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In this paper, we perform a comprehensive study of lepton flavor violation (LFV) in semileptonic
transitions in the framework of an effective field theory with general flavor structure. We account for the
renormalization group equations, which induce nontrivial correlations between the different types of LFV
processes. In particular, we show that these loop effects are needed to improve the bounds on several
coefficients that are not efficiently constrained at tree level. For illustration, we consider a few concrete
scenarios, with predominant couplings to third-generation quarks, and we explore the correlations between
the various tree- and loop-level constraints on these models. As a by-product, we also provide expressions
for several semileptonic LFVmeson decays by using the latest determinations of the relevant hadronic form
factors on the lattice.
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I. INTRODUCTION

Lepton flavor violation (LFV) is strictly forbidden by the
accidental symmetries in the Standard Model (SM).
However, these symmetries are not necessarily respected
by higher-dimensional operators appearing beyond the SM,
which are suppressed by inverse powers of a heavy scale Λ.
Indeed, the observation of neutrino masses and oscillation
is the first indication that lepton number might be broken,
which can be described by dimension-five operators (sup-
pressed by 1=Λ) [1]. The smallness of neutrino masses,
however, guarantees that LFV in charged processes remains
heavily suppressed unless new dynamics beyond light
neutrino masses are present [2]. Therefore, these processes
are clean probes of new physics, as their observation would
be unambiguous evidence of new phenomena, typically
arising through dimension-six operators (thus suppressed
by 1=Λ2).
Significant progress is expected in the next years from

experiments searching for LFV in both leptonic and semi-
leptonic processes, which will improve the current sensi-
tivity in several channels by at least one order of magnitude
[3]. These include the various experiments targeting the
μ → e transition, namely MEG-II [4], Mu2E [5], Mu3E [6],
and COMET [7], as well as Belle-II that will improve our
sensitivity to both leptonic and hadronic LFV τ-lepton
decays [8]. There has also been an increasing effort by
LHCb and Belle to improve the limits of several LFV

decays of B-mesons [9,10]. Furthermore, experiments with
kaons at NA62 [11] and KOTO [12], and charmed hadrons
at BES-III [13], are also expected to improve their
sensitivity to LFV decays in the near future.
New physics contributions to LFV processes from heavy

mediators can be characterized by the Standard Model
effective field theory (SMEFT) [14], defined above the
electroweak scale, which is invariant under the SM gauge
symmetry SUð3Þc × SUð2ÞL × Uð1ÞY. In the SMEFT, the
leading effective operators that induce LFVat low energies
are the leptonic dipoles (ψ2HX), as well as four-fermion
leptonic and semileptonic operators (ψ4) [15]. The remark-
able experimental sensitivity of LFV searches in specific
channels implies that some of these operators can be better
probed through radiative corrections, instead of their direct
tree-level contributions to low-energy processes. For in-
stance, the operator ðμ̄γμeÞðq̄γμqÞ, where q denotes a weak
doublet with heavy quarks, can be more efficiently probed
through its contributions at one-loop to μ → 3e rather than
by studying semileptonic processes at tree level [16,17].
Therefore, it is clear that radiative corrections must be
systematically included to assess the full potential of LFV
processes to discover new physics. This program has been
carried out to a large extent in the leptonic sector [16–18].
However, analogous systematic study for semileptonic
transitions is still missing, although the one-loop anoma-
lous dimensions are known both in the low-energy EFT
[16,19] and in the SMEFT [20] (see Ref. [21,22] for the
first steps in this direction).
In this paper, we will perform a comprehensive analysis

of LFV in semileptonic observables, accounting for the
one-loop renormalization group equations (RGEs) in the
low-energy EFT and the SMEFT. We will demonstrate that
such loop effects induce nontrivial correlations between the
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different types of processes. Moreover, we will provide
general expressions for the relevant (semi)leptonic meson
decays that can be studied experimentally, using the latest
inputs for the needed hadronic matrix elements. We will
also revisit purely leptonic processes, since they can
provide valuable constraints on semileptonic operators
through operator mixing, including the known two-loop
contributions to the RGEs [16–18]. To compare the
sensitivity of different observables, we will consider a
specific EFT scenario with operators containing only third-
generation quarks, which contributes to various transitions
through RGE evolution above and below the electroweak
scale. Finally, we will also briefly discuss a few concrete
new physics scenarios to illustrate the relevance of the loop
effects that we compute.
The remainder of this paper is organized as follows. In

