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The quantum chromodynamics (QCD) axion may solve the strong CP problem and explain the dark
matter (DM) abundance of our Universe. The axion was originally proposed to arise as the pseudo-Nambu-
Goldstone boson of global Uð1ÞPQ Peccei-Quinn (PQ) symmetry breaking, but axions also arise generically
in string theory as zero modes of higher-dimensional gauge fields. In this work we show that string theory
axions behave fundamentally differently from field theory axions in the early Universe. Field theory axions
may form axion strings if the PQ phase transition takes place after inflation. In contrast, we show that string
theory axions do not generically form axion strings. In special inflationary paradigms, such as D-brane
inflation, string theory axion strings may form; however, their tension is parametrically larger than that of
field theory axion strings. We then show that such QCD axion strings overproduce the DM abundance for all
allowed QCD axion masses and are thus ruled out, except in scenarios with large warping. A loop-hole to
this conclusion arises in the axiverse, where an axion string could be composed of multiple different axion
mass eigenstates; a heavier eigenstate could collapse the network earlier, allowing for the QCD axion to
produce the correct DM abundance and also generating observable gravitational wave signals.
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I. INTRODUCTION

Axions emerge naturally in the context of string theory
compactifications [1–5]. In these constructions the four-
dimensional axions arise as the zero modes of higher-
dimensional gauge fields. Axions from string theory could
include the quantum chromodynamics (QCD) axion, which
may solve the strong CP problem related to the absence of a
neutron electric dipole moment [6–9]. The QCD axion may
also explain the dark matter (DM) abundance in the
Universe [10–12]. String theory may also give rise to a
large number of axionlike particles, with one being the QCD
axion; this scenario is known as the axiverse [4,5], and it has

been realized recently in explicit string theory compactifi-
cations [13–16].
One advantage of string theory axions over field-theory

axions, where the axion arises as the Goldstone mode of a
spontaneously broken Uð1ÞPQ symmetry called the Peccei-
Quinn (PQ) symmetry [6,7], is that string theory axions
may more naturally evade the so-called PQ quality
problem [17–22]. In the field theory constructions we
require a high-quality Uð1ÞPQ symmetry such that QCD
instantons provide the dominant source of the axion’s
potential to the precision required by experimental
measurements of the neutron electric dipole moment.
However, global symmetries are expected to be violated
in the context of quantum gravity (see, e.g., [23,24] and
references therein). Under the assumption that this break-
ing arises through Planck-suppressed operators, field
theory models with high-quality PQ global symmetries
have been designed, but they require nonminimal struc-
tures at the PQ scale to make the symmetry accidental at
low energies (see, e.g., [25] for examples). String theory
constructions mitigate the PQ quality problem by protect-
ing the axion mass by the higher-dimensional gauge
invariance of the gauge field that gives rise to the axion
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at low energies. In such scenarios, only nonperturbative
effects, whose strength depends on the compactification
details, can give the axion a mass. Reference [16], for
example, considered a large ensemble of orientifold
compactifications in type IIB string theory on Calabi-
Yau hypersurfaces and found that the strong-CP problem
was solved to adequate precision in approximately 99.7%
of the different compactifications, with stringy instanton
effects contributing sufficiently subdominant bare axion
masses.
The strong motivation for string theory axions sparked

thorough studies of the various roles they can play
in cosmology (see, e.g., the recent string cosmology
reviews [26–29]). However, there have been few studies
of cosmic axion strings in the context of string theory,
despite their possibly important roles [30–33]. This work
investigates the structure, formation mechanisms, dynam-
ics, and phenomenology of axion strings in string theory
and, more generally, extra dimension ultraviolet (UV)
completions.
Cosmic axion strings are known to produce rich cos-

mological histories, and thus they have been extensively
scrutinized in field theory models. On the one hand, the
effective field theory (EFT) of string theory axions is
identical to that of field theory axions (or their super-
symmetric counterparts). On the other hand, however, in
certain cosmological scenarios axion strings may form, and
at the cores of those strings the axion-only EFT is singular,
with the UV completion being restored (see [34] for a
review). This implies that the cosmology of axion strings is
sensitive to the UV completion of the theory.
String theory axions are associated to axion strings

whose core is not smoothed out in any EFT description
(see, e.g., [33,35–40]) and is instead resolved in terms of
fundamental strings or wrapped branes in the string theory
UV completion. These fundamental objects indeed have
the appropriate (electric or magnetic) charges under the
higher-dimensional gauge fields which give rise to
the axion to be axion strings in four spacetime dimensions
(4D). The cosmological evolution of a network of such
fundamental one-dimensional objects significantly differs
from the one of their field theory counterparts, due to their
tension, possible instabilities, and different reconnection
probabilities [41–50]. Cosmic superstrings have also been
extensively discussed recently as sources of gravitational
waves (GWs) [51–58]. However, the role played by axions
on the cosmological dynamics of the strings, and con-
versely, the role played by the strings on the axion
cosmology, has not been previously explored. In this
work, we delve into the physics of axion strings in string
theory compactifications, and we show that it is qualita-
tively different than that of field theory axions.
Field theory axion strings always form as long as

the reheating temperature TRH ≳ fa, the axion decay

constant,1 for any inflationary mechanism. The reason
for this is straightforward: string formation requires a
spontaneously-broken global symmetry according to the
Kibble-Zurek mechanism [59,60], which is the spontane-
ously-broken Uð1ÞPQ symmetry in the field theory axion
constructions. On the other hand, for string-theory axions,
topological defects do not form even when TRH ≳ fa.
Above such temperatures, the 4D EFT breaks down but
the PQ symmetry is not restored; instead, it is replaced by a
higher-dimensional gauge invariance (thereby solving the
aforementioned PQ quality problem). Consequently, as we
argue in more detail below (see also [24,61]), string theory
axion strings do not form in the standard thermal cosmol-
ogy, i.e., in scenarios when the last stages of inflation,
reheating, and the subsequent thermal history are well
described by an EFT; their formation requires additional
ingredients. Such special circumstances in which string
theory axion strings can form are actually known. For
example, D-brane annihilation after D-brane inflation [62]
can produce fundamental (F-) and D-strings, or more
generally Dð1þ pÞ-branes wrapped on p-cycles [63,64].
Also, if TRH was larger than the (warped down) string scale,
then a Hagedorn phase transition can take place as the
Universe cools, producing F-strings [45,65,66]. Therefore,
it is important to understand the properties and the evolution
of the resulting axion string network.
In this context, we show that the tension of string theory

axion strings is parametrically larger than the tension of
field theory axion strings unless the extra dimensions are
strongly warped. (In the latter case, one recovers the field
theory relation for the string tension, as expected from
gauge-string dualities.) The expected range of string
tensions μeff is as follows. An upper bound has been
conjectured in the context of the weak gravity conjecture
(WGC) by [67–69],

μeff ≲ κfaMpl; ð1Þ

with κ a numerical factor of order unity. This is the so-
called “magnetic axion WGC.” Meanwhile, the tension of
the strings is bounded from below by

πf2a logðmr=HÞ≲ μeff ð2Þ

as a result of the axion configuration, where mr is the mass
of the modulus field that regulates the string core (mr ∼ fa
being natural for field theory axions), and H is the Hubble
parameter. Axion strings saturating the lower limit emerge
in field theory UV completions and for strongly-warped
extra dimensions; we illustrate how the upper limit is

1In this paper, the axion decay constant fa is defined to be the
periodicity of the canonically-normalized axion, which is closely
related to the PQ symmetry breaking scale in field theory models.
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saturated for axion strings arising in flat compactifications
of string theory.
A large axion string tension impacts how strings emit

axions; for example, the density of strings, the amount of
axions they radiate, as well as the balance between axion
and GW emissions, are all affected. Combining all effects,
we find that if string theory axion strings do form in flat
compactifications, then the axion generated by the strings
cannot be the QCD axion, as otherwise, the relic DM
abundance of those axions would overclose the Universe,
even allowing for extra entropy dilution by a possible
period of early matter domination. This effectively rules out
axion string production of QCD axion DM in string theory
UV completions in nonwarped scenarios. However, we
identify an exception to the previous claim in axiverse
constructions: if the axion sourced by the string network is
instead a linear combination of the QCD axion and other
heavier axions, then we show that the QCD axion can
constitute the DM. Furthermore, unlike in field theory
constructions, we show that this scenario can give rise to
observable GW signals.
The key points of this article are given below for clarity:
(i) Axions from string theory compactifications do not

form cosmological axion strings during the post-
inflationary thermal evolution of the Universe (up to
caveats described in the text), in stark contrast to
field theory axions.

(ii) String theory axion strings may form at the end of
D-brane inflation. If they do form, then the cosmo-
logical evolution of string theory axion strings is
qualitatively different than that of field theory axion
strings if the string theory axion arises from an
unwarped cycle. In particular, the DM abundance is
overproduced for all allowed fa for a network of
QCD axion strings with the axion arising from an
unwarped cycle. In the case of axions arising from
warped cycles the cosmological evolution is the
same as for field theory strings.

(iii) The case of string theory QCD axion strings from
unwarped cycles can be “saved” by having the axion
sourced by the string be a linear combination of the
QCD axions and heavier axions within the context
of an axiverse. This scenario can give rise to the
observed abundance of DM in the form of QCD
axions in addition to novel GW signatures, which
are absent for field theory scenarios.

II. AXION STRINGS IN 4D VERSUS
HIGHER-DIMENSIONAL FIELD THEORY

Axion strings are characterized by the property that, in
traversing a circle enclosing an axion string core, the
axion, which is a periodic field, undergoes a full field
excursion. The axion-only picture of axion strings is
clearly singular since, in that picture, the axion field
would have an infinite derivative at the core. In PQ UV

completions, the radial mode, which is otherwise massive
and frozen at its vacuum expectation value (VEV), is
restored at the location of the string core and resolves the
singularity by driving the full complex PQ field to zero. PQ
axion strings have been the subject of extensive analytic
and numerical work since they play important roles in
determining the QCD axion DM abundance if the PQ
symmetry is broken after inflation [70–88].
The PQ axion theory may be realized through a minimal

scalar sector with Lagrangian

L ¼ j∂μΦj2 − λΦ

�
jΦj2 − f2a

2

�
2

; ð3Þ

with Φ connected to the Standard Model (SM) through SM
or new vectorlike fermions and possibly a Higgs coupling.
At high temperatures the field Φ is in thermal equilibrium
with the SM, andΦ has a symmetry-restoring thermal mass
mtherm ∼

ffiffiffiffiffi
λΦ

p
T. Assuming the reheat temperature after

inflation TRH is above fa, then when the Universe cools
down below fa the field Φ undergoes Uð1ÞPQ symmetry
breaking, leading to the axion a as a Goldstone mode and
the radial mode s as a heavy state with massms ¼

ffiffiffiffiffiffiffiffi
2λΦ

p
fa:

Φ ¼ ðfa þ sÞffiffiffi
2

p eia=fa : ð4Þ

Let us consider an infinitely straight and static PQ axion
string (see [34] for a review). For a string stretched in the ẑ
direction, the solution is given by

Φðr; θ; zÞ ¼ faffiffiffi
2

p gðmsrÞeiθ; ð5Þ

where r is the radial direction from the string core and θ is
the polar angle. The dimensionless function gðxÞ goes to
zero as x → 0 to regulate the singularity at the string core,
while gðxÞ → 1 for x ≫ 1. When r > 0, the axion field is
well defined and undergoes the expected winding as we go
around the string, aðr; θÞ=fa ¼ θ mod 2π. The energy
density in the string is given by

ρstr ¼ j∇!Φj2 þ λΦ

�
jΦj2 − f2a

2

�
2

; ð6Þ

while the tension μeff
2 is computed to be

μeff ¼
Z

2π

0

dθ
Z

rIR

0

dr rρstr ¼ πf2a log ðγmsrIRÞ; ð7Þ

2Note that we differentiate μeff from μ by defining μ to be the
near-core tension, with μeff the IR-divergent quantity that is
regulated by the finite distance to the next nearest string in a
cosmological context.
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where γ is some constant of order unity. Note that rIR is an
IR cutoff, which regulates the logarithmically divergent
contribution to the tension that arises from the gradient
energy in the axion field. In practice, we expect rIR to
be the distance to the next string, which should be of
the order of 1=H, where H is the Hubble parameter. The
dimensionless constant γ of order unity accounts for the
UVand IR finite contribution to the tension from the radial
mode, which is of order πf2a. In practice, for the QCD
axion, we may take ms ∼ fa ∼ 1011 GeV to obtain the
correct relic DM abundance [86]. Then, near the QCD
phase transition H ∼ T2

QCD=Mpl, with TQCD ∼ 100 MeV
and Mpl the reduced Planck mass, such that logðms=HÞ ∼
102 while logðγÞ ∼ 1. Thus, the tension of PQ axion strings
is dominated by the surrounding axion field configuration.

A. Flat extra dimension

Let us now contrast the field theory axion string
described above with a string theory axion string. As a
proxy for a complete string theory compactification, we
consider first a simpler extradimensional setup with an
axion arising from a one-form gauge field [89,90], which
already captures the physics we wish to highlight. We first
consider the case of a flat 5D theory with the fifth
dimension compactified on a S1=Z2 orbifold, while in
the next subsection, we deal with the case of a warped extra
dimension.
In the field theory setup, the singularity in the axion field

configuration at the string core is regulated by the heavy
radial mode. In the extradimensional UV completions, the
singularity is also potentially regulated by a massive scalar
mode (a modulus field), though the exact nature of that
modulus field is model dependent. In the construction
below we illustrate the case in which the radion that
controls the size of the fifth dimension is the modulus
that regulates the string core, but we show later in this
subsection that the dilaton—or a linear combination of the
radion and dilaton—could also play that role.
We denote the 5D gauge field by AM and study the

coupled dynamics of A5 and the radion ρ. The latter appears
in the parametrization of the 5D metric as [91],

ds2 ¼GMNdxMdxN ¼ b
ρðxÞgμνðxÞdx

μdxν þ ρðxÞ2dϕ2; ð8Þ

and its potential stabilizes the size of the fifth dimension
hρi ¼ b via, e.g., the Goldberger-Wise mechanism [92,93].
Here, ϕ ranges from 0 to π, with orbifold boundary
conditions at ϕ ¼ 0 and ϕ ¼ π eliminating the zero mode
of Aμ so that only the zero mode of A5 survives in the low
energy theory. Substituting the metric (8) into the 5D
general relativity action we find

Z
d4xdϕ

ffiffiffiffiffiffiffi
−G

p �
2M3

5R
ð5Þ
�

¼ 1

2
M2

pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rð4Þ −

3

2ρ2
∂μρ∂

μρ

�
; ð9Þ

where M5 is the 5D Planck scale and Rð5Þ (Rð4Þ) is the 5D
(4D) Ricci scalar. Here the 4D reduced Planck scale Mpl is
determined by M5 and the size of the extra dimension:
M2

pl=4 ¼ 2πbM3
5. We also introduce a radion potential

VðρÞ, such that Lρ ⊃ −
R
d4x

ffiffiffiffiffiffi−gp
VðρÞ, whose form

depends on the details of the stabilization mechanism
and will be specified below.
To include A5 in the analysis, we start with the action of a

U(1) gauge theory,

SUð1Þ ¼ −
1

4g25

Z
d4xdϕ

ffiffiffiffiffiffiffi
−G

p
FMNFMN; ð10Þ

with FMN the 5D field strength tensor and g5 the 5D gauge
coupling. We then define the dimensionless 4D axion
field ϑðxÞ through the gauge-invariant Wilson loop
(see, e.g., [89]):

ϑðxÞ ¼ 2

Z
π

0

dϕA5; ð11Þ

with ϑðxÞ having periodicity 2π as a result of large Uð1Þ
gauge transformations and for a spectrum of integer
charges. We then focus on the ϕ-independent modes,
since the ϕ-dependent modes acquire masses through the
Kaluza-Klein (KK) mechanism. Combining (8) and (10)
with (11) leads to the axion action

Sϑ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p 1

8π2g24ρ
2
gμν∂μϑ∂νϑ; ð12Þ

where we defined the effective 4D gauge coupling

1

g24
≡ 2πb

g25
: ð13Þ

Then, it is convenient to define the axion as a≡ faϑ, such
that a is canonically normalized and periodic with period
2πfa, with the decay constant

fa ≡ 1

2πbg4
: ð14Þ

Thus, we obtain the following 4D action for the radion-
axion system,
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Sρ−a ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
 
−
3M2

pl

4ρ2
ð∂μρ∂μρÞ − VðρÞ

−
1

2

�
b
ρ

�
2

∂μa∂μa

!
: ð15Þ

Note that this action is essentially identical to that which
describes the coupling of a volume modulus to an axion in
a 6D construction, as derived, for instance, in [33]. More
generally, although we focus on the case of the radion
from a single extra dimension, the solutions to be
discussed next capture qualitative features of several other
scenarios. For instance, canonically normalizing the

radion, dφ≡
ffiffi
3
2

q
Mpl

dρ
ρ ¼ Mpld log ρ

ffiffi
3
2

p
with a vanishing

integration constant, leads to the action:

Sφ−a ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
 
−
1

2
ð∂μφÞ2 − V

�
e
ffiffi
2
3

p
φ

Mpl

�

−
b2e

−2
ffiffi
2

pffiffi
3

p φ
Mpl

2
∂μa∂μa

!
: ð16Þ

This is nothing but the action that couples an axion to a
dilaton (for a specific axion-dilaton coupling). The axion
strings in a theory of a radion, dilaton, and axion would
also be described through a similar EFT, where now φ
corresponds to the (canonically-normalized) combination
of the radion and dilaton which couples to the axion.
Let us now consider infinitely straight static string

solutions extended in the ẑ direction. As in the PQ case,
the azimuthal angle is denoted by θ and the radial distance
away from the string core is r. String solutions with
winding number unity have aðr; θÞ ¼ faθ, such that the
axion field undergoes one full period of field excursion
when traversing a spatial circle enclosing the string core.
Let us then take the Ansatz ρ ¼ ρðrÞ; the equation of
motion for ρðrÞ obtained from (15) is then

