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(Received 11 April 2024; accepted 14 June 2024; published 21 August 2024)

The experimental confirmation of neutrino mass and mixing disagrees with the picture of the Standard
Model, and thus provides a good motivation to look for unknown physics. A seesaw variant in which
neutrino masses are radiatively generated, with neutrinos characterized by Majorana fields and where a set
of three hypothetical neutral heavy leptons are present, has been considered in the present work. We have
calculated, estimated, and analyzed the contributions from virtual light and heavy neutrinos to the gauge
vertexWWZ, in the context of a future electron-positron collider. We have found that contributions to both
CP-even and CP-odd anomalous couplings are generated. Our estimations indicate that contributions as
large as 10−3 can be achieved in both cases. This is particularly interesting for the CP-odd effects, which
are expected to appear in the framework of the Standard Model since the three-loop order, thus being quite
suppressed. By considering the expected sensitivity of the International Linear Collider to this gauge
vertex, we conclude that these new-physics effects would be within its reach for eþe− collisions taking
place at a center-of-mass energy of 800 GeV.
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I. INTRODUCTION

The evidence confirming neutrino oscillations, first
achieved by experimental collaborations at the Super-
Kamiokande experiment [1] and at the Sudbury Neutrino
Observatory [2], showed that the neutrino sector of the
Standard Model [3–5] (SM) does not provide an accurate
description of nature and thus is required to be extended.
Massiveness of neutrinos, entailed by the phenomenon of
neutrino oscillations [6], might be introduced by assuming
neutrinos to be characterized by Dirac fields [7] and
then endowing them with masses just the way it is done
with all other fermions in the Yukawa sector of the SM.
However, aiming at a more sort of natural definition of
neutrinomasses, in the sense of explaining their conspicuous
tininess, alternative mechanisms have to be searched for.
A well-known neutrino-mass generating mechanism is the
seesaw [8–10], which propounds that neutrinos, assumed
to be described by Majorana fermion fields [11], have
such small masses due to some high-energy scale, Λ,
associated to a yet-unknown physical description, beyond

the Standard Model. The Weinberg operator [12], an effec-
tive Lagrangian term [13] with units ðmassÞ5 and which
introduces violation of lepton number, generates, driven by
the Brout–Englert–Higgs mechanism [14,15], Majorana-
mass terms for neutrinos, with masses given by mνj ∼

v2
Λ,

where v ¼ 246 GeV is the SM Higgs vacuum expectation
value. This mass profile matches the one emerged from the
seesaw mechanism, which, in addition, comes along with a
set of heavy-neutral leptons, dubbed “heavy neutrinos,”with
masses mNj

∼ Λ. In this context, current upper bounds on
neutrinomass [16–18], lyingwithin the sub-eV regime, push
the energy scale Λ towards enormous values, thus yielding
huge heavy neutrino masses. Therefore, direct production of
heavy neutrinos or measurement of their quantum effects on
SMobservables do not seem to be achievable. So,while from
a purely theoretical viewpoint, the seesaw explanation is
quite appealing, it comes along with a practical drawback:
the very large size of the high-energy scale Λ avoids any
possibility of measuring the new physics (NP) through
current and future experimental facilities, perhaps even in
the long term. Pursuing a seesawlike neutrino-mass origin in
which heavy neutrinos bear masses with a more reasonable
size, seesaw variants have been conceived.1 The inversePublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1For a review on seesaw variants, see Ref. [19] and references
therein.
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seesaw [20–22] and the linear seesaw [23,24] neutrino-mass-
generating mechanisms are well-known instances. Among
the available seesaw-type mechanisms, we have considered
the model given in Ref. [25] as the framework for the present
investigation. The author of this reference introduced, in the
context of the seesaw mechanism, a condition to render all
tree-level light neutrino mass-terms zero, while keeping
masses of heavy neutrinos untouched. This breaks the
seesaw-type link among heavy and light neutrino masses,
which allows for quite smaller masses for the heavy neutral
leptons. Then, masses of light neutrinos are rather generated
by radiative corrections, which defines a new connection of
neutrino masses, namely, in order for light neutrinos to have
adequate tinymasses, the set of heavy neutrinomasses has to
be quasidegenerate.
In accordance with the technique of Feynman diagrams

[26], physics beyond the SM might yield modifications on
low-energy observables through diagrams in which virtual
lines associated with heavy dynamic variables from some
NP description participate. This is the case of the triple
gauge vertex WWZ, which is parametrized by a vertex
function

ΓWWZ
σρμ ¼ Γeven

σρμ þ Γodd
σρμ; ð1Þ

where Γeven
σρμ is associated with CP-conserving effects,

whereas Γodd
σρμ characterizes physics not preserving CP

symmetry. If the W-boson external lines are taken on shell,
while assuming that the external Z boson is off shell, the
CP-even and CP-odd terms, Γeven

σρμ and Γodd
σρμ, are respec-

tively given by2 [27–29]

Γeven
σρμ ¼ igZ

�
g1ð2pμgσρ þ 4ðqρgσμ − qσgρμÞÞ

þ 4ΔQ
m2

W
pμ

�
qσqρ −

q2

2
gσρ

�
þ 2Δκðqρgσμ − qσgρμÞ þ if1ϵσρμαpα

�
; ð2Þ

Γodd
σρμ ¼ igZ

�
2Δκ̃ϵσρμαqα þ

4ΔQ̃
m2

W
qρϵσμαβpαqβ

þ if̃1ðqρgσμ þ qσgρμÞ

þ f̃2pλϵσρλαðq2δαμ − qαqμÞ
�
; ð3Þ

in accordance with the conventions of Fig. 1. In this
equation, gZ ¼ e cot θW, where θW is the weak mixing
angle and e denotes the electric charge of a positron. In the
SM, g1 ¼ 1 at the tree level, whereas all other form factors

ΔQ, Δκ, f1, Δκ̃, ΔQ̃, f̃1, and f̃2 vanish, so they are
commonly referred to by “anomalous couplings” (AC).
The one-loop SM contributions to Δκ, ΔQ, Δκ̃, and ΔQ̃
have been already calculated [30,31], from which
CP-conserving contributions of orders ΔκSM ∼ 10−3 and
ΔQSM ∼ 10−4 have been estimated. On the other hand,
CP-violating contributions from the SM are absent at the
one-loop level, though their emergence at the level of three
loops is expected [32,33].
Our interest, in the present investigation, focuses on

the NP contributions from virtual Majorana neutrinos to
WWZ, produced at one loop, for which we consider both
light and heavy neutrinos, in the framework defined by the
model of Ref. [25]. The associated NP contributions to
the AC Δκ, ΔQ, Δκ̃, and ΔQ̃, characterizing this gauge
vertex, are computed, estimated, and analyzed. While both
CP-conserving contributions, ΔQ and Δκ, are generated,
the CP-odd ΔQ̃ is found to vanish, so the only nonzero
CP-violating contribution turns out to be Δκ̃. Anticipating
the presumable presence of ultraviolet divergences, we
utilize the dimensional-regularization method [34,35]. At
the end of the day, we arrive at the conclusion that all the
generated contributions to ΔQ, Δκ, and Δκ̃ are ultraviolet
finite. Feynman rules for Dirac fields differ from those
for Majorana fermions [36,37]. In particular, given some
physical process, the Majorana framework usually involves
a larger number of contributing diagrams than the Dirac
case. In the present work, the set of Feynman diagrams
contributing via virtual Majorana fermions includes
(1) those diagrams which would contribute to the same
process if such fermions were assumed to be of Dirac type,
and (2) a set of extra diagrams to be taken into account.
We call the extra diagrams, characteristic of Majorana
fermions, “Majorana-type diagrams,” whereas those which
occur in both the Dirac and Majorana cases are referred
to as “Dirac-type diagrams.” We find that the contribu-
tions from Majorana-type diagrams exactly match those of

W +(        ) p − q W −(          )− p − q

Z (    )q2

FIG. 1. Conventions for the WWZ vertex, as first posed in
Ref. [27]. Throughout the present paper, the external Z boson is
assumed to be off shell, whereas the externalW bosons are taken
on shell.

2A brief discussion on the effective-Lagrangian origin of both
vertex functions Γeven

σρμ and Γodd
σρμ is provided in Appendix A.
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Dirac-type diagrams. Our numerical analysis of the WWZ
vertex is carried out in the context of some future electron-
positron colliding facility, such as the highly anticipated
International Linear Collider (ILC) [38,39]. We consider
the process eþe− → WþW−, which receives contributions
from an s-channel diagram involving a virtual Z-boson
line. Therefore, our calculation is performed under the
assumption that the external Z-boson line is off the mass
shell, in which case, in accordance with the notation
defined by Fig. 1, theWWZ vertex function ΓWWZ

σρμ depends
on the squared 4-momentum ð2qÞ2. Moreover, the center-
of-mass energy (CME),

ffiffiffi
s

p
, of the corresponding eþe−

collision relates to this momentum as s ¼ 4q2, so all
contributions to AC are CME dependent. The present
investigation aims at the calculation of such off shell
contributions, as well as its analysis and estimation, in
the light of the expected ILC sensitivity [39]. Our estima-
tions indicate that CP-preserving contributions Δκ as large
as∼10−3 can be generated for an electron-positron collision
at a CME of 800 GeV, thus falling into the sensitivity region
expected for the ILC. On the other hand, the only nonzero
CP-odd contribution, Δκ̃, also reaches ∼10−3, which lies
about one order of magnitude out of the reach of ILC
expected sensitivity.
The rest of the paper has been organized in the following

manner: our analytical calculation of the one-loop contri-
butions from Majorana neutrinos to WWZ, carried out in
accordance with the theoretical framework provided in
Appendixes A and B, is discussed in Sec. II; then, an
estimation of contributions is performed in Sec. III, where a
discussion on our results is developed as well; and, finally,
we present a summary in Sec. IV.

