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We study the global and local topological properties of multilepton patterns reconstructed at the detectors.
We investigate the sensitivity of Forman Ricci curvature distributions and persistent homology features to
kinematic cuts, integrated luminosity, and scales of maximum filtration. We find that these topological
properties are efficient enough in discriminating the beyond Standard Model (BSM) scenarios from the SM
background, when the BSM scenarios possess a massive invisible particle. We also find that the topological
properties exhibit a scaling behavior with integrated luminosity. This exploratory study suggests that the
topological features can potentially supplement the traditional cut-and-count analyses in searchof newphysics.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has proven
highly effective in explaining the behavior of elementary
particles. Identifying the Higgs boson, a neutral scalar
particle, marked a significant achievement for the SM [1,2].
Despite its success, the SM needs to address several crucial
unanswered questions. Consequently, searching for models
beyond the SM has prompted various upgrades to the Large
Hadron Collider (LHC) and the emergence of other future
colliders.
The exploration of the beyond the StandardModel (BSM)

phenomenology involves constraining the parameter space
of new physics models. This is achieved through collider
simulations at the parton, hadron, and detector levels,
incorporating signal and background analyses. Usually, it
is accepted that collider events are independent and, to a
great extent, identically distributed as well. However, the
reconstructed objects at the detector might preferentially
populate some portion of the phase space depending on the
available phase space for the decaying heavy BSMparticles.
Thus, physicists have introduced a range of kinematic
variables [3] for this purpose, relying on kinematic cuts
applied on an event-by-event basis. The traditional cut-and-
count method has been immensely successful in excluding
several BSM scenarios. However, the intrinsic geometric
structure of the phase space of the reconstructed particles
featuring higher-order topological properties might add to

ongoing searches at the colliders. These, coupled with
traditional approaches, can potentially draw stronger exclu-
sion limits even at low values of integrated luminosity.
In recent years, several efforts have been made to analyze

the global patterns of the collider observations using tech-
niques such as Voronoi and Delaunay tessellations [4–6],
network distance metrics [7], and machine learning based
classifications [7–15]. Recently, topological data analysis
(TDA) [16–26] is being increasingly used in the broader field
of data science for examining the intrinsic global properties
of the system. However, its utility in discriminating the BSM
signals from the SM background is not well understood.
TDA is a mathematical and computational approach that

applies tools from algebraic topology to analyze the
intrinsic topology of complex datasets. This allows for a
more robust understanding of the underlying space and
relationships within the dataset. As an alternative to tradi-
tional machine learning approaches, TDA is particularly
effective in studying the global properties and connectivity
of data points. It introduces concepts such as persistent
homology, which helps identify significant topological
features that persist across different scales. By representing
data as a topological space, TDA enables the extraction of
valuable information about clusters, voids, and other
topological structures that may not be apparent through
other analytical methods. In practical applications, TDA
has been useful in biology, neuroscience, machine learning,
and materials science. It offers a robust framework for
uncovering hidden patterns and structures in diverse data-
sets, providing insights that traditional methods might
overlook.
Since the traditional TDA technique uses unweighted

simplices, a great deal of information encoded in the global
geometry of the dataset is likely to be unrecoverable. By
assigning weights to simplices, TDA can distinguish
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between strong and weak connections, emphasizing essen-
tial features and filtering out noise. This enhances the
ability to extract meaningful information about the global
and local structures of the dataset.
We also explore another important topological property,

Ricci curvature of the simplicial complexes. Ricci curva-
ture, a fundamental concept in differential geometry and
physics, characterizes local manifold properties, such as the
volume of distance balls and geodesic divergence. In
general relativity, the Einstein field equations link space-
time geometry to matter distribution using the Ricci
curvature tensor. Ricci flow, integral to Perelman’s proof
of the Poincaré conjecture [27], further underscores its
significance. Discrete Ricci curvature forms [28], namely
Ollivier Ricci curvature (ORC) [29,30] and Forman Ricci
curvature (FRC) [31,32], extend the classical concept to
networks and simplicial complexes. ORC, based on
Wasserstein distance, captures clustering in network struc-
tures, while FRC, derived combinatorially, reveals geodesic
dispersal and topological information. Despite potential
dissimilarities, ORC and FRC exhibit high correlations in
complex networks. ORC proves effective for probabilistic
analyses, while FRC excels in understanding combinatorial
network properties. In this study, we explore the FRC
distributions.
Particle colliders likeLHCcollectmassive amounts of data

