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In this paper, we perform a comprehensive study of lepton flavor violation (LFV) in semileptonic
transitions in the framework of an effective field theory with general flavor structure. We account for the
renormalization group equations, which induce nontrivial correlations between the different types of LFV
processes. In particular, we show that these loop effects are needed to improve the bounds on several
coefficients that are not efficiently constrained at tree level. For illustration, we consider a few concrete
scenarios, with predominant couplings to third-generation quarks, and we explore the correlations between
the various tree- and loop-level constraints on these models. As a by-product, we also provide expressions
for several semileptonic LFV meson decays by using the latest determinations of the relevant hadronic form

factors on the lattice.
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I. INTRODUCTION

Lepton flavor violation (LFV) is strictly forbidden by the
accidental symmetries in the Standard Model (SM).
However, these symmetries are not necessarily respected
by higher-dimensional operators appearing beyond the SM,
which are suppressed by inverse powers of a heavy scale A.
Indeed, the observation of neutrino masses and oscillation
is the first indication that lepton number might be broken,
which can be described by dimension-five operators (sup-
pressed by 1/A) [1]. The smallness of neutrino masses,
however, guarantees that LFV in charged processes remains
heavily suppressed unless new dynamics beyond light
neutrino masses are present [2]. Therefore, these processes
are clean probes of new physics, as their observation would
be unambiguous evidence of new phenomena, typically
arising through dimension-six operators (thus suppressed
by 1/A2).

Significant progress is expected in the next years from
experiments searching for LFV in both leptonic and semi-
leptonic processes, which will improve the current sensi-
tivity in several channels by at least one order of magnitude
[3]. These include the various experiments targeting the
u — e transition, namely MEG-II [4], Mu2E [5], Mu3E [6],
and COMET [7], as well as Belle-II that will improve our
sensitivity to both leptonic and hadronic LFV zlepton
decays [8]. There has also been an increasing effort by
LHCb and Belle to improve the limits of several LFV
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decays of B-mesons [9,10]. Furthermore, experiments with
kaons at NA62 [11] and KOTO [12], and charmed hadrons
at BES-II [13], are also expected to improve their
sensitivity to LFV decays in the near future.

New physics contributions to LFV processes from heavy
mediators can be characterized by the Standard Model
effective field theory (SMEFT) [14], defined above the
electroweak scale, which is invariant under the SM gauge
symmetry SU(3), x SU(2), x U(1)y. In the SMEFT, the
leading effective operators that induce LFV at low energies
are the leptonic dipoles (y>HX), as well as four-fermion
leptonic and semileptonic operators (y*) [15]. The remark-
able experimental sensitivity of LFV searches in specific
channels implies that some of these operators can be better
probed through radiative corrections, instead of their direct
tree-level contributions to low-energy processes. For in-
stance, the operator (fiy"e)(gy,q), where g denotes a weak
doublet with heavy quarks, can be more efficiently probed
through its contributions at one-loop to 4 — 3e rather than
by studying semileptonic processes at tree level [16,17].
Therefore, it is clear that radiative corrections must be
systematically included to assess the full potential of LFV
processes to discover new physics. This program has been
carried out to a large extent in the leptonic sector [16—18].
However, analogous systematic study for semileptonic
transitions is still missing, although the one-loop anoma-
lous dimensions are known both in the low-energy EFT
[16,19] and in the SMEFT [20] (see Ref. [21,22] for the
first steps in this direction).

In this paper, we will perform a comprehensive analysis
of LFV in semileptonic observables, accounting for the
one-loop renormalization group equations (RGEs) in the
low-energy EFT and the SMEFT. We will demonstrate that
such loop effects induce nontrivial correlations between the

Published by the American Physical Society


https://orcid.org/0009-0007-7057-4797
https://orcid.org/0000-0002-8918-4808
https://ror.org/03xjwb503
https://ror.org/03xjwb503
https://ror.org/02feahw73
https://ror.org/03fd77x13
https://ror.org/03gc1p724
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.035016&domain=pdf&date_stamp=2024-08-12
https://doi.org/10.1103/PhysRevD.110.035016
https://doi.org/10.1103/PhysRevD.110.035016
https://doi.org/10.1103/PhysRevD.110.035016
https://doi.org/10.1103/PhysRevD.110.035016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

I. PLAKIAS and O. SUMENSARI

PHYS. REV. D 110, 035016 (2024)

different types of processes. Moreover, we will provide
general expressions for the relevant (semi)leptonic meson
decays that can be studied experimentally, using the latest
inputs for the needed hadronic matrix elements. We will
also revisit purely leptonic processes, since they can
provide valuable constraints on semileptonic operators
through operator mixing, including the known two-loop
contributions to the RGEs [16-18]. To compare the
sensitivity of different observables, we will consider a
specific EFT scenario with operators containing only third-
generation quarks, which contributes to various transitions
through RGE evolution above and below the electroweak
scale. Finally, we will also briefly discuss a few concrete
new physics scenarios to illustrate the relevance of the loop
effects that we compute.

The remainder of this paper is organized as follows. In
Sec. II, we define our EFT Lagrangian and we discuss the
relevant RGE effects in the low-energy EFT and the
SMEFT. In Sec. III, we study the low-energy probes of
LFV in meson and lepton decays. In Sec. IV, we discuss the
high-energy probes of LFV in Higgs, top-quark, and
Z-boson decays, as well as indirect constraints obtained
from the high-energy tails of pp — ¢;¢;, with i # j. In
Sec. V, we perform a numerical study with a specific EFT
scenario and discuss the relevance of our loop constraints to
concrete new physics models. Our findings are briefly
summarized in Sec. VI

II. EFT APPROACH FOR LFV

In this section, we define our effective approach and
describe the RGE effects that are relevant for LFV
observables. In Sec. I A, we formulate the low-energy
EFT, invariant under SU(3), x U(1),,,, which will be
used to compute the low-energy observables in Sec. V.
In Sec. II B, we consider the SMEFT [14], which gives the
appropriate description of new physics arising well above
the electroweak scale, as we assume in this paper. The RGE
contributions that we consider in our phenomenological
analysis are summarized in Sec. IIC (see also Figs. 2
and 3).

A. Low-Energy EFT

We start by defining our
Lagrangian,

low-energy effective

C
Lygrr = Z L0, (1)

I

where v = (v2Gp)~"/2, G is the Fermi constant, and C,
denotes the low-energy effective coefficients of the oper-
ators invariant under SU(3), x U(1),,,. Below the electro-
weak scale, the lowest-dimension operators that can violate
lepton flavor are [15]:

(i) Operators of semileptonic type (y*):

vxy = (Z7,Px¢;)(@r" Pyq)).

ijkl

SXY (Z’ﬂ PXK)(QkPYqZ)’

ijkl
“ (ft Ouy f')(ékGﬂDPXQI)7 (2)
ij
where X,Ye€{L,R}, g€{u,d}, and {i,j k, 1}
denote flavor indices.
(i) Four-fermion leptonic operators (y*):

0\(/2;{, = (Zi}/ﬂpxlxﬁj)<2k}/’upyfk),
0L) = (ZiPxt))(ZxPxty), (3)

ijkk

where X,Y € {L, R}, as above, and k can take any
value. For i # k # j, there is an additional type of
tensor operator that can be written down,

0( ) (f e le/ﬁj)(?kﬂﬂvprk),

iCu
Ijkk

(i#k#]J),
(4)

and, for X # Y, there are additional scalar operators,

X#Y
08 E'(EPxt ) (EuPyey).

(i#k#j). (5

which would be redundant via Fierz relations
ifk=iork=j
(iii) The electromagnetic dipole operators (X)),
(@) v
OD,X - <l/ﬂ10ﬂu fj)F ’ (6)
ij
where X € {L, R} and m, is the mass of the heaviest

lepton appearing in the operator, which we assume
to be m,, in the following.

(iv) The gluomc operators (y2X2),'

¢ a5 My auv
oéi/x) jis L 2Py )G 4y G,
‘ ag, my U
0((3)() 4772 (f PXf )Ga;wG a (7)

ij

where X € {L,R}, m, =my, is the mass of the
heaviest lepton in the operator, as before, and we
define the dual field strength as G =
1/ 28“ﬁ””Ggﬁ.

'Note that similar operators can be defined with the U(1),,,
field-strength tensors, which would be relevant to processes such
as p — eyy that are not considered in this paper; see, e.g.,
Ref. [23,24].
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FIG. 1.  Finite one-loop contribution from scalar coefficients Cg,, to the gluonic operators C gg defined in Eq. (7), which is relevant,

e.g., for the phenomenology of y — e conversion in nuclei.

Our notation for the SM fields is specified in
Appendix A. Flavor indices of semileptonic operators
are assigned with the first two indices corresponding to
the lepton flavor and the last two to the quark ones.
Furthermore, the vector Wilson coefficients must satisfy
the following Hermiticy condition,

cin = ciy ®

Vxy »
ijkl jilk

whereas the scalar and tensor coefficients satisfy

cw —cor o = clor, 9)
ijki jilk ijkl jilk
cf =ca.  Gh=ci. (10)

ijki jilk ijkl Jilk

To avoid redundancies in the operator basis, we will express
the observables only in terms of Wilson coefficients with

the leptonic indices i, j ordered as i < j. From the four-
lepton coefficients ng)x,
with indices ijkk, where i < j and k can be any flavor
index, as we are only interested in operators that violate
lepton flavors by one unit, i.e., with AL; = —AL; = —1.

Note, in particular, that the CP-odd and CP-even gluonic

we choose only to write the ones

operators ng) and ng) defined in Eq. (7) are of higher

dimension. We list them among the other operators since
they can be produced via an anomaly triangle when heavy
quarks are integrated out from the low-energy EFT at one
loop, cf. Fig. 1. The shifts of the gluonic coefficients
induced by the heavy quarks read [25]

@ @) v v ( (q) (q))
C C.. — — | C C , 11
x - G 3m,g/, qk;mmqk o + xK (11)

(@) (¢) _ L( (9) _ (q))
C(g{ N Crrf( szj kacsb,lmqk Cfﬁ‘l'; Cf’% ’ (12)
where X € {L, R}, we take j > i, as before, and we have
kept the first term in the 1/m, expansion. These finite
matching contributions will be considered in our phenom-
enological analysis since they are the leading contributions
to gluonic operators in our setup, having implications to
processes such as uN — eN (see also Ref. [26]).

1. Operator mixing

The one-loop running of the LFV low-energy EFT has
been computed in full generality Ref. [16] (see also
Ref. [19]). Besides the known renormalization of the scalar
and tensor semileptonic operators by QCD [27], it has been
shown that the QED running induces a nontrivial mixing of
LFV operators, cf. Fig. 2. For instance, the operator
(fl}/”Pxfj)(q}/”q) mixes into (fl}’”Pxfj)(fk]/”fk) via a
penguin diagram depicted in Fig. 2. Such effects allow us to
constrain semileptonic operators with same-flavor quarks
by using the experimental limits on £ — 7y, with
i <k < j. Another important example is the one-loop
mixing of (£;6"Px¢;)(q0,,Pxq) into the dipoles
(¢,6"Px?;)F,,, which induce chirality-enhanced contri-
butions to #; — ¢;y, as shown in Fig. 2 [16,28,29].

In the following, we consider LFV operators with fixed
lepton flavor indices i < j. The leading-logarithm solution
of the RGEs from the electroweak scale (u.,) to the
relevant low-energy scale (y,,) iS given by

YiI
—— 13
1672 (13)

where y;; are the elements of the one-loop anomalous-
dimension matrix, which is defined via 167> udC,/du =
y11C;. These leading-logarithm effects can be schemati-
cally written in our case as follows [16],

CI (ﬂlow) = CI (Mew) + IOg (ﬂlow/ﬂew)cl (/’tew) ’

Cy Uy 0 0 0 0 Cy
Cs . 0 Uss Usr 0 Ugg Cs
- —100] -
CT ~ P 0 UTS UTT O 0 . CT
6D 0 O UDT UDD 0 éD
~ 0 0 0 0 Ugs 5
CG Hiow CG Hew
(14)
where we collect the AL; = —AL; Wilson coefficients in
the vectors
pes 2(d) Ad) Aw) Alw) &A@ A
Cy = (€. €. €. . €. ) (19)

N A SLR? N A SLR® (16)
ij ij ij ij ij ij

Co — (5<d> el g g a0 5@)
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¢, = (e0.ew.20). (17)
éD = (Cg%), (18)
50 = (Ca, C({;), (19)

where lepton flavor indices i, j are fixed, and the subvectors
with all possible quark flavor indices are defined, e.g., at
the u = pgw scale as’

~(d d d d d d d d d d
ciy = (el cig it el e iy cigci.cig ).
ij ijl1 ij12 ij13 ij21 ij22 ij23 ij31 ij32 ij33

(20)

Similar definitions hold for the four-lepton operators,
where we only consider operators that violate lepton flavor
by one unit, e.g.,

€Yy = (). Ciry Gy,
ij ij11 ij22 ij33

(21)

Expressions for the operators with a flipped chirality can be
obtained from Eq. (14) via the trivial replacement L <> R.