ρ00 −
ρ02

ρ
þ ρ0

r
þ 2

3ð2πg4Þ2M2
plr

2ρ
−
2ρ2V 0ðρÞ
3M2

pl

¼ 0: ð17Þ

We now compute ρðrÞ at small r to understand the radion
contribution to the string tension. Note that at small r we
expect the extra dimension to decompactify (ρ → ∞) for the
axion string configuration to be nonsingular. This limit
requires that the canonically normalized radion travels an
infinite field space distance, in which case the Swampland
Distance Conjecture (SDC) [94] states that the EFT should
break down. In the present case, an irreducible source of
breakdown is clearly associated with the appearance of light
KKmodes. In the cases where ρ corresponds to a dilaton, the
core of the axion string instead corresponds to a regionwhere
massive string theory modes become tensionless. A general

treatment of infinite distance limits in the context of string
theory axion strings can be found in [38,39,95–99].
In the decompactification limit the stabilization poten-

tial VðρÞ is expected to asymptote to a constant, which we
take to be zero, limρ→∞ VðρÞ ¼ 0 (see, e.g., [100–102]).
This can be checked explicitly using the stabilization
potentials that we consider below. Correspondingly, the
potential contribution in (17) can be dropped for analyzing
the small-r behavior.3

At small r we then find, to leading order in 1=r, the
solution

ρðrÞ ≈ −
1

π
ffiffiffi
6

p 1

g4Mpl
logðcr=bÞ; ð18Þ

where c is a constant prefactor that we determine below.
This solution is valid for r≲ b, as we see below from the
numerical solution. Defining z≡ reiθ, the radion and axion
profiles may be combined into

τ≡
ffiffiffi
3

2

r
Mpl

b
ρþ ia ≈ −

1

2πbg4
log cz̄=b; ð19Þ

while in terms of τ, the kinetic terms in the action read

Sτ ⊃
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2

��
2b

τ þ τ̄

�
2

j∂τj2: ð20Þ

Therefore τ is a natural complex field to consider close to
the string core and its profile is antiholomorphic with
respect to z. Such near-core solutions have been extensively
studied in the context of supersymmetric theories [33,36]
and the swampland program [38,39,95–99]. (Actually, even
if we do not deal with supersymmetry here, our 4D EFT
precisely corresponds to the bosonic sector of a super-
symmetric one with Kähler potential ∝ logðτ þ τ̄Þ.)
The holomorphic or antiholomorphic solutions are

Bogomol'nyi–Prasad–Sommerfield (BPS) [103,104]: they
saturate the following inequality on the (UV part of the)
string tension μ,

μ ¼
Z

d2x
1

2

�
b
ρ

�
2

j ∂!τj2

¼ i
Z

1

2

�
b
ρ

�
2

dτ̄ ∧ dτ þ
Z

d2x
1

2

�
b
ρ

�
2

j∂zτj2

≥ i
Z

1

2

�
b
ρ

�
2

dτ̄ ∧ dτ: ð21Þ

The resulting lower bound, saturated by the current
solution, only depends on IR data:

3More precisely we require limρ→∞ V 0ðρÞ → 0 sufficiently
quickly, as we discuss below in more details for the case of
the Goldberger-Wise potential.
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i
Z

1

2

�
b
ρ

�
2

dτ̄ ∧ dτ ¼ −
ffiffiffi
3

2

r
Mplb

Z
dρ
ρ2

∧ da

¼
�

b
ρðrIRÞ

� ffiffiffi
6

p
πfaMpl; ð22Þ

where rIR is an IR cutoff for when the approximation
in (18) is no longer valid. This result agrees with the direct
computation, as it should:

μ ≈ 2π

Z
rIR

0

dr r

�
3M2

pl

4ρ2
ρ02 þ 1

2

�
b
ρ

�
2 f2a
r2

�

¼
�

b
ρðrIRÞ

� ffiffiffi
6

p
πfaMpl ≤

ffiffiffi
6

p
πfaMpl: ð23Þ

Assuming that ρðrÞ falls monotonically with r, which we
later confirm numerically, the smallest that ρðrIRÞ can be is
b, since this is the VEV asymptotically far from the string
core. Taking ρðrIRÞ ≥ b leads to the inequality in the last
line above. As we see below in the numerical calculations
of the tension, it appears that the axion strings saturate this
inequality.4 That is, we conjecture that the tension of axion
strings arising from flat extradimension axions is given by

μeff ¼ κfaMpl þ πf2a logðmr=HÞ þOðf2aÞ; ð24Þ

where m2
r ≡ 2b2

3M2
pl
V 00ðbÞ is the mass of the canonically-

normalized radion at its minimum and where κ is a
numerical coefficient, which we compute to be κ ¼ffiffiffi
6

p
π in this model. The second term above is the axion

contribution to the tension, which is cut off in the IR by the
Hubble radius (we leave off subleading nonlogarithmi-
cally-divergent terms of order f2a). This axion contribu-
tion, as in the field theory case, originates from the large-r
region, r > 1=mr, for which the radion contribution is
subdominant. As we comment on further, the result in (24)
is important because the term of order faMpl dominates
over the axion contribution to the tension for fa ≲ 5×
1016 GeV. This means that such strings will behave
fundamentally differently from field theory axion strings
in a cosmological context.

For later purposes, we note the large-r asymptotic:

ρ ¼ b

�
1þ 2

3

f2a
M2

pl

�
1

mrr

�
2

þO
�
1

r4

��
: ð25Þ

This asymptotic form of the solution is valid for mrr ≫ 1.
To see this, one may compute the coefficient of the higher-
order 1=r4 term in (25) in the physical limit Mpl ≫ fa; in
order for the 1=r4 term to be subdominant compared to the
1=r2 term, we need mrr ≫ 1.
Below, we compute the tension numerically to provide

evidence for the conjecture in (24). Our numerical results
support the scaling logðcÞ ∼Mpl=fa. We also see that the
dominant contribution to the string tension is at length
scales exponentially smaller than 1=Mpl from the string core
for realistic values fa ∼ 1011 GeV, as we quantify further
below. However, this brings the axion-radion EFT described
above into question since that EFT is not valid below a
length scale ∼1=fa, when the KK excitations become
dynamic (the KK scale could be even smaller if 2πg4 is
small). This suggests, in agreement with [33,35–40], that
(i) we must go beyond the axion-radion EFT to accurately
resolve the string core, and (ii) unlike in the field theory case
the axion string core in the extra dimension case is really an
object with no physical size. Indeed, we explain in the next
section that in the context of string theory the axion string
cores are fundamental strings or wrapped D-branes, which
have no thickness in the transverse dimensions.
To study (17) numerically, we must specify a radion

potential. Goldberger-Wise stabilization provides a moti-
vated choice, which may be obtained as follows, similar to
the analysis in [105]. Consider a free 5D scalar field Ψ with
an action

SΨ ¼
Z

d4xdϕ
ffiffiffiffiffiffiffi
−G

p �
−
1

2
∂MΨ∂MΨ −

1

2
M2

ΨΨ2 − ΛB

�
;

ð26Þ

where we include a bulk cosmological constant term ΛB.
This has a solution for the extradimensional profile of Ψ,

ΨðϕÞ ¼ A expðMΨρϕÞ þ B expð−MΨρϕÞ; ð27Þ

with the constants A and B determined by imposing
boundary conditions Ψð0Þ ¼ vh and ΨðπÞ ¼ vv. Sub-
stituting ΨðϕÞ back into (26) with the metric (8) and
integrating over ϕ yields the Goldberger-Wise potential for
the radion,

VðρÞ ¼MΨb2

2ρ2
ðα cothðMΨπρÞ− βcschðMΨπρÞÞ þ

πb2ΛB

ρ
;

ð28Þ

4The same result can be obtained by considering the BPS
string magnetically charged under AM in 5D, which yields the
correct description of the string near the core where the fifth
dimension decompactifies. Our solution captures a smeared
version of that string. [Forces on such BPS objects exactly
balance, so that solutions can be superposed and even smeared.
The resulting brane is again BPS in one dimension less, and it is
charged under the (smeared) zero mode of the initial gauge field:
in the present case this yields the axion.]
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with α ¼ v2h þ v2v and β ¼ 2vhvv. We impose β > 0 and
ΛB < 0, such that the potential has a unique global
minimum.
Defining r̃ ¼ r=b, ρ̃ ¼ ρ=b, (17) can be written as the

dedimensionalized equation of motion

ρ̃00 −
ρ̃02

ρ̃
þ ρ̃0

r̃
þ 2

3

�
fa
Mpl

�
2 1

r̃2ρ̃
−
2ρ̃2b3

3M2
pl

∂V
∂ρ

¼ 0; ð29Þ

where here the primed quantities are with respect to r̃. In
particular, for the Goldberger-Wise potential we have

∂V
∂ρ

¼ π3M5
ΨðbMΨÞ2
2ρ̂3

�
α̂ð−2 cothðρ̂Þ − ρ̂csch2 ðρ̂ÞÞ

þ β̂ðρ̂ cothðρ̂Þ þ 2Þcschρ̂Þ − 2Λ̂Bρ̂

�
; ð30Þ

where we define the dimensionless quantities ρ̂≡ πMΨρ,
α̂ ¼ α=M3

Ψ, β̂ ¼ β=M3
Ψ, and Λ̂B ≡ ΛB=M5

Ψ. For a given set
of order one parameters ðα̂; β̂; Λ̂BÞ, we numerically deter-
mine the unique root ρ̂� of (30), which allows us to evaluate
the last term of (29) as a function of ρ̃ using ρ̂ ¼ ρ̃ρ̂�. By
definition we have ρ̂� ¼ πMΨb, such that parametrically
b ∼M−1

Ψ . Therefore, mr ∼M2
Ψ=Mpl. We solve for the

precise value of mr numerically by computing the second
derivative of V at ρ̂ ¼ ρ̂�. Recalling (14), it follows that
MΨ ∼ fa, such that the only dependence of (29) on
dimensionful parameters is from the fourth and last terms
which are parametrically ðfa=MplÞ2.
We use a fourth-order collocation method5 to solve (29)

on a finite interval ½r̃min; r̃max� spanning 15 decades, with

boundary conditions ρ̃0 ¼ −
ffiffi
2
3

q
fa
Mpl

1
r̃ at r̃ ¼ r̃min [from (18)]

and ρ̃ ¼ 1 − ρ̃0r̃=2 at r̃ ¼ r̃max [from (25)]. Our fiducial
choice of parameters entering in the potential is
ðα̂; β̂; Λ̂BÞ ¼ ð3; 1.9;−0.4Þ, and we also set 2πg4 ¼ 1 so
that fa ¼ b−1. In Fig. 1 we illustrate the resulting radion
profile for fa=Mpl ¼ 5 × 10−3, compared to the asymptotic
form at small and large r in (18) and (25), respectively.
We verify that for sufficiently low fa=Mpl the profile

satisfies two key properties: (i) the radion approaches its
VEV for r≳ b, and (ii) the regime of validity of the small r
Ansatz extends up to r ∼ b. Together with (23), these
properties confirm the conjecture (24). Together with (18),

they also imply that logðcÞ ∼ −
ffiffi
3
2

q
Mpl

fa
. Let us then

define the “width” of the string as the distance r1
2
from

the string core that contains half of the UV part of the
tension (note that for field theory strings we have r1

2
∼ f−1a ).

Then the above observations imply ρðr1
2
Þ ∼ 2b, giving

logðcr1
2
=bÞ ∼ −2

ffiffi
3
2

q
Mpl

fa
. Hence,

log

�
r1
2
Mpl

�
∼ −

ffiffiffi
3

2

r
Mpl

fa
þ log

�
Mpl

2πg4fa

�
; ð31Þ

meaning at least half of the tension is contained within a
region much smaller than a Planck length from the string

FIG. 2. The string width of the infinite string Ansatz in units of
the Planck length from the 5D EFT. Note that the width is defined
as the radial distance r1

2
from the string core which corresponds

to half of the UV part of the tension. The analytic estimate for
the width in (31) is illustrated in dashed grey. Interestingly, we
find that the width of the strings is exponentially smaller than
M−1

pl , suggesting that the cores of such strings are 1D objects with
no physical width.

FIG. 1. Radion profile for a static infinite string in an
unwarped 5D construction (solid black). The small and large r
Ansätze in (18) and (25), respectively, are illustrated in dashed
grey. Here, fa=Mpl ¼ 5 × 10−3.

5This method is based on the algorithm of [106], implemented
in SciPy’s [107] SciPy.integrate.solve_bvp.
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for fa ≪ Mpl. In Fig. 2 we confirm this scaling holds to
leading order by measuring logðcÞ from the numerical
profiles.
Lastly, we point out that the above exponential depend-

ence of the string width on Mpl=fa seems to be largely
independent of the choice of potential. Any potential falling
at least as quickly as 1=ρ at large ρ can be neglected at small
r in (17), such that the small r behavior of ρ is given
by (18). Further, (25) shows that the only dependence of the
large r behavior of ρ on the potential is through mr. As a
test, we repeat the logic of the preceding paragraphs for a
potential of the form VðρÞ ¼ −v2e−2ρ=bρ2, similar to that
considered in, e.g., [33]. We find that as long as mr is not
exponentially suppressed relative to fa, with an exponent
of order Mpl=fa, then (31) holds to leading order.

B. Warped extra dimension

We now consider the scenario of a warped extra
dimension where the spacetime is a slice of a five-
dimensional anti–de Sitter (AdS) geometry. We parametrize
the metric as

ds2 ¼ e−2kρðxÞϕgμνdxμdxν þ ρðxÞ2dϕ2; ð32Þ

where ρðxÞ is the radion and k determines the AdS
curvature scale. As above, the extra dimensional coordinate
ϕ ranges from 0 to π due to an orbifolding ϕ ↔ −ϕ
identification. Substituting this Ansatz in the 5D General
Relativity action and integrating over the extra dimension
we find [93]

SG ¼ 2M3
5

k

Z
d4x

ffiffiffiffiffiffi
−g

p ð1 − e−2kπρÞRð4Þ

−
12M3

5

k

Z
d4x

ffiffiffiffiffiffi
−g

p
∂μðe−kπρÞ∂μðe−kπρÞ: ð33Þ

To obtain the low energy effective U(1) action, we use an
Ansatz where A5 ¼ A5ðxμÞ and Aμ ¼ AμðϕÞ [90]. The
equation of motion for Aμ can be written as

∂5ðe−2kρϕFμ5Þ ¼ 0: ð34Þ

Here the subscript 5 refers to the coordinate ϕ. To solve (34),
we can write e−2kρϕFμ5 ¼ fμðxμÞ for some general function
fμðxμÞ. By integrating over the extra dimension, with a
boundary condition, Aμðϕ ¼ 0Þ ¼ Aμðϕ ¼ πÞ ¼ 0, we
obtain

Fμ5 ¼
2kπρ

e2kπρ − 1
∂μA5e2kρϕ: ð35Þ

Substituting this back into the U(1) action, we arrive at

SUð1Þ ¼ −
1

4g25

Z
d5x

ffiffiffiffiffiffiffi
−G

p
GMNGABFMAFNB;

¼ −
1

g25

Z
d4x

ffiffiffiffiffiffi
−g

p 2kπ2

e2kρπ − 1
gμν∂μA5∂νA5: ð36Þ

We can rewrite this in terms of the canonically normalized
radion field,6 φ=F ¼ e−kπρ where F2 ¼ 24M3

5=k:

SUð1Þ ¼ −
1

g25

Z
d4x

ffiffiffiffiffiffi
−g

p 2kπ2

ðF=φÞ2 − 1
gμν∂μA5∂νA5: ð37Þ

Correspondingly, the gravity action gives

SG ¼ 2M3
5

k

Z
d4x

ffiffiffiffiffiffi
−g

p �
1 −

�
φ

F

�
2
�
Rð4Þ

−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
∂μφ∂

μφ: ð38Þ

We verify that in the limit k → 0, the above action reduces to
the corresponding action in flat space.7 Note that canonically
normalizing the radion requires an extra Weyl rescaling to
obtain a pure Einstein-Hilbert term. This is performed in
Appendix D, where it is shown that at leading order in φ=F,
one can simply neglect the first line of (38) when one studies
the radion-axion system.
The axion can be defined as before from the Wilson

loop (11). Since A5 is independent of ϕ, we have ϑ ¼ 2πA5,
and we identify ϑ ¼ a=fa with the canonical axion field a
having a period of 2πfa. Using this we can rewrite

SUð1Þ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðF=hφiÞ2 − 1

ðF=φÞ2 − 1
gμν∂μa∂νa; ð39Þ

with

f2a ¼
k

g25½ðF=hφiÞ2 − 1� : ð40Þ

In the limit of k → 0, this reduces to fa ¼ 1=ð2πg4hρiÞ
upon using (13), as expected. We also see that the scale fa
can be parametrically below the 5D UV scale

ffiffiffi
k

p
=g5 for a

significant warp factor hφi=F ≪ 1. Unlike the flat space,
we note that φ does not travel an infinite field space
distance towards the core of the string so that the SDC does
not allow us to predict a dramatic breakdown of the EFT at
the core of the string. The absence of an infinite distance
appears to be consistent with the holographic picture of our

6Note that φ has a very different phenomenology than its flat
space analog of (16). For instance, its interactions are stronger
than gravitational in the warped case.