featuring various production and decay cascades of elemen-
tary particles. Physicists have studied the phenomenology
of several SM extensions, viz., supersymmetry [33–36]
and minimal universal extra dimension [37–39], two
Higgs doublet models [40,41], etc. to name a few. In a
recent exploratorywork [25], we have studied the topological
properties of the reconstructed objects using unweighted
persistent homology for a minimal extension of the SM by a
real singlet scalar [42–44].
In order to illustrate the usefulness of topological

patterns in distinguishing the BSM scenarios and the
SM background, we choose leptons from the resonant
production of light neutralino and chargino in the next-to-
minimal supersymmetric Standard Model (NMSSM). One
of the primary focuses of this study is to demonstrate how
the topological information behaves across different kin-
ematic cuts, scales of maximum filtration, and integrated
luminosity values. We discuss three topological features:
Forman Ricci curvature (FRC) distributions, persistent
entropy, and persistent amplitude for three benchmark
scenarios in the NMSSM. The discussion is quite generic
and can be extended to any collider observations. FRC
distributions capture the topological properties at a par-
ticular scale of filtration, and persistent homology studies it
on multiple scales.
The organization of the paper is as follows. In Sec. II, we

present some mathematical preliminaries of topological
data analysis. We give the basic framework of analysis in
Sec. III. We discuss the variation of the topological features

and signal-background classification accuracy with kin-
ematic cut selection and integrated luminosity in Sec. IV.
We conclude the discussion in Sec. V.

II. TOPOLOGICAL DATA ANALYSIS (TDA)

One of the prominent tools used for topological data
analysis is persistent homology. The foundational geo-
metric structure for studying persistent homology is
the simplicial complex. Simplicial complexes provide a
method for constructing topological spaces using funda-
mental combinatorial building blocks called simplices. It
simplifies the treatment of the continuous geometry of
topological spaces. Instead, it involves the more manage-
able tasks of combinatorics and counting. These elementary
building blocks, known as simplices and illustrated in
Fig. 1, are formed by taking the convex hull of independent
points. A k-dimensional simplex is generated by this
process, involving kþ 1 points. For instance, a 0-simplex
is a point, a 1-simplex is a line segment, a 2-simplex is a
filled triangle, and a 3-simplex is a filled tetrahedron. This
construction can be extended to higher-dimensional poly-
topes. In an n-dimensional simplex, the simplices with
dimensions k < n constitute its faces. Consequently, for a
2-simplex (triangle), its edges (1-simplex) serve as the
faces. Throughout this work, we have used the Vietoris-
Rips complex to study the topology. It constructs simplicial
complexes from point cloud data, connecting points within
a specified distance threshold, known as the filtration
parameter or filtration scale.

A. Persistent homology features

The k-th homology group, denoted as Hk, is the
quotient group, representing cycles modulo boundaries.
Mathematically, it is expressed as

Hk ¼
Zk

Bk
¼ kerð∂kÞ

imð∂kþ1Þ
ð1Þ

Here, HkðKÞ is the quotient vector space whose generators
are given by k-cycles that are not boundaries of any (kþ 1)-
simplices. The rank of HkðKÞ is referred to as the kth Betti
number, denoted as βkðKÞ. The Betti number βkðKÞ
signifies the number of k-dimensional holes in the sim-
plicial complex K that are not boundaries of any (kþ 1)-
simplices. For instance, β0ðKÞ represents the number of
connected components in K. It is important to note that

FIG. 1. Simplices (plural of simplex) are the combinatorial
building blocks of a simplicial complex. For illustration, 0-,1-,2-,
and 3-simplex are shown from left to right.
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Betti numbers βk define the Euler characteristic (χ), a
topological invariant of the simplicial complex, given by

χ ¼
Xn
k¼0

ð−1Þkβk ð2Þ

Another important measure is the entropy of the points
clustered in the so-called persistence diagram, also called
persistence entropy. The persistence diagram shows the
appearance (birth) and disappearance (death) of kth hole
as the filtration parameter changes. Let D ¼ fðbi; diÞg be
the set of all birth-death pairs associated with kth order
homology group in persistence diagram with di < ∞. The
kth order persistence entropy is given by