Going beyond the leading-logarithm approximation can
be important since coefficients such as the dipoles C D
are subject to very stringent experimental constraints from
u— ey and uN — eN [30], which are far more con-
straining than the ones on LFV mesons decays, and which
will be considerably improved in the coming years. These
constraints can supersede the direct ones on operators that
are not efficiently constrained at the leading order, provided
that they contribute at higher loop orders to dipoles [31].
A noticeable example is the vector four-fermion operators,
which mix into the dipoles at the two-loop level,
yielding [16]°

63 Q2 Q N<f)
. U Hlow (f)
C ijL (ﬂlow) & (167[2)2 log < o ) C‘X/])}{{ (/’tew)» (22)

where f € {u, d, ¢} denotes a fermion, with electric charge

Qf and color number NE:f >. For instance, for the y — e
transition and for a heavy fermion fe€{c,z,b,t}, the
two-loop constraint from u — ey obtained in this way
can be competitive with the one-loop constraint from

*Note, in particular, that the uptype quark coefficients should
not contain the top quark as it has been integrated out.
Furthermore, one should use the basis defined in Sec. II A to
avoid redundancies related to Fierz identities.

This is a well-known effect in the quark sector for the
b — s¢¢ transition, where the effective coefficient C; mixes
into Cy at two-loop order in QCD, cf., e.g., Ref. [32]. See
Ref. [16] for a brief discussion on the renormalization-scheme
dependence of these two-loop contributions.

u — eee [16]. Another relevant example is the scalar
C(‘I)

SiR’
mixes into Cp, at two-loop order, thus being constrained by
u — ey [16].

Besides the above-mentioned (single logarithm) two-
loop effects, there are also double-logarithm contributions
that are relevant to phenomenology. The most relevant one
is the product of the one-loop matrices Upr X Urg, which
induces the one-loop mixing of a scalar into a tensor
operator, which then mixes into the dipole at one loop
again [23],

which can be Fierzed into a vector operator that also

A020,NY m 0w\ 12
o (2] o

ijkk

le L (ﬂlow) &

(23)

The loop-level constraints on C(SZ)L from £; — ¢,y can also
supersede the ones from tree-level processes despite the
additional suppression by 1/(16z2). In this case, the
chirality enhancement (e m,/m,) plays an important role
in making this contribution sizable when ¢ is a
heavy quark.

Even though the two-loop anomalous-dimension matrix
in the low-energy EFT is not yet fully known for a
consistent analysis of these processes at order 1/(1672)2,
we opt to account for these contributions, by using the
expressions from Ref. [16], since they can be the dominant
effects in some cases. However, the constraints depending
on these effects should be more carefully reassessed when
the full two-loop anomalous-dimensions calculations will
become available. Finally, we remind the reader that the
RGE contributions that we consider below the electroweak
scale are summarized in Fig. 2.

B. SMEFT

The dimension d = 6 SMEFT Lagrangian can be written
as

C
‘Cé?\leFT - Z A_lz O, (24)

where C; denotes the relevant Wilson coefficients and A
stands for the EFT cutoff. There are only a few types of
d = 6 operators defined above the electroweak scale that
can violate lepton flavors by one unit:

(i) The semileptonic operators () collected in Table I,
which contribute at tree level to the various semi-
leptonic transitions.

(i) The four-fermion leptonic operators (y*):

Ou =il erli). - O = (L") (2kren).
O =(e;r"e;)(eryuer), (25)

ijkl
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17450
D)

Vxy

20

i,

FIG. 2.

Sla) .

v(q)
c

C(fl)

Sxvy

(X #Y)

Schematic representation of one- and two-loop diagrams that can induce nondiagonal operator-mixing via QED and QCD

below the electroweak scale [16], cf. Eq. (14) and Eqgs. (22) and (23). The blue dots represent insertions of specific d = 6 operators

appearing in Eq. (14).

and the leptonic dipole (w>HX) operators:

Oelf = (Ziv’”’ej)HBW,

Oe!};/ = (Z,-G"”rlej)HWlIw, (26)
where 7/ (I = 1,2,3) are the Pauli matrices. These
operators become relevant when including RGE
effects which mix semileptonic operators into purely
leptonic ones.

(iii) The Yukawa operators (y>H>):

O = (Lie;H)(H'H), (27)
i
which induce LFV Higgs decays after electroweak-
symmetry breaking.
(iv) The Higgs-current operators (y2H2D)":

1 A 7
O’ = (H'D,H) (171,

<] _
O = (H'D,H)(I<'y"1;),

ij

(28)

One = (H'D,H)(@r'e).  (29)
which induce LFV Z-boson decays, in addition to
LFV in semileptonic amplitudes mediated by the Z
boson, which are quark-flavor conserving.

Similar to Sec. I A, flavor indices are denoted by Latin
symbols. For semileptonic operators, our convention is that
the first two indices always correspond to lepton flavors.
For Hermitian operators such as O,,;, we further impose that
lepton indices satisfy i < j to avoid redundancy in the
operator basis. Moreover, we assume that down-quark

<> , <
*We define H'D,H = H'(D,H) — (D,H")H and H'D,H =
H'7(D,H) - (D,H")7'H.

Yukawas are diagonal, i.e., the Cabibbo—Kobayashi—
Maskawa (CKM) matrix V appears in the upper component
of ¢; = [(Viuy),d;;]", cf. Appendix A.

The SMEFT Lagrangian in Eq. (24) can be matched to
the low-energy EFT defined in Eq. (1), as provided at tree
level in Appendix C (see also Ref. [33]). We note, in
particular, that the leptonic scalar and tensor coefficients

C(si)y and C<Ti) vanish at d = 6, only appearing at higher
dimensions via insertions of the Higgs doublets, which

are needed to make the operator invariant under
SU(2), x U(1)y. The same holds for the downtype tensor

TABLE 1. Hermitian (left) and non-Hermitian (right) d = 6
semileptonic operators in the SMEFT. We consider the Warsaw
basis [14], and we renamed the operator O,, as O,, to have
lepton flavor indices before the quark ones. The SU(2), indices
are denoted by a, b, with &, = —&5; = +1, 7/ (I =1,2,3) are
the Pauli matrices, and SU(3), indices are omitted. Flavor indices
are denoted by i, /, k, [ and should be assigned as O = O, in the
left columns of the table. See Appendix A for our notation for the
SM fields.

! Operator

OE;) (L") @)
OE? (L' L) (qwyu™ @)
O ) (i)
Ou (1) (e, )
O, (eir*e;)(quruar)
Oeu (éiy”ej)(l?kyuul)
Oea (eir'e;)(dyy,dy)
wt Operator + H.c.
Oledq (Te;)(dgf)
Ogi;u (l?ej)gab((_]l]jul)
Ogjz)yu (l?alwej)gab(926;wul)
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+\
N
V S . 4
e
Cy el Cu Cr
AN
— NP
7 AN
T . A D .
Cg CD
+
Cr
N
N
N
Y . _ H 0 -
e Cy
-,

FIG. 3. Schematic representation of one-loop diagrams that can induce nondiagonal operator mixing via the SU(2), x U(1), gauge
and Yukawa interactions above the electroweak scale [20]. The blue dots represent insertions of specific d = 6 operators appearing

in Eq. (30).

. . . only change the magnitude of scalar and tensor semileptonic
() and other four-fermion semileptonic oper- Y £ & P

coefficient C7./
ators, cf. Ref. [34].

1. Operator mixing

The different types of LFV operators listed above can mix
through renormalization group evolution [20]. For the oper-
ators that we consider, the relevant RGE effects are induced by
the electroweak and the Yukawa interactions, which mix

different operators, in addition to the QCD running that can
|

Hew

Cy Uy 0 0
Cs 0 Us U
éT 1-loop 0 Urs Urr
¢, Sl o 0 Uy
éYuk 0 Uy 0
éﬁf Ug,y 0 0

Wilson coefficients. The RGE effects generated by the
electroweak interactions are necessarily flavor conserving,
whereas the Yukawa ones can induce quark-flavor violation
through the CKM matrix, as depicted in Fig. 3.

In what follows, we consider the d = 6 LFV operators
with fixed lepton flavor indices i < j.5 The leading-loga-
rithm solution to the RGEs can then be schematically
written as follows [20]:

0 0 Uy, Cy

O 0 0 Cs
Up 0 0 Cr (30)
Upp O 0 e |

0 Uy O ot

0 0  Up,m, &H,» N

where we only kept the contributions proportional to the top and bottom quark Yukawas, as well as the SM gauge couplings,
which are taken at the scale u ~ u.,,. In the leading-logarithm approximation, the matrices U;; can be obtained from the
SMEFT anomalous dimensions y;; given in Ref. [20] via the analogous expression of Eq. (13). The effective coefficients are
combined in the above equation in the following vectors:

EV = (5[(;), 5[(3), 51_,{, 51(1, Ee_q, ée}f, 5{«1, 511, é[(’, 5{%) s (31)

ij ij ij ij ij ij ij ij

>To this order in the EFT expansion, these operators do not mix with operators with different combinations of lepton flavors. See
Ref. [35] for the double insertion of d = 6 operators and their mixing into d = 8 operators at one loop.
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Cs = (5%4,5,%1), (32)
Cr = (Ci). (33)
Cp= (Cen, Corr), (34)
éYuk = (Cﬁ)a (35)

Cu, = (Ci.C1).Cuc). (36)

where the four-fermion subvectors are defined in such a

way as to comprise all possible quark flavor indices, for

fixed lepton flavor indices {i, j}, e.g.,

a(ql) _ (C([L) ’ C(/L) ’ C(llq) ’ C(,lq) ’ C({L) ’ C(llq) ’ C(,lq) ’ C(,lq) ’ C(L)) . (37)
ij Gl 12 13 2l 22 @23 i3l 32 ij33

with similar definitions for the other operators.

Besides the leading-logarithm contributions discussed
above, we stress once again that two-loop RGE effects can
be relevant if they introduce a new source of mixing that
does not appear at the one-loop level. A relevant example in
the SMEFT is the double-logarithm mixing of the scalar
operator CE;;M into the tensor CES o Which then mixes into
the dipoles C,y and C,g, via the product Up; X Uzg in
Eq. (30). This mixing induces a chirality enhancement
similar to Eq. (23), which provides the most stringent
constraint on the scalar coefficient Cg;;u with  third-
generation quarks, as will be shown in Sec. V.

Finally, we note that Eq. (30) was obtained by neglecting
the lepton Yukawas (y,). However, we found that one
particular type of contribution proportional to the lepton
Yukawas is relevant to phenomenology, namely the
Yukawa-induced mixing of the vector coefficients into
tensors [19],

k. [Yil[YE]
ﬂdc(?))y_k_[ ]kw[ ]”/(Cm —|—Cm)

du T T 32 T
il il
3277:2 ilew il,{f(]w
[¥i],,[Ye);
— =y L, 38
3272 wikv + ( )

where Y, = diag(yu’ Yes yt) -V and Y, = diag(ye’ Yy yr)
This effect is sizable for coefficients third-generation
quarks since their contribution is proportional to y,. The
tensor coefficient then mixes into dipoles [19], inducing
contributions scaling such as

BN Y7y Yk
Coplen) = 2128 [og () e ). 39)

where Cy denotes one of the coefficients appearing in the
right-hand side of Eq. (38), and y, can be either y,, or Ve,
Similar expressions apply for C,z by replacing g, — g,. We
will include these effects in our analysis in Sec. V,
which allow us to derive stringent limits on vector semi-
leptonic coefficients, with third-generation quarks, by using
£ — ¢y (see also Ref. [17]).