II. VIRTUAL MAJORANA NEUTRINOS
CONTRIBUTION TO WWZ AT ONE LOOP

The main purpose of this section is the description and
discussion of our calculation of the contributions from
the neutrino model of Ref. [25] to the WWZ vertex
function. Details on the neutrino-mass model, relevant to
this calculation, have been comprehensively discussed
in Refs. [25,40,41], so this information is briefly addressed
in Appendix B.
Since the WWZ vertex is assumed to be a contributing

piece of an s-channel diagram for eþe− → WþW−, the
Z-boson external line is taken off shell, whereas both
external W-boson lines are considered to be on the mass
shell. As the calculation is carried out at the one-loop level,
the contributions come exclusively from fermion loops, in
which case all virtual lines are associated with fermion
fields. Therefore, even though the vertex is off shell, no
issues associated with gauge dependence arise. While the
vertices WWZ and WWγ share some features, they have
important differences. For starters, from the viewpoint of
the Feynman-diagram technique, a difference emerges,

namely, fermion-loop contributions to WWZ come
along with extra contributing diagrams, with respect to
those contributing to WWγ, which is due to the nonzero
coupling Zνν, not occurring in the electromagnetic case.
Nonetheless, the main discrepancy is, perhaps, the require-
ment of Uð1Þe gauge invariance, which imposes restric-
tions on the occurrence of WWγ couplings, but which is
inoffensive toWWZ. If the Z-boson field Zμ is replaced by
the photon field Aμ in Eqs. (A1) and (A2), electromagnetic
gauge invariance forbids the generation of couplings g2 and
g̃1, which, in contraposition, can be present in the case of
WWZ. From the perspective of the SUð2ÞL ⊗ Uð1Þe-
invariant effective Lagrangian, which extends the electro-
weak SM [42–44], such couplings are generated by
Lagrangian terms with mass units > ðmassÞ6 [45], thus
being subjected to a high-energy scale suppression Λ−n,
with n > 2. So, due to electromagnetic gauge symmetry,
the WWγ vertex function emerged from such a Lagrangian
fulfills the Ward identity [46], whereas the WWZ vertex
function is not required to abide by it. Note, however, that
invariance under Becchi-Rouet-Stora-Tyutin transforma-
tions [47–49], a local symmetry which remains at the
quantum level after the gauge has been necessarily fixed,3

induces Slavnov–Taylor identities [51–53], which relate
Green’s functions. In this context, the WWZ vertex
function is expected participate in some alike relation.
Slavnov–Taylor identities have an intricate structure, as
compared to Ward identities, and include ghost-field
contributions. In this respect, we find it worth mentioning
that the Background Field Method [54–57], an unconven-
tional quantization method aimed at the preservation of
gauge invariance at the quantum level, and the Pinch
Technique [58–60], a diagrammatic method meant to get
well-behaved, gauge invariant, and gauge independent
Green’s functions, have been found to yield simple
Ward-like identities for the WWZ vertex function [61,62].
A main difference among the Dirac and the Majorana

descriptions of fermions is that in the case of Majorana
fields the relation ψ c ¼ ψ , with ψ c ¼ Cψ̄T the charge-
conjugated field of ψ and C the charge-conjugation matrix,
holds. This equation, known as the Majorana condition, can
be fulfilled only if ψ is electrically neutral. The so-far
observed electromagnetic neutrality of the neutrinos [63]
and the relatively recent confirmation, supported by neu-
trino oscillations, that neutrinos are massive, has fed the
interest in the possibility that neutrinos are Majorana
fermions [11], unlike the rest of the SM fermion particles,
which abide by the Dirac description [7]. Whether the
description of neutrinos is correctly achieved by Dirac or
Majorana fields is a question whose answer incarnates a
main objective in neutrino physics. The most representative

3For a review on the Becchi-Rouet-Stora-Tyutin symmetry at
both the classical and quantum levels, in the context of the field-
antifield formalism, see Ref. [50].
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physical process in which to look for Majorana neutrinos is
the neutrinoless double beta decay, whose observation
would be evidence of the Majorana nature of the neutrinos.
A plethora of experimental collaborations have been work-
ing for several years, looking for a measurement of this
physical process [64–69], which, however, has never
been observed [70], thus indicating that, even if neutrinos
turn out to be associated with Majorana fields, the neu-
trinoless double beta decay is quite rare in nature.
Alternative means to determine the Dirac or Majorana
nature of neutrinos exist, such as the one given in Ref. [71].
Further differences among these approaches emerge
at different levels. For instance, the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) neutrino mixing matrix [72,73],
here denoted by Uν, has either one complex phase, if
neutrinos are Dirac-like, or three complex phases, when
Majorana neutrinos are assumed. The electromagnetic prop-
erties of the neutrinos crucially depend on whether they are
Dirac orMajorana fermions [74]. While all diagonal electro-
magnetic moments of Dirac neutrinos are allowed,Majorana
neutrinos do not have either diagonal magnetic moment or
diagonal electric dipole moment, though their transition
moments can be nonzero. It is well known that the sets of
Feynman rules corresponding to each of such frameworks
also differ from each other [36,37]. In general, the Majorana
description comes along with more flexibility, thus usually
allowing for a larger number of Feynman diagrams contrib-
uting to some given physical process, in comparisonwith the
Dirac case. This turns out to be the case of the phenomeno-
logical calculation executed for the present investigation. A
relevant observation, regarding theLBSM tree-level coupling
of theZ boson to neutrinos, is opportune: fromEq. (B21), we
express theneutral-currentsLagrangian for such couplings as
LZνν ¼

P
6
k¼1

P
6
j¼1 LZnknj , with

LZnknj ¼ −iZμnkΓ
μ
kjnj: ð4Þ

Here, nk denotes a neutrino field, either light or heavy, where
n1 ¼ ν1, n2 ¼ ν2, n3 ¼ ν3, n4 ¼ N1, n5 ¼ N2, and
n6 ¼ N3. On the other hand, Γμ

kj is a 4 × 4 matrix, defined
in the space generated by the Dirac gammas, which,
according to Eq. (B21), depends on the 6 × 6 matrix C,
given in Ref. [25] and discussed in Appendix B. If neutrinos
were assumed to be Dirac fermions, the only Feynman rule
for Znknj would be

ð5Þ

However, since the neutrinos considered for the presentwork
are of Majorana type, an extra Feynman rule for Znknj is to
be considered [36]:

ð6Þ

where ΓμT
jk is the transpose matrix of Γμ

jk and C is the
aforementioned charge-conjugation matrix. While fermion
number flow in Feynman diagrams featuring Majorana
fermions does not apply, the authors of Ref. [36] advise
about the use of some fermion flow to set an orientation for
fermion chains. The fermion flow inEqs. (5) and (6) has been
indicated by the arrows located off the neutrino lines, so
establishing a distinction among these vertices.
TheWWZ vertex-function contribution which we aimed

to calculate comprises three sorts of contributing diagrams,
which we gather into three terms. The vertex function,
ΓWWZ
σρμ , is then expressed as

ΓWWZ
σρμ ¼ Γlln

σρμ þ Γnnl
σρμ þ Γnnh

σρμ ; ð7Þ
with the partial amplitude contributions Γlln

σρμ, Γnnl
σρμ, and

Γnnh
σρμ given by

ð8Þ

ð9Þ

ð10Þ

Regarding Eq. (9), it shows two types of triangle diagrams,
differing of each other solely by their vertices Znknj, as the
corresponding fermion flows point in opposite directions.
The first of them is a Dirac-type diagram, that is, the only
Feynman diagram which one would have to consider if
the neutrinos were described by Dirac fields. The second
diagram is a Majorana-type diagram, which does not occur
in the Dirac case, but whose presence is allowed as long
as Majorana fermions are assumed, and which has to be
summed together with the Dirac-type diagram. It turns
out that the properties of the charge-conjugation matrix C
and the Hermiticity of the 6 × 6 matrix C, defined in
Appendix B, conspire to yield
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ð11Þ

so the analytical expressions of the Majorana-type diagrams
and their alike Dirac-type diagrams turn out to coincide.
Something similar happens with the contributing diagrams
displayed inEq. (10),where the first diagram is ofDirac type,
whereas the second one is ofMajorana type. These diagrams
include a virtual Higgs-boson line, labeled by h. The Dirac-
type diagram involves two fermion-flow arrows,with each of
them corresponding to one of the two vertices, Znknj and
hnjnk, comprised by the fermion loop. The direction of any
of these fermion flows continues the direction of the other.
This is in contrast with the second diagram shown in this
equation, as the fermion flows of the vertices Znknj and
hnjnk point in opposite directions. This can be understood in
two manners: (1) the vertex Znknj is of Majorana type, thus
corresponding towhat is shown in Eq. (6), while hnknj is left
as a Dirac-type vertex; or (2) the vertex hnjnk is the one to be
inserted as a Majorana-type vertex, but Znknj is kept Dirac
type. Just as it happened with the contributing diagrams in
Γnnl
σρμ, we find that the relation

ð12Þ

among Dirac-type and Majorana-type diagrams is fulfilled.
Finally, we find it worth commenting that none of the
diagrams in Eqs. (9) and (10) have analogues in the context
of the gauge vertex WWγ, as the electromagnetic field does
not couple at tree level neither to neutrinos nor to the
Higgs field.
Whenever a loop calculation is performed, ultra-

violet divergences might come about, thus calling for a

regularization method and a renormalization scheme.
The superficial degree of divergence of the diagrams
contributing to Γlln

σρμ and Γnnl
σρμ, exhibited in Eqs. (8) and

(9), is 1, which means that the advent of linear divergences
from these contributions can be anticipated. Moreover, the
diagrams of Eq. (10), constituting the Γnnh

σρμ contribution, are
expected to produce ultraviolet divergences growing as
large as quadratically, since their superficial degree of
divergence is 2. We utilize the method of dimensional
regularization [34,35], in which the dimension of spacetime
is assumed to be D ≠ 4. Then, by analytic continuation, the
complex quantity ϵ ¼ 4 −D is defined, with ϵ → 0. As part
of the implementation of dimensional regularization, we
carry out the change

R
d4k
ð2πÞ4 → μ4−DR

R
dDk
ð2πÞD to all the four-

momentum integrals associated to loops in diagrams. Here,
μR is the renormalization scale, which has units of mass so
that the factor μ4−DR leaves the units of the loop integrals the
same as they were in four dimensions. To handle the
amplitudes given by the contributing diagrams, we follow
the Passarino–Veltman tensor reduction method [75,76],
which we carry out by usage of the software packages
FeynCalc [77–79] and Package-X [80], implemented in
Mathematica, by Wolfram. After full implementation of
the Passarino–Veltman method, all the AC form-factor
contributions, displayed in Eqs. (2) and (3), are found to
be functions on a variety of masses: masses of neutrinosmnj ,
both light and heavy; charged-lepton masses mα; and the
mass of the W boson, mW . Provided the vertex WWZ
has been calculated with the external Z boson taken off
shell, the analytic expressions of the contributions also
depend on the squared momentum of the corresponding
external line. Recall that we have denoted s ¼ ð2qÞ2, in
accordance with the conventions set in Fig. 1. This mass
and s dependence also determines Passarino–Veltman
scalar functions [81] in terms of which the analytic
expressions are given once the tensor reduction method
has been executed. In particular, these NP contributions
depend on 1-point, 2-point, and 3-point scalar functions,
defined as [75,81]

