nej —n's;)(D,Hy)'D*Hy +He.  (B4)

If the Z, symmetry is enforced in the standard basis, n — 0.
The Yukawa interactions in this basis are

L> _<)’£1)Cﬂ +y22)s/i)7L€RHl - (_)’c(el>

1 2 - 1 2) -
- ()’Ez )Cﬁ +)’51 )Sﬁ)CILdRHl - (—)’,(1 )S/i —l—yE, )C/j)QLdRHz

1 2 — 1 2 -
~ 0 ep 3 sp)aLugH | — (—ysp+ 9 ep)a ug - Hi

+H.c. (BS)

2 s
s,;+y£ )C/})lLeRHZ

2. Dimension-five terms

The Weinberg-like operators in the Higgs basis become

Ol = (Hy - 1) C(H, - 1), (B6)
Ol = (Hy - 11)TC(Hy - ), (B7)
Ol = (Hy - 1)TC(H, - 1), (B8)
whose Wilson coefficients are
Counl = G§Cha + 53Ciia + 5p¢5Cuup. (BY)
Coott = 55Cus + §Cua = 5p¢sCrigs- (B10)
Couit = =5p¢Covas + 55¢sCria + (¢ = 53)Clug.  (BI1)

3. Dimension-six terms—class y*¢> operators

Operators in the class of y?¢’ translated to the Higgs
basis are given in Table XII, whose Wilson coefficients are

(11) (11) (22) (21) (12)
C(l.d,u) 2C( duyo, T s%cﬂC( o, T SﬁC/23C(l.d,Lt)<D1 + sﬁC%iC(Ld,u)cb,
(22) (11) (21) (12)
+535C 1 awe, T 5HC0duw, T 58C Lduww, T S58C U due,: (B12)
(22) _ (11) (22 (21) (12)
Cldwn, = S/zicﬂc(ldu)cb t+c C(ldu) Sﬂcﬂc(ldu)tbl sﬂc/zic(zdu)q>l
(22) (11) (21) (12)
""s/fc Clduno, 3C(ldu) Sﬂcﬂc(z,d,u) cﬂC(Zd 1)@, (B13)
(21) (11) (22) (21) (12)
Clrdwm, Sﬁcﬂc(ldu)d> +S/3Cﬁc(1du)<1> + Czc(zdu)cp - S%fcﬂc(ldu)QDI
(22) 1) (21) (12)
+SﬂCﬁC(z.d,u)<1>2 - sﬁCﬂC(l,d,u)<D2 +55¢5 C(ldu) 53C<zdu) (B14)
(12) _ (11) (22) (21) (12)
Codum, = ~555C Ldwe, +SﬂCﬂC(zdu) = 55¢5C, du)d) +¢3C0 e,
2) (21 (12)
+sﬁCﬁC(z,d,u)q>2 - Sﬁcﬂc Ld,u)cbz - 53C, du)<1> +555C 0 d o, (B15)
(22) _ (11) (22) (21) (12)
Clawm = C(Zdu) sﬁclzic(z,d,u)d>1 + S/zicﬁc(ldu)rb + sécﬁC(ldu)tbl
3(22) 11 (21) (12)
+3C L awe, T 558C Ldww, — S8C (1 duw, — SBHC (L duye, (B16)
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ay (11) (22) (21) (12)
Clrdwn, = _sﬂC%fC(l,d,u)tb - SzC(zdu) @ s%fcﬂc(ldu) @ Sécﬁc(ldu)(bl
(22) (11) (21) (12)
+5565C 1 duwe, T 3CUdww, T 55FC Lawm, T S5HC e, (B17)
(21) _ (11) (22 (21 (12)
Clrdumm = slzfcﬂc(ldu)q) S/JCﬂC(zdu) SﬁCﬂC( duyd, TS 3C(ldu)<1>]

(22) (11) (21) (12)
+35¢5C e, ~ 5C Uduwyw, T HC1duw, ~ S5BC U duyw,: (B13)
and

(12) _ (11) (22) (21) (12)
Cudw, = S5Cdwe, — S5C Lawe, T 5C1dwe, ~ 5FC0duwe,

(22) (11) (1) (12)
+85Cj Cllduye, Sﬁcﬂc(ldu)CD _sﬂcﬁc(l.d,u)cb 3C(ldu) @, (B19)