C. Summary

Finally, we briefly summarize the loop effects that will
be considered in our phenomenological analysis in Sec. V,
which are classified in terms of a logarithmic expansion.
Firstly, for the low-energy EFT, we will consider:

(i) The one-loop mixing of the low-energy LFV oper-

ators from Ref. [16], which are proportional to

LIO (ﬂlow)
167\ pew )
as described in Eq. (14) (cf. also Ref. [19]).
(i) The two-loop single logarithm mixing of semilep-
tonic vector and operators into leptonic dipoles
calculated in Ref. [16],

(40)

1 Hiow
——1 , 41
(162°)? °g<uew> “
as illustrated in Eqgs. (22) and (23).
(iii) The two-loop  double logarithm  mixing
Cg(i)L Ly pC(TqL)L ﬂ’ng}z, which induces contribu-

tions to dipoles proportional to

1 |:10 (ﬂlow) :| 2
(16227 | F e /|
which are chirality enhanced for heavy quarks.
The finite matching contributions of scalar semi-
leptonic operators to the gluonic ones [25], as given
in Eq. (11).
For the SMEFT, we will consider:

(i) The one-loop mixing of the SMEFT operators taken
from Ref. [20], which are proportional to

(42)

(iv)

1 Hew
——log| — |, 43
1622 °g< A ) (43)
as shown in Eq. (30). -
(i) The double-logarithm two-loop mixing OE;;M_—%)O P

1-1 . . . .
—3P0,y into dipoles, which is induced

s

lequ
by the product of gauge and Yukawa running, and
the Yukawa-induced {0}V, 0y,.0,,. 0, }=%"

eq»
nguﬂfpoev (with V. =W, B), which is sup-

pressed by lepton masses, but which remains
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relevant for phenomenology. These effects are pro-

portional to
! 1 o) | (44)
(1622 |8\ A )]

as described, e.g., in Eq. (39).

The expressions for the relevant anomalous dimensions
can be found in the references given above. Finally, we
stress once again that our analysis of two-loop contribu-
tions is not entirely self consistent and should be rather
understood as a qualitative indication of the dominant
effects, which must be refined in the future with a precise
two-loop calculation.

III. LOW-ENERGY PROBES

In this section, we provide the general expressions for the
low-energy LFV observables in terms of the EFT defined in
Sec. IT A. Firstly, we will discuss direct probes of semi-
leptonic operators at tree level in LFV meson and z-lepton
decays in Secs. III A and III B, respectively.6 In Sec. III C,
we will then discuss the purely leptonic LFV decays, which
are sensitive to semileptonic operators at one loop,
cf. Figs. 2 and 3.

A. q; - @ CiE;

Firstly, we consider the leptonic and semileptonic decays
of pseudoscalar mesons. For convenience, we define the
following combinations of (axial-)vector coefficients that
will allow us to express the branching fractions in a more
compact form,

Cfy = OV, + ) + (L < R),
CH=cf) —Cl) + (LR, (45)

CXI& — C(’I) + C(’I) _ (L <~ R),

Vrr Ve
Y =G -Gl —(LoR).  (46)
and similarly, for the (pseudo)scalar coefficients,

Srr SrL
c) =¥ 9 4+ (Lo R), (47)

Cly = C§) +C) — (L < R),

SRR

SRR

~C{) —(L < R). (48)

and for the tensor ones,

®In principle, we could also consider baryon decays such as
Ay, = ACi¢; [36,37], but there are no experimental limits
available for these decays yet.

cl=c?+cy,  cff =cf-c. (49
where, for simplicity, flavor indices are omitted. The
current experimental limits on the most relevant processes

of this type are collected in Table II.

1. Leptonic decays: P — €;C;

One of the simplest probes of LFV at low energies are
leptonic decays of pseudoscalar mesons. Firstly, we con-
sider decays of flavored mesons of the type P = g,q,, with
k # 1, such as K, D, and B mesons. The hadronic matrix
element needed to compute the decay rates reads

(0lgr*ysqi|P(P)) = if pp*, (50)

where fp denotes the P-meson decay constant, which has
been computed for the most relevant transition by means of
numerical simulations of QCD on the lattice, cf. Table III
[41]. In terms of the low-energy EFT defined in Eq. (1), the
P — ¢;¢; branching fraction then reads

2

2 2 2
mMpm m
Jpmpmy, <1 fj)

1287v* - mb
WAl . mb ol
i mg (mg, +my,) i
sy -l

kMg, (I/I’lqk + mq[) ijki

where mp denotes the P-meson mass, and we have
assumed i < j and neglected the mass of the lightest lepton
(mf‘_).7 Note, also, that the sign of the interference term
between CE,‘Q and Cg‘g changes for the decay P — f?“f;,
with opposite electric charges for the leptons, as it is
proportional to the difference of lepton masses, see, e.g.,
Ref. [42]. The above expressions can be used for the decays
of D and B,y mesons with the appropriate replacement of
the flavor indices. Moreover, for the kaon decays
Kp) — ep, we have to take into account that
(K1(s)) = (IK®) +|K°))/v/2, which implies that these
decays probe both K, — ey and K, — eu. In this case,
the above expression can be used after making the
following substitution [43]:

1
CY - —=(c'9 + '), (52)

ijkl 2 1212 1221

where I € {VA, AA, SP, PP}, and the upper (lower) sign
corresponds to the K; (Kg) decay.

"See, e.g., Ref. [42] for the expression without this approxi-
mation.
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TABLE II. Experimental (Exp.) limits on LFV decays considered in our analysis (95% CL). For the decays with two leptons in the
final state, we quote the limits on the sum of the branching fractions with different lepton charges, i.e., £;¢; = fi‘f;? +¢F 7. The dash
symbol represent decays that are kinematically allowed, but for which there is not an experimental limit yet. Experimental results

provided at (90% CL) are converted to (95% CL) following Ref. [3].

Process Exp. limit Ref. Process Exp. limit Ref. Process Exp. limit Ref.

7’ = eu 4.8 x 10710 [30] 7 — en’ 1.1 x 1077 [30] 7 — un° 1.5 x 1077 [30]

n—eu 8.1 x10°° [30] T en 1.2x 1077 [30] T un 8.7 x 1078 [30]

W —eu 6.3 x 1074 [30] T—en 2.1x 1077 [30] T = uny 1.8 x 1077 [30]
7 ep’ 2.4 %1078 [30] 7 — pup° 1.6 x 1078 [30]

K, = eu 6.3 x 10712 [30] 7 — eKjy 3.5x 1078 [30] T — uKy 3.1x 1078 [30]

Kt - atuet 1.1 x 10710 [30] 7 — eK*0 43 %1078 [30] 7 — uk*0 7.9x 1078 [30]

K, — ey 1.0 x 10710 [30]

DY — eu 1.7 x 1078 [30] 7 — eD?

Dt = nteu 4.5 %1077 [38]

D, = K*eu 1.5x107° (38]

BY - eu 1.3x107° [30] B - ez 2.1x 1073 [30] B — ur 1.4 x 107 [30]

BT = nteu 1.2x 1077 [39] Bt - nter 1.0x 107 [30] BT = ntur 9.7 x 1073 [30]

BO—>/)Oeﬂ BO—>/)06T BO—>/)0ﬂT

B, —» Koe,u B, — KOer . B, - KO;n .

B, — eu 7.2x107° [30] B, — et 1.9x 1073 [10] B, = ut 42 x 1073 [30]

BY = Kteu 1.8 x 1078 [9] Bt - KTer 4.1x 1073 [10] B* - Ktur 4.1x1073 [10]

BY - K*eu 1.2x 1078 [91 B? = K'er e B - K*ur 2.2 x 107 [9]

B, — ¢ep 2.0x 1078 [9] B, — et o B, — ¢ur e

¢ — eu 2.7 x 1076 [30] T e 55x1078 [30] T = ug 1.1x 1077 [30]

J/w — eu 6.1 x107° [40] J/y — et 1.0 x 1077 [40] J/y — ut 2.7 x 1076 [30]

T - eu 52 %1077 [30] T = er 3.6 x 1070 [30] Y - ur 3.6 x 1070 [30]

TABLE III. Pseudoscalar (fp) and vector meson (fy) decay  paper, since vector mesons typically have a large total

constants considered in our analysis.

width (zy) that suppresses the LFV branching fractions
[47,48], but we also discuss them for completeness. The

P fp(MeV) Ref. v fv(MeV) Ref. relevant hadronic matrix elements can be defined as
[z 130.2(8) [41] f,, 209.4(1.5) [30]
fx 155.7(3) [41] f¢ 241(18) [44]
fp 212.0(7) 411 fup 418(10) (451 (Olgr*qlV(p.4)) = fymye(p),
190.0(1.3 [41] 649(31 [46] W . L
ch 230.321.3; [41] r oy (Olgio™ qilV(p. 4)) = if L (wle; (p)p* = €(p)p*].  (53)

2. Leptonic decays: V — C;t;
Next, we provide the expressions for the leptonic decays
V- f,-‘f}“ of vector mesons of the type V = g,qy, such as
Ve{p,¢,J/w, T} These processes are typically much

less constraining than the other probes discussed in this
|

BV = ¢i¢h) =1

m%/ ijkk ijkk

me. {7
+ 124%Re[c(?>c<v‘0* - c(,?cﬁ‘fv)*}},

my Jy ijkk  ijkk ijkk  ijkk

5 3 m2\ 2
ol (1-22) {lie+cg P

where my is V-meson mass, ¢; denotes its polarization-
vector, and fy and f7, stand for the vector and tensor decay
constants, respectively. See Ref. [44-46,49-52] for lattice
QCD calculations of the relevant vector-meson decay
constants. The branching fraction can then be written in
terms of Eq. (1) as follows:

2 2
M, FON? @) 2 | @2 %
(l +2m%,> +8<fv> Hcfﬂk‘ +|C:§fjk’ I mi

(54)
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where we have once again assumed i < j and neglected the
light-lepton mass, m,. Note, in particular, that scalar
operators do not contribute to these decays, since the
hadronic-matrix element with a scalar density vanishes
in this case. Furthermore, we have not included the
contributions from the leptonic dipoles, as they are already
tightly constrained by £; — £;y.

|

3. Semileptonic decays: P — P'¢;¢;

The P - P fl-‘fj* decays (with i < j) can be generally
written in terms of the effective coefficients defined in
Eq. (1) as

B(P = P¢7¢]) = aw|CHP + aa|CEOP + arr(ICF P + € P)

+ GSS|C(sqs) |2 + aPS|C53qS) |2 + avsRe[CE/q\)/C(s%)*] + aAPRe[Ciq&CEDqS)*]
+ ayrRe[CY) CY") + ayr Re[CHCH)., (55)

where C; are the effective coefficients, evaluated at the
relevant low-energy scale, and a; stand for numeric coef-
ficients that depend on the form factors. Flavor indices are
omitted in the above equation, for simplicity, and should be
replaced for the g, — q,fi‘f;’ transition as follows:

|
quark transitions, using the analytical expressions from
Appendix D and the P — P’ form factors described
below:
1) d; — dkfi‘fj*: Our numerical coefficients for the
downtype quark transitions are collected in Ta-

ble IV, where flavor indices are omitted for

clo _, @ (56) simplicity and should be replaced following
! i Eq. (56). For these decays, the tensor coefficients
Cr, are highly suppressed since they only appear
at d =8 once the SU(2), x U(1), symmetry is
imposed [34], cf. also Appendix C. For this reason,
we will not quote the numerical values for the
coefficients involving tensor operators. The nu-
meric coefficients are computed using lattice QCD
(57) form factors for the K — x [53], B — K [54]
(cf. Ref. [55]), and B, — K [41] transitions. For
B — 7 decays, we have used the combined fit of
experimental [56] and lattice QCD [57] data
made in Ref. [41] to have better control of the

where [ labels the Lorentz structure of the Wilson coef-
ficients. In the limit where the light-lepton mass (m,,) is
neglected, we find that
dgs=dps, dys=—dpp,

Ayy=day, Ay =—dprss

which are valid up to O(mg,/m,,) corrections. In the

following, we compute these numerical coefficients for
the most relevant decays based on down- and uptype

TABLE IV. Numerical coefficients defined in Eq. (55) for the decays P — P’ fi‘f;r based on the downtype transition d; — d,z,”i‘f;“
[cf. Eq. (56)]. Decays with opposite lepton electric charges in the final state can be obtained via the replacement ay g — —ays. Moreover,
the expressions for the Ky (5) — 7%e* ™ decays are obtained through the replacement specified in Eq. (58). See text for details on the
hadronic inputs considered.