7To show this, one can repeat the flat-extra-dimension analysis
starting with a metric Ansatz, ds2 ¼ gμνðxÞdxμdxν þ ρðxÞ2dϕ2

which differs from (8) via a 4D Weyl rescaling factor hρi=ρðxÞ.
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warped scenario, which is purely field theoretical and does
not require quantum gravity. To our knowledge, few studies
of the SDC on warped geometries have been attempted so
far [108–110] and none in the context of axion strings. This
represents an interesting avenue for future work.
We now describe the axion string solution when we have

an infinite string lying along the ẑ direction with
aðr; θÞ ¼ faθ. As before, r is the radial direction away
from the string core. Close to the string where ρ → ∞
(φ ≪ F) the approximate equation of motion for the radion
is then given by

φ00 þ 4ðφ0Þ2
F2

þ 1

r
φ0 −

k
g25

φ

F2r2
− V 0ðφÞ ¼ 0; ð41Þ

where we include the contribution from a stabilizing radion
potential VðφÞ.
The potential term may be neglected close to the string,

and (41) is then solved by an Ansatz of the form φ ¼ Crα

with α ¼ ffiffiffi
k

p
=ðFg5Þ. Using this we can compute the

contribution to the string tension from the inner core,

μin ¼ π

Z
rI

0

dr r½C2α2r2α−2 þ C2α2r2α−2�; ð42Þ

where both the radion and the axion contribute equally. The
integral is dominated by the region near rI where we choose
to cut off the integral:

μin ¼ παφðrIÞ2: ð43Þ

Assuming φðrIÞ ≤ hφi and hφi ≪ F, we may obtain an
upper bound on μin:

μin ≤ παhφi2 ¼ πfahφi ¼
ffiffiffi
6

p
πfaMpl

hφi
F

: ð44Þ

Taking k ∼M5 ∼Mpl, then the above relation reduces to
μin ≲ f2a. This implies that in a warped extradimensional
scenario, the string theory axion string tension is similar to
that of field theory axion strings; in particular, the tension is
dominated by the axion contribution, given its logarithmic
divergence. This is expected since both the axion and the
radion are “composite” degrees of freedom in the 4D
holographic theory. On the other hand, as the amount of
warping decreases, the upper limit on the inner core tension
in (44) reaches the flat extra dimension result in (24).
Let us now repeat the procedure of Sec. II A to study the

radion profiles numerically. In Appendix D we rederive the
radion equation of motion in the warped geometry without
recourse to approximations and verify that it reduces to the
flat geometry result (17) in the limit of zero warp factor. We
then solve the equation of motion numerically. As in the flat
geometry case, we assume the radion is stabilized by the
Goldberger-Wise mechanism. To obtain the radion potential

for the warped geometry, we repeat the procedure of the
previous section; however, now we add interaction terms for
the bulk scalar Ψ on each boundary i orthogonal to the fifth
dimension, with i ¼ h for the UV boundary at ϕ ¼ 0 and
i ¼ v for the IR boundary at ϕ ¼ π. In particular, we
include the actions [92,93]

Si ¼ −
Z

d4x
ffiffiffiffiffiffiffi
−gi

p
λiðΨ2 − v2i Þ2; ð45Þ

with gi the induced metric on boundary i. The potential
obtained is [93]

VðφÞ ¼ k3

144M6
5

φ4ðvv − vhðφ=FÞϵÞ2; ð46Þ

which is valid to leading order in ϵ≡M2
Ψ=4k

2 ≪ 1 when
the λi is large (in units of M−2

Ψ ) on each brane such that Ψ
takes the values vhðviÞ at ϕ ¼ 0 (ϕ ¼ π). We impose vh >
vv such that (46) has a minimum at

hφi
F

¼
�
vv
vh

�
1=ϵ

: ð47Þ

The resulting string profile is shown in Fig. 3 for fa=Mpl ¼
10−2 and a fiducial choice of parameters specified in
Appendix D. We confirm that μin ≲ f2a. However, unlike
in the flat geometry, the majority of the tension is not
contained in a region exponentially smaller than Mpl,
suggesting that in this case the string tension may be
reliably computed in the EFT. This might be expected
from the dual conformal field theory perspective where both

FIG. 3. Radion profile for an infinite string, as in Fig. 1, but for
the warped 5D geometry. In dashed grey we illustrate the small-r

asymptotic expectation φ ∝ r
ffiffi
k

p
=ðFg5Þ. Here, fa=Mpl ¼ 10−2, and

ðṽh; ṽv;M5=k; g25kÞ ¼ ð2; 1; 2; 1Þ. (See Appendix D for details.).
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the radion and the axion are composite degrees of freedom
with the heavier degrees of freedom reliably integrated out.

III. STRING TENSION FROM WRAPPED BRANES

We argued in the previous section that the core of the
cosmic strings that we study are not resolved in a controlled
EFT in four dimensions, and for string theory axions (of the
closed-string type) it turns out that they also are not in
higher spacetime dimensions. Instead, the only (known)
controlled description of those objects is found in (super)
string theory, as extended fundamental string theory objects
wrapped on some compactification cycle. In this section,
we explore the top-down string theory perspective on the
tension of a given axion string. Namely, given some
compactification schemes yielding a 4D axion, we identify
the brane which carries the relevant charge in 10D and
compute the 4D tension of the resulting string. We will see
that those tensions are much larger than in field theory
setups, except when the brane sits at the bottom of a warped
throat. The results, obtained by ignoring the backreaction
of the brane on the background fields, match the EFT
expectations for the warped and unwarped string tensions
detailed in the previous section. That the BPS condition
allows one to track objects over weak and strong back-
reactions is a crucial property of D-brane physics.
We do not attempt to scan full-fledged string compacti-

fications; instead, we extract generic scalings for the two
paradigmatic scenarios of large and warped extra dimen-
sions. Also, although we focus here on ten-dimensional
string theory, similar estimates can be performed in eleven-
dimensional M-theory, where the strings correspond to
wrapped M2 or M5 branes. We stress that the cases we
study do not capture all possibilities, instead, they serve as
examples that saturate the bounds found in (1) and (2). For
instance, mildly warped M-theory setups presented in [4]
yield axion string tensions that interpolate between the two
extremal values. We also do not discuss open string sector
axions that arise from matter fields, as they would behave
similarly to the normal field theory axion scenario.8

Let us start by describing how the axion string uplifts to
higher-dimensional objects as one resolves distances
smaller than the KK scale. An axion string satisfiesZ

γ
da ¼ 2πfan; ð48Þ

for a curve γ encircling the string and an integer winding
number n. One says that the string is magnetically charged,
with charge n, under the dimensionless axion ϑ≡ a=fa.
The meaning of this is the following. In general, in a
d-dimensional spacetime and given a pþ 1-form field
Cpþ1, a p-brane with worldvolume Σpþ1 can be electrically
charged under Cpþ1 or magnetically under the dual Cd−p−3
defined via ⋆dCpþ1 ¼ dCd−p−3, with ⋆ the Hodge star
operator. The electric coupling is captured by the action

−Tp

Z
Σpþ1

volpþ1 þQp

Z
Σpþ1

Cpþ1; ð49Þ

with Qp the electric charge of the brane, Tp the brane
tension, and volpþ1 the pþ 1-form volume element of the
brane worldvolume. The charge can be extracted through
the integral

R
Sd−p−2

⋆dCpþ1, where Sd−p−2 is a surface

enclosing the brane. The equation of motion of Cpþ1,
whose kinetic-term action reads

−
1

2

Z
dCpþ1 ∧ ⋆dCpþ1 ð50Þ

is d⋆dCpþ1 ¼ QpδðΣpþ1Þ, where δðΣpþ1Þ is the Poincaré
dual of Σpþ1.

9 Therefore, using Stokes theorem for a surface
Sd−p−1 spanning Sd−p−2,Z

Sd−p−2

⋆dCpþ1 ¼
Z
Sd−p−1

dð⋆dCpþ1Þ

¼ Qp

Z
Sd−p−1

δðΣpþ1Þ ¼ Qp: ð51Þ

The magnetic charge is, in turn, measured by 1
2π

R
Spþ2

dCpþ1

for a surface Spþ2 enclosing a ðd − p − 4Þ-dimensional
magnetic brane. Specializing now to the axion string, we
may introduce the 2-form C2 dual to the axion in 4D; i.e.,
d4Da ¼ ⋆d4DC2, and we see that the electric charge of the
string under C2 is the topological axion charge of the
string, Q2 ¼ 2πnfa.
Let us now reinterpret the axion string in the context of

compactifications. At some scale, the relevant spacetime

8For instance, open and closed string axions differ significantly
when it comes to axion string formation. Let us consider again the
5D gauge field that we studied in Sec. II. If it arose from the open
string sector, then it might correspond to the IR version of a
Higgsed non-Abelian open string gauge field, itself coupled to
heavy charged matter. Through the phase transition associated
with this Higgsing, this charged matter may generate ’t Hooft-
Polyakov-like configurations carrying a magnetic flux. In 5D,
such magnetic monopoles have the worldvolume of a string and
exactly correspond to axion strings in 4D. Therefore, this
scenario would give an example of an axion string which can
be smoothly described in a 5D field theory, albeit not in a 4D field
theory when the Higgs VEV is larger than the inverse 5D radius.
Instead, closed string axions are associated with p-forms which
are fundamental, in particular, they are not UV-completed by a
field theory with charged matter at any energy.

9de Rham duality ensures that each nontrivial p-cycle Σp is
associated to a nontrivial (d − p)-cohomology class. Informally,
we may represent the latter by a (d − p) form δðΣpÞ, with indices
along the (d − p) directions transverse to the p-cycle and
coefficient given by a Dirac delta function with support on Σp.
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dimension is some integer d ≥ 4, and the relevant field is
either a fundamental axion or a p-form field Cp of higher
degree, from which the axion emerges in the low-energy
4D spacetime. In the latter case, one writes

a
fa

∝
Z
Ω
Cp; ð52Þ

for a p-cycle Ω. It is then clear from the above discussion
that the axion string uplifts to an object of dimension
ðd − p − 3Þ magnetically charged under Cp,

2πn ∝
Z
γ×Ω

dCp: ð53Þ

From the 4D perspective, this object appears as a string.
If all KK scales are lower than the string scale, then one

can track the decompactifications until the generating EFT
in 10D, which approximates the full string theory at low
energies, breaks down. In that EFT one finds the original
p-form that gives rise to a given axion in 4D. Nevertheless,
the core of the appropriate magnetic solitons corresponding
to a 4D axion string remains singular and their tension
cannot be reliably computed in the EFT. Fortunately, the UV
string theory contains excitations which are extended
objects carrying electric or magnetic charge under the
massless p-form fields of the EFT. For Ramond-Ramond
(RR) forms, they correspond to D-branes, while they
correspond to the fundamental string or its magnetic dual,
the NS5 brane, for the Neveu-Schwarz-Neveu-Schwarz
(NSNS) 2-form. Dp branes exist for p odd in type IIB
theory, p even in IIA, and p ¼ 1, 5 in type I (and do not
exist in heterotic theories). Those objects can be reliably
studied, and their tension extracted, in a weakly coupled
limit of the full string theory.
In string theory, there are various ways to realize axion

strings by wrapping p-branes on a (p − 1)-cycle Ω (of
volume VΩ) of the compact manifold and dimensionally
reducing the appropriate (pþ 1)-forms. Taken in isolation
in the 10D bulk (without background branes), these
extended objects are BPS, so that their fundamental tension
T and charge Q as defined in (49) satisfy

T2 ¼ Q2

2κ210
; ð54Þ

where κ−210 ¼ 4π
g2s
M8

s , with Ms ¼ 1=ls ¼ 1=ð2π ffiffiffiffi
α0

p Þ the

string scale and gs the string coupling. In our conven-
tions [4], the p-forms have mass dimension four in 10D.
For a Dp-brane, TDp ¼ 2πMpþ1

s =gs, while TF ¼ 2πM2
s

and TNS5 ¼ 2π
g2s
M6

s for the F-string and NS5-brane, respec-

tively. String theory constructions also feature non-BPS
branes, whose tension is larger than the one of a would-be
BPS brane of the same charge. Furthermore, we stress that

the brane action of (49) only describes the coupling to the
graviton and the minimal couplings to form fields, and it
lacks couplings to the dilaton or brane fields, as well as
nontopological p-form couplings. For simplicity, we focus
on backgrounds where the fields concerned by these extra
couplings (which depend on the brane under scrutiny)
vanish, so that we can reliably use the above brane action.
We now consider a spacetime with topologyM4 × X, for

M4, the 4D Minkowski space and X, a 6D compact
manifold, such that an appropriate 10D string EFT yields
a massless axion in 4D. The 4D Planck mass reads

M2
pl ¼

VX

κ210
¼ 4π

g2s
M8

sVX; ð55Þ

with VX the volume of X. Upon wrapping a p-brane on a
(p − 2)-cycle Ω, the resulting string tension is

μ ¼ TpVΩ: ð56Þ

For simplicity we will repeatedly assume that X admits a
global product structure of the form X ¼ Ω ×Ω⊥, with Ω⊥
the dimensions not spanned by Ω, such that we may write
VX ¼ VΩV⊥, with V⊥ the volume of Ω⊥.

A. Flat extra dimensions

We first consider flat extra dimensions, namely the case
where the geometry is factorizable: the metric of spacetime
is block diagonal on M4 × X, so that the block with M4

indices does not depend on X coordinates, and reciprocally.
We also take vanishing fluxes and trivial dilaton profiles. In
order to obtain an axion in 4D, one looks for either a KK
scalar or a KK 2-form zero mode of the 10D fields on X.

1. Compactifying a (p + 1)-form down to a 4D 2-form

We start with the case where the 4D axion is dual to a 4D
2-form C2, obtained from dimensional reduction of a form
Cpþ1 of equal or higher degree. For generic p, this situation
is, for instance, encountered in type II string theory, in
which case an appropriate Dp brane, electrically charged
under Cpþ1, corresponds to the axion string.
We KK-reduce Cpþ1 on a basis of harmonic forms ω

dual to a basis of the (p − 1)-th homology group of X,

Cpþ1 ¼
X
ω

ωp−1 ∧ Cω
2 ; ð57Þ

where Cω
2 is a function of the 4D coordinates only. For

simplicity, let us assume that the rank of the (p − 1)-th
homology group is 1, so that it is generated by a single
homology class [Ω]. This allows us to avoid discussing
mixings between axion fields, though we expect the con-
clusions to hold if we relaxed this assumption. (We inves-
tigate the cosmology of strings in the presence of several
axions in Sec. VII.) We then have a single 4D 2-form,
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C2 ¼
Z
Ω
Cpþ1; ð58Þ

where we normalize ω so that
R
Ω ω ¼ 1. We also assume

that X ¼ Ω × Ω⊥, but as above we expect the qualitative
features of the argument to remain the same if this is not the
case. Wrapping a charged p-brane on Ω leads to a stable
configuration, whose worldvolume becomes that of a 4D
string × Ω. It inherits the following coupling to the 4D
2-form:

Qp

Z
string

�Z
Ω
Cpþ1

�
¼ Qp

Z
string

C2: ð59Þ

Thus, this wrapped brane is magnetically charged under the
axion and corresponds to its string.
Canonically normalizing the 2-form requires a rescaling

[4],

C2 →

�Z
X
ω ∧ ⋆ω

�
−1=2

C2 ¼
ffiffiffiffiffiffiffi
VΩ

V⊥

s
C2: ð60Þ

From this, we read off the axion decay constant from the
charge of the minimally charged brane,

fa ¼
Q2

2π
¼ Qp

2π

ffiffiffiffiffiffiffi
VΩ

V⊥

s
; ð61Þ

and relate it to its tension,

μ ¼ TpVΩ ¼
ffiffiffi
2

p
πfaMpl; ð62Þ

where in the second equality we assume that the brane is
BPS in 10D. We also find

fa
Mpl

¼ g2−δs

2
ffiffiffi
2

p
π

l7−ps

V⊥
; ð63Þ

where δ ¼ 0, 1, 2 for F strings, D-branes, and NS5-branes,
respectively. Hence, we see that, in the controlled gs ≪
1; V⊥ ≫ l7−ps limit, the axion string tension is much larger
than the usual field theory result, μ ∼ f2a.
We stress that the above applies to the limit case

pþ 1 ¼ 2, where the harmonic ðp − 1 ¼ 0Þ-form ω is a
constant (¼ 1 given our normalizations), and the canonical
normalization of C2 in 4D reads

C2 →

�Z
X
1 ∧ ⋆1

�
−1=2

C2 ¼
C2ffiffiffiffiffiffi
VX

p : ð64Þ

The corresponding axion string is an unwrapped 1-brane.

2. Compactifying a (p + 1)-form down to a 4D axion

We now consider the case, related to the previous one by
electromagnetic duality, where the axions come from the
4D scalar zero modes of a (pþ 1)-form,

Cpþ1 ¼
X
ω

ωpþ1

aω
Qp

; ð65Þ

where Qp is the charge of a p-brane electrically charged
under Cpþ1, and the axion normalization is chosen so that it
is dimensionless given our conventions for Cpþ1 and ωpþ1,
and so that it has periodicity a → aþ 2π. Therefore, when
a single homology class [Ω] generates the (pþ 1)-th
homology group and X ¼ Ω ×Ω⊥, the axion decay con-
stant can be read from its kinetic term,

f2a ¼
1

Q2
p

Z
X
ω ∧ ⋆ω ¼ VX

V2
ΩQ

2
p
: ð66Þ

We then infer

fa
Mpl

¼ gδs
2
ffiffiffi
2

p
π

lpþ1
s

VΩ
: ð67Þ

The axion string of aω is charged under the 2-formCaω
2 dual

to the axion in 4D. To highlight the UV origin of this
2-form, we write

⋆dCpþ1 ¼
X
ω

⋆d
�
ωpþ1

aω
Qp

�
¼
X
ω

⋆
�
ωpþ1

d4Daω
Qp

�

¼
X
ω

⋆Xωpþ1

d4DC
aω
2

faωQp
;

ð68Þ

where we use the relation d10D ¼ d4D þ dX, that ω
is harmonic on X, that, for a y1-form ω1 on Y1 and a
y2-form ω2 on Y2, ⋆Y1×Y2

ω1 ∧ω2¼ð−1Þy2ðdimY1−y1Þ

⋆Y1
ω1 ∧⋆Y2

ω2, and finally that the axion is not canonically
normalized in 4D while p-forms are in our conventions;
hence, daω ¼ f−1aω⋆dC

aω
2 . Introducing the dual C7−p of

Cpþ1 such that ⋆dCpþ1 ¼ dC7−p, one sees that Caω
2 is

related to one of the KK zero modes of C7−p,

dC7−p ¼ d

�X
ω5−pCω

2

�
¼
X

ω5−pd4DCω
2 ; ð69Þ

and that we should identify Cω
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
X ω5−p⋆ω5−p

q
Caω
2 and

ω5−p ∝ ð⋆XωpÞ=ðfaωQpÞ. This tells us that the string
magnetically charged under the axion is obtained by
wrapping the (6 − p)-brane which has magnetic charge
under Cpþ1 on a cycle belonging to the class ½Ω⋆� de Rham
dual to ⋆Xωpþ1. [This is a (5 − p)-homology class of X, so
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we do get a string. Also, it makes sense to apply de Rham
duality to⋆Xωpþ1, which is closed sinceωpþ1 is harmonic.]
Under our assumption that X ¼ Ω ×Ω⊥ and that there is a
unique class of (pþ 1)-cycles (hence of (5 − p)-cycles), we
find that ½Ω�� ¼ ½Ω⊥�. The stable brane is that wrapped on
Ω⊥. Dirac quantization condition for a minimally charged
brane implies

QpQ6−p ¼ 2π; ð70Þ

so that the string tension is again

μ ¼ T6−pVΩ⊥ ¼
ffiffiffi
2

p
πfaMpl; ð71Þ

in agreement with the result found in (62).