A0ðm2
0Þ ¼

ð2πÞ4−D
iπ2

Z
dDk

1

k2 −m2
0

; ð13Þ

B0ðp2
1; m

2
0; m

2
1Þ ¼

ð2πÞ4−D
iπ2

Z
dDk

1

ðk2 −m2
0Þððkþ p1Þ2 −m2

1Þ
; ð14Þ

C0ðp2
1; ðp1 − p2Þ2; p2

2; m
2
0; m

2
1; m

2
2Þ ¼

ð2πÞ4−D
iπ2

Z
dDk

1

ðk2 −m2
0Þððkþ p1Þ2 −m2

1Þððkþ p2Þ2 −m2
2Þ
: ð15Þ

ONE-LOOP CONTRIBUTIONS TO WWZ FROM A SEESAW … PHYS. REV. D 110, 035025 (2024)

035025-5



Aiming at the general structure of the WWZ vertex
function, given in Eqs. (2) and (3), we split the NP
contribution ΓWWZ

σρμ into CP-even and CP-odd terms. The
contributions to the CP-invariant AC ΔQ and Δκ are found
to be ultraviolet finite, and the same goes for f1. The only
ultraviolet divergence which remains lies in g1, which is
expected, as this coupling has a tree-level counterpart, so it
can be renormalized. With respect to the CP-violating
contributions, care has to be taken when calculating them,
since the implementation of dimensional regularization in
the presence of the chirality matrix, γ5, may yield spurious
contributions [82]. For instance, in the case of amplitudes
involving external photon lines, apparent violations of
Ward identities can be generated, thus misleadingly in-
dicating the presence of anomalies [83–85] in anomaly-free
theoretical frameworks. Of course, note that an issue
so delicate does not occur in the present calculation, in
which fulfillment of Ward identities is not a requirement.
In practice, the main issue lies in Dirac-matrix traces
trfγμγνγαγβγ5g, of four gamma matrices and the chirality
matrix. Such traces are inconsistently set to 0 in D
dimensions in the so-called “naive dimensional regulari-
zation” scheme, where fγμ; γ5g ¼ 0, for all μ ¼ 0; 1; 2;
3; 4;…; D − 1, is assumed. Another approach is the ’t
Hooft–Veltman one [35], in which fγμ; γ5g ¼ 0 for μ ¼ 0,
1, 2, 3, and ½γ; γμ� ¼ 0 for μ ¼ 4; 5;…; D − 1. This allows
for trfγμγνγαγβγ5g to be nonzero, though fake-anomaly
terms might be generated in this way. Variants of the ’t
Hooft–Veltman procedure are available [86–89]. To tackle
the issue of the Dirac-matrix traces in D dimensions, we
have left the traces trfγμγνγαγβγ5g unsolved during the
computation in D spacetime dimensions. After processing
the analytical contributions, we have verified that all the
coefficients of such Dirac traces are finite in the ultraviolet
sense, and, after that, we have evaluated such traces in four
spacetime dimensions. It is worth commenting that the
algebraic procedure lead to an exact cancellation of the
CP-odd contribution ΔQ̃, which happens as we describe
next. Among the whole set of terms involving traces
trfγμγνγαγβγ5g, we notice that the CP-odd anomaly
ΔQ̃ can only get contributions from the combination
igZðw1ϵμραβpαqβqσ þ w2ϵρσαβpαqβpμÞ, with w1 and w2

given in terms of masses and s. With the aid of Schouten
identities [90], we write this sum as

w1ϵμραβpαqβqσ þ w2ϵρσαβpαqβpμ ¼
4ΔQ̃
m2

W
qρϵσμαβpαqβ

þ � � � ; ð16Þ

where the contribution ΔQ̃ ¼ m2
Wð2w2−w1Þ

4
has been identi-

fied. The relation w1 ¼ 2w2 tuns out to hold, thus implying
the vanishing of the ΔQ̃ AC. A similar cancellation of an
NP contribution from Majorana neutrinos to ΔQ̃, at the
one-loop level, was reported in Ref. [91]. Regarding the

remaining nonzero CP-odd terms of the WWZ vertex, that
is, Δκ̃, f̃1, and f̃2 in Eq. (3), we arrived at the conclusion
that all of them are free of ultraviolet divergences.
From now on, our discussion is entirely focused in the

NP contributions Δκ, ΔQ, and Δκ̃. Let us comment that
the vertex-function term Γnnh

σρμ , Eq. (10), does not generate
contributions to these ACs. In contraposition, the terms
Γlln
σρμ and Γnnl

σρμ, given by Eqs. (8) and (9), are the ones
which completely define the NP contributions of interest.
They can be generically written as

Δζ ¼
X6
k¼1

X
α

jBαkj2Δζð1Þαk

þ
X6
j¼1

X6
k¼1

X
α

BαkB�
αjðCkjΔζð2Þαkj þ C�kjΔζ

ð3Þ
αkjÞ; ð17Þ

where ζ ¼ κ; Q; κ̃. Moreover, Δζð1Þαk , Δζ
ð2Þ
αkj, and Δζð3Þαkj are

functions of masses mW , mnj , mα, and on the squared
external Z-boson momentum s. The first term in this

equation, which involves the factors Δζð1Þαk , comes from

Γlln
σρμ, whereas the second term, in which Δζð2Þαkj and Δζð3Þαkj

appear, is generated by Γnnl
σρμ. Let us remark that ΔQð3Þ

αkj ¼ 0,
so ΔQ, by contrast with the other AC contributions, lacks
terms proportional to C�kj. We find that the neutrino-indices

symmetry property ΔζðaÞαkj ¼ ΔζðaÞαjk, where a ¼ 2, 3, is
fulfilled in the case of the CP-even contributions. Notice
that the ΔζðaÞ factors are complex-valued quantities. To
grasp this assertion, take into account that the diagrams
contributing to Γlln

σρμ, Eq. (8), include a vertex which
connects the external Z-boson line to a couple of
charged-lepton lines. Since the relation 4m2

α < s, among
the squared momentum of the virtual Z-boson line and the
mass of any SM charged lepton, must hold for theW-boson
pair production to be allowed, the corresponding amplitude
is complex valued. Moreover, as far as the contributing
diagrams comprising Γnnl

σρμ, Eq. (9), are concerned, the same
line of reasoning applies when the virtual-neutrino lines,
which are connected to the external Z-boson line, corre-
spond to light neutrinos.

III. ESTIMATION OF CONTRIBUTIONS
TO AC AND DISCUSSION

Now we perform an estimation of the contributions
whose analytic calculation we discussed throughout the
previous section. The estimation and analysis of CP-even
and CP-odd AC are addressed in separate subsections.
In Appendix B, the matrices B and C, on whose

entries the NP contributions Δκ, ΔQ, and Δκ̃ depend,
are defined and discussed. Notice that these matrices
introduce several parameters. With the sole purpose of
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achieving an estimation of contributions, we take a prag-
matic approach by writing the matrix ξ, used in Eq. (B23)
to parametrize the unitary diagonalization matrix U, as

ξ ¼ ρ̂X; ð18Þ

where ρ̂ is a number, both real and positive.We think of ρ̂ as
being equal to the modulus of the largest entry of ξ.
ThereforeX is a 3 × 3 sized complex matrix with the largest
modulus among all its entries being 1. The investigations
developed in Refs. [40] and [41], centered on contributions
from Majorana neutrinos to WWγ and ZZZ, have profited
from this procedure to get estimations and then analyze the
contributions from the neutrino-mass model of Ref. [25].
Implementation of Eq. (18) in Eqs. (B24) and (B25) yields
the expressions

B ¼ ðVlð13 þ ρ̂2XX†Þ−1
2 Vlρ̂Xð13 þ ρ̂2X†XÞ−1

2Þ; ð19Þ

C ¼
� ð13 þ ρ̂2XX†Þ−1 ρ̂ð13 þ ρ̂2XX†Þ−1X
ρ̂X†ð13 þ ρ̂2XX†Þ−1 ρ̂2X†ð13 þ ρ̂2XX†Þ−1X

�
:

ð20Þ

Then, our estimations are carried out by considering the
matrix texture

X ¼ eiφ · 13: ð21Þ

Moreover, we take Vl ¼ Uν. The PMNS matrix Uν is
written, in the case of Majorana neutrinos, as Uν ¼ UDUM,
with UM ¼ diagð1; eiϕ1 ; e{ϕ2Þ, where ϕ1 and ϕ2 are the
so-called Majorana phases, which are exclusive of the
Majorana-neutrinos framework. Let us comment that our
estimations are independent of the Majorana phases. The
matrix factor UD, on the other hand, is conventionally
parametrized as

UD ¼

0B@ c12c13 s12s13 s13e−iδD

−s12c23 − c12s23s13eiδD c12c23 − s12s23s13eiδD s23c13
s12s23 − c12c23s13eiδD −c12s23 − s12c23s13eiδD c23c13

1CA: ð22Þ

This matrix, which depends on the mixing angles θ12, θ23,
and θ13, is given in terms of sines sjk ¼ sin θjk and cosines
cjk ¼ cos θjk. It also includes the parameter δD, known as
the “Dirac phase.” For our numerical estimations, we
consider the following values for the UD mixing angles:
s212 ¼ 0.307� 0.013, s223 ¼ 0.546� 0.0021, and s213 ¼
0.0220� 0.0007. These are the best values provided by
the Particle Data Group [63] (PDG), based on measure-
ments from diverse experimental collaborations. For θ12, a
measurement by Super-Kamiokande Collaboration, re-
ported in Ref. [92], was taken by the PDG. Furthermore,
the PDG θ23 value comes from measurements by T2K [93],
Minosþ [94], NOvA [95], IceCube [96], and Super-
Kamiokande [97]. Concerning the θ13 mixing angle, the
PDG considered measurements reported by Double Chooz
[98], RENO [99,100], and Daya Bay [101,102]. For the
Dirac phase we use δD ¼ − π