4. Class w*X¢ operators

Operators in the y?X¢ class translated to the Higgs basis are given in Table XIII, whose Wilson coefficients are

Crawsr, = pCuauwso, + S5C1.d.u)Bd, (B20)
Ciawsr, = =SpCuause, T 4C1du)BD, (B21)
Cuawwr, = sCuanwo, + 55C1duwae, (B22)
Cirawwr, = =SsCuanwwe, + Cuau W, (B23)
Cawcr, = ¢pClauwce, + 55C@u)ca,> (B24)
and
Clawer, = =5pCauce, T sClau)ce,- (B25)

5. Class w*¢>D operators

Operators in the y?@>D class defined in the Higgs basis are provided in Table XIV, with the following Wilson
coefficients:

Cg(le),d.u) = ZC( (e)du Szzicg(ze),d,u) + s/;c/;(C( (e>du) + C( e>du ); (B26)
Cg(ze),d,u) /,,C( (e)du) /)'C( (e)du) s5¢p(Chy (e)du) +C| (e)du)) (B27)
Cgfe)’dm = _sﬂcﬂcg(le),d,u) + sﬂcﬂcg(ze),d. )T 2C (edu) ZC( (e)d,,> (B28)
C (l%%] Cl(l [1)31 2C 2(2 [1)%]+sﬂcﬂ(c o [1)%]+C ()[ 3« ). (B29)
Citta) = 55Caily) + Catg) — 555 (Caily + Coig) - (B30)
C%)‘[ql).ﬂ — —spe ﬁC< ()[) I spe ﬁC( ()[) 3] c/zjcg(zl)’s)s] —Sﬁcga[;)’ﬂ*, (B31)
Clhiay = Comy + 53Com) + 25,¢,Con. (B32)

Cltut = 53Cout + 3 Comi = 255¢pCap (B33)
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and

21 11 22 21
iy = =35CClony + 55C5Conny + (5= S/ZJ)Cgl)uzl'

6. Class ¢*D? operators
The ¢*D? class of operators translated to the Higgs basis are listed in Table XV, with Wilson coefficients

(A1 _ ac0D01) 4 2200D(2) | 22 c@VE@D 4 (@DEDxy | 222112 | -1(12)x
Chtzp) = HCai.0) + 5ot m) + 2553 Coi ) + 5K (Catgn) + Cawn) ) + 555 Cain) + Cowp) )
)(22) 21)(22)*
+ 2550} (Copp ) + C( <>( )+ 255 Ca o) + Caigp) )

22)(22 (11 21)(12 21)(12)x*
cl2) _ i) ; e >+22 sclne )+ M(d +C< DEDe) | a2 | i

H(0*.D) ?.D (0 ) ( ®(0*.D) ®(0*.D) ®(0*.D)
)( ) )

(11)(22) _ §2c2 (1 ) 2 c2 (22) 44 11)(22) 2 2/~(21)(21) (21)(21)* 2 2 ~(21)(12)
Cup) = 55Ca2p) T C D +(cj+55)C ®(2.D) _sﬂcﬂ(ccb(aZ,D) + Cow ) )—ZSﬁCﬂC(Dwz‘D)

(2 )( ) (2 1)(1 )* (21)(22) (21)(22)*

+ (5565 = 556 (Copg o@0) T Cog.n) )+ (sp¢) — s;}cﬂ)(CcD(az‘D) + Coi ) ),
(21)(21) (1n)(11) c2 (22)(22) §2c2 (11)(22) 4 (21)(21) ¢4 (21)(21)* §2c2 (21)(12)
Cup) = 55 Ca.0) T 555Cow.p) = 255 Cawp) T $Cowp) T $Ca@n) ~ 255 o)
(21)(11 ) 3 (21)(11)* (21)(22) (21)(22)
—2sﬁc Co ®(@.D) 2sﬁcﬂC¢( D) +2s /,cﬁC o(.D) 2s/3C/3Cq>(aZ,D) ,