P—PCt] ayy apy ass aps ays asp
Kt - nteu* 0.1570(11) 0.1578(11) 2.71(3) 2.72(3) —0.723(7) 0.735(7)
K; = nleut 0.690(5) 0.693(5) 12.18(14) 12.23(14) —-3.19(3) 3.24(3)
Ky — nleut 0.001208(9) 0.001213(9) 0.0213(2) 0.0214(2) —0.00558(5) 0.00567(5)
BY - eyt 1.46(12) 1.46(12) 237(14) 237(14) ~0.154(10) 0.156(10)
BT - nte " 1.01(7) 1.01(7) 1.49(9) 1.49(9) —1.29(8) 1.29(8)
Bt - xtutt 1.00(7) 1.03(7) 1.45(8) 1.53(9) -1.17(7) 1.42(8)
B, - Kge~u™ 0.42(9) 0.42(9) 0.69(8) 0.69(8) —0.043(8) 0.043(8)
B, - Kge~t" 0.314) 0.31(4) 0.43(4) 0.43(4) —-0.39(4) 0.39(5)
B, » Kgu~t" 0.314) 0.32(4) 0.42(4) 0.44(4) —-0.35(4) 0.42(5)
Bt — K*teut 1.92(6) 1.92(6) 2.72(7) 2.72(7) ~0.209(6) 0.211(6)
BT - Kte 1t 1.20(3) 1.20(3) 1.55(3) 1.55(3) -1.53(4) 1.53(4)
BT - KTyt 1.18(3) 1.22(3) 1.49(3) 1.60(4) -1.37(3) 1.68(4)
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TABLE V. Numerical coefficients defined in Eq. (55) for the decays P — P’e”u™ based on the uptype transition ¢ — ue~u™". These
expressions have been obtained by neglecting the electron mass, cf. Eq. (60). See caption of Fig. 4 for details.

P Ptie] ayy = dpy ags = aps ays = —aup arr ayr = aar
DT = ateu" 0.0166(10) 0.0337(11) —0.0066(3) 0.019(3) 0.0081(7)
DO = 2l yut 0.00326(19) 0.0066(2) —0.00130(5) 0.0038(6) 0.00160(14)
D, > Kteut 0.00622(6) 0.00893(3) —0.002364(8) 0.00377(4) 0.00250(2)

uncertainties associated with the extrapolation of the
lattice form factors to the entire physical region.®
We remind the reader that the K, 5 — eyt

decays have to be treated separately, since |K L( 5)) =

(IK°) £ |K9))//2 [43]. Therefore, we have to
amend Eq. (55) via the replacements

1 1
Cg;lx)y_)_(c(‘)l() ¢C(q)), Cg‘]) _)_(Cw)ic(‘l)

y Vxy Sxy Sxy)’
20 13 1212 xro 20 1212

(58)

for X,Ye{L,R}, where the upper (lower) sign
corresponds to the K; (Kg) decays. Similar replace-
ments must be made for the coefficients with
L < R.

@) u; — ukz,”i‘ff: The only uptype transition relevant
for our study is ¢ — ueu, which can induce, e.g., the
decays D — weu and D; — Keu. Notice that proc-
esses with the z-lepton are phase-space forbidden.
For the ¢ — ueu decays, we consider the D —
lattice QCD form factors from Ref. [59] and the
D, — K ones from Ref. [60],9 which allow us to
determine the numerical coefficients collected in
Table V by neglecting the electron mass.

4. Semileptonic decays: P — VC;t;
We turn now our attention to the semileptonic decays
P— Vfi‘f;” with a vector meson V in the final state

decays. In this case, the branching fraction can be
expressed in terms of Eq. (1) as follows:

B(P — VEreT) = ayy|Cyy? + ayal Cval® + aav|Cay|* 4 agua|Caal?

+ app|Cpp|?* + asp|Csp|* + aspRe[CyaCip] + assRe[CanCpp)
+ arr(|Cr* + [Cr,|?) + asrRe[CspCy] + aprRe[CppCy]
+ asr,Re[CspCt.] + apr,Re[CppCy ], (59)

with C; are the relevant Wilson coefficients, defined at the
relevant low-energy scale, and a; are numerical coefficients
related to the hadronic matrix elements. Flavor indices are
omitted and should be replaced as in Eq. (55). In the limit
where the light-lepton mass (m,,) is neglected, we find the
relations

ayy = dpy, app = daps, apr = —dsrs,

aya = daa, app = dgp, ast = —dpry, (60)

which are once again valid up to corrections of the order
mf,-/ me;.

For the P — V based on the d; — d,7;¢; transition, we
use the general analytical expressions provided in Ref. [42],
which are summarized in Appendix D2, and the light-
cone-sum-rules form factors from Ref. [61] to obtain the a;

¥Note, also, that we have not included effects from B, — B,
mixing in the above expressions, but these could be easily
implemented following Ref. [58].

|

values collected in Table VI for the B — p, B — K*, and
B, — ¢ decays (see also Ref. [62]). Once again, we do not
quote the numerical coefficients corresponding to tensor
coefficients since the corresponding effective coefficients
are necessarily suppressed once SU(2), x U(1), gauge
symmetry is imposed [34]. The only uptype decays that
would appear in this case are D" — pTu~e™ and
D, - K*tu~e™, which are experimentally challenging,
and for which the form factors have not yet been deter-
mined on the lattice. For these reasons, we only report
numerical results for the P — V based on downtype quark
transitions.

B.t—- M

The simplest LFV decays of the 7 lepton into hadrons are
T — M, where M = q,q; can be a light pseudoscalar or
vector meson. Here, it is important to distinguish light

’See also the recent lattice QCD results for the D — z from
Ref. [60].
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TABLE VI. Numerical coefficients defined in Eq. (55) for the decays P — V£ fj* based on the downtype transition d;, — dlfi‘fj*.
Flavor indices are omitted and should be replaced as in Eq. (56). Decays with opposite lepton electric charges in the final state can be
obtained via the replacement a,p — —ayp. See text for details on the hadronic inputs considered.

P-vee ayy Ay aay app asp asp aas

BY = pe~ut 0.62(10) 2.9(6) 0.62(10) 2.9(6) 1.1(2) 1.1(2) 0.12(2) —0.12(2)
B — pe~tt 0.32(5) 1.6(3) 0.32(5) 1.6(3) 0.49(09) 0.49(09) 0.63(12) —-0.63(12)
B = pu~tt 0.35(6) 1.6(3) 0.31(5) 1.5(3) 0.52(10) 0.47(9) 0.56(11) —0.71(13)
BY — K¢ pt 0.68(11) 3.4(5) 0.68(11) 3.4(5) 1.06(15) 1.06(15) 0.127(17) —0.128(18)
BY —» K*0¢=7F 0.34(5) 1.8(3) 0.33(5) 1.8(3) 0.46(7) 0.46(7) 0.62(9) —0.62(9)
BY — K*0u~¢* 0.35(6) 1.93) 0.31(5) 1.8(3) 0.48(7) 0.43(7) 0.54(8) —0.69(10)
B, = e u" 0.58(5) 3.7(5) 0.58(5) 3.7(5) 1.21(17) 1.21(17) 0.15(2) —-0.15(2)
B, = ¢e 1t 0.29(2) 1.9(2) 0.29(2) 1.9(2) 0.51(7) 0.51(7) 0.71(10) —-0.71(10)
B, = ¢yt 0.30(3) 1.93) 0.27(2) 1.8(2) 0.53(8) 0.48(7) 0.62(9) —0.79(11)

pseudoscalar mesons P with open flavor (k # [), such as
K, from the unflavored ones (k=1[), such as
Pe{x° n,n'} [63]. This is because the latter decays are
also sensitive to the CP-odd gluonic operators defined in
Eq. (7) in addition to the semileptonic ones. We will also
briefly discuss the 7 decays into vector mesons V, such as
K*, and p and w.

1. Pseudoscalar mesons: t — €P

Firstly, we consider the 7 — £P process, where P = g,
denotes a generic pseudoscalar meson. We discuss sepa-
rately the case where k # [ from the one where k = [:

Flavored mesons In the first case, it is sufficient to
consider the decay constant f» defined in Eq. (50), which
allows us to write, e.g., for P = K,

[pm} mp\?
B(T—)fl‘Ks):TTW 1—-—

2

where we have used that |K) ~ (|K°) — |K°))/v/2 and we
have neglected the light-lepton mass (mg,), as before.
Flavor indices in the above expressions are to be replaced
as follows:

1@ @
75 mCn) (62)

for I€{VA,AA,SP,PP}. Similar expressions can be
obtained for 7 — £;K; by changing the relative sign of
the coefficients in the above equation. However, these
decay modes are experimentally challenging due to the K
lifetime.

ng ) N

Unflavored mesons The case of light unflavored mes-
ons is rather different since there is not a simple relation
between the axial and pseudoscalar matrix elements, and
since the matrix element of the GG operator does not
vanish in this case. Following Ref. [64], we define the axial
and pseudoscalar densities as follows

. ~(q)
_ if
(P(p)|Gy"ysq|0) = — \/% P

in
2m, (P 7, 0)=———, 63
m,(P(p)|qrsq|0) 7 (63)
(P(p)[57y5s10) =—if ) p".  2m (P(p)[5yss]0) =—ihy,
(64)
and
Ay YUY _
{P(P)l ;- GuG"|0) = ap. (65)
T

where ¢ = u or d, and exact isospin symmetry is assumed,
with m, = (m, +m,)/2. The 7" pseudoscalar density is

given in this limit by A\ = - = f.m2, and the
anomaly contribution can be computed by taking the
divergence of the axial current [65],

I_Zfﬂmzzr

e , 66
e NG (66)

where z = m,,/m,. For n"), we rely on the computation of

a0, ff;f,?, and h;(ﬁ,? from the so-called Feldmann—Kroll—

Stech (FKS) mixing scheme [64,66], which leads to the
phenomenological estimations collected in Table VII. The
final branching fraction for P € {z°,5,7'} thus reads

mg m%’ ? T=C;P ) 1=C:P )
B(T—’fiP)ITTW 1‘@ A2+ AT

(67)
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with
¢p @ . MY
=P X q
AV o Z bqk |: P C[‘z/?k + 2m_.m Cl3k1\:|
qr=u,d,s Tk
2(113 ~ -~
- l? (CGR - CG[‘)s (68)

(‘/k)
tP (@) ~a) D (q)
AA Qk; quk|: P Ci??k memqk C;lz’/i:|

2 - o
+i=F (€6, + Ca,). (69)

where k spans the light-quark flavors (i.e., g, € {u,d, s})
and we have neglected the light lepton mass, m,. The

prefactors b, are given by b, =1/ V2 and b, =1 for

P=n" ,andb :—bdfl/\/— and b, =0 for P = 7°.
|
B(t > ¢,V)
T
4™ IV Rel) o _ el el }
m; [y i3kl i3kl Bk 3kl
with
£(9) — m.fv (©)
CisTk/ ,w 5 Qq fT ( DR + CDL ), (71)
= m.f
cl =l - sye0, fV (Ch —ci)).  (72)
i3kl V %4 ﬂ i3

where Q, denotes the g ; electric charges, and we have
neglected again the light-lepton mass, m, . For V € {p, w},
in the isospin limit, we have to perform the following trivial
replacements in the above expression:

V=p 1 u d
VLl o]
=W 1 u
i (Y 4 ), (73)
2 i3 i311

where 1€ {VV, AV, T,Ts}.

C. fj - fly and fi, g fifkfk
We now turn our discussion to purely leptonic observ-
ables (see, e.g., Ref. [15,16,67] for previous EFT studies).

These processes receive contributions from semileptonic
operators at loop level, as illustrated in Fig. 3. The

TABLE VII. Hadronic inputs for #() obtained in Refs. [64,66]
by using the FKS scheme.

h) (GeV3) ap(GeV3)

—0.055(3) —0.022(2)
0.068(5) —0.057(2)

h? (GeV?)

0.001(3)
0.001(2)

P AP MeV) £3)( MeV)

n 108(3) —111(6)
7 89(3) 136(6)

The C(sz and C(Gf) coefficients are generated by heavy
quarks at one loop, cf. Eq. (11).

2. Vector mesons: t© — €V

Lastly, we consider the decays 7 — £V, where V = g,q;
denotes a generic vector meson such as Ve {K*;w,p, ¢}.
By using the decay constants defined in Eq. (53), we can
show that

2 .3 2 2 T\ 2 2
vz my 2 2my fv ~(9) |2 ()2 my
= 1- CW +C +— ] +32( = CYlF+|Cx 14+—=
te 256 ’U ( m,) {H | | | ] ( m% ) <fv) H i3kl | | ;321 | ] < Zm%)

(70)

|
experimental limits considered in our analysis are collected
in Table VIIIL

Radiative decays The simplest of these processes is the
radiative decay £; — ¢;y with i < j, where the photon is on
shell. This process is described by

5
B(f - fly) (lCDL |2 + |CDR | )? (74)

where we have neglected the lightest lepton mass, as
before.