B. Warped compactifications

We now turn to warped compactifications, where the
entries of the metric with M4 indices depend on the
coordinates on X. For simplicity, let us take a spacetime
M4 × I1 × X5, where X5 is some 5D manifold of coor-
dinates zm and I1 ¼ S1=Z2 is an orbifolded circle with
coordinate ϕ and radius ρ, equipped with a metric of the
form

ds210D ¼ e−2kρϕg4D;μνdxμdxν þ ρ2dϕ2 þ ds2X5
; ð72Þ

so that the compactification on X5 is not warped. We also
assume a trivial dilaton profile. An example would be a
slice of the AdS5 × X5 geometry obtained from the near
geometry of a stack of D3-branes, where X5 could, for
instance, be S5 for branes in flat space, or T1;1 with
topology S2 × S3 for branes at a conical singularity. We
can then perform the KK reduction on X5 by following the
steps in the previous section. In order to get an axion in 4D,
one can focus on KK scalars, vectors, or 2-form zero modes
of the 10D fields on X5.

1. Compactifying a (p + 1)-form down to a 2-form
on a slice of AdS5

We start again with the case where the 4D axion is dual
to a 4D 2-form C2, and we assume that this 4D 2-form
descends from a 2-form on AdS5, itself descending from a
(pþ 1)-form in 10D. This case also captures that of
Sec. II B, where the 4D axion descends from a wrapped
gauge field on AdS5: 2-forms and vectors are electric-
magnetic duals of one another in 5D. Axion strings
correspond to 1-branes extending in 4D and pointlike
on I1 × X5. They have tension μ5D in 5D and, following
the logic of Sec. III A 1, we obtain their charge,

Q2;5D ¼
ffiffiffi
2

p μ5D

M3=2
5

: ð73Þ

The charge is measured with respect to the canonically
normalized 2-form in 5D, and M5 is the 5D Planck mass:
M3

5 ¼ ð4π=g2sÞM8
sVX. On this warped space, we can show

that a flat KK profile is consistent for the 2-form, as long
as appropriate boundary conditions are chosen. Therefore
the canonically normalized 2-form in 4D is obtained
through the rescaling

C2 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

e2kρπ − 1

r
C2; ð74Þ

and the 4D charge of the D1-brane is

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
e2kρπ − 1

r
Q2;5D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k

e2kρπ − 1

r
μ5D

M3=2
5

: ð75Þ

Using now the values of the 4D tensions and Planck
masses,

μ ¼ μ5De−2kρϕbrane ; M2
pl ¼

1 − e−2kπρ

k
M3

5; ð76Þ

we obtain

fa ¼
Q2

2π
¼ ekρð2ϕbrane−πÞffiffiffi

2
p

π

μ

Mpl
: ð77Þ

Due to its position-dependent tension, the brane will
be driven to the IR brane10 (ϕbrane ¼ π), where we see that
its tension is warped down with respect to the value found
for flat extra dimensions, faMpl. Instead, we now find
μ ∼ f2a, in line with the results of Sec. II B. This result is in
line with the expectation that string theory in warped
backgrounds has field theory duals, allowing one to describe
the axion strings at the IR brane.

2. Compactifying a (p + 1)-form down to an axion
on a slice of AdS5

We now turn to the case where the 4D axion is simply the
zero mode of a scalar on AdS5. Axion strings correspond to
2-branes in 5D wrapped on I1, which carry magnetic axion
charge in 5D. From the logic of Sec. III A 2, we obtain

μ5D ¼
ffiffiffi
2

p
πðfa;5DM5Þ3=2; ð78Þ

where the axion decay constant in 5D fa;5D can be read
from the 5D axion kinetic term: f3a;5Dð∂aÞ2=2. The wrapped

10The warping is often supported by fluxes, for instance, by an
RR 4-form flux in the case of a stack of D3-branes at the orbifold
fixed point. This flux can cancel the force felt by other probe
branes, such as another D3-brane displaced in the bulk. Here,
we focus on branes which are not affected by the flux, such as
D1-branes produced after D3-brane inflation.
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brane then has a tension

μ ¼ 1 − e−2kρπ

k
μ5D: ð79Þ

The KK profile for the axion zero mode is flat so that the
4D axion decay constant reads

fa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2kρπ

k

r
f3=2a;5D ¼ μffiffiffi

2
p

πMpl

: ð80Þ

As the brane extends out of the warped region, we recover
the flat space relation.

IV. AXION COSMOLOGY IN FIELD THEORY
VERSUS STRING THEORY UV COMPLETIONS

In the previous sections we describe the structure of field
theory and string theory axion strings, but just because the
strings exist mathematically does not mean that the strings
form dynamically in a cosmological context. We begin by
reviewing the argument for dynamical string formation in
the field theory axion scenario, before arguing against
axion string formation in extradimensional constructions
under the standard cosmological paradigm of a generic
scalar-field-driven inflationary epoch followed by reheat-
ing. On the other hand, we then discuss how string theory
axion strings may form at the end of inflation in the context
of D-brane inflation.
We note that the statements we make about axion strings

in string theory apply equivalently to cosmic superstrings
in string theory, which are known to form during D-brane
inflation but not through standard thermal evolution. This
is because, as we show in the previous sections, axion
strings in string theory are special types of cosmic super-
strings that source gauge field configurations that appear as
axions from a 4D perspective. Any claims about cosmic
superstring formation thus apply to axion string formation
in string theory.

A. No string theory axion string formed after reheating

We denote the reheat temperature after inflation by TRH.
(Our logic also extends to the case where the maximum
temperature Tmax reached during reheating is much larger
than TRH, upon replacing TRH by Tmax.) Let us assume for
simplicity that the Universe is radiation-dominated below
TRH until matter-radiation equality. In the minimal PQ
theory of (3), the PQ scalar Φ acquires a thermal mass
mtherm which restores the PQ symmetry for T ≳ fa. Thus, if
TRH ≳ fa, then the PQ symmetry is restored; in the
unbroken phase hΦi ¼ 0 but Φ acquires nontrivial thermal
fluctuations about this mean value through interactions
with the SM bath. The axion field, which is the phase of Φ,
thus has random and uncorrelated values over spatial scales
much larger than 1=T ≪ H−1.

When the UV PQ theory has a Uð1ÞPQ global symmetry,
the theory undergoes a second-order phase transition to the
broken phase where hΦi ≠ 0 for T ≲ fa. Thus, by the
Kibble-Zurek mechanism [59,60], global strings develop,
which are characterized by closed curves encompassing
strings where the axion field has a full 2πfa field excursion.
A key point of string formation is that in the high-
temperature theory, there are no preferred values for the
axion field; it takes on random uncorrelated average values
over causally disconnected Hubble patches. The radial
mode is massive and nonrelativistic at temperatures below
fa; this mode freezes out to its VEV except at the location
of string cores. Let us stress that, although we focused the
discussion on the minimal model of (3), the conclusion
only depends on the fact that there exists a PQ-preserving
point in field space that the Universe selects at high enough
temperatures, so that it also holds in more elaborate PQ UV
completions.
In contrast, the extra dimension UV completion does not

have a symmetry-breaking phase transition as T crosses fa,
even if TRH ≫ fa.

11 The first point to note is that in the flat
extra dimension case, the radion is decoupled from the
thermal plasma at temperatures below TRH and cannot
adjust to smooth out the core of a would-be axion string.
Indeed, the radion is a gravitational degree of freedom and
thus it scatters with the SM plasma in the early Universe
with a scattering rate Γ ∼ T3=M2

pl. Thus the radion is
decoupled from the SM plasma at temperatures T ≲Mpl.
On the other hand, the reheat temperature is constrained by
the BICEP2/Keck Array upper limit on the tensor-to-scalar
ratio to be less than TRH ≲ 1016 GeV [111]. Thus, post-
reheating the radion was never thermalized and instead was
frozen at its homogeneous initial misalignment value until
Hubble dropped below its mass. After this point the radion
redshifts like matter and decays to SM final states.
Let us return to the EFT description of flat extradimen-

sional strings given in Sec. II A. Consider the scenario
where TRH ≫ fa ∼ 1=b, such that the 5D gauge field AM is
in thermal equilibrium with the SM plasma. During
inflation the field component A5 acquires a homogeneous
VEV hA5i that is related to the specific field value of A5 at
the point of space we inflated from. This VEV translates to
an axion misalignment angle hϑi, where ϑ is the dimen-
sionless axion field defined in (11); the misalignment angle
takes on a random value between 0 and 2π with equal
probability.

11As noted previously, in scenarios where TRH is larger than
the warped down string scale, there can be a Hagedorn phase
transition producing F-strings [45,65,66]. Here, we consider
scenarios where the warped down string scale is larger than
the scale of inflation V1=4

inf , so that a Hagedorn phase transition
does not occur; if strings are generated by a Hagedorn phase
transition, then the cosmology would proceed as in Sec. V.
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Postreheating, the field A5 has nontrivial thermal fluc-
tuations, but its VEV is preserved by thermal fluctuations.12

When T drops below fa there is no phase transition, but
instead the 5D KKmodes of AM become massive, decouple
from the SM plasma, and then decay into lighter states.
Since the thermal fluctuations in ϑ do not create singular
field configurations, the axion field ϑ relaxes to its infla-
tionary-selected VEV ϑi ≡ hϑi during the subsequent
expansion of the Universe, such that at the QCD phase
transition the cosmology is that of a constant initial
misalignment angle ϑi.
In the case of extra dimension axions, there is in fact no

difference between TRH > fa and TRH < fa. If TRH < fa,
then the cosmology is, as in the field theory case, that of a
constant initial misalignment angle ϑi. Importantly, as
discussed above, the case TRH > fa is equivalent to this
cosmology; the dynamics are set by a homogeneous
constant initial misalignment angle ϑi (see also arguments
in [24,61]). Not only does this imply that axion strings
do not form, except in special inflationary scenarios such as
D-brane inflation discussed in the next subsection, it also
implies that isocurvature constraints arising from quantum
fluctuations of the axion (or A5) during inflation are always
relevant constraints for the string theory axion. In contrast,
for the PQ axion these constraints are only relevant if
TRH < fa, as in the other case, the isocurvature perturba-
tions are erased by the initial conditions of the axion field.
Upper limits on the isocurvature perturbations from Planck
measurements constrain the Hubble parameter Hinf during
inflation to be less than [111]

Hinf ≲ 8.6 × 106 GeV

�
fa

1011 GeV

�
0.408

: ð81Þ

Note that at present the strongest upper limit on Hinf is
Hinf ≲ 6 × 1013 GeV, and this upper limit should only
improve by a factor of ∼5 in the future [112]; this implies,
in particular, that a string theory QCD axion is incompat-
ible with a near-term detection of primordial Cosmic
Microwave Background B-mode polarization from infla-
tion, except in special inflationary scenarios such as
D-brane inflation that do produce axion strings.
It is worth commenting on the expected axion mass in

the case without axion strings from the misalignment angle
alone. We assume a radiation-dominated cosmology below
the temperature at which the axion field begins to oscillate
and compute the DM abundance for different values of fa
and the initial misalignment angle ϑi using the code
package MiMeS [113]. MiMeS solves the axion equations
of motion assuming a radiation-dominated universe with
the axion susceptibility presented in [114]. (See [113] for

more details.) For the 68% (95%) confidence intervals on
the mass prediction we assume ϑi ¼ ½0.16; 0.84�π (ϑi ¼
½0.025; 0.975�π) and find for each ϑi the correct fa at which
Ωa ≡ ΩDM ¼ 0.12h−2 [115]. The axion mass ma that
produces the correct DM abundance is predicted to lie
in the range ð1.86; 53.3Þ μeV [ð0.0777; 118Þ μeV] at 68%
(95%) confidence. Of course, there may be anthropic
reasons why, for a smaller value of ma, the initial mis-
alignment angle of our observable Universe is selected
to be near zero in order to give conditions necessary for
life [116,117].

B. Axion strings in D-brane inflation

There is a well-studied nonthermal production mecha-
nism for axiverse cosmic strings: strings can form at
the end of D-brane inflation [41,42,64]. D-brane infla-
tion13 [62,125] identifies the inflaton with the modulus
encoding the separation between a brane and an antibrane,
extended in the four noncompact spacetime dimensions,
and possibly in compact ones. With a suitable metric and
fluxes, an isolated brane does not move in the compact
dimension by itself, but in the presence of another brane,
there can be an attractive force between them, mediated by
long-distance closed string exchange. If that potential is
flat enough, then it can support a sufficiently long period
of inflation.
At large brane separation, the open strings stretched

between them are very massive and do not influence the
dynamics. However, at small separations, the lightest mode
becomes tachyonic and induces brane-antibrane annihila-
tion. As in the Kibble-Zurek mechanism, this tachyon
condenses to a vacuum manifold whose topology is con-
sistent with the formation of cosmic strings [32,126–128].
Some of these strings are D-branes of lower dimension,
which can be identified given their RR charges. In more
detail, each of the brane-antibrane pair is associated with a
Uð1Þ gauge theory and the tachyon degree of freedom
couples to one combination of the Uð1Þ × Uð1Þ theory.
Tachyon condensation then breaks that Uð1Þ and gives rise
to cosmic strings, similar to a field theory scenario. In the
core of the string, a nonzero field strength survives and
induces a coupling to lower degree RR forms through the
Wess-Zumino couplings of the annihilating branes. For the
most-studied D3-D3 brane system, the strings would be
D1-branes extended along one noncompact space dimen-
sion. As they turn into D1-branes via S-duality, it is also
expected that F-strings are formed in the process, as well as
any bound state of F- and D-strings of charge ðp; qÞ. The
more general case of D(3þ p)-Dð3þ pÞ brane inflation

12In contrast, in the field theory case postreheating for T ≫ fa
the axion, which is the phase of the complex PQ scalar field, does
not have normally distributed thermal fluctuations.

13Other inflation models involving D-branes have been
proposed, for instance, the closely-related setup with branes at
angles [118] or the D3-D7 system [119]. Cosmic strings can also
be formed in these models [120–124].
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leading to Dð1þ pÞ-branes wrapped down to 4D strings
has also been discussed [41,42].
The above mechanism of cosmic string formation, how-

ever, relies on two important aspects. First, the inflaton
potential needs to be flat enough to support a sufficient
number of e-foldings and be consistent with the observa-
tions. Second, for our purpose, we also need to understand
whether the cosmic string actually has an axion associated
with it. The first aspect requires a precise computation in a
string-theoretic EFT. Brane-antibrane systems generically
do not have a flat-space potential compatible with inflation,
although fine-tuning allows one to evade this [118,129].
However, these early works assumed an unspecified mecha-
nism for moduli stabilization, which was then shown to be a
crucial part of the discussion in [130] (KKLMMT). In
particular, KKLMMT considered a warped geometry which
led to an exponential flattening of the inflaton potential,
along with a stabilization of all the moduli—a significant
improvement over earlier constructions. However, it was
found that generic stabilization mechanisms could still
make the inflaton too heavy to support inflation, and some
degree of fine-tuning (roughly a percent) might be needed.
The second aspect of producing cosmic axion strings is,

however, more challenging, at least in the context of the
KKLMMT construction. This construction involves a Z2

orientifold which removes the zero mode of the axion fields
that couples to the D- and F-strings [43]. As a result, while
the cosmic strings can still be metastable, they would not
source axions. It may be possible to find other similar
constructions to KKLMMT where the axion field does
survive in the low-energy spectrum, though the fact that in
this canonical D-brane inflation picture there is no axion in
the low-energy EFT may also be taken as an additional
argument against cosmic axion strings in string theory. A
similar projection of the NSNS and RR 2-forms out of the
spectrum is found in the D3-D7 inflation model [119]. In
the following sections, however, we will assume that an
axion zero mode does survive in the low energy EFT in
order to discuss the cosmological dynamics of an axion
cosmic superstring network generated from, e.g., D-brane
inflation. On the other hand, the construction of fully-
controlled D-brane inflation models whose cosmic super-
string networks source axions in the EFT would be an
interesting direction for future work.

V. STRING NETWORK EVOLUTION

As we discuss in Sec. IV, string theory axion strings,
unlike field theory axion strings, require special infla-
tionary conditions to form, such as forming through
D-brane annihilation at the end of brane inflation. In this
section, we suppose that string theory axion strings do form
in the early Universe, and we discuss the evolution of the
resulting string network and the radiation it produces.
As we show in Sec. III, axion strings in string

theory may be interpreted as wrapped D-branes or

F-strings that magnetically source the axion. Such cosmic
superstrings have been discussed extensively in the liter-
ature as possible sources of GWs, primordial density
perturbations, microlensing signals, and other early
Universe signatures [49,57,131,132]. Here, we consider
the possibility that these superstrings also source axions,
and we discuss how the axions modify the superstring
network and the resulting radiation.
Let us consider a network of cosmic superstrings that are

magnetically charged under an axion a with decay constant
fa; as shown in Sec. III, in the absence of strong warping in
the extra dimensions, the tension of the strings may be
written as

μ ¼ κfaMpl; ð82Þ

where κ is a number of order unity. (The string theory
calculations of Sec. III suggest κ ¼ ffiffiffi

2
p

π, but here we keep
this coefficient more general.) Note that D-brane inflation
may (or may not) form multiple types of strings, such as a
network of F- and D-type strings [43]. Such mixed string
networks14 have string junctions, since F-strings can end on
D-strings; the evolution of such mixed string networks is
more complicated, and we do not consider this possibility
further in this work for simplicity. Rather, we suppose that
the only strings present cosmologically are those that
source the axion of interest a.