Sec. II, we define our EFT Lagrangian and we discuss the
relevant RGE effects in the low-energy EFT and the
SMEFT. In Sec. III, we study the low-energy probes of
LFV in meson and lepton decays. In Sec. IV, we discuss the
high-energy probes of LFV in Higgs, top-quark, and
Z-boson decays, as well as indirect constraints obtained
from the high-energy tails of pp → lilj, with i ≠ j. In
Sec. V, we perform a numerical study with a specific EFT
scenario and discuss the relevance of our loop constraints to
concrete new physics models. Our findings are briefly
summarized in Sec. VI.

II. EFT APPROACH FOR LFV

In this section, we define our effective approach and
describe the RGE effects that are relevant for LFV
observables. In Sec. II A, we formulate the low-energy
EFT, invariant under SUð3Þc × Uð1Þem, which will be
used to compute the low-energy observables in Sec. V.
In Sec. II B, we consider the SMEFT [14], which gives the
appropriate description of new physics arising well above
the electroweak scale, as we assume in this paper. The RGE
contributions that we consider in our phenomenological
analysis are summarized in Sec. II C (see also Figs. 2
and 3).

A. Low-Energy EFT

We start by defining our low-energy effective
Lagrangian,

LLEFT ¼
X
I

CI

v2
OI; ð1Þ

where v ¼ ð ffiffiffi
2

p
GFÞ−1=2, GF is the Fermi constant, and CI

denotes the low-energy effective coefficients of the oper-
ators invariant under SUð3Þc ×Uð1Þem. Below the electro-
weak scale, the lowest-dimension operators that can violate
lepton flavor are [15]:

(i) Operators of semileptonic type (ψ4):

OðqÞ
VXY
ijkl

¼ ðl̄iγμPXljÞðq̄kγμPYqlÞ;

OðqÞ
SXY
ijkl

¼ ðl̄iPXljÞðq̄kPYqlÞ;

OðqÞ
TX
ijkl

¼ ðl̄iσμνPXljÞðq̄kσμνPXqlÞ; ð2Þ

where X; Y ∈ fL; Rg, q∈ fu; dg, and fi; j; k; lg
denote flavor indices.

(ii) Four-fermion leptonic operators (ψ4):

OðlÞ
VXY
ijkk

¼ ðl̄iγμPXljÞðl̄kγ
μPYlkÞ;

OðlÞ
SXX
ijkk

¼ ðl̄iPXljÞðl̄kPXlkÞ; ð3Þ

where X; Y ∈ fL; Rg, as above, and k can take any
value. For i ≠ k ≠ j, there is an additional type of
tensor operator that can be written down,

OðlÞ
TX
ijkk

¼ ðliσμνPXljÞðlkσ
μνPXlkÞ; ði ≠ k ≠ jÞ;

ð4Þ

and, for X ≠ Y, there are additional scalar operators,

OðlÞ
SXY
ijkk

¼X≠YðliPXljÞðlkPYlkÞ; ði ≠ k ≠ jÞ; ð5Þ

which would be redundant via Fierz relations
if k ¼ i or k ¼ j.

(iii) The electromagnetic dipole operators (ψ2X),

OðlÞ
DX
ij

¼ mlðliσμνPXljÞFμν; ð6Þ

where X∈ fL;Rg andml is the mass of the heaviest
lepton appearing in the operator, which we assume
to be mlj in the following.

(iv) The gluonic operators (ψ2X2),1

OðlÞ
GX
ij

¼ αs
4π

ml

v2
ðliPXljÞGaμνGaμν;

OðlÞ
G̃X
ij

¼ αs
4π

ml

v2
ðliPXljÞGaμνG̃

aμν; ð7Þ

where X∈ fL;Rg, ml ≡mlj is the mass of the
heaviest lepton in the operator, as before, and we
define the dual field strength as G̃a μν ¼
1=2εαβμνGa

αβ.