Three-body decays The ¢ — £7¢, ¢} decays receive
contributions from the dipole operators, in addition to
operators with four leptons. We distinguish the case where
j>i=k from j>i+#k which have slightly different
expressions. In the first case (i.e., 7~ — e"eTe™ and

7T = ) [15],

TABLE VIII. Experimental limits on purely leptonic LFV
decays at 95% CL [30].

Process  Exp. limit Process Exp. limit Process Exp. limit

u—ey 56x1073 toey 44x10°% t—>puy 5.6x1078
u—eee 1.3x 10712 7 - eee 3.6 x 1078 7 — ppup 2.8 x 1078
T epup 3.6 x 1078 7> pee 2.4 x 1078
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ijii

+ 8¢Re[C E,Q(zc&&

5
Tpmy, my 11
{2|CVLL|2 +[CV)P + 64 <1og—f' _ —) IcL)P
me 8 ij

ijii .
j 1

replE@en ) (75)

ijii

where the light lepton masses are neglected in the above expression, except in the dipole term, which would otherwise be

infrared divergent. Note, also, that we have not included the contributions from the scalar coefficients Cg,,

(with

X,Le{L,R}), as they are not induced by d = 6 operators in the SMEFT, cf. Appendix C.
A similar expression can be obtained for the decays with j > i # k (i.e., 7~ — y~eTe” and 7= — e~ u*u~), which has no

identical particles in the final state [15],

5
T, my
B(£7 = £76147) = oot

+ 8eRe[Cy)(C1f)

where we have kept the mass m,, in the logarithmic term,
which regularizes the infrared divergence coming from the
photon propagator in the squared dipole term. Moreover, we
neglect m,. in this expression. We do not include the contri-
butions from the scalar Cs, and tensor Cr, coefficients (with
X, L € {L, R}), as before, since they do not appear in the tree-
level matching to the SMEFT, as shown in Appendix C.

D. uN — eN

Lastly, we discuss 4 — e conversion in nuclei, which has
been thoroughly studied within the EFT approach, e.g., in
Ref. [68,69]. The nucleon effective coefficients are given in
terms of our Wilson coefficients as follows [69]:

C‘E/P}g - Z VnyVp )
q=u.d,s Y=L,R 12kk
m m
= > - " cmf et 7 Colfop (7T7)

qr=u.d,s Y= LR

where X = L, R, with analogous expressions for p < n.
The effective coefficients are evaluated at 4 =~ 1 GeV, thus
including contributions from scalar operators made of
heavy quarks [25], as described in Eq. (11). For the vector
current, the nucleon form factors are given by
iy =140 =2 fvy = fy) =1 and fy), = fy, = 0. We
consider the numerical results for the scalar form factors
from Ref. [16], which are based on Ref. [70],

=(18.9+1.4)x 1073,
(78)

£ =(208+1.5)x107,  fgr

F — (45.142.7)x 1073,
(79)

£ =(41.1£2.8)x 107,

My, 3 ¢
L 2 c 2+ 64e? [ log—L =2 )|l P2
s {1CHP+ G + 64 (1o 2= ) )|

QT Lo R, (76)

ijkk

£ =1l = (53 £27) x 1072, (80)

with the gluonic form factors given by

fepm) = <1 - Z fs,, () ) (81)

q=u,d,s

The 4 — e conversion rate normalized by the muon capture
rate ([cyp) is denoted by B,(,]g) and it can be written in terms
of nucleon EFT Wilson coefficients as follows [69]:

(N)

B = \CDLDN+2[C<”§VN) CSL sy +(p—m)P

capt

+(L<R). (82)

For the nuclear-physics inputs, we consider the results of
Ref. [68] (see also Ref. [71]), which are summarized in
Table IX, and the nuclear capture rates determined exper-
imentally [72],

T ~6.99% 107 ps~!, Tl ~132x105ps™!.  (83)

Currently, the most stringent experimental limit is
BaY <7x 10713 (90% CL.), which was set by the
SINDRUM-II experiment [73]. The experimental sensitiv-
ity is planned to be considerably improved in the near
future by the Mu2e experiment at Fermilab [5] and
COMET [7] at J-PARC, which are expected to reach a
sensitivity of O(107!7) with aluminum atoms.

TABLE IX. Overlap integrals for gold and aluminum atoms
from Ref. [71].

Nuclei D y(p) 1% N2 S(n)
Au 0.189 0.0974 0.146 0.0614 0.0918
Al 0.0362 0.0161 0.0173 0.0155 0.0167
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TABLE X. Experimental limits on LFV decays of the Z boson, Higgs, and top quark at 95% CL. Note that the decays with opposite

lepton charges are combined, i.e., £;¢; = f;’fi‘ + f;ff“.

Process Exp. limit Ref. Process Exp. limit Ref. Process Exp. limit Ref.
Z — eu 2.6 x 1077 [74] Z > et 5.0x 1076 [30] Z — ut 6.5 x 107 [30]
h — eu 44 %107 [75] h— et 2.0x 1073 [76] h— ut 1.5x1073 [30]
t— ceu 2.6 x 107 [77] t— cer 1.9x 107 [78] t— curt 1.1 x10°° [79]

IV. HIGH-ENERGY PROBES

In this section, we describe the high-energy probes of
LFV in terms of the SMEFT Lagrangian defined in
Eq. (24). We will consider the decays of the Z boson,
the Higgs boson, and the top quark, which are subject to the
experimental limits collected in Table X. Furthermore, we
will briefly discuss the Drell-Yan processes pp — ¢;¢; at
the LHC that are sensitive to nonresonant contributions
from the SMEFT operators.

A. Z d f,fj
The Z-boson LFV decays receive contributions at tree
level from the effective coefficients Cgl) and CS,) as well as
the dipoles C,z and C,y, which are both sensitive to one-

loop contributions from semileptonic operators (see, e.g.,
Ref. [80]),"

T m ’l}
Bz~ ¢re)) =2 25 llC ™ P ICu +1C +(Ca ).
247N i F
(84)
where we define C,; = —cos QWCBW - sin HWCgB, Ow as

the Weinberg angle, and C Hllﬂ cl u T ¢\ 171- The Z-boson

mass and lifetime are denoted by m; and 7, respectively,
and we neglect lepton masses in the above expression. We
notice that far more stringent constraints on C,y and C,p
can be obtained by the #; — £,y processes. However, these

observables can still provide useful constraints on Cg,’3> and

and C,,,

respectively, with third-generation quarks, through the
RGE effects depicted in Fig. 3, cf., e.g., Ref. [22].

Cy.- The latter coefficients are related to CE;’B)

B.h > £t

The Higgs boson decays are also efficient probes of LFV
[81] (see also Ref. [82]). The only SMEFT d = 6 operator
that contributes at tree level to this process is O,y, which
can receive sizable one-loop contributions from the scalar
operator Cy,4, through RGEs [29]. After electroweak-
symmetry breaking, this contributes not only to the

"We note that the orthogonal combination C,, = —syC,y +
cwC.p of the dipole coefficients is already tightly constrained by

Higgs coupling to leptons, but it also induces a nondiagonal
contribution to the fermion masses,

1 _
Lsyverr D —zcﬁf!(liejH)(HTH) +H.c.
(H)£0 07 h2 n
= W 2CgH(fPRf)<1+3 +3 U3>
+H.c., (85)

which must be reabsorbed by a rotation of the lepton fields.
The effective Higgs coupling to leptons is then given by

¥ =v2

i

2
My, v
LS ——C,, 86
which implies that

ThU my,

B(H - fi_f;r) A

HC@H|2 + |C€H| I, (87)

where the lepton masses have been neglected, and m;, and
7, denote the Higgs-boson mass and lifetime, respectively.

C.t— Cfifj
The top-quark decays ¢t — c¢Z;¢; can also be used to
probe LFV at high energies [83]. The current experimental
precision only allows us to consistently probe tree-level
contributions, cf. Table X. The branching fractions for these
decays are given by

B(t - ct7¢7)
Ttmt

T 15362°A7

(|Clwlu

ij23

CL P+ Iy P+ I P 1C P
ij23 ij23 ij23

- (88)

+
jiz2

2+ 12(|c§_§_,2§; 2

+c®
jiz2

where lepton and charm-quark masses have been neglected,
and m, and 7, denote the top-quark mass and lifetime,
respectively We use once again the shorthand notation

ey =c ),

coefﬁc1ents as follows:

and we define the primed Wilson

"See Appendix E for a discussion of Yukawa coupling
running in the SM.
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TABLE XI.

Lower limits on A in TeV units (for C = 1) derived from LFV observables for each effective coefficient (coeff.) coupled to

third-generation couplings that contributes to the 4 — e transition. The cells highlighted in gray correspond to the most stringent limits
on each operator. The dashes denote processes that are not sensitive to a given coefficient within the approximations described in Sec. II.
The asterisks denote upper limits for which the SMEFT is not the valid description, i.e., with A/ \/@ < w/\/4z. The symbols in
superscript identify the order of the leading contribution for each operator in the logarithmic expansion described in Sec. II C: tree level

(no symbol), one-loop single logarithm (e), two-loop double logarithm (¢), and two-loop single logarithm (¢<); as well as the one-loop

matching of gluonic operators ([J).

Lower limits on A (for C = 1)

Coeff. s—>dey b—deu b— seu u— ey u— eee UN — eN Z — e h—eu pp—ep
C(’1+3) * * 1.0 TeV* 69 TeV™ 14 TeV* 44 TeV® * 2.5 TeV
q
1233
C(’1—3> 100 TeV™ 70 TeV* 200 TeV® 2.0 TeV*
q
1233
. 69 TeV™ 70 TeV* 210 TeV® 2.1 TeV* 2.5 TeV
o * * 0.6 TeV* 69 TeV™ 71 TeV® 220 TeV® 2.1 TeV*
e * * 0.6 TeV* 69 TeV™ 70 TeV* 220 TeV® 2.1 TeV*
Cl% o cee ce 3.7 TeVe® 17 TeV* 43 TeV® * 2.5 TeV
Cl% 4.6 TevVe® 17 TeV® 43 TeV® * 2.5 TeV
¢ * * * 3.2 x 10° TeV"™ 600 TeV*™ 580 TeV™ * 7.6 TeV*
equ
1233
sz) 4.0x 10* TeV' 8.4 x10° TeV'® 8.2x10° TevV' 1.0 TeV*
1233
C% * 2.2 TeV® 3.7 TeV® 23 TeV©®® 5.1 TeV®® 57 TeVH e * 2.4 TeV
/(1 Al _
= =ve ¢ = [cw iy Cly . Cox c,%, : c,ﬁ;,: ,C,% , c,ﬁ‘ﬁ, . o1
C/qEVCqu, y (143)
- C( ) _ [C +3) Cldl Cleq CE;(II Czedq,c,m, ,O], (92)
Clequ = vclequ’ o Y Y
C,i.qu = Vclequ’ (89) where the primed effective-coefficients appearing in cw

where the CKM matrix (V) acts on quark-flavor indices,

/(1) _
e'g'a Clequ =
ijkl

the 1 — u?;¢; decays.

S ka/C,(glql. Analogous expressions apply to
iK'l

D.pp — €C;

The study of pp — fi‘fj* at high-p; can also provide
useful probes of LFV in semileptonic operators since these
EFT contributions are energy enhanced at the tails of the
distributions [84]. The ¢,q; — afi‘fj* partonic cross section
(with g = u, d) can be written as [85]

-/t —
(iet) =

Al = s (q)* (9)
5(‘]1% - 14d70" ;Cﬂ QIJCJq s (90)

where § is the partonic center-of-mass energy, and C*) and
Cl9) are vectors of effective coefficients [47,48],12

2The zeros in the C@ reflect the fact there are no tensor
effective coefficients for the d; — d;£¢ transition at d = 6 in the
SMEFT [34].

are defined in Eq. (89). Moreover, Q is a 8 x 8 matrix that
takes a diagonal form Q;; = Q,;0;; for the full partonic
cross section,

Q =diag(1,1,1,1,3/4,3/4,4,4). (93)

The Drell-Yan cross section is given by the convolution
of (90) with the parton luminosity functions,

ds
olpp = ¢;¢)) = Cmﬂw%*ff)(%)
where
o [ldx 0 )
quql(s) = // [ qk(x ﬂF)fql <_’/‘F> + (g < 611)],

(95)

where f, and f7 are the parton distribution functions (PDFs)
of g, and g;, and pr denotes the factorization scale. In this
paper, we consider the constraints on SMEFT operators
derived in the HighPT package [86] through an appropriate
recast of the latest CMS search (with 140 fb~!) for heavy
resonances decaying into LFV lepton pairs [87].