A. Network evolution: No axion emission

Let us briefly summarize the evolution of cosmic super-
string networks, characterized by a tension μ, without
accounting for radiation loss in the form of axions.
Afterwards, we discuss how to incorporate axion emission.
In this section, we assume the string network, for flat-extra-
dimension strings, evolved entirely during the radiation-
dominated era. The standard assumption for cosmic string
networks is that they approach a scaling solution via string
intersections with the scaling solution maintaining energy
conservation through GW radiation.
We denote the string reconnection probability as P; this

is the probability that if two strings intersect they will
intercommute (exchange ends). The probability that the
strings pass through each other unaffected is 1 − P. The
probability P should depend both on the relative velocity
between the strings and their relative angle, but it is
common to characterize the network by the network-
averaged quantity P. For field theory local and global
strings P ≈ 1,15 but for D-brane string networks it is
expected that P ∼ ð0.1; 1Þ [44]. (P may be even smaller

14These are commonly termed ðp; qÞ string networks in the
superstring literature.

15P may also be artificially reduced in field theory models:
e.g., for N decoupled copies of Abelian-Higgs model, we have
P ¼ 1=N.
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if the strings are able to “miss” each other in one of the
extra dimensions.) Suppose that we start with a network
consisting of long strings, with lengths much larger than a
horizon size. As the strings evolve according to their
Nambu-Goto equations of motion, they can intersect,
forming, for example, closed string loops. Left in isolation
a closed string loop will disappear by GW radiation. In
particular, a string loop L of length l emits energy with rate

dEGW

dt
¼ rG½L�Gμ2; ð83Þ

where rG½L� is a dimensionless constant that depends on the
shape (but not the size) of L and where G is Newton’s
constant. For typical string loops expected in cosmological
context rG½L� ≈ 50 [133–136]. In this work we assume, for
simplicity, that all rG½L� take the same value rG½L�≈
rG ≈ 50. This implies that a loop in isolation changes length
with time according to lðtÞ ¼ l0 − rGGμt, with l0 the
initial length, implying the strings with length smaller than
roughly rGGμt at given cosmological time t will decay
within a Hubble time.
Modern simulations [137,138] in addition to older works

and analytic arguments [139–141] (see [51] for a review of
different approaches) suggest that regardless of the initial
string network properties the string network reaches a
scaling solution. One way of characterizing the scaling
solution is through the differential number density of
subhorizon-size loops of length l per unit length, nðl; tÞ.
In the scaling regime, the number density at any time may
be related to a universal function nðxÞ through nðl; tÞ ¼
t−4nðxÞ with x ¼ l=t. The velocity-dependent one-scale
(VOS) model [142–145] is a semianalytic approach to
describing the string network whereby one models the
production of loops through a loop-production function that
splits loops off of long strings. The VOS equations of
motion then relate the average distance between long strings
and the average string velocity, solving the VOS equations
of motion with an Ansatz for the loop-production function,
and imposing energy conservation, which then leads to
solutions for the loop number density. VOS-derived number
densities suggest that (for P ¼ 1)

nðxÞ ≈ α

ðxþ rGGμÞ5=2
; ð84Þ

for x≲ 0.1 and α ≈ 0.18; these values agree with those in
modern numerical simulations such as [138], and so we
adopt them throughout this work. On the other hand, some
simulations such as [146,147] predict more small-scale
loops relative to (84), but we do not consider these results
here (i) because they do not so clearly obey energy
conservation, and (ii) because such results would produce
more axion and GW radiation relative to our fiducial choice
in (84). (Hence, our results are more conservative from an
observational perspective.)

Generically, one expects that the energy density in the
string network during the scaling regime grows as the
reconnection probability P decreases, since the network is,
e.g., able to less efficiently lose energy to small loops.
However, dedicated simulations with P < 1 [148] suggest
that the string energy density is roughly constant over the
range 0.1≲ P≲ 1, which is the range of probabilities we
are primarily interested in for D-brane networks, and so we
adopt the P ¼ 1 results above in the analyses that follow.
Let us now compute the energy production rate ΓGW of

energy per unit time per unit volume by string loops within
the scaling regime (similar derivations can be found in
Refs. [149–151]). We may write this rate as

ΓGW ¼ rGGμ2
Z

dlnðl; tÞ ≈ ð16α=3ÞH3μðrGGμÞ−1=2

≈
16

ffiffiffiffiffiffiffiffi
8πκ

p
α

3
ffiffiffiffiffi
rG

p H3
ffiffiffiffiffiffiffiffiffiffiffiffi
faM3

pl

q
; ð85Þ

where in the last line we use the expression for μ in (82).
(Note that (85) only accounts for emission from loops with
x≲ 0.1.) In addition to the energy production rate into
GWs it is also important to know the frequency spectrum of
emitted GWs.
An individual string loop of length l may emit GW

radiation with a complicated spectrum at frequencies above
roughly the first harmonic frequency ω1 ¼ 4π=l, depend-
ing on the loop shape and, in particular, the distribution of
cusps and kinks on the loop. Simulations suggest, however,
that averaged over an ensemble of loops of length l one
may approximate dĖl

GW=dω ∝ ω−4=3 for ω > ω1 [136],
where dĖl

GW=dω denotes the energy loss per unit time per
unit frequency of a loop of length l. Here, however, we
follow [51] and let, for loops of length l,

dĖl
GW

dω
¼ ĖGW

(
0 ω < ω1

ωq−1
1

q−1
ωq ω > ω1;

ð86Þ

with 2 > q > 1. Recall that ĖGW is given in (83) and is
independent of the string length l. For ω ≫ ω1 one
expects, for example, q ¼ 4=3 (q ¼ 5=3) if the emission
is dominated by cusps (kinks) [51]. We may then compute
the network-averaged emission rate per unit time per unit
volume per unit frequency by

dΓGW

dω
¼
Z

dlnðl; tÞ dĖ
l
GW

dω
: ð87Þ

To make progress analytically we approximate the loop
number density in (84) to be

nðxÞ ≈ 2

5

( α
x5=2UV

x < xUV
α

x5=2
x > xUV;

xUV ≡ rGGμ: ð88Þ
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Note that the overall factor of 2=5 is chosen such that the total number of loops, integrated over l, matches the value found
using (84). Then, we may perform the integral in (87) to compute

dΓGW

dω
¼ rGGμ2

8>><
>>:

4α
5π
ffiffiffiffiffiffi
xUV

p q−1
2qþ1

H2
ffiffiffiffi
ω
ω0

q
; ω < ω0;

2α
5π
ffiffiffiffiffiffi
xUV

p q−1
2−qH

2

�
5

1þ2q

�
ω0

ω

�
q
−
�
ω0

ω

�
2
�
; ω > ω0;

ω0 ≡ 8π

xUV
H: ð89Þ

Note that integrating (89) over ω returns the full emission
rate in (85).
The emission rate in (89) is the instantaneous GW

emission rate, but more often we are interested in the full
energy density frequency spectrum ∂ρGW=∂ω at some time
t. The energy density spectrum may be related to the
instantaneous emission spectrum by (see, e.g., [152])

∂ρGW
∂ω

¼
Z

t

0

dt0
�
Rðt0Þ
RðtÞ

�
3 dΓGWðt0;ω0Þ

dω0 ; ð90Þ

where ω0 ≡ ωRðtÞ=Rðt0Þ with R the scale factor.
Substituting (89) into the expression above and neglecting
any possible change in the relativistic degrees of freedom
for simplicity yields the result

∂ρGWðω; tÞ
∂ω

¼ ΓGW
xUV

5 · 8π ·H2

8>>><
>>>:

4ðq−1Þ
2qþ1

ffiffiffiffi
ω
ω0

q
; ω < ω0

1
2−q

�
3ðq − 1Þ

�
ω0

ω

�
2
− 15

2qþ1

�
ω0

ω

�
q þ 5ð2 − qÞ

�
ω0

ω

��
; ω > ω0:

ð91Þ

Integrating the equation above over ω shows that most of
the energy is contained in the high-ω tail, which gives the
logarithmically divergent contribution to the energy density

ρGWðtÞ ¼ ΓGWH−1 logðfa=HÞ þ � � � ; ð92Þ

where we take the UV cutoff to be fa and neglect
subleading finite terms.

B. Network evolution: Including axion emission

We now include the effects of axion emission on the
network evolution and compute the resulting axion energy
density and frequency spectrum. A string L of length l
loses energy to axion radiation at a rate [152,153]

dEa

dt
¼ ra½L�f2a; ð93Þ

where ra½L� is a shape parameter that does not depend on
the string length. Such a formula is valid for global axion
strings, and from the perspective of the axion the extra-
dimensional strings look like global strings; in particular,
the axion field winds around the string cores in the same
way it does for global strings. In the context of global string
simulations the network-averaged quantity ra½L� has been

measured to be ra½L� ≈ ra ≈Oð10Þ [72,76,153,154].
Referring to (83), we see that the energy loss of string
loops to axions is parametrically the same as that to GWs
(see also [155]):

ĖGW

Ėa
¼ rG

ra

κ2

8π
: ð94Þ

Thus, the string loop density takes the same form as (84)
but with the replacement

rG → r≡ rG þ ra
8π

κ2
: ð95Þ

Numerically, we expect r ∼ 50–100. The GWemission rate
is then nearly the same as that given in (85) except that r
and rG enter separately:

ΓGW ¼ 16rG
ffiffiffiffiffiffiffiffi
8πκ

p
α

3r3=2
H3

ffiffiffiffiffiffiffiffiffiffiffiffi
faM3

pl

q
: ð96Þ

The axion emission rate is closely related to that of GWs:

Γa ¼
16rað8πÞ3=2α
3r3=2κ3=2

H3
ffiffiffiffiffiffiffiffiffiffiffiffi
faM3

pl

q
: ð97Þ
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With the change given in (95), the GW energy density
spectrum is the same as that given in (91). Similarly, the
axion energy density is, to leading order in large
logðfa=HÞ,

ρaðtÞ ¼ ΓaH−1 logðfa=HÞ þ � � � : ð98Þ

The differential axion spectrum calculation is analogous
to that performed previously for GWs. If the differential
axion spectrum dĖl

a=dω takes the form of (86), for
2 > q > 1, then the result in (91) applies also for the
axion spectrum, given the substitution in (95). Let us
assume this is the case for the moment, though we revisit
this point later in the next paragraph. For the QCD axion
DM calculation that we present in the next section, we need
the axion number density naðtÞ, which may be calculated
through

naðtÞ ¼
Z

dω
ω

∂ρaðω; tÞ
∂ω

: ð99Þ

Performing this integral using (91) we calculate

naðtÞ ¼ Γa
3ðq − 1ÞxUV
16πqH2

¼ 2

ffiffiffi
2

π

r
q − 1

q
raffiffiffi
r

p ffiffiffi
κ

p αHfa
ffiffiffiffiffiffiffiffiffiffiffiffi
faMpl

q
: ð100Þ

Note that some global string simulations suggest that
q ¼ 1 (e.g., [86]), in which case the formula above does not
apply. In this case, repeating the above procedure we
compute

nq¼1
a ðtÞ ≈ 4

3

ffiffiffi
2

π

r
raffiffiffi
r

p ffiffiffi
κ

p αHfa

ffiffiffiffiffiffiffiffiffiffiffiffi
faMpl

p
logðfa=HÞ ; ð101Þ

to leading order in large logðfa=HÞ. Note also that by
computing the ratio ρa=na we may infer that at time t the
typical axion energy is ω ∼HMpl=fa.

VI. THE QCD AXION DM MASS FOR STRING
THEORY AXION STRINGS

In the field theory UV completion for the QCD
axion, where the PQ symmetry is broken after inflation
with Ndw ¼ 1, such that the axion DM abundance is
predominantly produced by string radiation [78], it
has been most recently estimated that the correct DM
abundance is obtained for an axion mass in the range
ma ∈ ð40; 180Þ μeV [86] (but see [84]). In this section, we
imagine that the QCD axion DM abundance is produced
by a network of string theory axion strings, and we
compute the axion mass that gives the correct DM
abundance assuming both unwarped and warped axion

strings.16 We show that the unwarped QCD axion string
result is in strong tension with observational upper limits
on the QCD axion mass, while the warped result is the
same, with a few caveats, as that from field theory UV
completions.

A. Axion strings from warped compactifications

Let us first review how to estimate ma in the standard
field theory axion string scenario, with Ndw ¼ 1. In this
case, the string network evolves as under the ma ¼ 0
scenario until shortly before the QCD phase transition,
when maðTÞ ≈ 3HðTÞ. Note that during the QCD phase
transitionma rises rapidly with inverse temperature: we use
the approximation (for T ≫ Λ) [156]

f2am2
aðTÞ ¼ αaΛ4

�
Λ
T

�
n
; ð102Þ

with αa ≈ 4.6 × 10−7, n ≈ 8.16, and Λ ¼ 400 MeV. Note
that for T ≪ Λ the axion mass asymptotes to its zero-
temperature value [157]:

f2am2
a ¼ Λ4

1; Λ1 ≈ 75.4 MeV: ð103Þ

We define the time (temperature) when 3HðTÞ ¼ maðTÞ as
t� (T�).
The network itself does not begin to collapse at t�; rather,

the network collapses within approximately a Hubble time
of the time tcoll, which may be estimated by setting the
energy density in domain walls to the energy density in
strings. Let us imagine a generic axion string loop at the
time tcoll, which we take to be circular with radius
rloop ¼ H−1=

ffiffiffi
ξ

p
, with ξ ∼Oð1–10Þ the number of strings

per Hubble patch [34]. The energy associated with the
axion string forming the circumference of this loop is
approximately

Estring ≈ 2πrμeff ≈ 2πμeff=ðH
ffiffiffi
ξ

p
Þ: ð104Þ

On the other hand, for Ndw ¼ 1 the string loop bounds a
single domain wall configuration, with the domain wall
stretched over an area approximately πr2loop with surface
tension, due to the axion configuration in the vicinity of the
domain wall, σ ≈ 8maf2a [158]. The energy associated with
the domain wall is

Edw ≈ σπr2loop ≈ 8maf2aπ=ðH2ξÞ: ð105Þ

Equating Estring ≈ Edw then leads to the collapse time
estimate

16In Appendix C we consider string theory axion strings that
source axionlike particles and not the QCD axion; we show they
are constrained by contributions to Neff .
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maðTcollÞ ≈
π

4

ffiffiffi
ξ

p
logðms=HÞHðTcollÞ

≈ 200HðTcollÞ; ð106Þ

where in the second line above we take the benchmark
values at the QCD phase transition for the PQ string
ξ ∼ 17 and logðms=HÞ ∼ 70 [86]. Note that this implies
T�=Tcoll ≈ 2.
Axions are no longer efficiently created for T < Tcoll,

since the string network collapses within a Hubble time of
Tcoll. In fact, we argue that—by number density—most
axions are created by T�. The reason is that while a
significant amount of energy is deposited into axions
between T� and Tcoll, that energy is deposited into fewer
axions, by number, given the rapid increase of ma with
time, as we explain further below.
Let us suppose that the axion-string network emits

axions with an instantaneous differential emission spectrum
∝ k−q for some index q for H ≪ k ≪ fa; Ref. [86]
measured q ¼ 1.02� 0.04. Larger q values produce more
DM, so to be conservative let us assume q ¼ 1.06. In this
case, the axion number density at T� is estimated to be

naðT�Þ ≈
8πf2aHðT�Þ

δ

ffiffiffiffiffi
ξ�

p
log�; ð107Þ

with ξ� ≈ 17 and log�≡ logðfa=HðT�ÞÞ ≈ 70 the values at
T� and with δ ≈ 113 measured in simulations [86].
Assuming number density conservation for T < T� one
may then redshift the result in (107) to, e.g., matter-
radiation equality or today to compute the DM abundance.
To achieve the correct DM abundance, one finds the string-
induced DM abundance Ωstr

a to be [86]

Ωstr
a ≈0.12h−2

�
fa

4.1×1010 GeV

�
1.17 113

δ

ffiffiffiffiffi
ξ�
17

r
log�
70

: ð108Þ

The contribution to Ωstr
a from axions produced between T�

and Tcoll was estimated in [86] to raise Ωstr
a by, at most, a

factor of 3=2.
The result in (108) was computed for global axion strings,

suggesting ma ∼ ð40; 180Þ μeV in that case to obtain the
observed DM abundance [86]. On the other hand, we claim
that this result also applies to string theory axion string
networks where the axion arises from a strongly warped
cycle, since in this case—as shown in Secs. II and III—the
tension of the axion string is the same as that found in field
theory axion models. The tension of the axion strings
dictates the evolution of the network, with one possible
exception. In the field theory axion models the intercom-
mutation of axion strings is purely deterministic (i.e.,
P ¼ 1). On the other hand, string theory axion strings
may have P < 1 due to either the quantum nature of the
string cores (F-strings or wrapped D-branes) or due to the
string missing each other in the additional extra dimensions.

We suspect that P < 1 raises the number of strings per
Hubble ξ relative to the P ¼ 1 scenario, though the P < 1
case has never been simulated for warped axion strings
where the energy loss is dominated by axion emission
instead of GW emission. Increasing ξ, as seen in (108),
would raise the DM abundance at fixed fa, thus requiring a
larger ma to obtain the correct DM abundance. However,
without dedicated simulations of the P < 1 scenario we are
unable to quantify this effect, though it would be an
interesting direction for future work.