2
, which has been favored by

T2K Collaboration [93,103].
While the measurement of neutrino oscillations has led

to the conclusion that light neutrinos are massive, as
opposed to what is assumed in the SM, this phenomenon
does not provide information on the absolute neutrino-
mass scale. Cosmological observations have yielded a
stringent limit on the sum of light neutrino masses, namely,P

jmνj <0.12 eV, at 95% CL [17,18]. Recently, KATRIN
Collaboration announced the achievement of an upper limit
on the effective electron antineutrino mass, defined by

m2ðeffÞ
νe ¼Pj jðUνÞejj2m2

νj [16], from which the upper
bound 0.8 eV, at 90% CL, on neutrino mass was

established. Remarkably, this limit does not rely on any
cosmological assumption and it applies independently of
whether neutrinos are Majorana or Dirac fermions. By
virtue of the smallness of light neutrino masses, and for the
sake of practicality, for our estimations we take them all to
be the same, so mνj ¼ mν for all j ¼ 1, 2, 3. The neutrino-
mass model under consideration for the present investiga-
tion, given in Ref. [25], established that a quasidegenerate
heavy neutrino mass spectrum is imperious in order to get
light neutrino masses consistent with current upper bounds.
With this in mind, we set all the heavy neutrino masses to
be equal to each other,4 that is, mNj

¼ mN , for all j ¼ 1, 2,
3. With respect to the heavy neutrino mass mN we use for
our estimations, we refer the reader to Ref. [104], where a
study, performed by CMS Collaboration, on the mass of
heavy neutral leptons and its relation with their mixing to
light neutrinos is discussed. That work presents a couple
of remarkable graphs which show, independently of
models, exclusion regions in the planes ðjBeNj2; mNÞ and
ðjBμN j2; mNÞ, in accordance with LHC data. We have
profited from such graphs, using them to select the values
ρ̂ ¼ 0.58, 0.65, and also to determine that these choices are
consistent with the constraint 700 GeV ≤ mN , on heavy
neutrino mass. We take this minimum heavy neutrino mass

4While the near-degenerate heavy neutrino spectrum is im-
posed by the neutrino model [25], we have verified that assuming
mass nondegeneracy does not produce sizable deviations from
our estimations.
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value as a reference for our forthcoming estimations. A
more detailed discussion on these choices for the ρ̂
parameter is presented below. As we show later, the
X-matrix texture, given in Eq. (21), and the ρ̂ parameter,
taken to abide by the CMS constraints of Ref. [104],
provide an estimation of the WWZ contribution, consistent
with experimental data. Bear in mind, however, that other
possibilities exist. The Hermitian matrix η ¼ 1

2
ξξ† has been

customarily used to characterize nonunitary effects in
light neutrino mixing [105]. Since Bν ¼ Uνð13 − ηÞ and
BN ¼ ρ̂Uνð13 − ηÞX, nonunitary effects are, according
to Eq. (17), involved in the NP contributions to WWZ
discussed through the present paper. Moreover, since
η ¼ 1

2
ρ̂2XX†, constraints on η can be used to impose

restrictions on ρ̂. For instance, detailed analyses on non-
unitary effects were carried out in Refs. [106,107], where
global fits lead to stringent constraints on the matrix η,
with upper bounds on the moduli of the entries of this
matrix ranging within ∼10−7 to 10−3. These limits would
set severe restrictions on the ρ̂ parameter, therefore yielding
an extra suppression on the AC contributions, which we
estimate to amount to about two orders of magnitude.
Nonetheless, keep in mind that the implementation of these
bounds would require further assumptions on the structure
of the matrices mD and mM (see Appendix B), associated
with the presence of an underlying lepton-number sym-
metry, only slightly violated.
The WWZ vertex can be probed by hadron colliders.

Based on the Tevatron accelerator, the D0 detector was
utilized to set an upper bound of order 10−1 on Δκ and also
an upper limit on ΔQ, of order 10−2, with both constraints
given at 95% CL, which was reported in Ref. [108], were
D0 Collaboration consideredWW,WZ, andWγ production
from proton-antiproton collisions taking place at a CME of
1.96 TeV. ATLAS and CMS Collaborations, at the Large
Hadron Collider, have also explored this gauge vertex. In
Refs. [109,110], these collaborations reported upper limits
of order 10−2, at 95% CL, on both Δκ and ΔQ, by
analyzing WW and WZ production from proton-proton
collisions at a CME of 8 TeV. An ulterior analysis of Wγ
production from proton-proton collisions at a CME of
13 TeV was recently performed by CMS Collaboration,
which established a constraint of order 10−3 on the ΔQ
analogue that corresponds to the vertex WWγ [111].
Experimental works on the AC of the WWZ and WWγ
gauge vertices often assume that ΔQ, of the WWZ vertex,
coincides with such an analogue, thus implying a direct
translation of the aforementioned upper limit into an
improved upper bound on the WWZ-vertex form factor
ΔQ. Keep in mind, however, that, as pointed out in
Ref. [45], such an assumption makes sense as a good
approximation as long as the scale of NP lies beyond 3 TeV.
This gauge vertex can also be studied by means of electron-
positron colliders, which offer a cleaner environment, in
comparison with hadron colliders. Whenever the energy

threshold 2mW is surpassed by the CME of some electron-
positron collider, such a machine shall be able to produce
W-boson pairs from the process eþe− → WþW−, which
receives contributions, through s-channel diagrams medi-
ated by a virtual Z boson, from theWWZ vertex. The Large
Electron-Positron (LEP) collider, which terminated oper-
ations in 2000 for its installations to become part of the
Large Hadron Collider, used to be a circular electron-
positron accelerator endowed with four detectors: ALEPH,
DELPHI, L3, and OPAL. The LEP accelerator started
colliding eþe− pairs at a CME of ∼91 GeV, then being
upgraded to eventually reach the threshold for W-boson
pair production, finally reaching its maximum energy at
209 GeV. In 2013, the collaborations which worked at the
four LEP detectors put together data of WW production
from eþe− collisions at CMEs ranging from 130 GeV to
209 GeV, and then performed a high-precision analysis of
ACs, from which bounds of order 10−2 on both Δκ and ΔQ
were established [112]. DELPHI Collaboration used data
taken at different eþe− CMEs, ranging from 189 to
209 GeV, to set constraints on the CP-odd ACs Δκ̃ and
ΔQ̃ of order 10−2, at best [113]. Future electron-positron
colliders are in plans, among which the ILC has called for
attention for years. The ILC Technical Design Report [39]
has presented estimations and analyses on the expected
sensitivity of this devise, then arriving at the conclusion that
the ILC will be able to set upper bounds on Δκ and ΔQ of
order 10−4 from W-pair production at CMEs of

ffiffiffi
s

p ¼
500 GeV and

ffiffiffi
s

p ¼ 800 GeV. That reference also esti-
mated upper bounds on the CP-violating factors Δκ̃ and
ΔQ̃, from collisions at CMEs of 500 and 800 GeV,
asseverating that the former quantity would be bounded
up to order 10−2, whereas the latter is expected to be
constrained up to order 10−4. Since we utilize the upper
bounds of Ref. [39] for our estimations, we display the
absolute values of their numbers in Table I. Another in-
plans lepton accelerator is the Circular Electron-Positron
Collider, which aims at reaching bounds of order 10−4 on
both Δκ and ΔQ [114].

A. CP-even contributions

Now we estimate and discuss the contributions from
Majorana neutrinos, within the neutrino model of Ref. [25],

TABLE I. Absolute values of expected ILC upper bounds on
the CP-conserving ACs Δκ and ΔQ, and the CP-violating ACs
Δκ̃ and ΔQ̃, as estimated in Ref. [39].

Coupling
ffiffiffi
s

p ¼ 500 GeV
ffiffiffi
s

p ¼ 800 GeV

jΔκILCj 3.20 × 10−4 1.90 × 10−4

jΔQILCj 1.34 × 10−3 6.00 × 10−4

jΔκ̃ILCj 5.33 × 10−2 5.77 × 10−2

jΔQ̃ILCj 1.5 × 10−3 6.00 × 10−4
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to the anomalies Δκ and ΔQ, both of them associated to
CP-preserving NP. The one-loop contributions from the SM
to WWZ were addressed long ago in Ref. [30], where a
calculation of this vertex, together withWWγ, was executed,
resulting in ACs given as functions on the CME, with the
masses of the Higgs boson and the top quark, not yet
measured at the time, left as further parameters. Shortly
after, this calculation was revisited in Ref. [31], where the
authors pointed out that the SM contributions bear gauge
dependence, thus calling for a more careful treatment. A
remarkable calculation by the authors of this reference,
who followed the pinch technique [58–60], yielded results
both well behaved and gauge independent. Contributions
from the SM to these anomalies are ΔκSM ∼ 10−3 and
ΔQSM ∼ 10−4 [30,31]. It is worth commenting that
CP-odd contributions Δκ̃SM and ΔQ̃SM, from the SM, have
been found to be absent at one loop. Of course, loop effects,
and thus ACs, can also be generated by NP beyond the
SM. For instance, in Ref. [115] the contributions from the
minimal supersymmetric Standard Model were considered.
In Ref. [116], a calculation of contributions from bileptons,
emerged in theNP framework of the 331model [117,118], to
WWZ were calculated and estimated. The conclusion of the
authors was that contributions as large as those from the SM
are attainable as long as these bileptons are relatively light. A
follow-up of thatwork,Ref. [119], considered a variant of the
331 model, which features right-handed neutrinos, and
performed the calculation of the WWZ vertex. Models of
universal extra dimensions [120] have also been utilized to
study WWZ. References [121,122] reported calculations of
contributions toΔκ andΔQ from the five-dimensionalYang-
Mills theory and from the whole SM defined in five
spacetime dimensions, achieving contributions of around
two orders of magnitude below those from the SM. The
Georgi–Machacekmodel [123] was considered in Ref. [124]
to calculateWWZ at one loop, fromwhich estimations ofΔκ
and ΔQ were achieved.
As we mentioned above, the Δκ and ΔQ anomaly con-

tributions are complex valued, so we execute our estimations
by rather considering the moduli jΔκj and jΔQj. With respect
to the coefficients ΔζðaÞ, which comprise Eq. (17), note that
their neutrino indices run over the six neutrinos. Taking this
into account, we can split these factors into

Δζð1Þαk ¼
(
Δζð1Þανj ; if k ¼ 1; 2; 3;

Δζð1ÞαNj
; if k ¼ 4; 5; 6;

ð23Þ

ΔζðaÞαki ¼

8>>>>>><>>>>>>:

ΔζðaÞανjνl ; if k ¼ 1; 2; 3; and i ¼ 1; 2; 3;

