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The quantum kinetic equation for the gauge-invariant Wigner function, constructed from spinor fields that
obey the Dirac equation modified by CPT and Lorentz symmetry-violating terms, is presented. The
equations for the components of the Wigner function in the Clifford algebra basis are accomplished.
Focusing on the massless case, an extended semiclassical chiral kinetic theory in the presence of external
electromagnetic fields is developed. We calculate the chiral currents and establish the anomalous magnetic
and separation effects in a Lorentz-violating background. The chiral anomaly within the context of extended
quantum electrodynamics is elucidated. Finally, we derive the semiclassical Lorentz-violating extended
chiral transport equation.
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I. INTRODUCTION

The fermionic constituents of the Standard Model
of particle physics are mainly the charged Dirac and
Weyl particles which also appear in condensed matter as
quasiparticles. Various methods have been employed to
study the dynamical features of spin-1=2 fermions. Never-
theless, an intuitive understanding of physical phenomena
involving them is offered by kinetic theory. A systematic
construction of kinetic theory begins with the quantum
kinetic equation satisfied by the relativistic Wigner func-
tion [1,2]. It is the relativistic quantum field theory counter-
part of the classical distribution function. In high-energy
physics, quantum kinetic theory has predominately been
investigated to elucidate phenomena arising in the heavy-ion
collisions due to the chiral nature of quarks in a novel phase
of quark-gluon plasma. A comprehensive review of quantum
transport theory derived by means of the Wigner function
method and its applications is provided in [3].
One of the main properties of quantum field theory

models is the invariance under Lorentz transformation.
However, there are debates about the violation of Lorentz
symmetry under certain conditions, such as very high
energies. For instance, it may arise from the string theory
as outlined in [4,5]. On the other hand, Lorentz symmetry
violation may stem from anisotropy in spacetime. A brief
historical overview and current status of ideas regarding

potential sources of Lorentz violation in particle physics can
be found in [6]. Our discussion is based on the Standard
Model extension (SME), an effective field theory that
incorporates Lorentz- and CPT-violating terms into the
Standard Model of particle physics [7,8]. The SME assumes
that a fundamental theory, which may be string theory,
undergoes spontaneous Lorentz symmetry breaking. This
results in a low-energy effective action with explicit
Lorentz symmetry-violating (LSV) terms while maintain-
ing microcausality, positivity of energy, and energy-
momentum conservation. Notably, in SME particle and
observer Lorentz transformations are not treated on equal
footing. Observer frames differ in orientation and velocity,
hence they are related to coordinate changes. The funda-
mental theory’s Lorentz symmetry is spontaneously bro-
ken, so that observer Lorentz symmetry is conserved.
However, particle Lorentz symmetry is broken because it is
defined by rotations and boosts of the localized field while
keeping the expectation values of tensor fields unchanged.
Restricting the minimal SME to Abelian gauge theory, one
obtains the extended quantum electrodynamics (QED)
whose fermionic sector is given by the Dirac spinors
coupled to electromagnetic gauge fields in the presence of
Lorentz- and CPT-violating terms. This framework is also
utilized to discuss violation of emergent Lorentz symmetry
in Dirac and Weyl semimetals [9].
We deal with the modified Dirac equation with a certain

set of LSV terms: aμ and cμν. The Boltzmann equation for
this choice of LSV coefficients has been examined in [10].
The spinor fields obeying the modified Dirac equation can
be quantized using the customary methods of field theory,
and the extended QED is invariant under the gauge trans-
formations. Thus, one can construct the extended relativistic
gauge-invariant Wigner function and derive the quantum
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kinetic equation as in the ordinary relativistic kinetic theory.
We expand the Wigner function in the Clifford algebra basis
where the coefficients are scalar, pseudoscalar, vector, axial-
vector, and tensor field variables. The quantum kinetic
equation yields the coupled equations of these fields, which
simplify when the mass is set to zero. We then consider the
massless particles and explore the chiral kinetic theory
which is manifestly observer Lorentz invariant. One of the
peculiar aspects of chiral fermions is the emergence of
anomalous effects like chiral magnetic [11,12] and separa-
tion [13–15] effects. By choosing the distribution function
appropriately we will be able to calculate vector and axial-
vector particle currents and show that these anomalous
effects get contribution from the LSV terms. Moreover, by
studying their conservation we will demonstrate that the
chiral anomaly is also altered.
In the next section we discuss the relativistic gauge-

invariant Wigner function and the quantum kinetic equa-
tion for Dirac particles within extended QED. In Sec. III
the quantum kinetic equations of the chiral vector fields
will be presented. Two of the three coupled equations are
solved in a semiclassical approach. In Sec. IV we employ
the modified Fermi-Dirac distribution function [10] and
calculate the chiral vector fields, which are then used to
establish four-currents generating anomalous magnetic
and separation effects. The vector current is shown to
be conserved, while the axial-vector four-current leads to
the chiral anomaly. In Sec. V, an observer Lorentz-
invariant semiclassical chiral kinetic equation is derived.
It is followed by a discussion of results and potential future
studies in the final section.