@Da2) _ 2 2~(11 )( ) 2 2 ( )( ) 2 2 ( )( ) 2202121 (21)( (1)(12>

(o, ®(0*.D)
21)(11 21)(11)% 21)(22)
+ (51336/7 - Sﬁcz)(cgb(a);,m) + CEI)(;;,D)) )+ (SﬂCZ - SZC/B) CEI)(()Z,D) + Ct(l)(a)z(,D)) )’

C(21)2(1) 3C( nany (22)(2 (11)(22) 302021 (21)(21)« 3

4 2.2 (21)( 1) 2 2 ~2D(11)x 2.2 ~(21)(22) ) 4y ~(21)(22)*
+ (¢ = 55¢5)Corin) = 2555 a0y T 255 o) T (5% = 55) Cor ) -

2ne2) _ 3 (11)(11) 3@ 3 3y ~(11)(22) 3 ~(21)(21) (2121 (
CH@Z.D) = _Sﬁcﬂccp(az,D) +555Co@ p D) + (s5¢p _Sﬂcﬂ>cq>(02,D) = 5p¢5Cq o@p) T5 ﬁ ¢sCq ®(*.D T+ (s Cp— sﬂcﬁ)cxb(az,l))
2 2 ~21)(11) 202 _ (21)(11)* 422 (21)( 2) 2.2 )( 2)x
+2S/JC//’C<D(02,D) +( ﬂ ] /})C ( D) + (Cﬂ—s/}C/}>C ( ) 2 /} [)wC ( ) .

7. Class ¢° operators
The ¢ class of operators in the Higgs basis are listed in Table X VI, with Wilson coefficients

2)
2.0) = =35 Com0) + 558Com 0 T (556 = 555)Coi ) T 555C o ) ~ 3o p) T+ (85Ch — Shcs

(B34)

(B35)

(B36)

(B37)

(B38)

(B39)

)

®(0%.D)
(B40)

21)(12)

(B41)

1)(11)(11 1)(11)(11 11)(11)(22 11)(22)(22 11)(11)(21 1)(11 22)(22)(21
CHDADIN _ oD 4 24 cINANE) 4 4 2cIDEAE) | o s {NINED | cADINED) L 50 (VIR

H p\Lo
22)(22)(21)+ 22)(2 11 22)(21)(21
+C()<)<>) SSCEEIED) | 24 cINEDED | cANENEDY 4 2 adIDENID 4 402 cEENEY
T+ CENENY | 42 cEIN0D) | o s cRDENED | c@NEDEY | 33 cENEN02) | cenEine

21)x
+sﬁc;j(cfb e )+C5p LU
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11)(11)(22 11)(11)(11 11)(11)(22 11)(22)(22
CDINED _ 32 acnINaD | (6 +2s,,cﬁ)c< 0D | (46 4 9520y CANEIE
T (=spc) + 25363 (CADINED y cNUNE 4 (e 12 3ed) (@D 4 ceC1-)
1333 CEIOE) 4 (2 a2y (CUICVED 4 clneEn: )+(s,,c —253ch)CUnEN?)

” 21)% 12
+ (sﬁcﬂ 2s4 2)(C£D ene >+C£1, enen )+ (s/%cfi 2s;§c§)C¢ 20)(12)

—353c)(CEICNEN 4 cENCHENTY _ 33 G2 4 ceneniaey

+ (=spep + spep + sﬂcg)(C(gl)(zz)(m) + Ny (B43)

11)(11)(22) cl1H(29)(22)

11)(22)(22 11
C(H )22 ):3sﬁ C< DA )+(sﬂ+2sﬂcﬂ)C( +(Cﬁ+2sﬂcﬂ) >
+(sﬁc,,—2s/,cﬂ)(c<“>< D )+C£1> )(“)(21)*)+(s,;cﬂ—2sﬂcﬁ)( )+C( 2)(2 )(21)*)
2 11)(21 * 21)(12
+353e5CY P (et —258e2) (ch VY 4 el hene >)+(s ~258c2)cly )
+(sﬁcﬁ 2sﬂcﬂ)(C<22)(21>(21> + cEeney +(s2 2S/2} ?})C(zz)(m)(n)