Spek ¼ SðDkÞ ¼ −
X
i

pi logðpiÞ; ð3Þ

where pi ¼ di−bi
LD

and LD ¼Pi ðdi − biÞ.
We also make use of a topological feature, persistent

amplitude defined on D, the set of persistent (birth,death)
pairs as a function

A∶D → R;

for which there exists a vectorization

Φ∶D → V;

with V, a normed space such that

AðxÞ ¼ kΦðxÞk

for all x∈D. We choose the Wasserstein metric to compute
distances between persistent diagrams and amplitude. The
choice of the Wasserstein metric is primarily motivated by
its central stability properties [45–47].

B. Forman Ricci curvature

Let α and ᾱ be k-dimensional simplices in the simplicial
complex K. If there exists a simplex β in K such that β > α
and β > ᾱ, α and ᾱ have a common co-face β and they are
termed as upper adjacent. Similarly, α and ᾱ are said to be
lower adjacent if they share a common face γ (a (k − 1)-
simplex), that is, γ < α and γ < ᾱ. If α and ᾱ are either
lower or upper adjacent, but not both, they are said to
be parallel. Then, Forman Ricci curvature (FRC) is given
by [31]

RkðαÞ ¼ NðUpper adjacent simplicesÞ
þ NðLower adjacent simplicesÞ
− NðParallel simplicesÞ ð4Þ

In case of weighted simplicial complexes with weights
w, RkðαÞ is given by

RkðαÞ ¼ wα

"X
β>α

wβ

wα
þ
X
γ<α

wγ

wα

#

− wα

X
ᾱ≠α

"X
β>α;ᾱ

ffiffiffiffiffiffiffiffiffiffiffi
wαwᾱ

p
wβ

−
X
γ<α;ᾱ

wγffiffiffiffiffiffiffiffiffiffiffi
wαwᾱ

p
#

ð5Þ

For an edge, Forman Ricci curvature reduces to

R1ðαÞ ¼ wα

 X
γ<α

wγ

wα
−
X
ᾱ≠α

X
γ<α;ᾱ

wγffiffiffiffiffiffiffiffiffiffiffi
wαwᾱ

p
!

ð6Þ

III. FRAMEWORK OF ANALYSIS

A. Z3 symmetric next-to-minimal supersymmetric
Standard Model (NMSSM)

We choose the next-to-minimal supersymmetric
Standard Model (NMSSM) to demonstrate the utility of
topological information in BSM searches. The NMSSM
framework incorporates an additional singlet superfield
denoted as Ŝ alongside the standard MSSM superfields.
In the widely studied Z3-symmetric variant of the NMSSM,
the linear and bilinear terms in Ŝ are dropped. Additionally,
the Z3 symmetry restricts the inclusion of explicit Higgsino
mass term (μ-term) in the NMSSM superpotential. The
μ-term is generated after the singlet scalar gets vacuume
expectation value (vev) (μeff ¼ λvS). The Z3-symmetric
superpotential of the NMSSM is defined as:

W ¼ WMSSMjμ¼0 þ λŜĤu:Ĥd þ
κ

3
Ŝ3 ð7Þ

with

WMSSMjμ¼0 ¼ ydĤd · Q̂D̂c
RþyuQ̂ · ĤuÛ

c
RþyeĤd · L̂Ê

c
R;

ð8Þ

whereWMSSMjμ¼0 denotes the MSSM superpotential with

the exclusion of the μ-term. The superfields Ĥu and Ĥd

correspond to the doublet Higgs superfields, while Ŝ
represents the gauge singlet superfield mentioned earlier.
The superfields Q̂, ÛR, and D̂R refer to the SUð2Þ quark-
doublet, up-typeSUð2Þ singlet quark, and down-typeSUð2Þ
singlet quark superfields, respectively. Additionally, L̂ and
ÊR represent the SUð2Þ doublet and singlet lepton super-
fields, respectively. The symbols yf¼d;u;e denote the corre-
sponding Yukawa couplings.
The 5 × 5 symmetric neutralino mass matrix, in the basis