B. Axion strings from unwarped compactifications

We now consider the scenario where the axion arises
from an unwarped cycle so that the axion string tension is
that given in (82). First, we repeat the calculation for the
collapse time of the string network for the case of string
theory axion strings. Towards that end, it is useful to
calculate the expected string length in Hubble units
hl=H−1i for string loops, which we may do using (84)
to find

Hhli ¼ rGμ ¼ rκ
8π

fa
Mpl

: ð109Þ

Then, equating the string tension with the domain wall
tension we see that the network collapses at a temperature

Tcoll ≈
Λ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

maMpl
p ; ð110Þ

where we use the zero-temperature relation for mafa
in (103). This relation is justified since for ma ∼ 10 μeV
the collapse temperature is Tcoll ∼Oð0.1 MeVÞ, with the
collapse temperature only being lower for higher axion
masses. On the other hand, the network does not efficiently
produce axions at temperatures below that where the
typical axion momentum, k ∼HMpl=fa, drops below
ma. We define this temperature as TNR, and it is given
approximately by TNR ∼ Λ1. We may then estimate the
contribution to the DM abundance from the string network
prior to the epoch defined by TNR by

Ωstr
a ≈

manaðTNRÞ
T4
MRE

�
TMRE

TNR

�
3

∼
Λ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

maMpl
p

TMRE

∼ 104

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 μeV
ma

s
; ð111Þ

with TMRE ∼ 1 eV the temperature of matter-radiation
equality. Thus, we conclude that string theory axion strings
overproduce the DM abundance for any allowable QCD
axion mass ma, given that neutron star and stellar cooling
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constraints impose that ma ≲ 10–30 meV, depending on
the UV completion [159]. (The QCD axion mass would
have to be around 100 keV to produce the correct DM
abundance.) In Appendix A we calculate the abundance
more carefully by including Oð1Þ numerical factors and
accounting for axions emitted up to the time of collapsewith
energies ω ≥ ma, and we find that the above conclusion is
unchanged. Note also that while the calculation above is
strictly only valid for P ¼ 1, going to P < 1 only increases
the number of strings per Hubble and thus exacerbates the
problem of overproducing the DM abundance.
Even a period of early matter domination (EMD) is not

sufficient to dilute the axion abundance. If an EMD occurs
before the network collapses and before the axions become
nonrelativistic, then the network will adjust to a scaling
solution during the EMD era. Therefore, axions are not
diluted when the EMD ends, in contrast to other forms of
radiation not sourced by the network. On the other hand, if
an EMD occurs after the network collapses, then the
situation is different. First, we consider the case where
EMD starts immediately below TNR, to estimate the
maximal amount of dilution. Since EMD has to end by
TRH ∼ 4 MeV to ensure successful big bang nucleosyn-
thesis (BBN), the axion abundance can be diluted max-
imally by a factor of RNR=RRH ∼ ðTRH=TNRÞ4=3 ∼ 10−2,
which is not sufficient, given (111). Here RNR and RRH are
scale factors at TNR ∼ Λ1 and TRH ∼ 4 MeV, the end of the
assumed EMD period, respectively. In Appendix B we give
a more detailed estimate of entropy dilution from an EMD
period, reaching the same conclusion.
To further dilute the QCD axion abundance we need

the network to collapse earlier. Along these lines, in the
following section, we show that the QCD axion may
constitute the DM if it is accompanied by a heavier axion,
such that a linear combination of the two axions is sourced
by the string network. The heavier axion causes an early
collapse of the network, raising Tcoll above TNR, as we
elaborate below.

VII. AXIVERSE STRING COSMOLOGY

We now examine how the QCD axion abundance is
altered if the strings source a linear combination of axion
mass eigenstates, as is likely to happen in axiverse con-
structions (see, e.g., [160–169] for field theory examples of
multiaxion scenarios). We consider a 4D EFT of the
axiverse with na axions and nI instantons given by

L⊃−
Kij

2
∂μai∂μaj−Λ4

n

�
1− cos

�
Qni

ai
fai

þ δn

��
; ð112Þ

where summation of repeated indices is understood, with
i; j∈ f1;…; nag and n∈ f1;…; nIg. K is a nondegenerate
symmetric kinetic matrix, and fai is the decay constant of
axion ai; i.e., ai ¼ ai þ 2πfai . We also define ϑi ¼ ai=fai

with periodicity 2π:Q is the matrix of instanton charges
associated to instanton scales Λn. In this field basis of
2π-periodic scalars, the charges Qni are integers. We take
Λi < Λiþ1 for each i, and below we focus on the case where
QCD generates the weakest instanton.17 Note that Λ1 is
defined for QCD in (103). We assume that there are no
temperature-dependent instanton potentials other than that
from QCD.18 For the QCD instanton potential, we assume
the temperature dependence (102) until T ≈ 152 MeV,
when the temperature-dependent growth saturates the
zero-temperature result; for T ≲ 152 MeV we assume a
constant value for mafa equal to Λ2

1. This is a rough
approximation since the parametrization in (102) is tech-
nically only valid for T ≫ 400 MeV, but this approxima-
tion is sufficient for the accuracy of the calculations in this
section.
We denote the basis of mass eigenstates by φi and the

associated masses Mφi
. We suppose that additional bare

masses are negligible, which is expected for axiverse axions.
We further assume that na ≥ nI such that, barring certain
alignments of the instanton charges, through a field redefi-
nition we may set δi ¼ 0 for all i, in which case we maintain
the solution to the strong CP problem. Lastly, we suppose
that all strings in the network source the axion ϑ1 with
winding number 1, whereas the other ϑi for i > 1 have
winding number 0, while ϑ1 is not a mass eigenstate.
Namely, we assume that the strings produced after inflation
source only the axion ϑ1. This would be expected if the
string cores are resolved by the same kind of higher-
dimensional D-branes wrapped on the same cycle of the
internal manifold, as may happen after D(3þ p)-Dð3þ pÞ-
brane inflation with p > 0.

A. Cosmology with two axions: Generalities

We now focus on the case nI ¼ na ¼ 2, choosing the
instanton charges so that NDW ¼ 1 when circling around
the string under consideration.19 We show how the abun-
dance of QCD axions emitted by the network can avoid the
overclosure issue encountered in the single axion story. The
intuition is that the heavy axion state can cause the string
network to collapse earlier, thus reducing the abundance of
the lighter QCD axion state. This can be seen via an
estimate similar to (111) which shows the abundance scales
as 1=m1=2

a .

17If this is not the case, then the QCD axion DM abundance
may be further diluted.

18Note, however, that for instanton potentials coming from D-
brane wrapping cycles in the compactified dimensions, a temper-
ature-dependent potential could arise if the dilaton VEV or
volume modulus changes with temperature.

19In Appendix E we derive a general relation for the instanton
charges in order to give NDW ¼ 1 for an arbitrary number of
axions.
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The axions associated with each instanton are

ϑQCD ≡Q11ϑ1 þQ12ϑ2;

ϑΛ2
≡Q21ϑ1 þQ22ϑ2: ð113Þ

Let ða01; a02Þ denote the axion basis after canonically
normalizing the axions. Writing the Cholesky decompo-
sition of the kinetic mixing matrix as K ¼ V⊤V and
denoting the mass matrix in the basis ða1; a2Þ by M, it
follows that the mass matrix in the basis ða01; a02Þ
is ðV−1Þ⊤MV−1. For concreteness, let us take

K ¼
�
1 ϵ
ϵ 1

�
. To avoid fields with negative norms and

tachyonic instabilities we must impose jϵj < 1. Then

V−1 ¼
�
1 − ϵffiffiffiffiffiffiffi

1−ϵ2
p

0 1ffiffiffiffiffiffiffi
1−ϵ2

p

�
, and by Taylor expanding (112),

we obtain the mass matrix of the canonically normalized
axions

L ⊃ −
1

2

 
a01
a02

!⊤
0
@ M2

a0
1

M2
a0
1
a0
2

M2
a0
1
a0
2

M2
a0
2

1
A a01

a02

!
; ð114Þ

with

M2
a0
1
¼ M2

a1

M2
a0
2
¼ M2

a1ϵ
2 − 2ϵM2

a1a2 þM2
a2

1 − ϵ2

M2
a0
1
a0
2
¼ −ϵM2

a1 þM2
a1a2ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵ2
p ; ð115Þ

where

M2
a1 ¼

Q2
11Λ4

1 þQ2
21Λ4

2

f2a1

M2
a2 ¼

Q2
12Λ4

1 þQ2
22Λ4

2

f2a2

M2
a1a2 ¼

Q11Q12Λ4
1 þQ21Q22Λ4

2

fa1fa2
: ð116Þ

Diagonalizing (114), we see that the mass eigenbasis
ðφ1;φ2Þ is related to the basis ða01; a02Þ by a rotation

�
φ2

φ1

�
¼RðθÞ

�
a01
a02

�
; RðθÞ≡

�
cosθ sinθ

−sinθ cosθ

�
; ð117Þ

where

cos 2θ ¼
M2

a0
1
−M2

a0
2

Δ2

sin 2θ ¼
2M2

a0
1
a0
2

Δ2

ðΔ2Þ2 ¼
�
M2

a0
1
−M2

a0
2

�
2 þ 4

�
M2

a0
1
a0
2

�
2
; ð118Þ

such that the masses of the eigenstates are

M2
φ1

¼ 1

2

�
M2

a0
1
þM2

a0
2
− Δ2

�
M2

φ2
¼ 1

2

�
M2

a0
1
þM2

a0
2
þ Δ2

�
: ð119Þ

In order to compute the abundances of φ1 and φ2 axions
emitted by the network, we need to first understand how the
axion energy emitted by a string loop is split between them.
We focus on a1 for this purpose since we are considering a
scenario where only a1 is sourced by the network. The
matrix sending the basis ðφ2;φ1Þ back to the original basis
ða1; a2Þ is P≡ V−1Rð−θÞ. It follows that the 2-form dual
to a1, which couples to the string world sheet Xμðτ; σÞ, can
be written C ¼ P12C1 þ P11C2 with d4dφi ¼ ⋆d4dCi. Let
us assume that the mass of each eigenstate is negligible
relative to fa1 , which holds until the Λ2 instanton becomes
relevant and quickly stops the emission of the heavy axion.
Then the action for the string and the fields ðφ1;φ2Þ is

S ¼ −μ
Z

dτdσ
ffiffiffiffiffiffi
−γ

p
−
1

6

Z
d4xFμνρ

i Fi;μνρ

−
2πfa1ffiffiffi

2
p

Z
dτdσϵab∂aXμ

∂bXνCμνðXÞ; ð120Þ

with γab ¼ ∂aXμ
∂bXμ, μ the string tension and Fi the field

strength of Ci. After fixing the Lorentz gauge ∂μCi;μν ¼ 0

and the string world sheet diffeomorphism invariance, the
equation of motion for the dual axion fields is [152]

∂α∂
αCμν

i ¼ gi

Z
dσðẊμX0ν − ẊνX0μÞδ3ðx −XÞ; ð121Þ

with gi ¼
ffiffiffi
2

p
πfa1P1i. Therefore, Ci ∝ gi, so dEφi

=dt,
which can be obtained from the stress-energy tensor
of φi sourced by the string, scales like g2i . The emission
rates from a given string loop are thus dEφi

=dt ¼
rag2i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
. Explicitly,

P12 ¼ − sinðθÞ − ϵffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p cosðθÞ;

P11 ¼ cosðθÞ − ϵffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p sinðθÞ: ð122Þ

We see that the presence of kinetic mixing ϵ can alter
the emission of φ1 and φ2. In the fine-tuned cases where
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ϵ ¼ − sinðθÞ (ϵ ¼ cosðθÞÞ, the network does not emit the
lighter (heavier) mass eigenstate at all. However, barring
such extreme cases, for typical values of ϵ and θ, we can
capture the generic properties of the cosmological evolution
by working with ϵ ¼ 0, which we will do in the following.
The presence of kinetic mixing, along the lines of [170], can
be taken into account by redoing the following analysis
starting with (122).
We also assume that Λ2 ≫ Λ1 ¼ 75 MeV, and that rf ≡

fa1=fa2 is OððΛ2=Λ1Þ2Þ. Then we find

dEφ1

dt
¼ rasin2 θ ≈ ra

Q2
22r

2
f

Q2
21 þQ2

22r
2
f

;

dEφ2

dt
¼ racos2 θ ≈ ra

Q2
21

Q2
21 þQ2

22r
2
f

; ð123Þ

such that, unless the instanton charges are tuned or there is a
hierarchy amongst the fai , the rates of energy emitted into
each mass eigenstate are comparable. Further, the mass-
decay constant relations are

fa1Mφ1
≈ Λ2

1RQ;

fa1Mφ2
≈ Λ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

21 þ r2fQ
2
22

q
; ð124Þ

where we define

RQ ≡ jQ11Q22 −Q21Q12jrfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

21 þQ2
22r

2
f

q : ð125Þ

Lastly, let us comment on the periodicity of the (canonically
normalized) QCD axion. At energies below Λ2, setting
ϑΛ2

¼ 0 in (113) gives ϑ1 ¼ ð−Q22=Q21Þϑ2, such that the
periodicity of ϑ1 is Δϑ1 ¼ −2πQ22= gcdðQ22; Q21Þ, with
gcd the greatest common divisor. Hence, the periodicity of
ϑQCD is

ΔϑQCD ¼ −
�
Q11 −

Q21Q12

Q22

�
2πQ22

gcd ðQ21; Q22Þ
: ð126Þ

Therefore, defining the domain wall (DW) number as

NQCD
DW ¼ jQ11Q22 −Q21Q12j

gcdðQ21; Q22Þ
; ð127Þ

it follows that ϑ0QCD ≡ ϑQCD=N
QCD
DW is 2π periodic. Writing

the Lagrangian (112) in terms of ϑ0QCD we obtain

L ⊃
1

2
f2aQCDð∂ϑ0QCDÞ2 − Λ4

1

�
1 − cos ðNQCD

DW ϑ0QCDÞ
�
; ð128Þ

where we define the decay constant of ϑ0QCD as

faQCD ≡ fa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

22 þ r−2f Q2
21

q
j gcd ðQ21; Q22Þj

: ð129Þ

As we now discuss, the DW number of the QCD axion is
generally different from the DW number which determines
whether the string network collapses due to DW formation.
When T drops below Λ2, the first relation of (123)

remains valid, but we can approximate dEφ2
=dt ≈ 0. Below

T ≈ Λ2, domain walls develop and potentially make the
string network collapse. Whether that happens immediately
or at much lower temperatures depends on Q21, which is
the DW number associated to the part of the potential
generated by the strongest instanton. In particular, for
T ≈ Λ2, only the Λ4

2ð1 − cosðQ2iϑiÞÞ part of the potential
in (112) is active and Q21 determines the DW structure; if
Q21 ≠ 1, then the network will be stable until T ≈ ΛQCD.

20

However, we focus on the case where the network decays
early, so as to reduce the QCD axion abundance and take
Q21 ¼ 1 in what follows.21

Let us denote the DW tension by σ. In the limit Λ2 ≫ Λ1

of primary interest we can identify σ ¼ 8fa1Λ
2
2 from the

single-axion calculation [171]. The domain wall tension
causes the network to collapse, as we discuss further below,
shutting off the emission of the lighter QCD axions.

B. Cosmology with two axions: No warping

When there is no warping the string tension μ is
parametrically ∼faMpl as given in (82). Therefore, assum-
ing the entire network evolution occurs during a radiation-
dominated era, the temperature at which the domain wall
tension drives the network to collapse is

Tcoll ≈
1

ð32π3Þ12
�

90

g�;coll

�1
4
ffiffiffiffiffiffiffiffi
rσ
Mpl

r
; ð130Þ

with g�ðTÞ the number of relativistic degrees of freedom at
temperature T, which we evaluate numerically using
formulae from [172], and where r is defined in (95).
Let the φ1 states become nonrelativistic at temperature

TNR;φ1
. We focus on the case Tcoll > TNR;φ1

, such that the
network collapses before the lighter mass-eigenstate φ1

becomes nonrelativistic.22 Thus, we require

20Note that if the lightest axion was an ultralight axionlike
particle instead of the QCD axion, the network would persist until
T ∼ Λ1, at which point NDW would be given by (E3).

21To enlarge the parameter space in terms of instanton charges,
notice that the same result could be achieved withQ21 ≠ 1 if there
is more than one instanton stronger than QCD. The only criterion
is that the potential has NDW ¼ 1 at T ≈ Λ2.

22If this is not the case, then it is straightforward to show that
the QCD axion DM abundance would still be overproduced.
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Λ2 >

ffiffiffiffiffiffiffiffiffi
κRQ

p
4

�
g�;coll
g�;QCD

�1
4 1

logð fa1Hcoll
Þ
ΛQCD

ffiffiffiffiffiffiffiffi
Mpl

fa1

s
: ð131Þ

At the time of collapse, the φ1 have characteristic energy
ωcoll ∼HðTcollÞMpl=fa1 , which then redshifts as

ωðT < TcollÞ ¼
Rcoll

R
ωcoll: ð132Þ

From entropy conservation (T ∝ g�;sðTÞ−1
3=RÞ, it follows

that the temperature at which the emitted axions become
nonrelativistic is

TNR;φ1
∼
κ
ffiffiffiffiffi
πr

p
128π2

1

logðMpl=Λ2Þ2
�

g�;s;coll
g�;s;NR;φ1

�1
3

×

�
90

g�;coll

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fa1Mpl

p
Λ2

Mφ1
: ð133Þ

Let us assume that TNR;φ1
< 100 MeV, such that we

may setMφ1
to its zero-temperature value. We also assume,

for simplicity, that the strings radiate axions with a
conformal spectrum dE=dk ∝ 1=k. Then, the present-day
abundance is

Ωφ1;str ∼
ρφ1

ðTcollÞ
ρc;0

�
Rcoll

RNR;φ1

�
4
�
RNR;φ1

R0

�
3

∼
2
ffiffiffi
2

p
π2

135

g�;s;0g�;coll
g�;s;coll

�
90

g�;coll

�1
4 raα
r
ffiffiffi
κ

p 1

logðMpl=Λ2Þ
Λ2
1

Λ2

T3
0

3H2
0M

2
pl

r2fQ
2
22

ð1þ r2fQ
2
22Þ

RQ

∼ Ωc
1.8 × 103 GeV

Λ2

g�;coll
g�;s;coll

�
90

g�;coll

�1
4

�
ra
10

��
α

0.18

��
r

100

�
−1
�

κ

π
ffiffiffi
2

p
�

−1
2 30

logðMpl=Λ2Þ
r2fQ

2
22

ð1þ r2fQ
2
22Þ

RQ; ð134Þ

where we use (98), (124), and (123). Here ρc;0 ¼ 3H2
0M

2
pl

denotes the critical density at the present day. Above, we
use H0 ¼ 1.4 × 10−42 GeV, T0 ¼ 2.4 × 10−13 GeV, and
g�;s;0 ¼ 3.36. For Λ2 sufficiently large such that the DM
abundance is not exceeded and fa1 > 109 GeV, our
assumption that TNR;φ1

< 100 MeV is indeed valid.
Note that (134) suggests we may achieve the correct DM

abundance (or a subleading DM abundance) from strings
for Λ2 ≳ 103 GeV. In the limit fa1 < fa2 the DM abun-
dance is further suppressed by the factor r2f ¼ f2a1=f