ΔζðaÞανjNl
; if k ¼ 1; 2; 3; and i ¼ 4; 5; 6;

ΔζðaÞαNjνl
; if k ¼ 4; 5; 6; and i ¼ 1; 2; 3;

ΔζðaÞαNjNl
; if k ¼ 4; 5; 6; and i ¼ 4; 5; 6;

ð24Þ

where νj; νl ¼ ν1; ν2; ν3 and Nj; Nl ¼ N1; N2; N3.
Moreover, a ¼ 2, 3 in Eq. (24). Now we wish to point
out that, for any fixed a ¼ 1, 2, 3 and ζ ¼ κ,Q, theseΔζðaÞ
factors differ of each other only by their dependence on
both the charged-leptonmassesmα and the neutrinomasses

mνj and mNj
. For instance, the coefficients Δκð3Þeν3N1

and

Δκð3ÞτN2N3
share the same structure in the sense that the

implementation of the changes mτ → me, mN2
→ mν3 , and

mN3
→ mN1

on the former yields the latter, that is,

Δκð3ÞτN2N3
→ Δκð3Þeν3N1

. Since, as we explained above, we
are taking mνj ¼ mν and mNj

¼ mN , for all j ¼ 1, 2, 3,

the complete sets of 78 different ΔκðaÞ factors and 42
coefficientsΔQðaÞ, for any fixed lepton flavor α, reduce to a
set of ten quantities in the case ζ ¼ κ and a set of only 6 for

ζ ¼ Q:Δζð1Þαν ,Δζð1ÞαN ,Δζ
ðaÞ
ανν,ΔζðaÞανN ,Δζ

ðaÞ
αNν, andΔζ

ðaÞ
αNN , with

a ¼ 2, 3. Recall that Δζð2Þαkj and Δζð3Þαkj are symmetric with
respect to their neutrino indices, thus meaning that

ΔζðaÞανN ¼ ΔζðaÞαNν holds. Using Eqs. (18)–(21), together with
the consideration of quasidegenerate neutrino-mass spec-
tra for light neutrinos and heavy neutrinos, we express the
CP-preserving anomalies as

Δκ ¼
X
α

�
1

1þ ρ̂2
ðΔκð1Þαν þ ρ̂2Δκð1ÞαNÞ

þ 1

ð1þ ρ̂2Þ2 ðΔκ
ð2Þ
ανν þ Δκð3ÞαννÞ

þ ρ̂4

ð1þ ρ̂2Þ2 ðΔκ
ð2Þ
αNN þ Δκð3ÞαNNÞ

þ 2ρ̂2

ð1þ ρ̂2Þ2 ðΔκ
ð2Þ
ανN þ cosð2φÞΔκð3ÞανNÞ

�
; ð25Þ

ΔQ ¼
X
α

�
1

1þ ρ̂2
ðΔQð1Þ

αν þ ρ̂2ΔQð1Þ
αNÞ þ

1

ð1þ ρ̂2Þ2ΔQ
ð2Þ
ανν

þ ρ̂4

ð1þ ρ̂2Þ2ΔQ
ð2Þ
αNN þ 2ρ̂2

ð1þ ρ̂2Þ2ΔQ
ð2Þ
ανN

�
: ð26Þ

Explicit expressions for the coefficientsΔζðaÞ are provided
in Appendix C. Among these two NP contributions, the
only remaining dependence on the complex phase φ,
introduced by the matrix texture displayed in Eq. (21),
resides in Δκ. The presence of this phase results from
the interplay of the B- and C-matrix factors in

BανB�
αNC

�
νN ∝ e−2iφ, which accompanies each Δκð3ÞανN con-

tribution. This is in contrast with the factors BανB�
αNCνN ,

associated with Δκð2ÞανN and in which the φ dependence

vanishes. Since ΔQ lacks ΔQð3Þ
ανN contributing factors, any

possible dependence onφ is absent. We have found that the

contributions from Δκð3ÞανN are indeed much smaller than
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those from the dominant terms, by about ten orders of
magnitude, which means that the variation introduced by
the φ-dependence is not relevant in practice.
Now we further discuss our aforementioned choice of

values for the parameter ρ̂, for which we refer the reader to
the graph shown in Fig. 2, where the CP-even contribution
jΔκj, at a fixed CME of

ffiffiffi
s

p ¼ 800 GeV, has been plotted
in the ðmN; ρ̂Þ plane. The ρ̂ parameter has been taken to
range within the interval 0 ≤ ρ̂ ≤ 1, which corresponds to
the vertical axis of this graph. On the other hand, values
within 0 GeV ≤ mN ≤ 1000 GeV, along the horizontal
axis, have been considered for the heavy neutrino mass
mN . Darker tones in the graph represent smaller contribu-
tions, whereas the lighter the color tone the larger the
contribution. Aiming at better appreciating the orders of
magnitude within which this NP contribution ranges for the
different values of ðmN; ρ̂Þ, the jΔκj contribution has been
plotted in base-10 logarithmic scale. The sizes of the
contributions are specified by the labeling bar located
beneath the graph. Lying in the upper-right section of
the graph, a bounded region is displayed. It represents
the set of ðmN; ρ̂Þ values which yield jΔκj contributions
falling into expected ILC sensitivity [39]. Within this

ILC-sensitivity region, a few points have been plotted,
which correspond to upper limits for ρ̂ and lower bounds
for mN, in accordance with the exclusion regions provided
by the CMS Collaboration in Ref. [104]. Thus, the region
between these points and the boundary for ILC sensitivity
comprehends the whole set of points producing jΔκj
contributions consistent with both the CMS work and
ILC expectations. Recall that the values ρ̂ ¼ 0.58, 0.65
have been taken for our estimations and analyses. The
points associated with these values have been plotted in
the graph, from which one can appreciate that the corre-
sponding lower limits for the heavy neutrino mass are
mN ¼ 650 GeV and mN ¼ 700 GeV, respectively. We
notice that both values ρ̂ ¼ 0.58, 0.65 are well suited forffiffiffi
s

p ¼ 800 GeV, because a subset of the corresponding
allowed heavy neutrino masses yields some of the largest
contributions to the AC jΔκj.
Another depiction of the contributions jΔκj is provided

by Fig. 3. The upper panel of this figure displays plots of
jΔκj as a function on the heavy neutrino mass, for which

FIG. 2. One-loopAC contribution jΔκj fromMajorana neutrinos
in the ðmN; ρ̂Þ plane, plotted in base-10 logarithmic scale. The solid
curve represents the boundary for the region situated in the upper-
right sector of the graph, where the NP jΔκj contribution could be
sensed by ILC [39]. Points ðmN; ρ̂Þ, representing upper bounds for
ρ̂ and corresponding lower bounds formN, have been included, in
accordance with the CMS analysis of Ref. [104].

=

=

=

=

=

=

=

=

FIG. 3. One-loop AC contribution jΔκj, in base-10 logarithmic
scale, from virtual Majorana neutrinos. Upper graph: log10fjΔκjg
as a function on the heavy neutrino mass mN , for fixed

ffiffiffi
s

p
and ρ̂.

Lower graph: log10fjΔκjg as a function on the CME
ffiffiffi
s

p
, for fixed

mN and ρ̂ ¼ 0.65. Both graphs include two horizontal lines,
with the upper one corresponding to expected ILC sensitivity atffiffiffi
s

p ¼ 500 GeV and the lower one representing ILC sensitivity
at

ffiffiffi
s

p ¼ 800 GeV.
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mN values lying within 10 GeV ≤ mN ≤ 1500 GeV have
been considered. These curves have also been carried out in
base-10 logarithmic scale. Two regions in the graph, which
are bounded from below by horizontal solid lines corre-
sponding to jΔκj ¼ 3.20 × 10−4 and jΔκj ¼ 1.90 × 10−4,
represent the expected experimental sensitivity of ILC at
500 GeV (darkest region) and 800 GeV (lightest region),
respectively, as estimated in Ref. [39]. A vertical dashed
line, at mN ¼ 700 GeV, displays the minimum heavy
neutrino mass value, in accordance with our picks for
the parameter ρ̂ and the results of Ref. [104]. Four curves
have been plotted, with each of them corresponding to
the choices ρ̂ ¼ 0.58, 0.65 and

ffiffiffi
s

p ¼ 500; 800 GeV, in
the parameter space ðρ̂; ffiffiffi

s
p Þ. Around mN ¼ 700 GeV, the

long-dashed and the solid plots, both of them defined at the
CME value

ffiffiffi
s

p ¼ 500 GeV, barely fall into the expected
sensitivity region of ILC corresponding to such a CME.
The curves given by

ffiffiffi
s

p ¼ 800 GeV, which are the dot-
dashed and the dotted curves, fall within the ILC sen-
sitivity capabilities for the heavy neutrino mass range
700 GeV ≤ mN ≲ 1200 GeV. In fact, both curves reach
corresponding local maxima inside the ILC-sensitivity
region at

ffiffiffi
s

p ¼ 800 GeV, near the heavy neutrino mass
value mN ¼ 800 GeV. Therefore, the observation of
this effect would be plausible. The lower panel of Fig. 3
shows the behavior of jΔκj, in base-10 logarithmic scale,
as a function on the CME

ffiffiffi
s

p
, within the range 0 ≤ffiffiffi

s
p

≤ 1000 GeV. To carry out these plots, the value ρ̂ ¼
0.65 has been utilized. Furthermore, the three plots dis-
played in this graph are distinguished by the following
heavy neutrino mass values: mN ¼ 700 GeV, from which
the dotted curve follows; mN ¼ 1000 GeV, yielding the
solid plot; and the dot-dashed curve, given by mN ¼
1200 GeV. Just as in the previous graph, the sensitivity
regions for ILC at

ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼ 800 GeV,
respectively bounded from below by the upper horizontal
line and the lower horizontal line, have been included. This
graph involves three vertical lines, one of which lies atffiffiffi
s

p ¼ 2mW , thus representing the threshold for W-boson
pair production. The other two vertical lines correspond to
the CMEs

ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼ 800 GeV. It can be
appreciated, from this graph, that ILC sensitivity is slightly
reached at

ffiffiffi
s

p ¼ 500 GeV by the plot corresponding to
mN ¼ 700 GeV, whereas a measurement at a CME offfiffiffi
s

p ¼ 800 GeV is more likely to be attainable, since the
three plots reside within the ILC sensitivity region. Indeed
notice, in this context, that the lowest allowed heavy
neutrino mass mN ¼ 700 GeV would be optimal in hope
for a signal. The anomaly Δκ receives contributions due to
both light and heavy virtual neutrinos, which is illustrated
by Fig. 4, where we show a graph of log10fjΔκjg, as a
function on the heavy neutrino massmN , in GeVunits, with
10 GeV ≤ mN ≤ 1500 GeV. The horizontal solid line,
which bounds the colored region from below, represents
the expected sensitivity achievable by ILC at a CME of