{B̃; W̃; H̃0
d; H̃

0
u; S̃}, is given by [36]
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Mχ0 ¼

0
BBBBBBBB@

M1 0 − g1vdffiffi
2

p g1vuffiffi
2

p 0

M2
g2vdffiffi

2
p − g2vuffiffi

2
p 0

0 −μeff −λvu
0 −λvd

2κvS

1
CCCCCCCCA
; ð9Þ

and the chargino sector is given by

Mχ� ¼
�

M2 g2vu
g1vd μeff

�
; ð10Þ

where M1 and M2 represent the soft SUSY-breaking
masses corresponding to the Uð1Þ (B̃) and SUð2Þ (W̃)
gauginos, respectively. The parameters g1 and g2 denote the
respective gauge couplings associated with these gauginos.
It is noteworthy that there is no direct mixing observed
among the gauginos (B̃ and W̃) and the singlino (S̃).
However, a slight mixing is indirectly introduced through
the neutral Higgsino sector (H̃0

d; H̃
0
u). Conversely, direct

mixing between the Higgsinos and the singlino can occur
via the off-diagonal terms of Mχ0 that are proportionate to
λ. Consequently, scenarios characterized by relatively small
μeff lead to lighter neutralinos exhibiting a notable blend of
singlino and Higgsino components across significant
regions of the NMSSM parameter space.
We present three scenarios (μeff ≤ 250 GeV) in Table I

such that the LSP is singlinolike and the NLSP is Higgsino-
like along with a Higgsino-like chargino. Such low μeff also
features a light singlet Higgs boson and the SM Higgs
boson. All sfermions soft-breaking mass parameters are
kept at 3 TeV. The particle spectra are calculated using
NMSSMTools v6.0.2 [48].
BP1 and BP2 benchmark scenarios are excluded by

recent LHC searches [49]. We choose these to suggest
possible validation of using topological information in
BSM searches using existing data. Also, the light charginos
and Higgsinos feature a sizable cross section to illustrate
topological signatures for 3l signals across an extended
range of integrated luminosity and kinematic cuts.
However, the discussed framework is generic enough for
any BSM scenarios.

B. Collider simulation

We consider resonant production of χ02;3χ
�
1 and sub-

sequent leptonic decay via Z andW� bosons. This leads to
3lþ =ET signature at the collider. We consider three
potential contributors to the background, namely, tt̄Z,
tt̄W�, and ZW� via leptonic decay of Z and W� bosons.
However, for all practical purposes, the leptonic decay of
ZW� is the most dominant background for the 3lþ =ET
signature. We veto the b-tagged jets after detector-level
simulation.
Event samples are generated at the lowest order (LO) in

perturbation theory using MadGraph5_aMC@NLO v3.5.1 [50,51]
with the nn23lo1 [52] parton distribution function atffiffiffi
s

p ¼ 13 TeV. The generated parton-level events undergo
showering with Pythia v8.309 [53]. To avoid double counting
of events in the simulated samples, especially in the
presence of extra hard partonic jets and the parton shower,
the event generator utilizes the MLM matching technique
with the variables xqcut and qcut set at appropriate values.
The cross sections for all processes are estimated using an
NLO K-factor of 1.2.
The FastJet (v3.3.4) [54,55] package, integrated into Delphes

v3.5.0 [56], is employed for jet finding. The anti-kT jet
algorithm is utilized with a cone size of 0.5, requiring a
minimum pjet

T of 20 GeV and limiting the pseudorapidity
to jηjetj < 2.5.
Following the default parameter settings of Delphes v3.5.0,

the reconstruction of leptons (electrons and muons)
involves a minimum pl

T of 10 GeV and jηjetj < 2.5. For
electrons and muons, the track isolation requirement entails
removing jets within an angular distance ΔR ≤ 0.5 from
the lepton. To enhance the purity of electrons, it is required
that the ratio of the total pT of stray tracks within the cones
of their identification to their own pT is less than 0.12.
Similarly, the corresponding ratio for muons is set at 0.25.
We choose two values of MET, i.e., MET > 50 GeV and