+ (sgc?, — s?,cﬁ - sﬁCZ)(Cgl)(zz)(21> + Cgl)(zzml)*), (B44)
CUDINEN _ 30 s cNIDID (o053 DN L (Lo 4 03 ciNEIR) L (o _p ) clinimes

21 22 22
—33CDINeDr | 3 2c< I 4 (56 4 ashed) CEIPIOD: +3s56/CED )22)(22)

+ (—5262 + 2sﬁcﬁ)C£D )( - 3S3C3C( DEHEL+ + (- 2s3c + 55 ﬁ)Cq, 2002 4 3s?,cl3,Cf§2><21)(21)
+ (s/,cﬂ 2s,,c/,)C<22)(21)(21) (2sﬂc/), — szcﬁ)c(ﬂ)(ﬂ)( 24 3s/2,c;‘,CCI> 2 _ 3s}§c/2,Cg1)(21><21>*

+ ( sﬁcﬂ + 2sﬂcﬂ)c(2l)(21)(12) + (sﬂcﬂ _ 2S2C§)Cgl)(21)<12>* + (2s§c;§ _ s?}c;)cgl)(ZZ)(ﬂ)

11)(22)(21)+
+ (=25} cﬂ—l-sﬂcﬁ)C( J@2)@bx, (B45)

CEIRIC _ s NN 4 (0 3 cine) sﬁcﬁ+2sl,cﬂ)c‘“>( 2102y 382NN
—|—(—s2—|—2s2c‘/2})Cg>l D@1 +( 252 ?,)C( 2(2) —3szc4C 2(@22) +3sﬂcng2)( 2)(22)
21} 12
L I e L
£ (556} = 28y CEIRVCY 4 33 3 ceCNE: (2sﬂcﬁ—sﬁcg)c<22>( 002) | 32 c4c@DRICY
)C(Zl)(Zl)(IZ)

- 3s3c3C<11)<21><21) + (=sjc + 2sﬁcﬁ)C£I,
2)

21)* 21)(21)(12
—3sACVENE" | sﬂcﬁ—i—Zsﬁcﬂ)C( en(2)

(11)(22)(21)

4.2
11)(22)(21)
+ (255¢5 = 55¢5)Co + (- 2s/3cﬁ+sﬁcﬁ)C( @) >, (B46)

CEIEED) _ eclibunay

2
H p prpro SpCh

— sy (CEIERN | cANANEYy | 6cEAEI0D | a2 cINEDED 4 clnehE:
22)(21)(21 22)(21 12
! %Cgpx N >+ DAV | cEIENENY 4 g 80
1)* 21)( 12)x
(CEIEVED 4 cENENENY _ a3 c2NEDI2) 4 clnenizs

el
3 Lo
cp(CNPIY 4 R, (B47)

SAACHNINED | 24 clNEIE) _ s cIDDED | cninens)
)

3

5p

3

5p
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1)(22) (11)(22)(22)

CSI)(ZU(ZU = 3S§C2C$])(“)<“> (- 2sﬁc/j + Sﬂ ﬁ)C + (- 2sﬂcﬁ + sﬁ ﬂ)C + ( 2sﬂcﬂ)C(”><“)(21)

)21 2
—ZSzcﬂ)CED )22 +3s }‘, IZ,C,I, 2 )( )

2)(21) 3
B
c§—2s 2 4)Cg1)< neEy 4 3¢ 4 2C( N2 1)<21)*_|_( 2Sﬂ0ﬂ+sﬂcﬂ)c(ll)( N )—|—3s/230;§C§2)(21)(21)

+3s3c3C5 M 4 3335 4 (e

(22)(21)(21)+ 21)x

+(cj

+(S 2sﬂcﬂ)C +(Sﬁcﬁ’ ZSﬂCﬂ)C(22)< (1 >+3 55¢5 C(Zl)( )(2])+3s5CﬁC(21)(21)(
+ (spc) = 2s55¢ 3)CEI, 12)+(s/53c —2sﬂcﬂ)C£D yenis 4 zsﬂcﬁ—"_sﬂcﬂ)CEp) )(21)