035016-16



LEPTON FLAVOR VIOLATION IN SEMILEPTONIC ...

PHYS. REV. D 110, 035016 (2024)

TABLE XII. Same as Table XI for the 7 — e transition.

Lower limits on A (for C = 1)

Coeff. b — det b — set T ey T > el? T eP T eV Z > et h— et pp — et
C(’1+3) * * 0.9 TeV™ 0.7 TeV® * 0.8 TeV* * 1.8 TeV

1333

C(,H) 1.7 TeV*™ 2.6 TeV® 2.2 TeV* 3.1 TeV® 0.8 TeV*
q

1333

. * * 0.9 TeV™ 2.7 TeV* 2.2 TeV* 3.0 TeV* 0.9 TeV* 1.8 TeV
Co. * * 0.9 TeV™ 2.7 TeV® 2.2 TeV® 2.9 TeV* 0.8 TeV®
C14“33 * * 1.0 TeV™ 2.7 TeV® 2.2 TeV® 2.9 TeV* 0.8 TeV®
Cl% e e * 0.7 TeV* * 0.8 TeV* * 1.8 TeV

o e * 0.7 TeV* * 0.8 TeV* * 1.8 TeV
Cfl) * * 15 TeV™ 3.6 TeV*™ * 2.4 TeV™ * 2.5 TeV*

equ

1333
Cf:) 300 TeV® 93 TeV* * 69 TeV* *

1333
C{g‘é‘g * * * * 0.9 TeVD * cee * 1.7 TeV
TABLE XIII. Same as Table XI for the 7 — u transition.

Lower limits on A (for C = 1)

Coeff. b — dur b — sur T = uy T = ult T — uP T uV Z = ut h — ur pp — ut

C(11+3) * * 0.8 TeV™ 0.7 TeV* * 0.7 TeV* * 2.3 TeV
q

2333
C(/lf) 1.5 Tev*™ 2.8 TeV* 2.0 TeV* 3.5 TeV* 0.7 TeV*

2333

. * * 0.8 TeV™ 2.9 TeV® 1.9 TeV* 3.3 TeV® 0.8 TeV* 24 TeV

L * * 0.8 TeV*™ 2.9 TeV* 1.9 TeV* 3.1 TeV* 0.8 TeV*

e * * 0.9 TeV™ 2.9 TeV® 2.0 TeV* 3.1 TeV® 0.8 TeV* o
Cz% e e * 0.8 TeV* * 0.8 TeV* * 2.4 TeV
C7§2’; e e * 0.8 TeV® * 0.8 TeV* * 2.4 TeV
CEI) * * 13 TeV™ 4.0 TeV™ * 2.8 TeV™ * 2.7 TeV®

equ

2333
Cf? 280 TeV® 100 TeV® * 77 TeV® *

2333
Cledq * * * * 0.9 TeVY * e * 2.2 TeV

V. NUMERICAL RESULTS
A. LFV from top-quark loops

In this section, we illustrate our results by considering EFT
scenarios with semileptonic operators only involving third-
generation quarks at high energies. This choice is motivated
by minimal flavor violation [88] or the U(2)° flavor sym-
metry [89] (see also Ref. [90]), in which the couplings to
quarks are hierarchical. This example is also convenient from
a pragmatic point of view since the various quark-level
transitions become related through RGE effects induced,
e.g., by the top-quark Yukawa, allowing us to compare the
sensitivity of different observables with a minimal set of
Wilson coefficients.

With the assumption that only the effective operators
made of third-generation quarks are present at the scale
A > v, we have derived constraints on A (for C = 1) for
each semileptonic operator appearing in Table I, by using

the various processes that receive contributions at tree-
and loop-level, cf. Figs. 2 and 3. We collect these results in
Tables XI-XIII for the 4 — ¢, 7 — ¢, and 7 — u transi-
tions, respectively, in which the superscript symbols are
used to distinguish the origin of the leading contribution
for each operator. We find that the different low-energy
processes are complementary in probing these operators
through loop-level contributions, which can appear at one
or two loops. The only relevant constraints at tree level for
such scenarios are the high-p; processes pp — ¢,¢;
[47,48,85,86]. By inspecting Tables XI-XIII, we arrive
at the following conclusions:

(i) u — e: For the u — e transition, the dominant
bounds come from the experimental limits on
the purely leptonic processes u — ey and
i — eee, as well as on the y — e conversion in
nuclei (see Ref. [16,17]). More specifically, we find
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1233

FIG. 4. Constraints on selected 4 — e semileptonic Wilson coefficients, associated to third-generation quarks, derived to 95%
accuracy from yN — eN (blue), y — eee (orange), and u — ey (magenta), cf. Table XI. The combined constraint is shown in green in
the upper left and bottom right panels. The EFT cutoff is fixed to A = 1 TeV.

that the best constraints on the vector-type operators

1 3
(€.ch.c

eq-’

CeusCiu»Ciq} come from uN — eN,

which receives contributions from one-loop penguin
diagrams and Yukawa induced mixing, cf. Figs. 2
and 3. For the scalar operator C;,4,, we find that the
most stringent constraint comes from the one-loop

finite contribution to the gluonic operators O

(¢
Gx

)

(cf. Fig. 1), which is again strictly constrained by

uN — eN. Lastly, the tensor C(3)

lequ

and the scalar C

(1)

lequ

are better constrained by y — ey via the one-loop

(T - Dy)

035016-18

and the two-loop double-logarithm

(i)

mixings (S - T — D,), which supersede the con-
straints from uN — eN and give the most stringent
constraint in Table XI, probing scales as large as
O(10* TeV). This can be understood from the chirality
enhancement (cx m,/m,,) of the one-loop tensor con-
tribution to the dipole operators entering 4 — ey [29].
T — ¢ (with £ = e, p): For the T — £ transitions
(with Z = e, p), there is an even more pronounced
complementarity between the various experimental
probes that are available. We find that the most
stringent constraints come from the 7 — £P and
7 — £V decays, which are induced at loop level,
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FIG. 5. Constraints on selected 7 — u semileptonic Wilson
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coefficients, associated to third-generation quarks, derived to 95%

accuracy from pp — uz (red), = — ull (orange), © — uV (purple), r — uP (gray), and © — py (magenta), cf. Table XIII. The combined

constraint is shown in green in the upper left, upper right, and bottom right panels. The EFT cutoff is fixed to A = 1 TeV. Similar results

are obtained for the 7 — e decays, which are not shown above.

or from the LHC searches for pp — ¢z at high py,
which receives tree-level contributions in our setup.
The z-lepton decays are particularly useful to probe
the vector operators containing the top quark (i.e.,

Cly - Coq
as (ay*t)(qy,q) (With g = u, d, s) via gauge-induced
penguins, as well as the Yukawa running depicted in
Fig. 3. Instead, for the vector operators containing the

C.u»Cy,), which mixes into operators such

b quark (i.e., C§;+3), Cia, Coq), these contributions are
smaller, giving constraints that are weaker than the

tree-level ones arising from Drell-Yan processes.
3)

lequ and

Finally, we find once again that the tensor C

the scalar Cg;‘)]u
chirality-enhanced contributions to 7 — £y at one
and one-loop squared, respectively.

It is important to stress that K- and B-meson decays
are not competitive with the other constraints depicted in
Tables XI-XIII because of our assumption on the quark-
flavor content of the operators appearing at the A scale. Since

the only source of quark-flavor violation that we introduce is

are tightly constrained thanks to their
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TABLE XIV. Bosonic mediators that can induce the semileptonic LFV operators at tree level are classified in terms of the SM quantum
numbers, (SU(3),,SU(2),.,Y), with Q = Y + T as hypercharge convention. The tree-level matching between these concrete models

and the SMEFT is provided in Appendix F.

Field  Spin  Quantumnumbers  C))  C)  C.  Cu  Cy  Cu  Cu Cig  Ciy  Cib
@ 0 (1,2,1/2) v v

Z 1 (1,1,0) v v v v v v

1% 1 (1,3,0) v

S 0 (3,1,1/3) v v v v v
S 0 (3,1,4/3) 4

S; 0 (3,3,1/3) v v

R, 0 (3,2,7/6) v/ v v v
R, 0 (3,2,1/6) v

U, 1 (3.1,2/3) v v v v

U, 1 (3.1,5/3) v

Vs, 1 (3,2,5/6) v v v

v, 1 (3,2,-1/6) v

U, 1 (3.3,2/3) v v

the top Yukawa, we find thatthe s - d, b - d,and b — s
decays are suppressed by V V7, V,V;, and V,Vi,
respectively. For this reason, we are not able to obtain
meaningful constraints from these processes. However, it is
clear that these observables can be useful to probe scenarios
with different flavor assumptions, with several concrete
examples recently studied in the context of leptoquark
models [36,91-93].

For the sake of comparison, we also quote the limits that
we derive from the YT — #;/; decays at tree level
(cf. Table II). For instance, for the C,, Wilson coefficients,

A
—=2 03 TeV,

2 0.5 TeV,

(96)

which are much weaker than the loop constraints collected in
Tables XI-XIII. Similar conclusions can be derived for the
other operators that contribute to quarkonium decays at tree
level. This exercise demonstrates once again the importance
of accounting for the loop constraints discussed in this paper
for the quark-flavor conserving operators made of ¢ and b
quarks, which allow us to derive far better constraints, e.g.,
via u — e conversion in nuclei or the various z-lepton LFV
decays. These limits are also superseded by the Drell-Yan
constraints, as shown in Tables XI-XIII and as previously
discussed in Refs. [47,48].

The complementarity between the different types of
processes is more striking when more than one Wilson
coefficient is simultaneously present, as it is in fact predicted
in several concrete scenarios (cf. Sec. V B). In Fig. 4, we plot
constraints from u — e observables on selected pairs of
effective coefficients to illustrate this complementarity. In
particular, we find that it is necessary to consider more than

one i — e observable to remove flat directions that could

(1)
lequ Vs Cled‘]

(bottom right) planes. Other combinations of effective cou-

appear, e.g., in the C;? Vs CS) (upper left) and C

plings are dominated by a single observable, such as Cg;;u Vs

Cgi)]u (upper right) and C,; vs C;; (bottom left). Similar
conclusions hold for the 7 — u observables, as shown in
Fig. 5, where the pp — pz bounds play an important role in
constraining potential flat directions. Notice that we do not
show the analogous plot for the 7 — e transition since it has
the same qualitative features as Fig. 5.

Lastly, we have also performed a numerical comparison
of our results for the observables that have been imple-
mented in flavio [94], by using the RGEs from the
wilson package [95]. These observables are the LFV
decays of the K and B mesons, the purely leptonic processes
£ — ¢'yand ¢ — 3¢, as wellas uN — eN and LFV decays
of the Z boson. These packages are based on numerical
integration of the one-loop RGEs, thus resumming the
logarithms, which is a very useful cross-check of our
numerical results. We find an overall good agreement
between our results for the relevant Wilson coefficients,
with deviations smaller than ~20% in most cases."
However, there are a few disagreements that we fully
understand. For instance, for the coefficient Cj,qy, we
find more stringent constraints, e.g., from 7 — P than
flavio, which can be traced back to the higher-
dimensional gluonic operators that contribute to these
processes via the (finite) one-loop effects depicted in
Fig. 1. Another discrepancy that we have encountered
concerns the contributions from C,; and C, from
u — ey, which are a factor of O(10) stronger for us.

“We have verified that these small deviations are due to the
running of the electroweak parameters and the SM Yukawa cou-
plings, which for simplicity is not included in our numerical analysis.
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FIG. 6. Combined constraints on CE;) vs €Y, with third-generation quark flavor indices, derived from the most constraining 7 — ¢

lg »

(top left), 7 — u (top right), and y — e (bottom) observables to 95% CL. accuracy. The correlations between these effective coefficients
arising in the concrete scenarios listed in Table XIV are depicted by the dashed lines. The masses of the mediators are fixedto A = 1 TeV.

This disagreement can be traced back to the two-loop single-
logarithm mixing of vector operators into dipoles in the low-
energy EFT [16], which is not implemented in £ lavio."

"Note that similar discrepancies do not appear for the vector
operators containing the top quark such as Cg;” +Ceq> Cog»and Cyy,
because there are two-loop double-logarithm contributions of these
coefficients in the SMEFT that are dominant over the two-loop
single logarithm ones. Since wilson integrates the RGEs numeri-
cally, the double logarithm effects are included in their results.