MET > 150 GeV to demonstrate the impact of kinematic
cuts. We require at least three hard leptons (≥ 20 GeV) and
veto any b-tagged jets. We require pl

T ≥ 50 GeV for the
first pT ordered lepton. The kinematic cuts are imple-
mented using MLAnalysis [57] library. Table II presents the
cross-section and cut-selection details at

ffiffiffi
s

p ¼ 13 TeV and
150 fb−1 of integrated luminosity. The significance level is
calculated using Sffiffiffiffiffiffiffi

SþB
p , where S and B represent the number

TABLE I. BP1, BP2 and BP3 are three benchmark scenarios in the NMSSM having two different values of μeff leading to 3l signals
from the resonant production of χ02;3χ

�
1 . Recent LHC searches have excluded BP1 and BP2.

μeff λ κ Aλ Aκ mh1;2 mχ0
1;2;3

mχ� BRχ0
2
→χ0

1
Z BRχ0

3
→χ0

1
Z BRχ0

3
→χ�

1
W∓ BRχ�

1
→χ0

1
W�

BP1 180 0.6 −0.24 1000 300 95.6, 124.0 83.5, 191.3, 262.2 184.5 0.99 0.30 0.0 1.0
BP2 150 0.65 −0.30 860 310 94.1, 124.3 61.6, 163.8, 251.0 153.7 0.97 0.08 0.85 1.0
BP3 250 0.69 −0.35 1250 250 125.4, 233.0 157.1, 259.2, 369.5 255.7 1.0 0.00 0.80 1.0
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of the signal events and the SM background events
surviving after the kinematic cuts have been applied.

C. Point cloud data from collider observations

After the fast detector level simulation, we collect the
reconstructed leptons event-wise. The number of events is
also normalized to the integrated luminosity multiplied by
the effective cross section of the considered process.
Integrated luminosity values are varied between 50 fb−1

to 1000 fb−1 to understand the evolution of topological
properties and their discriminatory power in search of new
physics.
The point cloud comprises all leptons passing the basic

kinematic cuts mentioned above. The three momenta of the
reconstructed leptons serve as the coordinate for points in
the point cloud. Thus, a single collider event passing the
above-mentioned cuts contributes three vertices to the
Vietoris-Rips complex because of our leptonic require-
ments. For simplicity, we use cartesian basis for the
leptonic momentum.
In the study of persistent homology of the Vietoris-Rips

complex, the filtration parameter is the scale. Ricci curva-
ture captures the local behavior of the network connectivity
at a particular scale. However, persistent homology features
such as the Betti curve, persistent entropy, and persistent
amplitude are essentially multiscale features. They re-
present the global behavior of the system across different
scales. Therefore, we employ two slightly different strat-
egies while studying Ricci curvature and persistent fea-
tures, as discussed below.
It is to be noted that we do not need the coordinates of

vertices explicitly to find the Forman Ricci curvature
distributions. All we need to know is whether an edge
exists between two vertices and the weights assigned
to them. We choose an edge (i,j) to exist only if

maxfpli
T ; p

lj
T g ≤ scale. We choose a weighting system

motivated by the collider observations. For simplicity,
the vertices are assigned unit weights. The edges are
assigned a weight that depends on the ratio of pT of the
leptons forming the edge. It is expressed as follows.

wi ¼ 1

wij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pli
T þ p

lj
T

maxfpli
T ; p

lj
T g

vuut ð11Þ

However, we have used unweighted simplicial complexes
to study the persistent homology of collider observations.
We use our custom code to compute Ricci curvature
distributions and Giotto-ai v0.6.0 library [58] for persistent
homology features.

D. Machine learning and feature extraction

Given a Vietoris-Rips complex at a particular scale, we
obtain the Ricci curvature distributions for the edges and
use this as an input for machine learning classification of
the topological features. Thus, the input feature is a one-
dimensional vector whose length is the same as the number
of edges in the complex. Throughout this study, we
compare the topological features of the background with
the combined events of background and signal. Thus, the
sample is essentially skewed. Thus, we perform random
undersampling so that the training of the classifier is not
biased. Without this important operation, the binary clas-
sification accuracy almost always becomes 100%. We also
normalize the input data using standard scalar normaliza-
tion or Z—score normalization.
We use support vector machine (SVM) with the radial