II. QUANTUM KINETIC EQUATION

We deal with the Dirac fermion of mass m and charge q
in the presence of external electromagnetic fields. There
may be several Lorentz symmetry-violating terms that are
coordinate reparametrization and gauge invariant [16].
However, we consider a restricted set of Lorentz sym-
metry-violating coefficients described by the Lagrangian
density of the Dirac spinors ψ coupled to the electromag-
netic gauge field Aμ, given as (c ¼ 1)

L ¼ ψ̄ðxÞ½Γμðiℏ∂μ − qAμÞ −M�ψðxÞ; ð1Þ

where ∂μ ≡ ∂=∂xμ and

Γμ ¼ γμ þ cνμγν; M ¼ mþ aμγμ:

TheMinkowski metric is gμν ¼ diagð1;−1;−1;−1Þ, and γμ
are the ordinary γ matrices satisfying fγμ; γνg ¼ 2gμν. The
LSV coefficients aμ and cμν are real and constant. The
former violates also the CPT invariance. By varying (1)
with respect to ψ̄ and ψ , one derives the equations of
motion as

½Γμðiℏ∂μ − qAμÞ −M�ψðxÞ ¼ 0; ð2Þ

ψ̄ðxÞ½Γμðiℏ∂†μ þ qAμÞ þM� ¼ 0: ð3Þ

In [7,16] it has been demonstrated that the spinor
operators can be defined as in the ordinary case: In the
“concordant frame” where the LSV coefficients are small,
there exists a transformation of the spinors ψðxÞ that leads to
a free Hamiltonian possessing two positive and two negative
eigenvalues. Hence, one introduces plane wave solutions
and define wave packets. Then, one proceeds as in the
ordinary quantum field theory and introduces the spinor
operators ψ̂ðxÞ and ˆ̄ψðxÞ. Therefore, by means of the four-
momentum pμ one can define the Wigner operator as

Ŵαβðx;pÞ ¼
Z

d4y
ð2πℏÞ4 e

−ip·y=ℏ ¯̂ψβ

�
xþ 1

2
y

�
ψ̂α

�
x−

1

2
y

�
:

By normal ordering (∶∶) and ensemble averaging ðh� � �iÞ
the Wigner operator, one acquires the Wigner function
Wðx; pÞ ¼ h∶Ŵðx; pÞ∶i. In the presence of electromagnetic
interactions, one can introduce the gauge-invariant Wigner
function by means of the gauge link as in the ordinary
formalism [1,2]. The derivation of the quantum kinetic
equation satisfied by the Wigner function relies only on the
Dirac equations. Therefore, employing the modified Dirac
equations (2) and (3), it is accomplished as follows:

½ΓμKμ −M�Wðx; pÞ ¼ 0; ð4Þ

where

Kμ ¼
�
πμ þ iℏ

2
Dμ

�
: ð5Þ

We defined

Dμ ≡ ∂
μ − qj0ðΔÞFμν

∂pν;

πμ ≡ pμ −
ℏq
2
j1ðΔÞFμν

∂pν;

where ∂
μ
p ≡ ∂=∂pμ, and j0ðΔÞ, j1ðΔÞ are the spherical

Bessel functions in Δ≡ ∂
μ
p∂μ. Written in the Clifford

algebra basis the Wigner function becomes

W ¼ 1

4

�
F þ iγ5P þ γμVμ þ γ5γμAμ þ

1

2
σμνSμν

�
: ð6Þ

Let us choose cμν ¼ cνμ without loss of generality and
introduce

Gμν ¼ gμν þ cμν ¼ Gνμ; ð7Þ

which is a nondiagonal metric [17].
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One can show that (4) leads to the following set of
coupled equations:

GλμKλVμ −mF − aμVμ ¼ 0; ð8Þ

iGλμKλAμ þmP þ aμAμ ¼ 0; ð9Þ

GλμKλF − iGνλKλSνμ −mVμ − aμF ¼ 0; ð10Þ

iGλμKλP þ 1

2
ϵμναβGνλKλSαβ −mAμ − aμP ¼ 0; ð11Þ

iGλμKλVν − iGλνKλVμ − ϵμνρσGρλKλAσ

−mSμν − iðaμVν − aνVμÞ − ϵμνρσaσAσ ¼ 0: ð12Þ

In the subsequent sections we consider the chiral fermions
in the semiclassical limit.