2
a2,

allowing for smaller Λ2 without overproducing the DM
abundance. With that said, there are a few caveats to the
result in (134), which we expand upon below: (i) the QCD
axion φ1 has a misalignment contribution to its DM
abundance, which should be accounted for; and (ii) the
relic abundance of φ2 may give rise to an EMD period,
which then leads to a more complicated relation than (134).
In the numerical results we illustrate below, we allow for
the initial misalignment angle of φ1, which we denote by
φi;i, to be in the range φi;1 ∈ ½0.025; 0.975�π, and we
compute the misalignment contribution to the DM abun-
dance using MiMeS [113] (see Sec. IV for details).
We now discuss the period of EMD that can be brought

upon by the relic population of cold φ2’s. The φ2 become
nonrelativistic before the network collapses, and, if stable,
their relic density is set by TNR;φ2

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mφ2

fa1
p

∼ Λ2.
Assuming entropy conservation, the φ2 density at temper-
ature T is given by

ρφ2
ðTÞ ∼ ρφ2

ðTNR;φ2
Þ
�
RNR;φ2

R

�
3

∼
16

ffiffiffi
2

p
π2

135
Λ2T3

�
fa1
Mpl

�1
2 raα
rκ

×
g�;NR;φ2

g�;sðTÞ
g�;s;NR;φ2

�
90

g�;NR;φ2

�1
4ð1þ r2fQ

2
22Þ−

3
4:

ð135Þ

Therefore, using (135) we can obtain the temperature Tdom
where φ2 axions would dominate the total energy density,

Tdom ∼
32

ffiffiffi
2

p

9

raα
rκ

g�;s;domg�;Λ2

g�;domg�;s;Λ2

�
90

g�;Λ2

�1
4

× Λ2

ffiffiffiffiffiffiffiffi
fa1
Mpl

s
ð1þ r2fQ

2
22Þ−

3
4: ð136Þ

At T ¼ Tdom the Universe enters a period of EMD, which is
allowed as long as φ2 decays sufficiently quickly to respect
observational constraints from BBN. In this case, the QCD
axion DM abundance is diluted by the entropy injected by
the decay of φ2 axions. The details of this scenario are
worked in Appendix F, where we self-consistently account
for the decays of φ2 to photons and to gluons, when
kinematically accessible.
For illustrative purposes, let us consider the scenario

where fa1 ¼ fa2 ≡ fa. We also make the choice, relevant
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for determining the duration of the EMD epoch, that
the heavy axion couples to electromagnetism with coupling
(see Appendix F) ga2γγ ¼ αEMCa2γ=ð2πfaÞ, where αEM is
the fine structure constant, and we take Ca2γ ¼ 1. In
Fig. 4 we illustrate the parameter space for this model as
spanned by fa and Λ2, making the additional assumptions
that κ ¼ π

ffiffiffi
2

p
, rG ¼ 87, ra ¼ 10, r ¼ 100, α ¼ 0.18,

and ðQ11; Q12; Q21; Q22Þ ¼ ð2; 1; 1; 2Þ, in addition to vary-
ing the initial misalignment angle of the QCD axion within
the range previously mentioned. Note that within the
allowed parameter space neutron star cooling provides a
lower bound on fa1 at the level fa ≳ 3 × 108 GeV, up to
minor model dependence depending on the UV comple-
tion [159]. There is an additional constraint on the gluon
coupling of massive axionlike particles from observations
of Supernova 1987A, which is relevant for the φ2

parameter space. We use the bound of [173], which found
4πcg=Λ≳ 4 × 10−8 TeV−1 for masses up to ∼200 MeV
(see Appendix F for the conventions of these couplings).
We also exclude the regions of parameter space where the

reheat temperature from EMD would be below the
temperature of BBN and where the misalignment con-
tribution to the DM abundance would overproduce the
observed abundance, within the amount we allow our-
selves to tune the initial misalignment angle.
Combining all the constraints mentioned above, we

deduce that the QCD axion may only compose a subdomi-
nant (≲25%) fraction of the DM (the starred point in Fig. 4),
unless the present-day axion abundance is set almost
entirely by misalignment, in which case it may be all of
the DM but the strings do not play an important role.
Allowing for a small hierarchy between the decay constants
fa1=fa2 ≳ 10, it is possible to have the QCD axion con-
stitute the DM with the dominant contribution being from
the string network for fa1 ∼ 109 GeV. Interestingly, as we
discuss further in Sec. VII C, even if the string-generated
axions are only a subfraction of the DM abundance, as is the
case by the starred point in parameter space in Fig. 4, the
string network may still give rise to a GW signal within
reach of future observations.
Lastly, let us comment on how the phenomenology

discussed in this section generalizes to na > 2 axions.
We assume that Qna1 ¼ 1, such the collapse of the network
is set by the heaviest instanton and that there is no kinetic
mixing or large hierarchies amongst the fai . Then, there are
at least two important differences with respect to the case
na ¼ 2. First, unless the instanton charges are tuned, we
naively expect that the energy emitted from a shrinking loop
of string is split roughly equally into each mass eigenstate.
Thus, the abundance of QCD axions emitted by the string
network is suppressed by a factor ∝ 1=na, making it harder
for the QCD axions generated from the string to account for
the full DM abundance in the limit na ≫ 1. Secondly, the
abundance may be further diluted due to a period of EMD in
several steps if, after the heaviest mass eigenstate decays,
some of the lighter mass eigenstates also come to dominate
the energy density.
In Appendix G we discuss the scenario of a warped axion

string that produces two or more mass-eigenstate axions. In
this case, the heavier axion may also reduce the relic
abundance, though the effect is less dramatic since the
QCD axion does not overproduce the relic abundance in the
single axion case.

C. Gravitational wave signal from unwarped
axion strings

We now compute the GW signal from the network in the
two-axion unwarped scenario. We further restrict to the
part of parameter space where there is no period of EMD.
From (91), the GW spectrum at the time of network
collapse is

dρg
d logω

¼
�
32rG

ffiffiffiffiffiffiffiffi
2πκ

p
α

15r3=2

�
H2

coll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fa1M

3
pl

q
ðxfðxÞÞ; ð137Þ

FIG. 4. The space of ðfa1 ≡ fa;Λ2Þ for the two-axion scenario
for our fiducial choice of dimensionless parameters. Excluded
parameter space is shaded gray. Within the viable parameter
space, the fraction of the DM abundance sourced by the string
network and misalignment is indicated according to the color bar.
We allow for an initial misalignment angle θi in ½0.025; 0.975�π.
Thus, axions may constitute the DM for fa ≳ 5 × 1010 GeV,
where the abundance is set almost entirely by misalignment of the
lighter eigenstate. For smaller fa the QCD axion may only
constitute a subdominant fraction of the DM ð≲25%Þ, as in the
lower left corner of the viable region, where the string network
provides the dominant contribution. (Going beyond our canonical
choice of dimensionless parameters, however, for example, by
allowing fa1 ≠ fa2 , the correct DM abundance may be achieved.)
In the region below the solid black line the φ2 eventually
dominates the energy density, initiating an EMD era, and must
subsequently decay before BBN. The blue star indicates the
choice of parameters for which we show the GW signal in Fig. 5.
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where fðxÞ is shorthand for the bracketed term in (91) and x ¼ ω=ω0;coll. The GWs redshift freely after the network
collapses, so that the present-day GW spectrum is, using (130),

h2dΩGW;0

d logðωÞ ≡ h2

ρc;0

dρg
d logω

½t0;ω� ¼
h2

ρc;0

�
Rcoll

R0

�
4 dρg
d logω

�
tcoll;

ωR0

Rcoll

�

¼ 16ð2π5Þ12
2025

g�;collg
4
3

�;s;0

g
4
3

�;s;coll
h2

T4
0

H2
0M

2
pl

�
rG

ffiffiffi
κ

p
α

r3=2

�
×

ffiffiffiffiffiffiffiffi
fa1
Mpl

s
½xfðxÞ�jx¼ R0ω

Rcollω0;coll

≈ 1.4 × 10−4g
−1
3

�;coll

�
rG

ffiffiffi
κ

p
α

r3=2

� ffiffiffiffiffiffiffiffi
fa1
Mpl

s
× ½xfðxÞ�jx¼ R0ω

Rcollω0;coll

: ð138Þ

Note in (138) ω denotes the present day frequency whereas
in (137) ω denotes the frequency at the collapse time, and
the two are related by an appropriate redshift factor. Lastly,
we need to evaluate

R0ω

Rcollω0;coll
¼ 45

1
4

ffiffiffi
r

p
κ

16 · 2
3
4π

3
2

ω

T0

g
1
3

�;s;coll

g
1
4

�;collg
1
3

�;s;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fa1Mpl

p
Λ2

: ð139Þ

In Fig. 5 we show the result of (138) for the case where the
QCD axion constitutes 25% of the DM, for our fiducial
choice of parameters (the starred point in parameter space in
Fig. 4). We also assume the GWemission is cusp-dominated
(q ¼ 5=3). In this case the GW signal is within reach
of proposed future probes such as the Einstein Telescope

(ET) [174] and the Big Bang Observer (BBO) [175], but not
detectable by LISA [176], Square Kilometer Array
(SKA) [177], Parkes Pulsing Timing Array (PPTA) [178],
or LIGO’s O5 observing run (LIGO5) [179].

VIII. DISCUSSION

The so-called “postinflationary scenario” has been
treated as a leading and predictive picture of axion
cosmology for decades, where PQ symmetry breaking
below the reheating scale after inflation gives rise to a
network of axion strings. At the same time, axions
emerging in the context of string theory compactifications
have been pursued in part due to their ability to more
naturally address the PQ quality problem. However, as we
show, these two pictures are at odds.
QCD axion strings from string theory axions do not

generically form. The strings must be formed at high
temperatures, in the context of the UV theory, and while
field theory axion strings form generically, we show that
string theory axion strings require special inflationary
conditions such as D-brane annihilation at the end of
D-brane inflation. Moreover, even in the case of D-brane
inflation in the canonical model of KKLMMT [130], the
resulting cosmic superstring network does not source
axions, since the axion is projected out of the EFT by
an orientifold.
Even if QCD axion strings from string theory axions did

form (for example, at the end of D-brane inflation), we
show that they overproduce the DM abundance, unless the
axion arises from a strongly warped cycle. One possible
way out of the above conundrum, which we discuss, is if
string theory produces an axiverse, and a heavier axion
state collapses the axion string network at an earlier time
before the QCD phase transition. We show that the relic
abundance of QCD axions produced prior to the network
collapse can make up a sizeable fraction of the DM in this
case. Moreover, strong GW signals are possible, due to the
enhanced tension of the axion strings, and this could be
observable in future GW observatories.

FIG. 5. The present-day GW spectrum for the two-axion
scenario, compared to existing and projected constraints from
GW observatories (shaded). Here fa ¼ 3 × 108 GeV, Λ2 ¼
7.8 × 103 GeV, corresponding to the QCD axion constituting
25% of the DM. This point in parameter space corresponds to the
blue star in Fig. 4, and the choice of dimensionless parameters is
the same as in Fig. 4.
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Our work relies heavily on analytic estimates for the
axion production rates from cosmic superstrings. On the
other hand, dedicated simulations of cosmic superstrings
that self-consistently account for axion production have
never been performed and would greatly increase the
accuracy and robustness of the conclusions of this work.
Such simulations would need to self-consistently evolve
both the axion field sourced by the D- or F-strings in
addition to the strings themselves, accounting for the
possibility of a nontrivial interconnection probability for
the string cores. Moreover, string theory may give rise to
more complicated networks [43] containing both F- and
D-strings, as well as other branes wrapped on the internal
manifold. Those various strings could end on each other,
forming, e.g., junctions, which were not considered in this
work. Some of them could develop instabilities, e.g., due to
background branes. Here, we have considered the simplest
cosmic superstring scenario that is most analogous to the
field theory axion string network, but we have only
scratched the surface of possibilities. Exploring the more
general parameter space for axion superstring networks
would be an interesting direction for future work.
This work is of direct experimental relevance because it

demotivates, though does not exclude, the QCD axion mass
prediction for the postinflationary axion scenario since this
scenario does not generically arise in string theory QCD
axion constructions. In field theory axion constructions this
cosmological scenario predicts ma ∈ ð40; 180Þ μeV to
achieve the observed DM abundance [86]. String theory
QCD axions most generically achieve the relic abundance
through the misalignment mechanism and not from string
production, in which case the QCD axion mass is predicted
to lie in the range (1.9,53) μeV, without allowing for more
than 1σ tuning of the initial misalignment angle. On the
other hand, given the unknowns related to the UV com-
pletion of the axion theory, inflation, and possible anthropic
selection effects, a broad experimental search program for
QCD axions is necessary over the full possible mass
range [180].
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APPENDIX A: MORE PRECISE QCD AXION
DM ABUNDANCE CALCULATION

Here we compute the abundance of axions emitted by
strings up until the time of network collapse, taking into
account that the emitted axions are nonrelativistic at late
times. As the precise form of the axion emission spectrum
at energies ω < ma is not known, we approximate that
emission is cut off completely in this regime, i.e.,

∂ρGW
∂ω

≈
Z

t

0

dt0
�
Rðt0Þ
RðtÞ

�
3dΓGWðt0;ω0Þ

dω0 Θðω0−maðtÞÞ; ðA1Þ

with Θ the Heaviside step function. In the following let us
assume that q > 1 to be conservative, and for simplicity, we
ignore the time dependence of ma. Then (90) is unchanged
for ω > ma, and for ω < ma, we have the modification

∂ρGWðω; tÞ
∂ω

¼ ΓGW
xUV

5 · 8π ·H2

8>>><
>>>:

4ðq−1Þ
2qþ1

ffiffiffiffi
ω
ω0

q �
ω
ma

�3
2; ω <

ffiffiffiffiffiffiffiffiffiffiffi
maω0

p

1
2−q

�
3ðq − 1Þ

�
ω0

ω

�
2
�
ma
ω

�
− 15

2qþ1

�
ω0

ω

�
q
�
ma
ω

�
q−1 þ 5ð2 − qÞ

�
ω0

ω

��
; ω >

ffiffiffiffiffiffiffiffiffiffiffi
maω0

p
;

ðA2Þ

which reduces to (90) for ma ¼ ω. Then we obtain, after the appropriate replacements for the axion energy emission rate,

naðtÞ ¼ Γa
xUV

5 · 8π ·H2
F
�
ω0

ma

�

F
�
ω0

ma

�
≡ 10ðq − 1Þ

2q − 1

�
ω0

ma

�1
2

−
30ðq − 1Þ

ð2 − qÞð2qþ 1Þð2q − 1Þq
�
ω0

ma

�
q
þ q − 1

2ð2 − qÞ
�
ω0

ma

�
2

: ðA3Þ
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Hence, writing na ¼ Cfa
ffiffiffiffiffiffiffiffiffiffiffiffi
faMpl

p
FH, with the prefactorC

given as in (100), we obtain

Ωstr
a ≈

manaðTcollÞ
T4
MRE

�
TMRE

Tcoll

�
3

¼ C

�
r
2π

�
−1
2

F
�
ω0ðtcollÞ

ma

�
Λ1

TMRE
: ðA4Þ

By the time tcoll of network collapse, we have

ma

ω0ðtcollÞ
¼ κ

32π

maMpl

Λ2
1

¼ κ

32π
× 104

ma

μeV
: ðA5Þ

Let us assume thatma ≳ 1 neV such that the argument ofF
is much less than unity. Keeping the leading order term in
F , we have finally

Ωstr
a ≈ 106 ·

64

r

�
κffiffiffiffiffiffi
2π

p
�

−1 ðq − 1Þ
q

10ðq − 1Þ
2q − 1

raα

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 μeV
ma

s
:

ðA6Þ

Hence, the DM abundance is overproduced for any
allowed ma.

APPENDIX B: QCD AXION DM ABUNDANCE
WITH EARLY MATTER DOMINATION

Here we show that even with a period of EMD, the QCD
axion DM abundance from string axion string networks is
still overproduced. We denote the reheat temperature by
TRH and assume instantaneous reheating. BBN constrains
TRH > 4 MeV [181,182]. If the string network evolves for
long enough during EMD then it attains a scaling regime
with ξ constant, and the formulae concerning the emission
of axions and GWs are unchanged up to order one
dimensionless prefactors. For simplicity, we assume that
the axion emission becomes inefficient during the EMD
era. The ratio of Hubble rates between the time when the
axions become nonrelativistic and the time of reheating is
HNR=HRH ∼ ðΛ1=TRHÞ2. Hence this scenario is consistent
only if TRH < Λ1. Then, assuming the axion is emitted with
spectral index q ¼ 1, we have

Ωstr
a ∼

ρaðTNRÞ
ρc;0

�
RNR

RRH

�
3
�
RRH

R0

�
3

∼ 3.4Ωc

�
TRH

4 MeV

��
fa

108 GeV

�1
2

�
ra
10

��
α

0.18

�

×

�
r

100

�
−3
2

�
κ

π
ffiffiffi
2

p
�

−3
2

log

�
4.3 × 1028fa
108 GeV

�
; ðB1Þ

where we use that ðRNR=RRHÞ3 ¼ ðHRH=HNRÞ2 and
TNR ∼ Λ1. Hence even if TRH ¼ 5 MeV, then the DM is
overproduced unless fa ≲ 108 GeV, which is excluded by
neutron star cooling [159].

APPENDIX C: ALP STRING NETWORKS

Here we considerthe case of non-warped compactifi-
cations where the axion sourced by the string network
is an axion-like particle (ALP) which is not the QCD
axion. In this scenario (130) implies that the collapse
temperature is Tcoll ∼ fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma=Mpl

p
, such that for ma ≲

10−3 eVð1012 GeV=faÞ2 the string network may survive
until the time of BBN, in which case fa is constrained
by the contribution to Neff from relativistic axions
emitted by the network. Using the energy density of
string theory axions (98) and the bound from [152] (see
also [183]), we find the constraint fa ≲ 7.4 × 1013 GeV,
for ra ¼ 10, α ¼ 0.18, c1 ¼ 0.25, κ ¼ π

ffiffiffi
2

p
, r ¼ 100, and

logðfa=HÞ ¼ 70.