basis function (RBF) kernel. SVM is a powerful supervised
learning algorithm used for both classification and regres-
sion tasks. The regularization parameter, also known as the
penalty parameter,C, is fixed at 1.0 throughout this study. It
controls the trade-off between maximizing the margin and
minimizing the classification errors. We also perform 10-
fold cross-validations to reduce any possible statistical
fluctuation in ML classifications.
In the latter part of this work, we use Betti number

distributions across filtration scales up to 50 GeV or
250 GeV for ML classification with SVM. The Betti
number distributions are also popularly called Betti curves.
We determine the Betti numbers up to the second homology
dimensions. Thus, the input data for SVM is three-dimen-
sional in this case. The input parameters used in SVM are
the same as before.

IV. RESULTS AND DISCUSSION

This study aims to explore the dependence of topological
properties of the leptonic distributions on kinematic cut
selection and integrated luminosity. Many BSM frame-
works, like NMSSM, feature a massive LSP. Thus, we
expect the leptonic momentum distributions for the BSM to
differ from the SM background. Since the mass of the
invisible particle affects the missing transverse momentum
distributions, the scale of maximum filtration is likely to be
correlated with it.

TABLE II. Production cross section along the leptonic
channel and cut selection (Ncut) of the SM background
and the benchmark scenarios at 13 TeV and 150 fb−1 for
MET > 50 GeV (> 150 GeV).

Cross section Ncut Significance Status

SM 435.1 fb 576 (96)
BP1 7.90 fb 116 (39) 4.41 (3.36) Excluded
BP2 13.53 fb 142 (41) 5.30 (3.50) Excluded
BP3 2.41 fb 33 (12) 1.34 (1.15) Not excluded
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We also explore the signal-background discriminatory
potential of topological properties in relation to kinematic
cuts on MET, integrated luminosity values, and the maxi-
mum filtration scale. We find local topological features
using Forman Ricci curvature and global topological
properties through persistent homology.
As the subsequent analysis will reveal, these intrinsic

geometric properties of collider observations are efficient
enough to discriminate new physics scenarios from the SM
background. We have also explicitly checked that the
results reported below are not very much sensitive to
experimental systematic errors (at 5% level) as these fail
to alter the topological structure of the dataset appreciably.

A. Forman Ricci curvatue

In Fig. 2, we present the Forman Ricci curvature R1

distribution of the three benchmark scenarios and the
SM background for two scales (50 GeV and 250 GeV)

and for two cuts on missing transverse momentum
(MET > 50 GeV and MET > 150 GeV) at 150 fb−1 inte-
grated luminosity. We observe that the Ricci curvature
distribution for BP2 occupies most negative values, and the
distribution for BP3 is very close to the SM case. This is
primarily because of the cross-section distributions. It is to
be reminded that we are considering a combined sample of
signal and background for the benchmark scenarios.
Comparing Figs. 2(a) and 2(c), we note that with

increasing MET, the Ricci curvature distributions for
BP1 and BP2 become less distinct from each other. MET >
150 GeV eliminates most of the SM background. Thus, the
edge connectivity is reduced significantly which results in
less negative R1 compared to the MET > 50 GeV case.
However, increasing the scale of filtration to 250 GeV

increases the edge connectivity for a node. Thus, the SM
distribution starts overlapping with the BSM ones. This is
shown in Figs. 2(b) and 2(d). The scale at 250 GeV admits

FIG. 2. R1 distributions associated with different scales and missing transverse momentum (MET) cuts at an integrated luminosity
of 150 fb−1. (a) scale = 50 GeVand MET = 50 GeV, (b) scale = 250 GeVand MET = 50 GeV, (c) scale = 50 GeVand MET=150 GeV,
and (d) scale = 250 GeV and MET = 150 GeV.
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more edges compared to 50 GeV. Thus, for both MET >
50 GeV and MET > 150 GeV, the R1 is more negative
than their counterparts at the 50 GeV scale. As before,
MET > 150 GeV reduces more SM events than BSM
scenarios. Thus, Figs. 2(c) and 2(d) demonstrate qualita-
tively similar behavior.
In Fig. 3, we present signal and background classifica-