III. CHIRAL VECTOR FIELDS

Observe that for m ¼ 0 the equations of the fields Vμ,
Aμ, (8), (9), (12), decouple from the rest,

GλμKλVμ − aμVμ ¼ 0; ð13Þ

iGλμKλAμ þ aμAμ ¼ 0; ð14Þ

iGλμKλVν − iGνλKλVμ − ϵμνρσGρλKλAσ

− iðaμVν − aνVμÞ − ϵμνρσaσAσ ¼ 0: ð15Þ

In fact, we will deal with the vector field Vμ and the axial-
vector field Aμ for m ¼ 0 in the semiclassical limit,
keeping at most the ℏ-dependent terms. Thus, in terms of

Dμ ≡ ∂
μ
x − qFμν

∂pν; ð16Þ

(5) becomes

Kμ ¼ pμ −
iℏ
2
Dμ:

Now, by introducing

p̄μ ¼ Gλμpλ − aμ; ð17Þ

D̄μ ¼ GλμDλ; ð18Þ

the real parts of (13)–(15) can be expressed as

p̄ · V ¼ 0; ð19Þ

ℏ
2
D̄ ·A ¼ 0; ð20Þ

ℏ
2
ðD̄μVν − D̄νVμÞ − ϵμναβp̄αAβ ¼ 0: ð21Þ

Moreover, the imaginary parts of (13)–(15) are written as

ℏD̄ · V ¼ 0; ð22Þ

p̄ ·A ¼ 0; ð23Þ

p̄μVν − p̄νVμ þ
ℏ
2
ϵμναβD̄αAβ ¼ 0: ð24Þ

These two sets of coupled equations can be unified by
launching the chiral vector fields

J χ ¼
1

2
ðV þ χAÞ; ð25Þ

where χ ¼ � labels the right- and left-handed vector fields.
Then (19)–(24) can be combined into

p̄ · J χ ¼ 0; ð26Þ

D̄ · J χ ¼ 0; ð27Þ

ℏ
2
ϵμναβD̄αJ β

χ ¼ −χðp̄μJ χν − p̄νJ χμÞ: ð28Þ

We would like to solve these equations by expanding the

chiral vector fields in ℏ as J χ ¼ J ð0Þ
χ þ ℏJ ð1Þ

χ . Although in
the ordinary case these solutions have been discussed in
several papers like [18–20], a comprehensive presentation
can be found in [21]. Therefore, we mainly follow the
formulation of [21]. The zeroth order solution of (26)
and (28) can easily be identified as

J ð0Þ
χμ ¼ p̄μf

ð0Þ
χ δðp̄2Þ; ð29Þ

where fð0Þχ is a general distribution function. Equation (29)
should also satisfy (27),

D̄μ
h
p̄μf

ð0Þ
χ δðp̄2Þ

i
¼ Gμλð∂xλ − qFλκ∂

κ
pÞ

×
h
ðGμσpσ − aμÞfð0Þχ δðp̄2Þ

i

¼ qGμλFλκGκ
μf

ð0Þ
χ δðp̄2Þ

þ 2qGμλp̄μp̄αFλκGακfð0Þχ δ0ðp̄2Þ
þ p̄μδðp̄2ÞD̄μfð0Þχ ¼ 0: ð30Þ

It is convenient to define

F̄μν ¼ GμαFαβGβν; ð31Þ

which is antisymmetric
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F̄νμ ¼ GναFαβGβμ ¼ GανFαβGμβ ¼ −GμβFβαGαν ¼ −F̄μν:

ð32Þ

The first and the second terms in (30) vanish due to F̄μ
μ ¼ 0,

and p̄μp̄νF̄μν ¼ 0. Hence it yields the modified Vlasov
equation

p̄μδðp̄2ÞD̄μfð0Þχ ¼ p̄μδðp̄2ÞGμλð∂xλ−qFλκ∂
κ
pÞfð0Þχ ¼ 0: ð33Þ

At the ℏ order (26)–(28) yield

p̄ · J ð1Þ
χ ¼ 0; ð34Þ

D̄ · J ð1Þ
χ ¼ 0; ð35Þ

ϵμναβD̄αJ ð0Þβ
χ ¼ −2χ

�
p̄μJ

ð1Þ
χν − p̄νJ

ð1Þ
χμ

�
: ð36Þ

To solve (36), note that

D̄α
h
p̄βfð0Þχ δðp̄2Þ

i
¼ δðp̄2Þp̄βD̄αfð0Þχ − qF̄αβfð0Þχ δðp̄2Þ

− 2qF̄αρp̄ρp̄βfð0Þχ δ0ðp̄2Þ:

By making use of the Schouten identity

kμϵνρσλ þ kνϵρσλμ þ kρϵσλμν þ kσϵλμνρ þ kλϵμνρσ ¼ 0; ð37Þ

and defining the dual of F̄ as

˜̄Fμν ¼
1

2
ϵμνρσF̄ρσ; ð38Þ

we get

−ϵμναβF̄αρp̄ρp̄β ¼ −2 ˜̄Fνβp̄μp̄β − 2 ˜̄Fβμp̄νp̄β

þ p̄αϵβρμνF̄αρp̄β − 2 ˜̄Fμνp̄2: ð39Þ

The third term on the right-hand side is equal to the term on
the left-hand side up to a minus sign, thus (39) yields

ϵμναβF̄αρp̄ρp̄βfð0Þχ δ0ðp̄2Þ
¼ ð ˜̄Fνβp̄μ þ ˜̄Fβμp̄νÞp̄βfð0Þχ δ0ðp̄2Þ − ˜̄Fμνf

ð0Þ
χ δðp̄2Þ; ð40Þ

where we employed the identity δ0ðp̄2Þ ¼ −δðp̄2Þ=p̄2.
Therefore, the left-hand side of (36) is expressed as

ϵμναβD̄αJ ð0Þβ
χ ¼ ϵμναβδðp̄2Þp̄βD̄αfð0Þχ

− 2qð ˜̄Fνβp̄μ þ ˜̄Fβμp̄νÞp̄βfð0Þχ δ0ðp̄2Þ: ð41Þ

Now, we plug (41) into (36) and multiply it with p̄ν,

−2p̄2ðq̃F̄βμp̄βfð0Þχ δ0ðp̄2Þ − 2χJ ð1Þ
μ Þ ¼ 0: ð42Þ

Its general solution can be written as

J ð1Þ
μ ¼ χq ˜̄Fβμp̄βfð0Þχ δ0ðp̄2Þþ p̄μf

ð1Þ
χ δðp̄2ÞþHμδðp̄2Þ; ð43Þ

where fð1Þχ is a general distribution function and Hμ is a
vector field satisfying

p̄μHμδðp̄2Þ ¼ 0; ð44Þ

and

ϵμναβδðp̄2Þp̄βD̄αfð0Þχ δðp̄2Þ ¼ −2χðp̄μHν − p̄νHμÞδðp̄2Þ:
ð45Þ

By introducing the four-vector nμ, which is defined to
satisfy n2 ¼ 1, one can solve (44) and (45) as

Hμ ¼
χ

2p̄ · n
ϵμναβp̄νnαD̄βfð0Þχ : ð46Þ

By means of the Schouten identity (37) and the
modified Vlasov equation (33), we can show that it indeed
satisfies (45),

1

p̄ · n
ðp̄νϵμραβ − p̄μϵνραβÞp̄ρnαδðp̄2ÞD̄βfð0Þχ

¼ −1
p̄ · n

ðp̄μϵραβν þ p̄ρϵαβνμ þ p̄αϵβνμρ

þ p̄βϵνμρα þ p̄μϵνραβÞp̄ρnαδðp̄2ÞD̄βfð0Þχ

¼ −1
p̄ · n

ðp̄2ϵαβνμnα þ p̄ · nϵβνμρp̄ρÞδðp̄2ÞD̄βfð0Þχ

¼ ϵμνβρp̄ρδðp̄2ÞD̄βfð0Þχ :

Therefore, we conclude that the semiclassical solution
of (26) and (28) is

J μ
χ ¼ p̄μfχδðp̄2Þ þ ℏqχ ˜̄Fμνp̄νf

ð0Þ
χ δ0ðp̄2Þ

þ ℏχ
2p̄ · n

ϵμναβp̄νnαδðp̄2ÞD̄βf
ð0Þ
χ ; ð47Þ

where we defined the distribution function fχ ¼
fð0Þχ þ ℏfð1Þχ . Obviously, it should also satisfy (27). We
will come back to it in Sec. V. Now, we will specify the
equilibrium distribution function and calculate chiral
currents.
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IV. FERMI-DIRAC DISTRIBUTION
AND THE CHIRAL CURRENTS