800 GeV, whereas the vertical dashed line indicates the
minimum mN value, at 700 GeV. Three plots have been
included in this graph, all of them carried out by taking
ρ̂ ¼ 0.65 and a CME of

ffiffiffi
s

p ¼ 800 GeV. For starters,
the horizontal short-dashed line represents the contribu-
tions exclusively associated to virtual light neutrinos.
Meanwhile, the dot-dashed curve depicts the contribu-
tions produced by diagrams solely involving heavy
neutrino virtual lines. The third and last plot, which is
solid, comes from contributing diagrams in which both
heavy and light virtual neutrinos participate, through
ZνjNk vertices. With this in mind, note that, among these
three contributions, the dominant effect, for most of the
heavy neutrino mass values within the mN range under
consideration, is produced by the diagrams comprising
heavy and light neutrino virtual lines. Such a contribution
turns out to be larger than the smallest contribution,
corresponding to virtual light neutrinos, by up to ∼2
orders of magnitude, while being not so far from the
contributions from diagrams with heavy neutrinos only.
Therefore, an observation of this effect should be under-
stood as linked to NP heavy neutrinos.
Aiming at discussing the NP CP-preserving ΔQ contri-

bution, we have carried out the graph shown in Fig. 5, in
which curves of jΔQj, as determined by the heavy neutrino
mass mN , have been executed, in base-10 logarithmic scale.
The mass range which we considered is 10 GeV ⩽
mN ⩽ 1500 GeV, with the vertical dotted line, at mN ¼
700 GeV, displaying the minimum allowed mass of heavy
neutrino. All these curves, performed by usage of

ffiffiffi
s

p ¼
500; 800 GeV and ρ̂ ¼ 0.58, 0.65, arewell beyond the reach
of the estimated sensitivity for ILC, by about one order of
magnitude, so the corresponding ILC sensitivity regions
have not been included in the graph.

FIG. 4. One-loop AC contribution jΔκj, in base-10 logarithmic
scale, from Feynman diagrams involving either light neutrinos
(dotted curve), heavy neutrinos (dot-dashed curve), or both (solid
curve). The contribution log10fjΔκjg is displayed as a function on
the heavy neutrino mass mN , for

ffiffiffi
s

p ¼ 800 GeV and ρ̂ ¼ 0.65.
The graph includes a horizontal line, which corresponds to
expected ILC sensitivity at

ffiffiffi
s

p ¼ 800 GeV.
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B. CP-odd contributions

Next we address those contributions from Majorana
neutrinos toWWZ in which CP symmetry is not preserved,
where only Δκ̃ remains. The identification and exploration
of sources of CP violation is nowadays quite relevant
indeed, since its occurrence is a necessary condition to
explain the matter-antimatter asymmetry [125]. The only
place in the SM where this phenomenon is generated is the
complex phase in the Kobayashi–Maskawa mixing matrix
[126], located in the quark sector. In this sense, the CP
violation is a well-motivated means to look for NP, beyond
the SM. While the SM has been found to lack CP-odd
ACs Δκ̃SM and ΔQ̃SM at the one-loop level, NP models
producing such effects exist. An instance of this is the
investigation developed in Ref. [127], whose authors
profited from a CP-violation phase lying within mass
matrices for neutralinos and charginos, which yields

CP-violating interactions of the W and Z bosons with
supersymmetric particles. According to that work, CP-odd
contributions to WWZ anomalous couplings as large as
10−3 might be generated. On the other hand, Ref. [128] has
pointed out that the assumption of NP extra quarks, in the
context of the vectorlike quark model, introduces new
sources of CP nonconservation, thus being able to generate
CP-odd contributions to WWZ anomalies of order 10−5.
The authors of Ref. [91] explored the CP-odd contributions
to WWZ from Majorana neutrinos in a framework defined
by the sequential introduction, to the SM, of a fourth lepton
family. Contributions were found to be ∼10−3. Technicolor
theories were the framework considered by the authors of
Ref. [129] to explore BSM contributions to theCP-odd part
of the WWZ vertex.
Following the structure of the general expression given

in Eq. (17), we identify a coefficient Δκ̃ð1Þαk which is both
mass and s independent, and we change its notation as

Δκ̃ð1Þαk → Ω̃. Furthermore, we found that Δκ̃ð2Þαkj ¼ g̃αkj þ J̃ ,

where J̃ also does not depend either on masses or on s.
The expressions of Ω̃ and J̃ are

Ω̃ ¼ ig2ð2s2W − 1Þ
ð8πcWÞ2

; J̃ ¼ 2ig2

ð16πcWÞ2
: ð27Þ

Regarding the contributing coefficient g̃αkj, we find it worth
poninting out that it is antisymmetric with respect to
its neutrino indices: g̃αkj ¼ −g̃αjk. About the remaining

contribution Δκ̃ð3Þαkj, an alike antisymmetry property,

Δκ̃ð3Þαkj ¼ −Δκ̃ð3Þαjk, holds as well. The explicit expressions

of the factors g̃αkj and Δκ̃ð3Þαkj are

g̃αkj ¼
ig2

ð16πmWscWÞ2
�
−2m2

Wsðm2
α −m2

WÞðm2
nk −m2

njÞC
ðnj;α;nkÞ
0

þ 2m2
Wsðm2

α −m2
WÞðΛðα;nkÞ

1 − Λðα;njÞ
1 Þ − 2m2

Wsðm2
nk −m2

njÞΛ
ðnk;njÞ
2

þ sðm2
α −m2

WÞ
�
−ðm2

α −m2
nk −m2

WÞ log
�
m2

α

m2
nk

�
þ ðm2

α −m2
nj −m2

WÞ log
�
m2

α

m2
nj

��
þm2

W log

�
m2

nk

m2
nj

�
ððm2

nk −m2
njÞ2 − sðm2

nk þm2
njÞÞ − 2m2

Wsðm2
nk −m2

njÞ
�
; ð28Þ

Δκ̃ð3Þαkj ¼
ig2mnkmnj

sð16πmWcWÞ2
�
−2m2

Wðm2
nk −m2

njÞC
ðnj;α;nkÞ
0 þ 2m2

WðΛðα;nkÞ
1 − Λðα;njÞ

1 Þ

− ðm2
α −m2

nk −m2
WÞ log

�
m2

α

m2
nk

�
þ ðm2

α −m2
nj −m2

WÞ log
�
m2

α

m2
nj

��
: ð29Þ

The definitions of C
ðnj;α;nkÞ
0 , Λðα;jÞ

1 , and Λðnk;njÞ
2 , all of them involved in these two equations, are provided in Appendix C.

Once the degenerate spectra for light- and heavy neutrino masses are implemented, the factorsΔκ̃ð3Þαkj split intoΔκ̃
ð3Þ
ανν,Δκ̃ð3ÞανN ,

FIG. 5. One-loop AC contribution jΔQj, in base-10 logarithmic
scale, from virtual Majorana neutrinos. We show log10fjΔQjg as
a function on the heavy neutrino mass mN , for fixed

ffiffiffi
s

p
and ρ̂.
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Δκ̃ð3ÞαNν, andΔκ̃
ð3Þ
αNN , whereas, similarly, g̃αkj unfolds into g̃ανν, g̃ανN , g̃αNν, and g̃αNN . However, the antisymmetry properties of

these quantities imply that the coefficients Δκ̃ð3Þανν, Δκ̃ð3ÞαNN , g̃ανν, and g̃αNN vanish. Meanwhile, the relationsΔκ̃ð3ÞανN ¼ −Δκ̃ð3ÞαNν

and g̃ανN ¼ −g̃αNν are fulfilled. A further cancellation eliminates all the dependence on g̃ανN , so all what is left from Δκ̃ð2Þαkj

contributions resides in J̃ , thus being mass independent. With all this in mind, we write down the totalCP-odd contribution
as Δκ̃ ¼ Δκ̃con þ Δκ̃par, where

Δκ̃con ¼ 3ðΩ̃þ J̃ Þ; ð30Þ

Δκ̃par ¼ ρ̂2trfð13 þ ρ̂2XX†Þ−1
2ðXð13 þ ρ̂2XTX�Þ−1XT − H:c:Þð13 þ ρ̂2XX†Þ−1

2U†
νΔκ̃ð3ÞνNUνg; ð31Þ

with κ̃ð3ÞνN a diagonal 3 × 3 matrix with entries ðκ̃ð3ÞνNÞαβ ¼
δαβκ̃

ð3Þ
βνN . The term Δκ̃con is, according to Eq. (27), constant

with respect to all masses and s. Moreover, Δκ̃con does not
depend on ρ̂. By contrast, the term Δκ̃par bears dependence
on these parameters, which is partly encoded in the matrix

Δκ̃ð3ÞνN , and also depends on the parameters defining the
matrix X. If we implement the X-matrix texture given in
Eq. (21), the total contribution Δκ̃ reduces to

Δκ̃ ¼ 3ðΩ̃þ J̃ Þ þ 2iρ̂2 sin 2φ
ð1þ ρ̂2Þ2

X
α

Δκ̃ð3ÞανN: ð32Þ

Notice that the presence of a nonzero phase φ is a necessary
condition for the mass- and s-dependent term Δκ̃par to
remain. This term has, however, a marginal impact, as it is
smaller than the constant term Δκ̃con by more than ten
orders of magnitude. Such a noticeable difference comes

from the contributing factors Δκ̃ð3ÞανN , which are quite
suppressed. Therefore, the CP-odd AC is, in practical
terms, constant: Δκ̃ ≈ Δκ̃con. With this in mind, we simply
estimate the CP-odd contribution to be

jΔκ̃j ¼ 1.19 × 10−3: ð33Þ

Recall that the ILC Technical Design Report has set the
expectations on the ILC sensitivity to CP-odd AC. The
corresponding estimations are displayed in Table I, from
which we conclude that, while a relatively large CP-odd
contribution Δκ̃ is generated, it would remain out of ILC
sensitivity.