+ (=

2533 + s3c,)Cy VY (B48)

CIEDI2) _ 62 acIDUNIN 4 (_g2c 1 o8 2yl | (_gbe2 4 o2 ﬂ)c<n><2z><zz>

(45/30/} 2sﬁcﬁ)(C(“)( (2 >+C( )(11)(21)) (4Sﬁ ; 2sﬁcﬁ)( +C( 2)(2 )(21)*)
+6s% 4 2C 2)(22)(2 >+(2Sﬁcﬁ 4s2 4)(C£1>“)( nE )+C ) (Cﬂ+3sﬂcﬁ 2sﬁcﬂ>c(11)(2l)(12)
+ (- 43/;(3/;4-25 )(C(Zz)(Zl)(Zl) Jrng)(zl)@l) ) + (56 +3Sﬁ 4 2S2 %)C< 2)(21)( —6s262(C5D1)(21)(21)
+ CED e )+ (25ﬁcﬁ+2sﬁcﬂ 2sﬂcﬁ)(C(2 yena2 —l—Cq, hEna2) )
+ (—4shel + spc) + 550) (Co VY 4 VR, (B49)
Cg2)(2 )2 )_3 11)(11)(11) Jr(_254%_Hﬂcﬁ)c(ll)(ll)(ﬂ) + (- 2S/21 ?;+Sgcp)cfp )(22)(22) _3S2C3C(11)(11><21)
+( Sﬂ /,+2s,cﬁ)C(“)(“)<2” 4 (= sﬁcﬁ+2s C/})C(zz)(zz)( )—3S/3302C((1> )(2 )(21)*+3 2 4C( 2)(22)(22)

S5Cp
21 12121+ 1)1 (12 2)(21)(21
+3s/236 C( b >+(s6—2s4c/2,)C£D USISO —|—(—2s;§c§+s§c;§)cgp et )+( 2sﬂcﬁ)C( enen

T 3S8ACEIENE | (o0 | 4 2y cEIENID 3o scNCHE g clanenen:

+ (=spcj + 255 C3)C£I> JED 4 (—s3ey + 2553 €5V 4 (2533 — s505)CH VY

11)(22)(21)*
+ (253¢) — s3c,)Cy VA, (B50)

C(gz)(z 12) _ g4 by ﬁ + (- 4326 %C;)C(ll)(ll)(n)
(

+( 4sﬂcﬂ+25/}c/}) Cll) )+C( (1 >(21)*)+(—4S3Cﬁ+2SﬂCﬂ)(C(22)( 2)(21)+Cg2)<22)<21)*)

22)(22
+ (—4s3ch + 254y N

625 CEIOVE) 4 (2204~ 4she)(CLICVED 4 NCDEY | (g6 | 3204 ke cADEN0)
1)(

22)(2 )21 21)(21)(21
+ (s ‘32’+2Sﬁcﬂ>< WAV gV g (cf + 3sjf - 255 Cp MY + bsjeh(cg Y
+ CgNENED (- 25505 — 254¢) +2sﬂc/})(C(21)( D02 4 cDED2)y
+ (4sjc) = spcy — sﬂcﬁ)(C(“)( 2 )+C£D ey ) (B51)
enenEn _ 3 3o0Hanarn) (IN(IN22) _ 3.3 ~(11)(22)(22) (IHADEY _ <4 2 ~IDADED+
Cy = —53¢;Co +s ﬁ ﬁC —sﬁcﬁCCI> +s ﬁ /,C = 55¢5Co
T SACEAIEIEN | 8 20@EIC | 3 acE@EIE) o sclNEIEN _ s ANEHED:
+sgc3c(”)(2‘>“2) py CsCm)( De | 2 c<22>(2‘><2‘)*—s3c3c<22><2'><‘2)+cgcg‘><2‘><2‘>
)21 12 12) 21 11)(22)(21)
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CVRNI _ 3 cNNI | 30 aclNING 3303 c06E) | (a2 | 52
121 )21 22)(
+ (s%,c/, 2sﬁcﬂ)C£D aney + (- sﬂcﬂ + 2s/,c/,)C£D ey (sﬁcﬁ /,,c/,)C,(D