B. Correlations in concrete models

To further demonstrate the relevance of our results, we
consider the bosonic mediators that can induce the semi-
leptonic operators in Tables XI-XIII at tree level and we
explore the correlation between the LFV effective coef-
ficients arising in these models [96]. To this purpose, we
assume a minimalistic flavor structure, only considering
couplings to third-generation quarks and leptons with
different flavors, in agreement with the assumption made
in the previous section. These mediators are collected in
Table XIV. They can be a second Higgs doublet [97,98], a
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singlet or triplet SU(2), vector-boson [99], or various low-
energy scalar and vector leptoquarks [42,1001." The
Lagrangian of each scenario and the tree-level matching
to the SMEFT Lagrangian are given in detail in
Appendix F.

In Fig. 6, we consider the specific example of operators
coupled to left-handed fermions, which are induced by
several of the concrete models listed in Table XIV, and we
confront them to the global constraints from the LFV
observables discussed above, by fixing the mediator masses
to A =1 TeV. We choose this example, since the corre-

lations between ngl) and Cg;) are fixed by the quantum

numbers of the mediators in several cases, without requir-
ing specific assumptions about the new physics couplings.
For the y — e transition, the least constrained scenario is
U, ~(3,1,2/3) with left-handed couplings, which lies
i
taining the top quark do not appear at tree level in this
scenario [36,92,93].16 For the other scenarios, we find even
more stringent constraints via the loop effects discussed
above. For the 7 — ¢ transition, we obtain comparable
bounds for the various models that are shown in Fig. 6.

(1)
lequ

along the diagonal CS) = C,’, since LFV operators con-

Finally, we note that correlations between the scalar C

3 . . .
and tensor C;e;u also can arise for the scenarios with

R, ~(3,2,7/6) and S, ~ (3,1,1/3) [29], cf. Appendix F.
In this case, the constraints on the tensor operators are far
more stringent than on the scalar ones, thanks to the
chirality enhancement of the leptonic dipoles operators,
as shown in the Tables XI—XIII. These observables give the
dominant bounds on the Yukawa couplings appearing in
these models; see, e.g., Ref. [102].

VI. CONCLUSION

In this paper, we have studied lepton flavor violation
(LFV) in semileptonic observables using an effective field
theory (EFT) approach with a general flavor structure.
Besides the tree-level effects that have been extensively
studied in the literature, we have included the one-loop
effects induced by the renormalization group equations
(RGEs) below [16,19] and above [20] the electroweak
scale, as well as the relevant two-loop effects that are
available in the literature [16]. In this way, we provided
general expressions for several high-energy observables
such as the decays h — ¢, Z — ¢¢, and t - ¢£¢', in
addition to the high-energy tails of pp — ££’ that were
studied in Refs. [47,48]. At low energies, we have provided
general expressions for the semileptonic processes
uN = eN, M - ¢¢', M - M'¢¢', and © — ¢M, where

“Note, in particular, that we neglect diquark couplings of
leptoquarks since they would make the proton unstable [100].

16See Ref. [101] for detailed one-loop calculation in ultra-
violet-complete models containing the U, leptoquark.

M) stands for a vector or pseudoscalar meson, and the
purely leptonic processes £ — £’y and ¢ — 3¢’ that can
constrain semileptonic operators at the loop level.
In particular, we have updated the predictions for the
M — M'¢¢" decays by using the latest determination of
the relevant form factors on the lattice.

The loop effects that we consider induce important
correlations between the various LFV observables and, in
several instances, they allow us to derive even stronger
constraints than those we would obtain at tree level. To
illustrate these results, we have considered in Sec. V the
scenarios where only semileptonic LFV Wilson coeffi-
cients with third-generation-quarks are nonzero at the high-
scale A and we have computed the various observables
induced either at tree or loop level. We have obtained the
lower limits on the EFT cutoff (A) that are given in
Tables XI-XIII by taking C,(A) = 1, where C, denotes
the possible effective coefficient at the scale A. For the
1 — e transition, we have found that the most stringent
constraints arise from the searches for y — ey, u — eee,
and uN — eN, depending on the operator one considers;
see also Ref. [16]. For the © — ¢ transitions (with £ = e,
1), we highlight an interesting complementarity between
the processes 7 — ¢y, t = ¢, v —» (P, and v — £V,
which are induced at one loop, with pp — ¢ that receives
tree-level contributions. The complementarity between the
different probes is even more evident in the two-dimen-
sional plane, where pairs of effective coefficients are
considered, as shown in Figs. 4 and 5 for the 4 — ¢ and
7 — p transitions, respectively.

It is important to emphasize that going beyond the
leading-logarithm solution is needed to probe several
effective coefficients at the loop level (cf. Refs. [16,17,103]).
Among the effects that we have included, we accounted for
the finite matching of scalar to gluonic operators, which
contributes to uN — eN and to the © — £P decays, where
Pe{x° n,n'} [26], as depicted in Fig. 1. We have also
accounted for the two-loop single-logarithm mixing
between vector operators and dipoles, which provides the
most stringent constraint on several y — e operators, as
computed in Ref. [16] for the low-energy EFT, cf. Table XI.
Lastly, several two-loop double-logarithm effects are rel-
evant to the phenomenology of y — ey and 7 — £y. These
include the mixing of a scalar into a tensor, which then mixes
into dipoles, both in the low-energy EFT and within the
SMEFT. Another example is the mixing of vector into tensor
operators in the SMEFT, which mixes again into dipoles,
and which has also been included in our phenomenological
analysis. Even though these are only partial results, since the
full two-loop anomalous dimension is not known yet, it
shows the importance of computing these effects that can be
relevant given the current precision of the experimental
searches.

Finally, we have briefly discussed the implications of our
results to concrete scenarios that generate semileptonic
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operators at tree level. We have provided the tree-level
matching of these models to the SMEFT in Appendix F.
Moreover, we have shown that these scenarios induce
different correlations of the effective coefficients that can
be tested experimentally, as depicted in Fig. 6 for the

effective coefficients Cg;) and CE;). This example again

shows the importance of accounting for loop-induced
effects to constrain the size of LFV contributions to low-
energy decays, with an interesting complementarity to
high-energy processes.
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APPENDIX A: CONVENTIONS

We consider the same notation of Ref. [20] for the
operators in the Warsaw basis [14]. Quark and lepton weak
doublets are denoted by ¢ and I, while up- and downtype
quarks and lepton singlets are denoted by u, d, and e,
respectively. The covariant derivative acting on a quark-
doublet reads

2
ij e < 7

O9j = W(WMPLb)(fiJ’”fj),
ij e’ 2

Ol = W(E}/ﬂPLb)(fi},ﬂysfj)7

The two operator bases are related via

bl _ Tl Ad)
G = T (G T Cry).

em E E

£t ; “ (d) (d)
il = @) _cldy,
0= 75— (Cug =)

7l 75 d d
€57 = (Co + Cigy).
RXem 023 ij23

Cit T (d) (d)
ciili = @) _cly,
P = 2 G = Coy)

o

D, =0, +igYB, +ig>

Wl +igs TGy, (Al)
where T4 = }*/2 are the SU(3), generators, 7/ are the
Pauli matrices, and Y denotes the hypercharge. The
Yukawa interactions are defined in the flavor basis as
follows:

—Lyw = H'dy,q+ H'uy,q + H'ey,l + He., (A2)
where y, (with f € {u, d, e}) stand for the Yukawa matrices
and flavor indices have been omitted. The SM Higgs
doublet is denoted by H, with the conjugate field defined
as H = eH* and the SU(2) antisymmetric tensor is € = iz>.
We opt to work in the basis where y, and y, are diagonal
matrices, while y, depends on the CKM matrix, V = Vgm

(i.e., Yu = j\)uv)-

APPENDIX B: LEFT BASIS FOR b — s?;¢;

For the convenience of the reader, we provide the
matching of our operator basis for the b — s7;¢; transition
to the one that is usually considered in the literature on B-
meson LFV decays [42,91],

4G
Her ==V, Vi

V2
x Y [CI(w)Od () + Ch(w) O ()] +Hec.,

a=9.10,S.P
(B1)
where
ij e 2
OS = (4ﬂ 3 (SPRb)(ftbﬂ ),
i_ ¢ 7.5
OP = 47[)2 (SPRb)(Lﬂl]/ fj) (Bz)
it r (d) (d)
C, ' =—(C Cy
o = e (Cug T Crge)
il r (d) (d)
C A CV - CV ’
10 ﬂ,aem< iilgg ,,L2§)
it r (d) (d)
C,’'=——(C Cs ),
' T i )
tit; T
ot = —(Chy = i), (B3)
Xeom ij23 ij23

with 4, = V,, V7. The results for the b — d7;¢; transition can be obtained by a trivial replacement of the flavor indices.
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APPENDIX C: MATCHING TO THE SMEFT
The matching between LEFT coefficients defined above with the SMEFT operators introduced in Sec. IV reads:

1. Vector operators

cy)
ijkl

2 2 2 2
_ U a(1-3) z U™ A(143) ( _ Y z v
=2l P HulayaCu e Cu = et 200 37 O

2 2 2 2
w _ Y U~ A143) (w _ Y v
Cp = R2C T 20z Oy Gy = 3 ¥ 200z G

U2

2 2 2
d _ (1+3) 7 s U o(143) @ _ "V v
O =y Ao Cy O = a2 g O

2 2 2 2
@ _ Y V™ A(143) (@ _ Y v
Cop = a2Cin 20adu G oy = 3 Cip 2000 3 Oy
2 2 2 2
(¢ _ Y z U o(143) (¢) _ Y v
Cop =l T 202G O =l t 20l
c0)

VLR
ijkk

v v 143 ¢ v? v?
— ﬁciﬁk + 4247 (143) c¥ — Fck’fv‘ +2g% PC?;, (C1)

er A2 “VHI VRL
A= ijkk

where the couplings of the Z boson to the SM fermions are defined as gJ%L = T{; -0 fsin2 0w and gj?R =-0 fsin2 6w, where
Tj; stands for the third component of the weak isospin and Q is the electric charge of the fermion f. The primed coefficients

are defined in Eq. (89) and we use again the shorthand notation C;;ﬁ) = CE;) + C;Z) for the left-handed operators.

2. Scalar operators

3 2
v mu v Umu
Cgf:z = =6y 7; 5 Cen, Cgf,)e =- kl_z—kz s
ikl \/imh/\ i ikl A \/imh ji
2 2 2 2
W _ 0 gy v omy, W _ Ve s V7 My,
CSRR = __2611'4" T A2 2 Cen, CSLL = __ZC""I“ - 51‘1_2 2 et
ikl VAGEIT TEEAN \/Emh ij ki A= ik A \/jmh ji
@ _ v v? vmy, @ _ Y o v mg, o,
CSRI = TC’?.”"’ — 6 2 5 Cen, CS,R = ﬁctgdq — O N2 5o et
ijki A ijkl A \/imh i ijki A= i A \/Emh Jji
3 3
d v myg d vmy
Cly) = =y —=— 5 Cen, i) = -6y —=— - Cons
ijkl \/Emh/\ i ikl \/imh/\ ji
2 2
C(f) _ v vmyg, C C(f> __vumy
S — T A2 e, N — T A2 eH>
T T A T TN e
2 2
I3 VT UMy £ VT UMy
Co=—23 5 Can, ) = -3 > Cin- (€2)
ijkk A th ij ik A \/Emh ji
3. Tensor operators
2 2
U™ (3) (u) v /(3)
V) =-=_¢C ct = - e
i A2 i A2[ lf,-?’f} ’
(d) (d)
CTL - CTR - 0,
ikl ijki
(¢) (¢)
C’I'L == CTR =0. (C3)
ijkk ijkk
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4. Leptonic dipole operators

) ’

v
G =—F7——
ij \/EmgA2
3
@
Cy =——
D’!L \/Emf/\z

(—sin Oy Chy + cos Oy Cly).
. v

(= sin Oy Cew + cos Oy Ces),
ij ij

Ji

APPENDIX D: SEMILEPTONIC DIFFERENTIAL FORMULAS
1.P— Pt; ¢}

The expression for the differential distribution of P — P'¢ i‘f}“ can be expressed in full generality as

ar
dg*dcos,

a(q*) + b(q*) cos O, + c(q*)cos® b,

(D1)

where 0, stands for the angle between £; and the P’ meson line of flight, in the rest frame of the lepton-pair rest frame, and
g* is the dilepton invariant mass. The kinematical coefficients a(g?), b(g*), and c(g*) can be expressed in terms of effective

coefficients defined in Eqs. (45)-(48) as follows,

2 (me,

alq’) = prqz |15 (@) + [ () +

- mfj)z

(mg, +myg,)?

|hYS(g*)* + 7 |hP (g%

b(q*) = szqu (m3, = m3 )Relhg (%) (hY*(q%))" + hG (a*)hit" (%)),

2
c(q?) ==Np 4—; (175 (@*)1? + 175 (a*)P).

where the normalization is defined by,

0GR

- D3
N 5122°m3, (D3)

and we define Ap =A(m3,m%,¢*) and 4, :l(m%,mfﬂj,qz),
with A(a?,b?, ¢?) = (a®> — (b —¢)*)(a* — (b + ¢)?). The
transversity amplitudes for a decay based on the d;, —
dlfi‘f;’ transition is given by the following equations,

ci 1/2
h(‘)/(qz) = ﬁﬁr(f]z)ﬁp > (D4)
2 ngxz 2\,1/2
(9) 2 2
C /
hyS(q%) = <C(v‘” e >mP —E fo(eP),
mfi _mfj mqk _mql q2
(D6)
(q)
' (q*) = <C(q) Crs @ ) " )
mf[+mfjm%_m‘h qZ
(D7)

(D2)

where flavor indices should be replaced following Eq. (56).
The form factors in the above equations are defined as
usual,

29
PG alP(p) = | (p+ 1 =2 =) ] £ ()
2 2
+%qﬂfo<q2>, (D8)

where f, (f) stands for the vector (scalar) form factors.
Note, in particular, that the above expressions are in
agreement with the ones obtained for the charged current
decays d — uZv in the limit where m, — 0, as provided,
e.g., in Ref. [104]."