IV. SUMMARY

The present work has been carried out aiming at an
estimation of effects on the WWZ vertex from neutrinos
beyond the Standard Model, assumed to be described
by Majorana fields. While the seesaw neutrino-mass-
generating mechanism provides a nice explanation of tiny
neutrino masses, which in this approach are determined by
some high-energy scale connecting such masses with the
large masses of a set of hypothetical heavy neutral leptons,
current upper bounds on light neutrino masses, which lie in

the sub-eV range, dramatically push the high-energy scale
towards grand-unification sized energy scales, thus avoid-
ing direct production of new-physics particles and also
largely suppressing contributions to Standard Model
observables. For the present investigation, we have con-
sidered a variant of the seesaw mechanism in which the
strong link defined, in the framework of the ordinary
seesaw, among light- and heavy neutrino masses is weak-
ened by leaving the light neutrinos massless at the tree
level, then endowing them with radiatively generated
masses. This path allows for reasonably large values of
heavy neutrino masses. In this context, we addressed the
one-loop contributions to the WWZ vertex from virtual
Majorana neutrinos, both light and heavy, running through
loop lines in Feynman diagrams. Since no new-physics
contributing one-loop diagrams with virtual gauge-boson
lines are induced by this model, the calculation is gauge
independent, even though the vertex has been calculated by
taking the Z-boson external line to be off the mass shell.
The reason for the assumed off shellness of the vertex is
that our study is carried out in the context of some future
electron-positron collider, perhaps the International Linear
Collider, able to produce W-boson pairs, a process which
receives contributions from an s-channel diagram involving
the WWZ coupling, sensitive to the center-of-mass energy
of the collision. In the presence of Majorana neutrinos, a
larger number of contributing diagrams, in comparison to
what we would expect from the Dirac case, is generated.
These extra contributions were found to coincide with those
characterizing the Dirac case. The calculation was per-
formed by following the tensor-reduction method, by
Passarino and Veltman. We focused in the anomaly con-
tributions Δκ, ΔQ, Δκ̃, and ΔQ̃, of which the first two are
associated to new physics preserving CP symmetry,
whereas the remaining two are linked to CP violation, a
phenomenon which plays a role in the explanation of
baryon asymmetry. After appropriate implementation of
Schouten identities, we concluded that, at one loop, the
CP-odd contribution ΔQ̃ vanishes exactly, while Δκ̃
remained nonzero. All the nonvanishing contributions were
found to be ultraviolet finite. The neutrino-mass model
used for our phenomenological calculation requires the set
of heavy neutrino masses to be quasidegenerate, so we took
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all of such masses to coincide with each other. Then, our
analytical expressions were given in terms of three param-
eters, namely, the mass of the heavy neutrinos, the center-
of-mass energy of the collision, and a parameter, ρ̂, linked
to light-heavy neutrino mixing. Based on previous papers
on the matter, we considered the values ρ̂ ¼ 0.58, 0.65 for
our estimations. Note that such choices establish a lower
limit ∼700 GeV, on the heavy neutrino mass, in accor-
dance with results by CMS Collaboration, at the CERN.
Our estimations for the CP-even anomalies Δκ and ΔQ
were then presented and discussed. Since ΔQ turned out to
be well below the expected sensitivity of the International
Linear Collider, we centered our attention in Δκ. We found
that this new-physics contribution might be within future
experimental sensitivity for an eþe− collider operating at a
CME of 800 GeV, and that any measurement would be due
to the effects from virtual heavy neutrinos. Contributions
as large as ∼10−3 were estimated. Then we turned our
attention to the CP-odd contribution Δκ̃, which is absent
in the SM, where it can be generated only since the three-
loop level. Our estimations yield a contribution which
amounts to ∼10−3. This contribution lies around one
order of magnitude beyond expected sensitivity for the
International Linear Collider. For the sake of completeness,
we also report the following estimations for other ACs,
present in the WWZ vertex function given by Eqs. (2)
and (3): jf1j ¼ 7.68 × 10−3, jf̃1j ¼ 1.69 × 10−13, and
jf̃2j ¼ 1.16 × 10−8. These values have been determined
by taking

ffiffiffi
s

p ¼ 800 GeV, mN ¼ 700 GeV, and ρ̂ ¼ 0.65.
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APPENDIX A: THE WWZ PARAMETRIZATION

Under the assumption of Uð1Þe invariance, the WWZ
effective Lagrangian LWWZ

eff ¼ Leven
WWZ þ Lodd

WWZ is con-
structed. Here, Leven

WWZ, comprised exclusively by CP-
invariant terms, and Lodd

WWZ, not abiding by symmetry
with respect to such a discrete transformation, have the
following explicit expressions [45,130]:

Leven
WWZ ¼ −igZ

�
g1ðWþ

μνW−μ −W−
μνWþμÞZν

þ κWþ
μ W−

ν Zμν þ λ

m2
W
Wþ

μνW−ν
ρZρμ

− ig2ϵρμλνZρðWþ
ν ∂λW−

μ −W−
μ ∂λWþ

ν Þ
�
; ðA1Þ

Lodd
WWZ ¼ −igZ

�
κ̃Wþ

μ W−
ν Z̃μν þ λ̃

m2
W
Wþ

μνW−ν
ρZ̃ρμ

− ig̃1Wþ
μ W−

ν ð∂μZν þ ∂
νZμÞ

�
: ðA2Þ

For these equations to be written down, the Lorentz two-
tensors Wþ

μν ¼ ∂μWþ
ν − ∂νWþ

μ , W−
μν ¼ ∂μW−

ν − ∂νW−
μ , and

Zμν ¼ ∂μZν − ∂νZμ have been defined. These expressions
also involve the dual tensor Z̃μν ¼ 1

2
ϵμναβZαβ. The effective-

Lagrangian terms of Eqs. (A1) and (A2) yield, in accor-
dance with the conventions displayed in Fig. 1, the vertex
function ΓWWZ

σρμ ¼ Γeven
σρμ þ Γodd

σρμ, given by Eqs. (2) and (3),
which are displayed above, in the Introduction. For the
connection among the effective-Lagrangian terms and
the vertex functions to consistently happen, the relations
Δκ ¼ −g1 þ κ þ λ, ΔQ ¼ −2λ, g2 ¼ −f1, Δκ̃ ¼ κ̃ þ
m2

W−2q2

m2
W

λ̃, ΔQ̃ ¼ −2λ̃, 2eg1 ¼ f̃1, and f̃2 ¼ − 4λ̃
m2

W
, must hold.

APPENDIX B: THE NEUTRINO MODEL

Throughout the present appendix, we discuss the
neutrino-mass model given in Ref. [25], which is the
framework for our phenomenological calculation.
Assume that a theory beyond the Standard Model (BSM)

is subjected to a couple of stages of spontaneous symmetry
breaking, first at some high-energy scale Λ and then at
v ¼ 246 GeV, after which the corresponding Lagrangian,
gauge invariant under Uð1Þe, is written as

LBSM ¼ Lν
mass þ LWνl þ LZνν þ Lhνν þ � � � : ðB1Þ

The neutrino-mass Lagrangian, Lν
mass, given by

Lν
mass ¼ −

X3
j¼1

X3
k¼1

ðν0j;LðmDÞjkν0k;R þ 1

2
ν0cj;RðmMÞjkν0k;RÞ

þ H:c:; ðB2Þ

comprises three left-handed neutrino fields ν0j;L and three
right-handed neutrino fields ν0j;R, together with the charge-
conjugated spinor fields ν0cj;R. The 3 × 3 lepton-number-
violating matrix mM is assumed to originate from the
symmetry breaking at Λ, whereas the Dirac-like matrixmD,
3 × 3-sized, is assumed to come from electroweak sym-
metry breaking. Then, Lν

mass is rearranged as

Lν
mass ¼ −

1

2
ðfL FLÞM

�
fR
FR

�
þ H:c:; ðB3Þ

where ðfLÞj ¼ ν0j;L, ðFLÞj ¼ ν0cj;R, ðfRÞj ¼ ν0cj;L, and
ðFRÞj ¼ ν0j;R. Moreover,
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M ¼
�

0 mD

mT
D mM

�
: ðB4Þ

Since mM is symmetric, the property MT ¼ M holds,
which guarantees the existence of a diagonalization unitary
matrix [131]

U ¼
�
U11 U12

U21 U22

�
; ðB5Þ

here written in terms of 3 × 3 block matrices Ujk. In this
context, the diagonalization operates as

UTMU ¼
�
Mν 0

0 MN

�
; ðB6Þ

where Mν and MN are 3 × 3 diagonal real matrices, whose
eigenvalues are, respectively, the three-level light- and
heavy neutrino masses. The diagonalization procedure
induces a change of basis, which defines three massless
neutrino fields νj and three heavy neutrino fields Nj, all of
them fulfilling the Majorana condition. In Ref. [25], the
conditions ðMUÞjk ¼ 0, for j ¼ 1, 2, 3, 4, 5, 6, are
introduced as sufficient and necessary for the kth light
neutrino to be massless at tree level. In this manner, the
mass terms for light neutrinos are eliminated from Lν

mass,
though keep in mind that such assumptions do not mess
with heavy neutrino masses, which remain nonzero at tree
level. By this mean, the tie originally defined by the seesaw
mechanism to link the masses of light neutrinos to the
masses of their heavy counterparts has been broken.
Light neutrinos, known to be massive in accordance
with the occurrence of neutrino oscillations, do get mas-
sive, but their masses follow from radiative corrections.
Reference [25] provides a calculation of one-loop masses
of light neutrinos, from which a remarkable statement is
made: a new link between light- and heavy neutrino masses
is established, according to which the former are tiny
enough as long as the heavy neutrino mass spectrum is
quasidegenerate.
From the block-matrix form of the unitary diagonaliza-

tion matrix U, as given in Eq. (B5), the following quantities
are defined:

Bανj ¼
X3
k¼1

Vl
αkðU�

11Þkj; ðB7Þ

BαNj
¼
X3
k¼1

Vl
αkðU�

12Þkj: ðB8Þ

Here, α ¼ e, μ, τ, that is, this Greek index labels the flavors
of the SM leptons. The 3 × 3 matrix Vl is analogous to the
Kobayashi–Maskawa quark-mixing matrix [126], but for

the lepton sector. The set of quantities Bανj and BαNj
, just

defined in Eqs. (B7) and (B8), respectively define the 3 × 3
matrices Bν and BN , which can be accommodated as matrix
blocks into the 3 × 6 matrix

B ¼ ðBν BNÞ: ðB9Þ
The entries of B are generically denoted as Bαj, in which
case the relations

Bαj ¼
�
Bανk ; if j ¼ 1; 2; 3;