1Note that similar operators can be defined with the Uð1Þem
field-strength tensors, which would be relevant to processes such
as μ → eγγ that are not considered in this paper; see, e.g.,
Ref. [23,24].
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Our notation for the SM fields is specified in
Appendix A. Flavor indices of semileptonic operators
are assigned with the first two indices corresponding to
the lepton flavor and the last two to the quark ones.
Furthermore, the vector Wilson coefficients must satisfy
the following Hermiticy condition,

CðqÞ
VXY
ijkl

¼ CðqÞ�
VXY
jilk

; ð8Þ

whereas the scalar and tensor coefficients satisfy

CðqÞ
SLL
ijkl

¼ CðqÞ�
SRR
jilk

; CðqÞ
SLR
ijkl

¼ CðqÞ�
SRL
jilk

; ð9Þ

CðqÞ
TLL
ijkl

¼ CðqÞ�
TRR
jilk

; CðqÞ
TLR
ijkl

¼ CðqÞ�
TRL
jilk

: ð10Þ

To avoid redundancies in the operator basis, wewill express
the observables only in terms of Wilson coefficients with
the leptonic indices i, j ordered as i < j. From the four-

lepton coefficients CðlÞ
VXX

, we choose only to write the ones
with indices ijkk, where i < j and k can be any flavor
index, as we are only interested in operators that violate
lepton flavors by one unit, i.e., with ΔLi ¼ −ΔLj ¼ −1.
Note, in particular, that the CP-odd and CP-even gluonic

operators OðlÞ
GX

and OðlÞ
G̃X

defined in Eq. (7) are of higher

dimension. We list them among the other operators since
they can be produced via an anomaly triangle when heavy
quarks are integrated out from the low-energy EFT at one
loop, cf. Fig. 1. The shifts of the gluonic coefficients
induced by the heavy quarks read [25]

CðlÞ
GX
ij

→ CðlÞ
GX
ij

−
v

3mlj

X
qk¼c;b;t

v
mqk

�
CðqÞ

SXL
ijkk

þ CðqÞ
SXR
ijkk

�
; ð11Þ

CðlÞ
G̃X
ij

→ CðlÞ
G̃X
ij

−
iv

2mlj

X
qk¼c;b;t

v
mqk

�
CðqÞ

SXL
ijkk

− CðqÞ
SXR
ijkk

�
; ð12Þ

where X∈ fL;Rg, we take j > i, as before, and we have
kept the first term in the 1=mq expansion. These finite
matching contributions will be considered in our phenom-
enological analysis since they are the leading contributions
to gluonic operators in our setup, having implications to
processes such as μN → eN (see also Ref. [26]).

1. Operator mixing

The one-loop running of the LFV low-energy EFT has
been computed in full generality Ref. [16] (see also
Ref. [19]). Besides the known renormalization of the scalar
and tensor semileptonic operators by QCD [27], it has been
shown that the QED running induces a nontrivial mixing of
LFV operators, cf. Fig. 2. For instance, the operator
ðliγ

μPXljÞðq̄γμqÞ mixes into ðliγ
μPXljÞðlkγμlkÞ via a

penguin diagram depicted in Fig. 2. Such effects allow us to
constrain semileptonic operators with same-flavor quarks
by using the experimental limits on l−

j → l−
i l

þ
k l

−
k , with

i ≤ k < j. Another important example is the one-loop
mixing of ðliσ

μνPXljÞðq̄σμνPXqÞ into the dipoles
ðliσ

μνPXljÞFμν, which induce chirality-enhanced contri-
butions to lj → liγ, as shown in Fig. 2 [16,28,29].
In the following, we consider LFV operators with fixed

lepton flavor indices i < j. The leading-logarithm solution
of the RGEs from the electroweak scale (μew) to the
relevant low-energy scale (μlow) is given by

CIðμlowÞ ≃ CIðμewÞ þ
γJI
16π2

logðμlow=μewÞCJðμewÞ; ð13Þ

where γJI are the elements of the one-loop anomalous-
dimension matrix, which is defined via 16π2 μdCI=dμ ¼
γJICJ. These leading-logarithm effects can be schemati-
cally written in our case as follows [16],