The equilibrium distribution function of the particles
which obey Fermi-Dirac statistics in the LSV background
is studied in [10]. There, the standard relativistic kinetic
theory formulation of gases [22] is employed by incorpo-
rating the LSV modifications of the equations of motion:
The massless particles obey the extended dispersion
relation

p̄ · p̄ ¼ 0; ð48Þ

and the constraint

G−1
ρμuμðG−1Þρνuν − 1 ¼ 0: ð49Þ

uμ ≡ dxμ=dτ is the four-velocity of the fluid where τ is the
proper time in the absence of LSV. By introducing

ũμ ≡G−1
μν uν; ð50Þ

(49) can be expressed as

ũμũμ ¼ 1: ð51Þ

The Boltzmann and relativistic Uehling-Uhlenbeck
equations have been derived following the ordinary rela-
tivistic theory in terms of the one-particle phase space
distribution function fðx; pÞ, and p̃μ ¼ Gμνp̄ν. Then, the
H-theorem is demonstrated by making use of the extended
transport equations and introducing the entropy-density
four-current

sμ ¼ 1

ð2πℏÞ3
Z

d3p
p̃0

p̃μ½ðfðx; pÞ − 1Þ lnð1 − fðx; pÞÞ

− fðx; pÞ ln fðx; pÞ�; ð52Þ

which yields the total entropy

S ¼
Z

d3xs0 ¼ 1

ð2πℏÞ3
Z

d3xd3p½ðfðx; pÞ − 1Þ

× lnð1 − fðx; pÞÞ − fðx; pÞ ln fðx; pÞ�:
ð53Þ

The Boltzmann constant is set k ¼ 1. Observe that (53) is
independent of the LSV coefficients. Thus, as in the
ordinary case, one can observe that for particles with
momentum p1, p2 scattered to particles with momentum
p3, p4, the total entropy (53) is stationary when ϕðx; pÞ ¼
− ln ½fðx; pÞ=ð1 − fðx; pÞÞ� satisfies the condition

ϕðx; p3Þ þ ϕðx; p4Þ − ϕðx; p1Þ − ϕðx; p2Þ ¼ 0: ð54Þ

For momentum conserving scatterings, the most general
solution of (54) can be shown to be

fðx; pÞ ¼ 1

e−αðxÞþβðxÞ·p þ 1
; ð55Þ

where αðxÞ and βμðxÞ are arbitrary. Equation (55) should
obey the Uehling-Uhlenbeck equation which is solved by
the Fermi-Dirac distribution function

fFDðx; pÞ ¼
1

eð−μþu·pÞ=T þ 1
; ð56Þ

for ∂uμ=∂xν ¼ 0. On mass-shell p̄2 ¼ 0, thus the equilib-
rium distribution function for chiral fermions and anti-
fermions is given by

feqχ ¼ 2

ð2πℏÞ3
�

θðũ · p̄Þ
eðu·p−μχÞ=T þ 1

þ θð−ũ · p̄Þ
e−ðu·p−μχÞ=T þ 1

�
: ð57Þ

Now by expressing it in p̄ we get

feqχ ¼ 2

ð2πℏÞ3
�

θðũ · p̄Þ
eðũ·p̄−μχ−ũ·aÞ=T þ 1

þ θð−ũ · p̄Þ
e−ðũ·p̄−μχ−ũ·aÞ=T þ 1

�
:

ð58Þ

μχ are given by the total chemical potential μ and the chiral
chemical potential μ5 as μR;L ¼ μ� μ5. Observe that the
chemical potentials μχ are effectively shifted with ũ · a,
reminiscent of expressing the distribution function (57) in
terms of p̄μ, which is the LSV extended momentum
appearing in the dispersion relation (48).
We would like to study the chiral vector field (47) by

choosing fχ as the modified Fermi-Dirac distribution
function (58) and setting n ¼ ũ. In this frame we introduce
Ēμ ¼ F̄μνũν, and B̄μ ¼ ð1=2ÞϵμναβũνF̄αβ, so that the field
strength and its dual can be expressed as

F̄μν ¼ Ēμũν − Ēνũμ þ ϵμναβũαB̄β; ð59Þ

˜̄Fμν ¼ B̄μũν − B̄νũμ þ ϵμναβũβĒα: ð60Þ

At the zeroth order in Planck constant feqχ should satisfy
the LSV Vlasov equation (33), which for constant temper-
ature T, leads to