tion across different scales for maximum filtration using the
SVM framework, as discussed previously. Figure 3(a)
corresponds to the MET > 50 GeV scenario, and Fig. 3(b)
corresponds to the MET > 150 GeV scenario. We notice
that the classification accuracy remains remarkable for
both at lower scales. However, with the increasing scale
of maximum filtration, accuracy drops. In Fig. 3(b), the
accuracy remains significant until a larger scale. We can
attribute this to the better signal-background separation at
higher MET. Thus, the scale of maximum filtration is

inevitably connected with the MET and, thereby, the mass
of the LSP.
In Fig. 4, we present the classification of Ricci curvature

distributions for the SM and the BSM processes across
different values of integrated luminosity. In the traditional
cut-and-count approach, the significance of discrimination
increases with integrated luminosity. However, it is not very
obvious for R1 distribution-based classification. We have
chosen thebenchmarkpointsBP1andBP2, alreadyexcluded
by BSM searches at the LHC. This is corroborated by very
high classification accuracy, even at a low value of integrated
luminosity. Also, the benchmark point BP3 attains appreci-
able accuracy, particularly for MET > 150 GeV. However,
Table II shows that BP3 is not excluded when traditional cut-
and-count analysis is employed.
The discussion of Ricci curvature entails the local

topological properties of the LHC observations. Next,

FIG. 3. Signal-background classification accuracy across different scales at 150 fb−1 using R1 for (a) MET> 50 GeV and (b)
MET> 150 GeV are shown. The shaded regions correspond to the 95 CL.

FIG. 4. Classification accuracies across different integrated luminosity using R1 for (a) MET > 50 GeV and (b) MET > 150 GeV are
shown. The scale of filtration is fixed at 50 GeV. The shaded regions correspond to the 95% CL.
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we delve into the discussion of persistent homology that
characterizes the global geometrical properties of the LHC
events.

B. Persistent homology features

Before we delve into the discussion of the persistent
homology of collider observations, we first illustrate some
toy examples. In Fig. 5, we present two distributions D1

and D2 sampled from an annular patch (first row) and an
elliptical patch (second row). We vary the number of points
from 100 to 2500 for each distribution. We use a maximum
filtration scale of 0.2 to form the Vietoris-Rips complex.
We find that as the number of sampled points increases,
topological features such as persistent entropy and persis-
tent amplitude attain constant values. This is expected
because topology is the study of global features of the
dataset.
The persistent amplitude is shown in Figs. 5(b) and 5(d).

We observe that it is almost featureless for the elliptic patch.
This is because the annular patch has a hole that remains
topologically invariant. In other words, the hole cannot be
removed without tearing apart the annulus. As shown in
Fig. 5(a), D2 has a smaller inner radius and larger outer
radius compared to D1. This results in a larger persistent
amplitude for D2 than D1 across zeroth and first homology

dimensions. The situation remains the same for persistent
entropy shown in Figs. 5(c) and 5(f). Persistent entropy for
the zeroth homology group Spe0 remains the same for D1

and D2 in the case of both annular and elliptic patches.
However, as mentioned before, topological properties ofD1

and D2 attain a constant ratio with rise in number of points.
We will also observe similar behavior in our latter analysis
of LHC events while comparing distributions of the SM
background and the BSM scenarios.
Now, we return to the discussion on collider observa-

tions. As mentioned before, we use unweighted simplicial
complexes to study the persistent homology of the SM
background and the benchmark scenarios. The qualitative
nature of the conclusions presented here will not change
even if we assign weights to edges and vertices in the
simplicial complex. In Fig. 6, we present the variation of
persistent amplitude (A0 and A1) as integrated luminosity
increases for two scales of maximum filtration (50 GeVand
250 GeV) while keeping MET > 150 GeV.
As noted in the above-mentioned illustrative example, A0

and A1 for the SM background and the benchmark
scenarios attain an approximate constant scaling. The
SM background always features a larger magnitude of
amplitude because it contributes a larger number of vertices
to the simplicial complex. We find that the scale of
maximum filtration does have an impact on the persistent