BαNk
; if j ¼ 4; 5; 6;

ðB10Þ

with νk ¼ ν1; ν2; ν3 and Nk ¼ N1; N2; N3, hold. The matrix
B satisfies a sort of one-sided unitarity property:

BB† ¼ 13; or
X6
j¼1

BαjB�
βj ¼ δαβ; ðB11Þ

B†B ¼ C; or
X

α¼e;μ;τ

B�
αjBαk ¼ Cjk: ðB12Þ

In these equations, 13 has been used to denote the 3 × 3
identity matrix. Furthermore, the quantities Cjk are the
entries of a 6 × 6 Hermitian matrix C, which we express in
terms of 3 × 3 matrix blocks as

C ¼
�
Cνν CνN
CNν CNN

�
: ðB13Þ

The entries of C are related to those of these matrix blocks as

Cjk ¼

8>>><>>>:
Cνiνl ; if j ¼ 1; 2; 3 and k ¼ 1; 2; 3;

CνiNl
; if j ¼ 1; 2; 3 and k ¼ 4; 5; 6;

CNiνl ; if j ¼ 4; 5; 6 and k ¼ 1; 2; 3;

CNiNl
; if j ¼ 4; 5; 6 and k ¼ 4; 5; 6;

ðB14Þ

where νi; νl ¼ ν1; ν2; ν3 andNi;Nl ¼ N1;N2;N3.Moreover,
the entries of the matrix blocks are defined, in terms of the
unitary diagonalization matrix given in Eq. (B5), as

Cνiνl ¼
X3
j¼1

ðU11ÞjiðU�
11Þjl; ðB15Þ

CνiNl
¼
X3
j¼1

ðU11ÞjiðU�
12Þjl; ðB16Þ

CNiνl ¼
X3
j¼1

ðU12ÞjiðU�
11Þjl; ðB17Þ

CNiNl
¼
X3
j¼1

ðU12ÞjiðU�
12Þjl: ðB18Þ
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The matrix C fulfills

CC† ¼ C; or
X6
i¼1

CjiC�ki ¼ Cjk: ðB19Þ

Returning to the Lagrangian LBSM, as expressed in
Eq. (B1), the explicit expressions of the Lagrangian terms
LWνl, LZνν, and Lhνν read

LWνl ¼
X

α¼e;μ;τ

X3
j¼1

gffiffiffi
2

p ðBανjW
−
ρ lαγρPLνj

þ BαNj
W−

ρ lαγρPLNjÞ þ H:c:; ðB20Þ

LZνν ¼
X3
k¼1

X3
j¼1

g
4cW

ðZρνkγ
ρðiCImνkνj − CReνkνjγ5Þνj

þ ðZρνkγ
ρðiCImνkNj

− CReνkNj
γ5ÞNj þ H:c:Þ

þ ZρNkγ
ρðiCImNkNj

− CReNkNj
γ5ÞNjÞ; ðB21Þ

Lhνν ¼
X3
k¼1

X3
j¼1

g
4mW

ðhνkððmνk þmνjÞCReνkνj

− iγ5ðmνk −mνjÞCImνkνjÞνjþhνkððmνk þmNj
ÞCReνkNj

− iγ5ðmνk −mNj
ÞCImνkNj

ÞNjþhNkððmNk
þmNj

ÞCReNkNj

− iγ5ðmNk
−mNj

ÞCImNkNj
ÞNjÞ: ðB22Þ

In these equations, g is the SUð2ÞL coupling constant, cW is
a short notation for cos θW, and PL ¼ 1

2
ð14 − γ5Þ is the left

chiral projection matrix. Moreover, Wρ denotes the SM
W-boson field, whereas Zρ does it for the SM Z-boson
field, h is the Higgs field, and lα stands for the SM α-flavor
charged lepton. Towrite down these couplings, the matrix C
has been expressed as C ¼ CRe þ iCIm, with CRe ¼ RefCg
and CIm ¼ ImfCg, which also applies for the matrix blocks
comprising C, shown in Eq. (B13).
The 6 × 6 unitary matrix U, which diagonalizes the

mass matrix M as displayed in Eq. (B6), can be block-
parametrized, in terms of some 3 × 3 complex matrix ξ, as
[132,133]

U ¼
 

ð13 þ ξ�ξTÞ−1
2 ξ�ð13 þ ξTξ�Þ−1

2

−ξTð13 þ ξ�ξTÞ−1
2 ð13 þ ξTξ�Þ−1

2

!
: ðB23Þ

Using this parametrization, thematricesB andC, respectively
given in Eqs. (B9) and (B13), can be written in terms of ξ:

B ¼ Vlð13 þ ξξ†Þ−1
2 Þ ðVlξð13 þ ξ†ξÞ−1

2 ; ðB24Þ

C ¼
� ð13 þ ξξ†Þ−1 ð13 þ ξξ†Þ−1ξ
ξ†ð13 þ ξξ†Þ−1 ξ†ð13 þ ξξ†Þ−1ξ

�
: ðB25Þ

If the assumption that the moduli of all the ξ entries, jξjkj, are
small is taken, the matrix ξ reduces to

ξ ¼ mDm−1
M : ðB26Þ

Moreover, while due to the aforeimposed condition for tree-
level light neutrino mass cancellation we have Mν ¼ 0, the
diagonal heavy neutrino mass matrix is given by MN ≃
mMð13 þ 1

2
m−1

M ðξ†mD þmT
Dξ

�ÞÞ [25].

APPENDIX C: THE ΔζðaÞ FACTORS

In this appendix we provide explicit expressions of
factors ΔζðaÞ, which determine the anomaly CP-even
contributions Δκ and ΔQ, in accordance with Eqs. (25)
and (26). Note that all light neutrino masses have been
taken to be equal to each other, somνj ¼ mν for j ¼ 1, 2, 3,
whereas, similarly, all the masses of heavy neutrinos have
been taken the same, that is, mNj

¼ mN for j ¼ 1, 2, 3. In
this context, we generically label light- and heavy-neutrinos
stuff by the sole index n, thus meaning that, for instance,
mn ¼ mν; mN . Corresponding to any contribution Δζð2Þ or
Δζð3Þ we have, for any fixed lepton flavor α, three different
factors: ΔζðaÞανν, ΔζðaÞανN , and Δζ

ðaÞ
αNN . Keep in mind that ΔζðaÞανν

and ΔζðaÞαNN share the same structure, only differing in their
neutrino-mass dependence, which is given by either mν or

mN . Among the three factors, on the other hand, ΔζðaÞανN is
the one with the most general structure, which indeed

particularizes to that of ΔζðaÞανν or ΔζðaÞαNN if we take
mN ¼ mν. Also let us comment that the explicit expressions

of ΔζðaÞανN , for both Δκ and ΔQ, are very large, so we opted
for not showing them. Instead, we considered it more

reasonable to solely display the definitions of ΔζðaÞαnn. These
expressions involve the Passarino–Veltman three-point
scalar function C0, defined in Eq. (15), as well as the disc
function [80]

Λðp2;m2
0;m

2
1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2;m2

0;m
2
1Þ

p
p2

× log

�
2m0m1

−p2 þm2
0 þm2

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2;m2

0;m
2
1Þ

p þ iϵ

�
; ðC1Þ

with λða; b; cÞ ¼ a2 þ b2 þ c2 the Källen function. For the
sake of succinctness, we use the following notation:

ΛðA;BÞ
1 ¼ Λðm2

W;m
2
A;m

2
BÞ; ðC2Þ

ΛðAÞ
2 ¼ Λðs;m2

A;m
2
AÞ; ðC3Þ

CðA;B;CÞ
0 ¼ C0ðm2

W;m
2
W; s;m

2
A;m

2
B;m

2
CÞ: ðC4Þ

Then, we write down the ΔζðaÞ factors as
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Δκð1Þαn ¼ g2

Dð1Þ

�
ηð1Þ1;αn þ ηð1Þ2;αn log

�
m2

α

m2
n

�
þ ηð1Þ3;αnΛ

ðα;nÞ
1

þ ηð1Þ4;αnΛ
ðαÞ
2 þ ηð1Þ5;αnC

ðα;n;αÞ
0

�
; ðC5Þ

Δκð2Þαnn ¼ g2

Dð2Þ

�
ηð2Þ1;αn þ ηð2Þ2;αn log

�
m2

α

m2
n

�
þ ηð2Þ3;αnΛ

ðα;nÞ
1

þ ηð2Þ4;αnΛ
ðnÞ
2 þ ηð2Þ5;αnC

ðn;α;nÞ
0

�
; ðC6Þ

Δκð3Þαnn ¼ g2

Dð3Þ

�
ηð3Þ1;αn log

�
m2

α

m2
n

�
þ ηð3Þ2;αnΛ

ðα;nÞ
1

þ ηð3Þ3;αnΛ
ðnÞ
2 þ ηð3Þ4;αnC

ðn;α;nÞ
0

�
; ðC7Þ

ΔQð1Þ
αn ¼ g2

Dð1Þ

�
σð1Þ1;αn þ σð1Þ2;αn log

�
m2

α

m2
n

�
þ σð1Þ3;αnΛ

ðα;nÞ
1

þ σð1Þ4;αnΛ
ðαÞ
2 þ σð1Þ5;αnC

ðα;n;αÞ
0

�
; ðC8Þ

ΔQð2Þ
αnn ¼ g2

D̄ð2Þ

�
σð2Þ1;αn þ σð2Þ2;αn log

�
m2

α

m2
n

�
þ σð2Þ3;αnΛ

ðα;nÞ
1

þ σð2Þ4;αnΛ
ðnÞ
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; ðC9Þ

where

Dð1Þ ¼ 3ð8πcWÞ2ð4m2
W − sÞ3; ðC10Þ

Dð2Þ ¼ 3ð16πsmWcWÞ2ð4m2
W − sÞ3; ðC11Þ

Dð3Þ ¼ ð16πmWcWÞ2ð4m2
W − sÞs; ðC12Þ

D̄ð1Þ ¼ 3ð4πcWÞ2ð4m2
W − sÞ3s

2s2W − 1
; ðC13Þ

D̄ð2Þ ¼ 3ð8πcWÞ2ðsð4m2
W − sÞÞ3: ðC14Þ

Furthermore, the coefficients ηðaÞ and σðaÞ, in terms of
which these contributions have been written, are given by

ηð1Þ1;αn ¼
2

m2
W
ð2s2W − 1Þð4m2

W − sÞð8m6
W þ 3sm4
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nm2
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n
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