Gνμð∂μ − qFμα∂
α
pÞfeqχ ¼ ð∂νμχ þ qF̄ναũαÞ

∂feqχ
∂μχ

¼ 0:

It is satisfied by letting μ ¼ ðμR þ μLÞ=2 and μ5 ¼
ðμR − μLÞ=2, to fulfil the conditions

∂σμ ¼ −Ēσ; ∂σμ5 ¼ 0: ð61Þ
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Observe that Ēσ ¼ GσμEμ where Eμ is the electric field, hence (61) coincides with ∂σμ ¼ −Eσ; ∂σμ5 ¼ 0, which are the
relations obeyed in the ordinary chiral kinetic theory [18].
The chiral vector field can be expressed as

J eq
χμ ¼ p̄μf

eq
χ δðp̄2Þ þ ℏqχ ˜̄Fμνp̄νfeqχ δ0ðp̄2Þ þ ℏχ

2p̄ · ũ
ϵμναβp̄νũαδðp̄2ÞD̄βfeqχ

¼ p̄μf
eq
χ δðp̄2Þ þ ℏqχðB̄μũν − B̄νũμÞp̄νfeqχ δ0ðp̄2Þ þ ℏqχϵμναβũβĒαp̄νfeqχ δ0ðp̄2Þ

þ ℏχ
2p̄ · ũ

ϵμναβp̄νũαδðp̄2Þð∂βũκÞðp̄κ þ aκÞ
∂feqχ

∂ðũ · p̄ − ũ · aÞ ; ð62Þ

where the last term can also be written as follows:

ℏχ
2p̄ · ũ

δðp̄2Þϵμναβp̄νũαð∂βuκÞpκ
∂feqχ

∂ðu · pÞ ·

Let us deal with vanishing vorticity ∂
βuκ ¼ 0 and

constant electromagnetic fields Eμ, Bμ. Then, by employing
the identity p̄2δ00ðp̄2Þ ¼ −2δ0ðp̄2Þ and the relation

ϵμνρβϵβσδα ¼ δμσðδνδδρα − δρδδ
ν
αÞ þ δνσðδρδδμα − δμδδ

ρ
αÞ

þ δρσðδμδδνα − δνδδ
μ
αÞ; ð63Þ

one can easily observe that (62) satisfies the remaining
equation (27).
Chiral current is defined as

jμχðxÞ ¼
Z

d4pJ μ
χðx; pÞ: ð64Þ

By the change of variables pμ → p̄μ, we get

jμχðxÞ ¼ 1

jGj
Z

d4p̄J μ
χðx; pÞ; ð65Þ

where jGj ¼ detGμ
ν .

To perform the integrals over p̄μ ¼ ðp̄0; ⃗p̄Þ, let us
designate j ⃗p̄j≡ P̄ and note that

Z
∞

0

dP̄ P̄k 1

e
�
P̄−μχ−ũ·a

	
=T þ 1

¼ −Tkþ1k!Likþ1

�
−eðμχþũ·aÞ=T

�
; ð66Þ

where LisðxÞ are the polylogarithms whose properties
which we use in the calculations can be found in [23].
By performing the integrals we get

jμχ ¼ nχ ũμ þ ξχB̄μ; ð67Þ

with

nχ ¼
1

6π2ℏ3jGj
h
ðμχ þ ũ · aÞ3 þ π2T2ðμχ þ ũ · aÞ

i
; ð68Þ

ξχ ¼
1

4π2ℏ2jGj ðμχ þ ũ · aÞ: ð69Þ

Then, the vector and axial-vector currents defined by jμ ¼
jμR þ jμL and jμ5 ¼ jμR − jμL are established as

jμ ¼ nũμ þ qξB̄μ; ð70Þ

jμ5 ¼ n5ũμ þ qξ5B̄μ; ð71Þ

where

n ¼ 1

3π2ℏ3jGj
h
μ3 þ ðũ · aÞ3

i

þ 1

π2ℏ3jGj
h
μμ25 þ ðμ2 þ μ25Þðũ · aÞ þ μðũ · aÞ2

i

þ T2

3ℏ3jGj ðμþ ũ · aÞ; ð72Þ

n5 ¼
1

6π2ℏ3jGj
h
ðμχ þ ũ · aÞ3 þ π2T2ðμχ þ ũ · aÞ

i
; ð73Þ

ξ ¼ μ5
2π2ℏ2jGj ; ð74Þ

ξ5 ¼
μþ ũ · a
2π2ℏ2jGj : ð75Þ

In the absence of LSV terms, the magnetic parts of
the currents (70) and (71) are known as chiral magnetic
effect (CME) and chiral separation effect (CSE). We found
that these effects are modified in two ways. First, the
magnetic field is replaced by B̄, whose dependence on the
magnetic field Bμ ¼ ð1=2ÞϵμναβuνFαβ is not direct. Second,
the coefficients (74) and (75) depend on the LSV terms.
Bymaking use of (61) one observes that the vector current

is conversed but the axial-vector current is anomalous,
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∂μjμ ¼ 0; ð76Þ