FIG. 5. Spatial distributions, persistent amplitude, and persistent entropy for two distributions (D1 and D2) sampled from (a, b, and c)
annular regions with varying radii and (d, e, and f) elliptical patches with different widths. The number of points in D1 and D2

are always equal.
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amplitude. A scale of 250 GeV favors larger A0 and A1 than
50GeVscale. This can possibly be attributed to the inclusion
of more edge connectivity in the simplicial complex.
In Fig. 7, we present the variation of persistent entropy

(Spe0 and Spe1 ) as integrated luminosity increases. The
variation across luminosity is similar to Fig. 6. While
Spe0 and Spe1 for BP1 and BP2 behave almost similarly, the
ratio with the SM background attains an almost constant
scaling across luminosity. The situation is slightly different
for BP3, and persistent entropy for BP3 is always the
lowest. This is mostly because of its lower cross section
than the other benchmark points.
It is important to note that this scaling of topological

properties does not tell us much about the signal-
background discrimination potential of persistent homol-
ogy. We show that the Betti number distribution of the SM
process is different from that of the BSM processes. We use

Betti number distributions across filtration parameters at a
particular scale to train the SVM classifier. The variation of
the classification accuracy with integrated luminosity at
two different scales of maximum filtration (50 GeV and
250 GeV) while keeping MET > 150 GeV is presented
in Fig. 8.
We notice that the signal-background classification

accuracy drops for BP1 and BP2 as integrated luminosity
increases when the scale of maximum filtration is 50 GeV.
Interestingly, the curve for BP3 remains almost constant.
We also notice that the classification accuracy remains
almost constant for all benchmark points as integrated
luminosity increases for the 250 GeV scale. Thus, we can
conclude that MET > 150 GeV likely prefers a higher
scale of maximum filtration. This observation is crucial and
conveys the importance of the suitable scale while studying
the topological properties of collider observations.

FIG. 6. Persistent amplitude distributions across different values of integrated luminosity are shown. (a) scale = 50 GeV and MET >
150 GeV for the zeroth homology group, (b) scale = 250 GeVand MET > 150 GeV for the zeroth homology group, (c) scale = 50 GeV
and MET > 150 GeV for the first homology group, and (d) scale = 250 GeV and MET > 150 GeV for the first homology group. The
shaded regions correspond to the 95% CL.
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FIG. 7. Persistent entropy distributions across different values of integrated luminosity are shown. (a) scale = 50 GeV and
MET > 150 GeV for the zeroth homology group, (b) scale = 250 GeVand MET > 150 GeV for the zeroth homology group, (c) scale =
50 GeV and MET > 150 GeV for the first homology group, and (d) scale = 250 GeV and MET > 150 GeV for the first homology
group. The shaded regions correspond to the 95% CL.

FIG. 8. Signal-background classification accuracy for (a) scale = 50 GeVand (b) scale = 250 GeVat MET > 150 GeV across different
values of integrated luminosity. The shaded regions correspond to the 95% CL.
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V. CONCLUSION

In conclusion, our study has provided insights into the
distinction between the topological properties of the BSM
signal and the SM background events. The framework
discussed in this work is quite generic and can be applied to
other BSM searches at colliders. Through the analysis of
Forman Ricci curvature and persistent homology, we have
explored the dependence of topological features on kin-
ematic cut selection, integrated luminosity, and the scale of
maximum filtration.
Our results highlight the efficacy of topological proper-

ties, such as Forman Ricci curvature and persistent homol-
ogy, in capturing intrinsic geometric structures present in
collider observations. This study also emphasizes the
impact of MET cuts and the scale of maximum filtration
while studying topological properties. Furthermore, our
investigation into persistent homology features reveals an
approximate scaling behavior across integrated luminosity,
suggesting robustness in topological properties irrespective
of the dataset size.

Crucially, our study underscores the interconnectedness
between the scale of maximum filtration, MET cuts, and
the mass of the LSP, highlighting the importance of
considering these factors collectively in topological analy-
ses aimed at uncovering new physics scenarios. We believe
using topological discriminators with a traditional kin-
ematic cut-based approach can yield stronger exclusion
limits even at low integrated luminosity.
Overall, our findings deepen the understanding of the

intrinsic geometric structures in collider observations and
provide valuable implications for future experimental
studies to uncover novel physics phenomena beyond the
Standard Model.

The Python code used in this work is available at Ref. [59].
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