11)(21)(21) (1n(21)*

+ 35 3C< 2 + (- sﬂcﬂ+2sﬂcﬂ)C( + (=sjcp +255¢;) Co

+ (sﬂcﬂ - szcﬂ - Sﬂcg)Cgl)(ZI)(12> + (sﬂc _ 2s% 3>C£I> enen (s cp— 2SZC3)C$1)(22

ycinane

22)(21 21)% 21)(21)(12
+(—s;c;+sgcﬂ+s/,c/5,)c( D) _ 324c2NODE) 4 308 20CDENEY | (06 4 9cde2) cENEN02)

2) 1(22)(21 11)(22)(21)#
+(—s/6, ﬂcﬂ)C D)« +(s;‘}cﬂ 2s/23 2)C( )22 )+(—sﬂcﬂ+2sﬂc§)Cﬁb )22)2D)x

and

CNEIED _ g3 3 clnanin

( yclnane)

+ (=2sp¢) — 25505 + 255,
1Hane

(2sﬁcﬁ + sﬁcﬂ - 2sﬂcﬂ

11)(11)(21)
+ (4s5cp — 2sﬁcﬂ)C< >+(2sﬂcﬁ 4sﬁcﬂ)C( Jan@i + (4s5cp — 2sﬁcﬁ)C(

2)(22)(21)% )21
+ (—4s 0/2),+2s )C((I> 222D —|—6szcﬁC((I> 22)(22) (4sﬁcﬂ 2sﬁcﬁ)C nen

(4sﬁcﬁ 2sﬁcﬁ)C<11)(21)<21>* + (—s,sjc/; + 4s2,c/33 - s/;cz,)C(H)(zl)(m + (= 4sﬁcﬂ + 2sﬂc/,
(2102 )—6s2c4C nenen

+ (—4sjc; + 2Sﬂcﬂ>c(22)(21)(21)* + (spc) — 45y + 55¢5)Co
12 )(12)+
+6sﬁcﬁCfb @0 (2sﬁc —4sﬁcﬁ)C£D ena) + (- 2s/23 2+4s Cz)C 2)(12)x

+ (c/, + 3sﬂcﬂ 2s2 4)C$1)(22)(21) + (—sﬂ - 3s2c2 + 2sﬁcﬂ)C(11)<22>(21) .

8. Class X?¢? operators
Finally, for X?¢? operators listed in Table XVII, the Wilson coefficients are

CS(]()?,W ) c/zfcg(();.w, B T 2C( ((); w.B) T Sﬁcﬁ(c(z(l),w,g) + Cg(l();fw,g))v
Cg(é.w B) — SﬂC( () B T ZC( (C);WB) Sﬂcﬁ(cg(%.w.g) + Cg(lc);w,g))v
CS(IG W.B) spcpC Gwn) t sﬂcﬂct(b(G w.B) t /Zicg(lc); W.B) Sécg(lc)*w B)
Cg(lé WE) c,zjcf;(% wE) T lzicg(zc),w BT sﬁcﬁ(CEE(‘é_W BT Cﬁféfw)),
CS(%W,B) = s/%’CEIi(lg;,W,B) + Cﬁcg(% W)~ Sﬂcﬂ(cg(%,w BT Cg(lgw,é))’
CS(ICZLW.B) = —sﬁc/;C(;(%W BT Sﬁc/”cg(zcz;,w Bt /%Cg(lé) WwB) ~ Sﬁcg(lé)*w B)
CS(IV)VB,WB) - C/%Cg(l‘sz,WB) + sﬁC( (V)VB we) T sﬁcﬂ(c(z(lv)VB,WB) + Cg(lv)v*B.WB))’
CS(Z‘ZVB.WB) s2C( (V)VB WB) ZC( (V)VB WB) sﬂclf(cg(lv)VB.WB) + CEI?(IJJB,WB))’
and
CSZ‘)VB WB) — sﬂCﬂC( (V)VB,VVB) + SﬂCﬁC( (V)VB WB) + Clzicc(lf(lv)VB,WB) - szcg(lv)v*B,WB)'
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