∂μj
μ
5 ¼

q2

2π2ℏ2jGjE · B̄: ð77Þ

The chiral anomaly in this context has been studied
in [24,25]. In [24] a ¼ 0, and the chiral current was
defined as GμνJν5 where J5 is the ordinary axial-vector
current. Thus, its magnetic part is similar to (70). By
studying the index theorem, they concluded that the chiral
anomaly is the same as in the ordinary Lorentz-invariant
theory. The same conclusion is drawn in [26]. However,
in [25], the chiral anomaly was calculated by employing
the Fujikawa method as

∂μj
μ
5 ¼

q2

2π2ℏ2jGj Ē · B̄:

This coincides with our result (77).

V. CHIRAL TRANSPORT EQUATION

As we have already mentioned, (47) should also
satisfy (27),

D̄ · J χ ¼ D̄μ

�
p̄μfχδðp̄2Þ þ ℏqχ ˜̄Fμβp̄βfð0Þχ δ0ðp̄2Þ

þ ℏχ
2p̄ · n

ϵμναβp̄νnαδðp̄2ÞD̄βfð0Þχ

�
¼ 0: ð78Þ

Following the approach in [21], we will show that (78)
leads to the LSV extended chiral transport equation. Since
F̄μν is antisymmetric, the first term can easily be shown
to be

D̄μ½p̄μfχδðp̄2Þ� ¼ δðp̄2Þp̄μD̄μfχ : ð79Þ

Let us focus on the second term of (78). First, note that

4 ˜̄Fμβp̄βF̄μνp̄ν ¼ ˜̄FμβF̄μβp̄2; ð80Þ

which is derived by means of the Schouten identity (37). By
employing the identity (37) and the relations p̄2δ0ðp̄2Þ ¼
−δðp̄2Þ, p̄2δ00ðp̄2Þ ¼ −2δ0ðp̄2Þ, we get

D̄μ½ ˜̄Fμβp̄βfð0Þχ δ0ðp̄2Þ� ¼ ˜̄Fμβp̄βδ0ðp̄2ÞD̄μfð0Þχ : ð81Þ

The third term of (78) can be expressed as

D̄μ

�
1

2p̄ · n
ϵμναβp̄νnαδðp̄2ÞD̄βfð0Þχ

�
¼ −q ˜̄Fμνp̄νδ

0ðp̄2ÞD̄μf
ð0Þ
χ −

q
p̄ · n

p̄μ
˜̄Fμνnνδ0ðp̄2Þp̄ · D̄fð0Þχ

−
q

2ðp̄ · nÞ2 ϵμναβF̄
μρnρnνp̄αδðp̄2ÞD̄βfð0Þχ þ q

4p̄ · n
ϵμναβp̄νnαδðp̄2Þ½Gβ

ρð∂μFρσÞ

−Gμ
ρð∂βFρσÞ�∂pσfð0Þχ −

1

2ðp̄ · nÞ2 ϵμναβð∂
μnρÞp̄ρnνp̄αδðp̄2ÞD̄βfð0Þχ

þ 1

2p̄ · n
ϵμναβð∂μnνÞp̄αδðp̄2ÞD̄βfð0Þχ : ð82Þ

Here, we utilized the following equality, derived by making use of the Schouten identity (37):