2.P->Vveres
The expressions for the angular distributions of P —
Vfi‘fj+ have been derived in Ref. [42]. For completeness,
we collect these expressions in this appendix,

"Notice that we have neglected tensor operators in the above
formulas since they represent subleading corrections to the d;, —
ac; ff transition in the SMEFT. See Ref. [105] for a calculation

of the branching fractions including these operators.
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dr
dg?dcosB,dcos Oxdgp 327

I(q 0/,91(, ¢)’ (D9)
with

1(q%, 04,0k, §) = I5(g*)sin® Og + I5(g*)cos? O + [I5(q?)sin? O + I5(g?)cos? O] cos 20,

+ I3(g?)sin? Osin? 0, cos 2¢) + 1,(g*) sin 20 sin 20, cos ¢

+ I5(q?) sin 20k sin O, cos ¢ + [I5(g*)sin® Ok + 15(g*)cos? O] cos O,
(g?) sin 20k sin 0, sin ¢ + I3(g?) sin 20 sin 26, sin ¢
(¢°)

2)sin? @ sin® 6, sin 2¢, (D10)

+ 17
+ I

where we adopt the same angular conventions used for B — K*0(— Kﬂ)fi_l/ﬂ;_ in Ref. [42]. These angular coefficients can

be expressed in terms of effective coefficients defined in Eqgs. (45)-(48) [42],

Ar +2[g* = (m3, —m3 )’] 4mf,,
4q* *

Ii(q*) = AL P + A} + (L - R)] O Re(AfAf" 4 AL AR, (D11)

4 P 2 \2
q* —(mz — mfj) 8mymyg, . i
7 Re(AéA(’f —A,LAf )

Ii(q*) = [IAGI® + |AG ]

q
(m2 —m2)? —g*(m2 +m?)
-2 (AR HIARP), (D12)
I(q*) = [IA > +1Af> + (L > R)]. (D13)
2
15(q%) = —q—i(lf\él2 + 1AE[%), (D14)
,1
I1(q*) = [IA > = |Af P + (L = R)]. (D15)
2
14(q?) = ——%—[Re(AFAL*) + (L - R)], D16
4(q°) ﬂq[(” )+ ( ) (D16)
\/5/11/2 m%l_—mzj
I5(q?) = —— |Re(A§AL — (L AR))—TRG(ALAﬁ* (L= R))|. (D17)
211/2
Ii(q*) = - 7 [Re(AfAT = (L > R))], (D18)
4712 my —my
I£(q?) = - " q—’Re(ALAL*—f—(L—»R)), (D19)
1/2 me — m>
I(4?) = - V24~ Im (ALAﬁ*—(L—>R))+Mlm(ALAL*+(L—>R)) , (D20)
q* 7>
2
I (%) = —22 Im(ALALY + (L — R)). D21
s(q”) \/§q4 (AGAT" +( ) ( )
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/1
Iy(q%) = o Im(ATAf* + ARA), (D22)
where the transversity amplitudes are defined by
14 V e +my VY VA)s
= NyV2(mp + my)A(6)(C) F C). (D24)
Ny(mp + my) AvAs(q?)
AL(R) |4 P |4 |:m2 _m2 _q2 A qZ _fvAa2 :| C(‘I) F C(‘I) , D25
0 2mv\/— (mp 4 )Ai(q?) mp+mv(AV An) (D25)
212 P c'9) c'a)
AR _ pr A ) {C(cn o) _ ( Ps rp )} D26
l ' \/? (q ) w - . m‘]k + m‘ll me ? i mfi +m"pj ( )
where, for simplicity, flavor indices are omitted. The square of the normalization reads
G2 /11/2 21/2
Ny =T (B27)
where Ay = A(m%, m3, ¢*) and 4, = ﬂ(m%)_, mL%j, g%), and the P — V form factors are defined as follows [106]:
, w oo V@)
VO (1 = 7)1 P () = St Pk AL i 4y ()
mp + my
. Ay (%) . 2my
k), (e* — o q) = [A3(q%) — Ap(q?)], D28
Filp R, a) 2 g e 0) T A ~ A (D28)

where ¢ is the polarization vector of the V meson, and the
form factor A3(g?) is related to A;,(¢%) via 2myA;(g*) =
(mp+my)A;(q*) — (mp—my)A,(¢?). Notice, once again,
that we have not included the contributions from tensor
operators in the above expressions.

APPENDIX E: SM YUKAWA RUNNING

In this appendix, we briefly discuss the impact of the SM
Yukawa renormalization, which can impact semileptonic
observables through loop-induced nondiagonal elements
that are not necessarily present in the ultraviolet. More
specifically, the Yukawa RGEs read [107]

dyd 3
dlogy 2

+ 3Tryhyg + Viyaya — 843va.  (E1)

167>

= (Vayiya = Yaveya)

where the up- and downtype quark Yukawas are denoted by
v, and y,, respectively, and we have neglected the lepton
Yukawas and the electroweak gauge couplings,
cf. Appendix A for our notation. Keeping only the top-
quark Yukawa contribution, it is straightforward to show

that off-diagonal contributions are induced via the Yukawa
running,

3ViViyeyr (A L
= m) =B g (L), (i), (B
t

where y, and y, are the physical top- and bottom-quark
Yukawas to first approximation. The contributions in
Eq. (E2) must be reabsorbed when diagonalizing the SM
Yukawas at u ~ u.,, via the following rotation of the left-
handed downtype quarks,

Uy ~ T35+ 3y 2210g<A>
t 32 m,
0 0 ViV
X 0 0 ViiVa |, (E3)
ViV =ViV75 0

whereas the other fermions are not affected by the running
to first approximation. These effects are included in our
analysis, but we find that they are subleading for the
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effective scenarios and the observables that we consider in Sec. V. Explicit examples where these effects could be larger
have been discussed, e.g., in Ref. [108].

APPENDIX F: TREE-LEVEL MEDIATORS

In this appendix, we collect the Lagrangian of each tree-level mediator considered in Sec. V B, as well as the matching to
the SMEFT semileptonic Wilson coefficients at tree level. For simplicity, we omit SU(3), and SU(2), indices in the
expressions below.

(1) @~ (1,2,1):"

(a) UV Lagrangian:

Ly D _(yé/)ijq)ﬁ;licb’ - (yé/)ijé)/Tﬁiqj - (YfI)/)ich/TEilj +H.c. (Fl)
(b) SMEFT coefficients:
1 o _ 8 (¥e) i 1 Conr — V) (Ve)5i
b =5 gl =——"m—. (F2)
A ijkl Mq) A ijkl M‘D
2) 7 ~(1,1,0):
(a) UV Lagrangian:
Ly D Z (gg/)ijl/_/ihl//jz/ﬂ- (F3)
y=lq.e.u,d
(b) SMEFT coefficients:
Lo (92)ii(9% )i Lo _ (9%)i; (92 )
A% il ML T AT M,
Lo 9u9p)i oo )ilep)
A2k M, A2 M,
1 o (912)[1(9%)21 1 Co — (g%)ij(gg’)ltl
by =——"757",  glae=—-——757"". (F4)
A ijkl MZ/ A ijkl MZ/
3) V~(1,3,0):
(a) UV Lagrangian:
Ly D (gg/)ij(QiTIY”Qj)V;It + (94/);’,’(71‘717’”1,;)‘/;14- (FS)

(b) SMEFT coefficients:

1 Y. (g
_20(31) _ (9v) ,(zgv)kz_ (F6)
A ijkl MV

) S;~(3.1.%):
(a) UV Lagrangian:

Ls D (yél)ijzlfirzljsl + (ygl)ijﬁfejsl + H.c. (F7)

"For simplicity, we assume that @' does not acquire a vacuum expectation value and does not mix with the SM Higgs.
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(b) SMEFT coefficients:

6 8 ~3.1%):
(a) UV Lagrangian:

(b) SMEFT coefficients:

6) S3~(3.3.1):
(a) UV Lagrangian:

(b) SMEFT coefficients:

(7) Ry~ (3.2.2):
(a) UV Lagrangian:

(b) SMEFT coefficients:

®) Ry~ (3.2,):
(a) UV Lagrangian:

Lo _ O50505)i
_ 0805, )i

(Y§] )lj ()’g )ii

3(y§3)lj(y§3)zi

(yzLez)kj (yzLez)}ki

(1 _ (ygz)kj(yléz)}ki

LC@) _ (yg,)lj(ylsﬂ)zz'
A2 zﬂl 4M§] ’
oo 08508
A2l sM3
1
dée;S; +H..

ij“i

08 )y 0% i

2
2M§]

Ls, > (v5,);;(@5ir7'1;)S; + Hee.

G3) (y§3)lj(yl§3);i
lg — .

1
—C
A2 43,

[’Rz D —(yéz)ijﬁiRzilej - (yﬁz)ijc']ieij + H.c.

1 _ (ygz)kj(ygz)}ki
A2 ik oM
2
LC@) _ (V&) VR, )i
A2 8My,

y%z)ijc_liiizirzlj + H.c.

(F9)

(F10)

(F11)

(F12)

(F13)

(F14)

(F15)
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®

(10)

(11

(12)

(13)

(b) SMEFT coefficients:

1 3 (y%)kj(y%)?i
A2 g 2M?2 )
Ry

U] ~ (3, 1,%):
(a) UV Lagrangian:
Ly, D (x%Jl)ijC_]i}’”lleﬂ + (xlff,)ijai}’”erl,l + H.c.

1

(b) SMEFT coefficients:

LC(I) _ (x5, )i (X0, )i LC(‘%) _ (x5, )i (X0, )i
A2 i;‘lil ZM%]1 ’ A2 ij'{llrl 2M %]1
1 Cot — (xgl)kj@gl)?i 1 Cone — Z(XR&l)kj(x@l)?i
A2 iifz__T’ A2 'Z?‘i?’_T'
U, ~(3.13):

(a) UV Lagrangian:

1

Ly D (xgl)ijﬁ,»yﬂejf]’f +H.c.
(b) SMEFT coefficients:

1 B (Xfyl )kj(xlg/] )i

2 2
A b,

Vy~(3,2.2):
(a) UV Lagrangian:

Ly, D (x});dsy, Vil + (x5 )5y, Vhitse; + He.

(b) SMEFT coefficients:

1. ()1 (% )i 1, (%) (X9, )k
A2 ik M, ' A2 M3, ’
1 Con — _2()6\]52)1/()6%/2)12
A2 iejqu M%/

2

‘72 ~ (3, 2, —%)
(a) UV Lagrangian:

5‘72 D (X‘L~/2>Ijljtlc}’ﬂ‘~/gl’l'zlj + H.C.
(b) SMEFT coefficients:

L Co (xl"\}z)lj(xl"\}z)lti
A2 iﬂi o M2
V)

U3 ~ (3,3,%):
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(F16)

(F17)

(F18)

(F19)

(F20)

(F21)

(F22)

(F23)

(F24)
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(a) UV Lagrangian:

EU3 D (ng)ij(ZIiV”T[lj)Ugy + H.c. (FZS)
(b) SMEFT coefficients:
1oy 36wy, 1 e (o))
2Cy = 5l = (F26)
A= i 2M Us A= i 2M Us
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