APPENDIX D: STRING PROFILES
IN THE WARPED 5D GEOMETRY

Here we rederive the radion equation of motion in the 5D
warped geometry without recourse to approximations and
verify that it reduces to the flat geometry result in the limit
of zero warp factor. With the same notation as in the main
text, (36) and (38) give the combined action

SG þ SUð1Þ ¼
2M3

5

k

Z
d4x

ffiffiffiffiffiffi
−g

p ð1 − ðφ=FÞ2ÞRð4Þ

−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
∂μφ∂

μφ

−
1

g25

Z
d4x

ffiffiffiffiffiffi
−g

p 2kπ2

ðF=φÞ2 − 1
ð∂μA5Þð∂μA5Þ:

ðD1Þ

Here F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24M3

5=k
q

. We can do a Weyl transformation to

reduce the Ricci term Rð4Þ in its canonical form. To that end,
we define gμν ¼ hðφÞḡμν, where hðφÞ ¼ 1=ð1 − ðφ=FÞ2Þ.
Then we can derive

ð1 − ðφ=FÞ2Þ ffiffiffiffiffiffi
−g

p
Rð4Þ ¼ ffiffiffiffiffiffi

−ḡ
p �

R̄ −
3

2

h02

h2
ḡμν∂μφ∂νφ

�
:

ðD2Þ

The part of the action containing A5 and φ becomes after
simplification,
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SG þ SUð1Þ ≈ −
1

2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p ð∂μφÞ2
ð1 − ðφ=FÞ2Þ2

−
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
VðφÞ

−
1

g25

Z
d4x

ffiffiffiffiffiffi
−ḡ

p 2kπ2ð∂μA5Þ2
ððF=φÞ2 − 1Þð1 − ðφ=FÞ2Þ :

ðD3Þ

As a check, we can take the limit of k → 0 using φ=F ¼
expð−kπρÞ (ignoring the potential momentarily),

SG þ SUð1Þ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p 6M3
5

kρ2
ð∂μρÞ2

−
1

2kg25

Z
d4x

ffiffiffiffiffiffi
−ḡ

p 1

ρ2
ð∂μA5Þ2: ðD4Þ

The 1=k appears in the gauge boson kinetic term because of
the Weyl rescaling, hðφÞ ¼ 1=ð1 − ðφ=FÞ2Þ, which
becomes 1=ð2kπρÞ in the limit of small k. Therefore, to
reduce to the case of flat extra dimension, we should
identify, hρi≡ 1=ð2kπÞ, and use 1=g24 ¼ ð2πhρiÞ=g25. We
also use the relation between the 5D and 4D Planck scales,
M2

pl ≈ 8M3
5πhρi≡ 4M3

5=k. Then the above reduces to

SG þ SUð1Þ ¼ −
3M2

pl

4

Z
d4x

ffiffiffiffiffiffi
−ḡ

p ð∂μρÞ2
ρ2

−
Z

d4x
ffiffiffiffiffiffi
−ḡ

p ð∂μA5Þ2
2g24ρ

2
: ðD5Þ

This matches with the 4D action for a flat extra dimension
(15). Let us denote ψ ¼ φ=F. Specializing to the string
Ansatz ψ ¼ ψðrÞ, A5 ¼ θ=ð2πÞ, the equation of motion for
ψ , from (D3), is

ψ 00 þ 1

r
ψ 0 þ 1

1 − ψ2

�
ðψ 0Þ2ð4 − 2ψÞ − k

F2g25

1

r2
ψð1þ ψ2Þ

�

−
1

F2
ð1 − ψ2Þ2 ∂V

∂ψ
¼ 0; ðD6Þ

which reduces to (41) in the limit ψ ≪ 1. To solve this
numerically, we define as in the flat geometry ρ̃ ¼ ρ=b,
r̃ ¼ r=b, and solve (D6) in the form

ρ̃00 þ 1

r̃
ρ̃0 − bkðρ̃0Þ2

�
π þ πψð4 − 2ψÞ

1 − ψ2

�

þ
�
k
F

�
2 1

kg25

1

πbk
1þ ψ2

1 − ψ2

1

r̃2
−
�
k
F

�
2

×
bk
π2k5

ð1 − ψ2Þ2
ψ2

∂V
∂ρ

¼ 0; ðD7Þ

where here the primed quantities are with respect to r̃.
Analogously to the flat geometry, the small r asymptotic
form is ρ ¼ − 1ffiffi

k
p

Fπg5
logðcrÞ, and at large r we have for

ρ ≈ bþ β=r2 for some β. Hence, the boundary conditions
may be chosen as ρ̃0 ¼ − k

F
1ffiffi

k
p

g5ðπbkÞ
1
r̃ at r̃ ¼ r̃min and ρ̃ ¼

1 − ρ̃0r̃=2 at r̃ ¼ r̃max. Note that the Goldberger-Wise
potential (46) gives

∂V
∂ρ

¼ −
πk4F4M3

Ψ
72M6

5

ψ3ðṽv − ṽhψϵÞð2ṽv − ṽhð2þ ϵÞψϵÞ;

ðD8Þ

where we define the dimensionless quantities ṽv ¼ vv=M
3
2

Ψ,

ṽh ¼ vh=M
3
2

Ψ. Our fiducial choice of parameters is
ðṽh; ṽv;M5=k; g25kÞ ¼ ð2; 1; 2; 1Þ. For a given value
of fa=Mpl, we determine bk from (40). In particular,
for small fa=Mpl, our choice of parameters gives

fa=Mpl ¼ 1

g5
ffiffi
k

p k
Mpl

hφi
F ∼ 1

63
e−πbk.

APPENDIX E: DOMAIN WALL NUMBER
IN AXIVERSE SCENARIO

In this appendix, we compute the domain wall number
Ndw in the axiverse construction discussed in Sec. VII.
Here, we allow for an arbitrary number of axions. The
condition which allows the string/DW network to even-
tually collapse; i.e., the condition which implies that the
domain wall numberNDW of the zero-temperature potential
is equal to one. To begin, note that NDW is the number of
local minima of the instanton potential as ϑ1 varies from 0
to 2π. Denoting the vector ϑ ¼ ðϑ1;…; ϑnaÞ⊤, a local
minimum occurs if and only if

0 ¼ ∂V
∂ϑ

¼ Q⊤

2
6664

Λ4
1 sin ððQϑÞ1Þ

..

.

Λ4
nI sinððQϑÞnIÞ

3
7775; ðE1Þ

and the Hessian ð ∂V
∂ϑi∂ϑj

Þ
ij
¼ Q⊤diag½Λ4

i cosððQϑÞiÞ�Q is

positive definite.
Let us take the case nI ¼ na for simplicity, and suppose

that Q is invertible, which is expected in axiverse con-
structions [184]. Then (E1) is equivalent to cosððQϑÞiÞ ¼
�1 for all i. The positive definiteness of the Hessian then
implies that cosððQϑÞiÞ ¼ 1 for all i (assuming all the Λi
are nonzero). That is, there must exist some N∈Zna for
which ϑ=ð2πÞ ¼ Q−1N. We may express Q−1 ¼ 1

detðQÞC
⊤

where C is the matrix of cofactors, which has integer
entries. In particular,
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ϑ1
2π

¼ 1

detðQÞ
�
ðC⊤Þ1;1; � � � ðC⊤Þ1;na

�
N: ðE2Þ

By Bézout’s identity, for any multiple k of the greatest
common divisor (gcd) of the elements of the first row of
C⊤, there exists an N such that the dot product above is
equal to k. Thus

NDW ¼
				 detðQÞ
gcd ððC⊤Þ1;1…ðC⊤Þ1;naÞ

				: ðE3Þ

In particular, we have NDW ≤ j detQj, such that NDW ¼ 1
is ensured if j detQj ¼ 1. Note that for na ¼ 2, (E3)
reduces to NDW ¼ jðQ11Q22 −Q12Q21Þ= gcdðQ22; Q12Þj.

APPENDIX F: EARLY MATTER DOMINATION
FROM HEAVY AXIONS IN UNWARPED

SCENARIO

The φ2 states could decay to SM fields, in particular, to
SM gauge fields, or to other axions.23 In the case of strong
hierarchies between the instanton scales, Ref. [170] showed
that decays into axions are suppressed relative to the photon
channel, which has decay rate

Γφ2→γγ ¼
M3

φ2
g2a2γγ

64π
; ðF1Þ

where the axion-photon coupling is given by ga2γγ ¼
αEMCa2γ=ð2πfa2Þ, where αEM is the fine structure constant,
and Ca2γ is assumed to be Oð1Þ. If the SM lives on a brane
that overlaps with the cycle on which the p-form is
wrapped down to an axion, then e.g., axion-fermion
couplings may be generated, such that decays into electrons
may also be relevant. However, as this is highly model
dependent we do not consider this possibility here. On the
other hand, decays into QCD states are relevant (and less
model dependent) as there is generically the axion-gluon
coupling L ⊃ − αs

8π ϑQCDG
a;μνG̃a;μν, with αs the dimension-

less SU(3) gauge coupling. Writing ϑQCD in the mass-
eigenstate basis using (113), the φ2 component has coef-
ficient cg=fa2 , with

cg ≡ rf−1Q11 cosðθÞ þQ12 sinðθÞ

¼ Q11Q21rf−1 þQ12Q22rfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

21 þQ2
22r

2
f

q : ðF2Þ

Thus φ2 couples to gluons via

L ⊃ −
4παscg

Λ
φ2Ga;μνG̃a;μν; ðF3Þ

with Λ ¼ 32π2fa2 . The total decay rate to gluons is
calculated at one-loop in perturbative QCD as [185]

Γφ2→gg ≈
32πα2sc2gM3

φ2

Λ2

�
1þ 83αs

4π

�
ΘðMφ2

−ΛpQCDÞ; ðF4Þ

where αs is evaluated at the renormalization group scale
Mφ2

and we impose that the rate vanishes outside of the
regime of validity of perturbative QCD, which we may take
as ΛpQCD ≈ 1.8 GeV [185]. For the parameter space of our
interest (specifically, above TRH < TBBN line in Fig. 4), we
find Mφ2

> ΛpQCD and therefore we can parametrize the
width as Γφ2;tot ¼ β2M3

φ2
=ð64πf2a2Þ, where

β2 ≡
�
αEMCa2γ

2π

�
2

þ α2sc2g
32π3

�
1þ 83αs

4π

�
: ðF5Þ

Approximating that the φ2 axions decay instantaneously at
the time tdec ≡ Γ−1

φ2;tot, the reheat temperature TRH is
determined by continuity of the energy density,

ρtotðTRHÞ ¼
π2

30
g�ðTRHÞT4

RH ¼ 4

3
M2

plΓ2
φ2;tot; ðF6Þ

giving

TRH ¼ β
Λ3
2

fa2

 
2

3

Mpl

64πf3a1

ffiffiffiffiffi
90

p

π
ffiffiffiffiffiffiffiffiffiffi
g�;dec

p
!1

2

ð1þ r2fQ
2
22Þ

3
4: ðF7Þ

To proceed with the calculation of the abundance, let us
approximate that the EMD era ends instantaneously at the
reheat temperature TRH. From (130) and (136) we find that
necessarily the network collapses before the φ2 states may
dominate, such that at T ¼ Tcoll the Universe is still
radiation dominated. We enter an EMD era if φ2 decays
after it dominates the energy density which is achieved if
Γφ2;tot ≲Hdom, equivalently,

Λ2 ≲ 16 × 2
1
4

ffiffiffi
π

p
3
ffiffiffi
β

p
�
raα
rκ

�1
2 f

3
2
a1ffiffiffiffiffiffiffiffiffiffiffiffi

rfMpl
p �

g�;dec
g�;Λ2

�1
8

×

 
g�;domg�;s;Λ2

g�;s;domg�;Λ2

!1
2

ð1þ r2fQ
2
22Þ−

3
4: ðF8Þ

Assuming an EMD era occurs, the final φ1 abundance
depends on whether the φ1 axions become nonrelativistic
during or after the EMD era. First, let us consider the case
where the φ1 axions become nonrelativistic during the
EMD era. From (132) and using that H2 ∝ R−3 during the

23There could be additional decay channels if there are dark
sector D-branes, which are generically expected, and which could
host dark U(1)’s or confining gauge groups.
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EMD era, it follows that the Hubble scale HNR;φ1
when φ1

becomes nonrelativistic obeys the relation,

Mφ1
∼ ωcoll

Rcoll

Rdom

�
Hdom

HNR;φ1

�
−2
3

: ðF9Þ

The present-day φ1 can then be computed as

Ωφ1;str ∼
ρφ1

ðTcollÞ
ρc;0

�
Rcoll

Rdom

�
4
�

Rdom

RNR;φ1

�
4

×

�
RNR;φ1

RRH

�
3
�
RRH

R0

�
3

∼
π
ffiffiffiffiffi
2κ

p

576 × 10
3
4

Λ2Λ2
1Mpl

f2a1fa2

T3
0

H2
0M

2
pl

�
gcollgdec
gΛ2

�3
4 β

logðMpl

Λ2
Þ

×

�
gs;0gs;Λ2

gs;collgs;dec

�
Q2

22r
2
fð1þQ2

22r
2
fÞ1=2RQ; ðF10Þ

where we use R ∝ H−2=3 for the factors accounting for
redshifting during the EMD era and the relations (F9),
HRH ∼ T2

RH=Mpl. We find the same result if the φ1 becomes
nonrelativistic after EMD. Note that the Λ2 dependence
of (F10) is the result of two competing effects. For smaller
Λ2 the network collapses later (130), which tends to
increase the φ1 abundance. On the other hand, smaller
Λ2 also lowers the TRH, implying the EMD era persists
longer and leads to more dilution of the φ1 abundance. The
second effect turns out to be more important than the
first. Lastly, we also express the BBN constraint TRH >
4 MeV [181,182] using (F7) which gives,

Λ2> ð1.7×105 GeVÞ
�

fa1
109 GeV

�2
3

×

�
fa1
Mpl

64π2
ffiffiffiffiffiffiffiffiffiffi
g�;dec

pffiffiffiffiffi
90

p
�1

6ðβrfÞ−1=3ð1þ r2fQ
2
22Þ−

1
4: ðF11Þ

APPENDIX G: AXIVERSE STRING
COSMOLOGY: WARPING

We may repeat analysis in Sec. VII B for an axion string
that sources two axion mass eigenstates but for strings from
warped compactifications. We assume the tension is μeff ¼
πf2a1 logðms=HÞ with ms ∼ fa1 , ignoring subdominant UV
contributions.
We work with the same axion EFT as in the previous

subsection. The Hubble rate at the time of collapse of the
string-domain-wall-network is modified from that previ-
ously found in (130) and we use (106) instead to write

HðTcollÞ ¼
4Λ2

2

π
ffiffiffiffiffiffiffiffi
ξcoll

p
fa1 logðms=HcollÞ

: ðG1Þ

The abundance of φ1 is computed as in the
unwarped scenario; however, now we have ρa1ðTcollÞ ¼
4ξH2ðTcollÞμeff and the typical axion momentum is
ω ∼ δ1

ffiffiffi
ξ

p
H logðms=HÞ, with δ1 ¼ 6.2� 0.4 measured

from field theory simulations [86]. For numerical evalu-
ation, we take δ1 ¼ 6.2, and assume the functional form
ξ ¼ 0.24 logðmr=HÞ, consistent with the simulations
of [86].
Therefore, assuming that φ1 becomes nonrelativistic

after the network collapses, its abundance from string
emission is set by

TNR;φ1
∼

Mφ1
Tcoll

Hcollδ1
ffiffiffiffiffiffiffiffi
ξcoll

p
logðms=HcollÞ

�
g�;s;coll
g�;s;NR;φ1

�1
3

¼ Mφ1

2Λ2

1

δ1
ffiffiffiffiffiffiffiffi
ξcoll

p
� ffiffiffiffiffiffiffiffi

ξcoll
p

logðms=HcollÞ
fa1Mpl

�1
2

×

�
g�;s;coll
g�;s;NR;φ1

�1
3

�
90

g�;coll

�1
4

; ðG2Þ

Self consistency requires TNR;φ1
< Tcoll, which is valid in

the case we are considering, Λ2 ≫ Λ1. Note that this
calculation is unlike in the single-axion case where the
QCD axion becomes nonrelativistic before the network
collapses.
If TNR;φ1

< 100 MeV, then we may ignore the temper-
ature dependence of Mφ1

and we obtain

Ωφ1;str ∼
π3

135

�
fa1
Mpl

�3
2 g�;s;0g�;coll

g�;s;coll

�
90

g�;coll

�1
4Λ2

1

Λ2

ξ
5
4

coll

δ1ξ
1
2

coll

×

�
log

�
fa1ms

Λ2
2

��1
2 T3

0

H2
0M

2
pl

r2fQ
2
22

ð1þ r2fQ
2
22Þ

RQ

∼Ωc
6× 10−6 GeV

Λ2

�
fa1
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However, unlike in the unwarped case, TNR;φ1
> 100 MeV

holds in a portion of the viable parameter space. In this case
we find
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On the other hand, the φ2 become nonrelativistic before
the network collapses, and, if stable, their relic density is set
by TNR;φ2

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mφ2

Mpl
p

∼ Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpl=fa1
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which is comparable to the energy density of the φ2

states produced through misalignment for order one
initial misalignment angles, since their oscillation temper-
ature satisfies Tosc ∼ TNR;φ2

, and thus ρφ2;strðTNR;φ2
Þ∼

ρφ2:mis:ðTNR;φ2
Þ ∼ f2a1H

2ðTNR;φ2
Þ. The φ2 axions would

dominate the universe at the temperature
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up to order one modifications due to the misalignment
contribution, which we account for numerically. The φ2

dominate before decaying if

Λ2 ≲
�
32π
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Note that the time at which φ2 dominates the energy
density must occur before BBN, and for self-consistency,
we must have Tdom ≤ TMRE. If there is no EMD period and

φ2 is stable up until today, then the string contribution to
the relic abundance of φ2 is

Ωφ2;str ∼ 0.85

�
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We are left with a small region of parameter space where,
at the time of matter-radiation equality, φ2 has not yet
decayed and is nonrelativistic. In this region the mass of the
heavier eigenstate is an eV to keV and its axion-photon
coupling is constrained by observations of the Leo T dwarf
galaxy [186], x-ray observations of galaxies [187], and
XMM-Newton observations of the Milky Way [188] (for a
summary of these limits, see [189]). The combination of
these constraints excludes almost all of the aforementioned
region, leaving only a small subregion centered around
fa ∼ 1010 GeV, with a weak hierarchy of instanton scales
Λ2=Λ1 ∼ 130. The allowed parameter space is summarized
in Fig. 6.

FIG. 6. The space of ðfa;Λ2Þ for the two axion scenario in the
warped case, for our fiducial choice of dimensionless parameters.
The color scheme is as in Fig. 4.
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