ϵμνλρF̄μσp̄σnνp̄λδ
0ðp̄2ÞD̄ρf

ð0Þ
χ ¼ ðp̄ · nÞ ˜̄Fλρp̄λδ

0ðp̄2ÞD̄ρf
ð0Þ
χ þ nν

˜̄Fνλp̄λp̄ρδ0ðp̄2ÞD̄ρf
ð0Þ
χ þ ˜̄Fρνnνp̄2δ0ðp̄2ÞD̄ρf

ð0Þ
χ ; ð83Þ

and the commutator relation

ϵμνλρ½D̄μ; D̄ρ�fð0Þχ ¼ qϵμνλρGα
μG

β
ρ½ð∂αFβσÞ − ð∂βFασÞ�∂σpfð0Þχ : ð84Þ

Now, by inserting (79), (81), and (82) into (78), one establishes

δ

�
p̄2 −

ℏqχ
p̄ · n

p̄μ
˜̄Fμνnν

�

p̄ · D̄fχ −

ℏqχ
2ðp̄ · nÞ2 ϵμναβF̄

μρnρnνp̄αδðp̄2ÞD̄βfð0Þχ þ ℏqχ
4p̄ · n

ϵμναβp̄νnαδðp̄2Þ½Gβ
ρð∂μFρσÞ

−Gμ
ρð∂βFρσÞ�∂pσfð0Þχ −

ℏχ
2ðp̄ · nÞ2 ϵμναβð∂

μnρÞp̄ρnνp̄αδðp̄2ÞD̄βfð0Þχ þ ℏχ
2p̄ · n

ϵμναβð∂μnνÞp̄αδðp̄2ÞD̄βfð0Þχ

�
¼ 0: ð85Þ
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Obviously, one should keep only the terms up to the ℏ
order. Equation (85) is the semiclassical chiral transport
equation, which is observer Lorentz invariant. The δ
function dictates the mass-shell condition.

VI. DISCUSSIONS

We studied the fermionic part of the extended QEDwhich
is the modified Dirac equation with a set of LSV terms, in
the presence of external electromagnetic fields. It is observer
Lorentz symmetric as is reminiscent of the spontaneously
broken Lorentz invariance of the fundamental theory which
may be string theory. We proceed by quantizing spinor fields
using standard methods and utilizing these spinor operators
to construct a relativistic Wigner function through conven-
tional quantum field theory techniques.
The quantum kinetic equation governing the Wigner

function is accomplished by following the well-established
formulation of [2]. By decomposing the Wigner function in
terms of the Clifford algebra generators constructed from
the γ matrices, we derive a set of coupled equations
satisfied by the scalar, pseudoscalar, vector, axial-vector,
and antisymmetric tensor fields. Notably, in the massless
limit, the equations of the vector and axial-vector fields are
decoupled from the rest. In fact, we focus on the chiral
fermions and adopt the semiclassical approximation where
the terms up to the first order in Planck constant are
considered.
Within this semiclassical approximation we solve two

of the three kinetic equations of the chiral vector fields.
Subsequently, we compute particle four-currents by
adopting the analog of the Dirac-Fermi distribution
proposed in [10]. The extended magnetic and separation
effects are established. The vector current is conserved and
the axial-vector current is anomalous, where the chiral
anomaly depends on the LSV coefficients. Then, by
imposing the third equation which should be satisfied
by the chiral vector fields, the chiral semiclassical kinetic
equation is accomplished.

How can one experimentally test the results of the
modified chiral kinetic theory? This may be achieved
through the currents (70) and (71), which yield the CME
and CSE. In high-energy physics, experimental evidence
for the CME is investigated in heavy-ion collisions. The
current experimental status has been recently reviewed
in [27]. We have seen that LSV parameters modify the
coefficient of the magnetic field (74), by jGj−1, which
would be nearly impossible to detect. However, note that
the modified current is along B̄, hence the direction of the
CME is altered by LSV parameters. Although this effect is
small, it is the unique source in the deviation in the
direction. This can even help in experimentally observing
the CME, which has been investigated only along the
direction of the magnetic field.
In principle, one could derive semiclassical kinetic

equations for massive fermions by examining the defining
equations (8)–(12). However, even in the case of ordinary
Dirac fermions, this task is intricate, as evidenced by the
complexities encountered when employing the approaches
outlined in [28,29].
Integration of (85) over the zeroth component of momen-

tum to obtain the nonrelativistic (3D) chiral kinetic theory
is a desired step, albeit complicated by the presence of Gμν.
A pragmatic solution involves setting a0 ¼ 0; G0μ ¼ δ0μ,
yielding p̄0 ¼ p0, which facilitates to get the mass-shell
condition dictated by the Dirac δ function.
By integrating the equations governing the components

of the Wigner function (8)–(12), with respect to the zeroth
component of momentum, one can derive what is known as
the equal-time formulation, a technique elucidated in detail
in [30–33].
While our study primarily focuses on establishing

chiral currents under conditions of vanishing vorticity,
the presence of vorticity may necessitate modifications
to the theory, akin to conventional scenarios as discussed
in [34,35].
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