0
BBBBBBBB@

C⃗V

C⃗S

C⃗T

C⃗D

C⃗G

1
CCCCCCCCA

μlow

≃
1−loop

0
BBBBBB@

UVV 0 0 0 0

0 USS UST 0 USG

0 UTS UTT 0 0

0 0 UDT UDD 0

0 0 0 0 UGG

1
CCCCCCA
·

0
BBBBBBBB@

C⃗V

C⃗S

C⃗T

C⃗D

C⃗G

1
CCCCCCCCA

μew

;

ð14Þ

where we collect the ΔLi ¼ −ΔLj Wilson coefficients in
the vectors

C⃗V ¼
�
C⃗ðdÞ

VLL
ij
; C⃗ðdÞ

VLR
ij
; C⃗ðuÞ

VLL
ij
; C⃗ðuÞ

VLR
ij
; C⃗ðlÞ

VLL
ij
; C⃗ðlÞ

VLR
ij

�
; ð15Þ

C⃗S ¼
�
C⃗ðdÞ

SLL
ij

; C⃗ðdÞ
SLR
ij

; C⃗ðuÞ
SLL
ij

; C⃗ðuÞ
SLR
ij

; C⃗ðlÞ
SLL
ij

; C⃗ðlÞ
SLR
ij

�
; ð16Þ

FIG. 1. Finite one-loop contribution from scalar coefficients CSXY to the gluonic operators CðlÞ
GX

defined in Eq. (7), which is relevant,
e.g., for the phenomenology of μ → e conversion in nuclei.
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C⃗T ¼
�
C⃗ðdÞ

TL
ij
; C⃗ðuÞ

TL
ij
; C⃗ðlÞ

TL
ij

�
; ð17Þ

C⃗D ¼ ðCDL
ij
Þ; ð18Þ

C⃗G ¼ ðCGL
ij
; C̃GL

ij
Þ; ð19Þ

where lepton flavor indices i, j are fixed, and the subvectors
with all possible quark flavor indices are defined, e.g., at
the μ ¼ μEW scale as2

C⃗ðdÞ
VLL
ij
¼
�
CðdÞ

VLL
ij11
;CðdÞ

VLL
ij12
;CðdÞ

VLL
ij13
;CðdÞ

VLL
ij21
;CðdÞ

VLL
ij22
;CðdÞ

VLL
ij23
;CðdÞ

VLL
ij31
;CðdÞ

VLL
ij32

;CðdÞ
VLL
ij33

�
:

ð20Þ

Similar definitions hold for the four-lepton operators,
where we only consider operators that violate lepton flavor
by one unit, e.g.,

C⃗ðlÞ
VLL
ij

¼ ðCðlÞ
VLL
ij11
; CðlÞ

VLL
ij22

; CðlÞ
VLL
ij33
Þ: ð21Þ

Expressions for the operators with a flipped chirality can be
obtained from Eq. (14) via the trivial replacement L ↔ R.
Going beyond the leading-logarithm approximation can

be important since coefficients such as the dipoles CDLðRÞ
are subject to very stringent experimental constraints from
μ → eγ and μN → eN [30], which are far more con-
straining than the ones on LFV mesons decays, and which
will be considerably improved in the coming years. These
constraints can supersede the direct ones on operators that
are not efficiently constrained at the leading order, provided
that they contribute at higher loop orders to dipoles [31].
A noticeable example is the vector four-fermion operators,
which mix into the dipoles at the two-loop level,
yielding [16]3

CDL
ij
ðμlowÞ ∝

e3Q2
fQlN

ðfÞ
c

ð16π2Þ2 log

�
μlow
μew

�
CðfÞ

VXY
ijkk

ðμewÞ; ð22Þ

where f∈ fu; d;lg denotes a fermion, with electric charge

Qf and color number NðfÞ
c . For instance, for the μ → e

transition and for a heavy fermion f∈ fc; τ; b; tg, the
two-loop constraint from μ → eγ obtained in this way
can be competitive with the one-loop constraint from

μ → eee [16]. Another relevant example is the scalar

CðqÞ
SLR

, which can be Fierzed into a vector operator that also
mixes intoCDL

at two-loop order, thus being constrained by
μ → eγ [16].
Besides the above-mentioned (single logarithm) two-

loop effects, there are also double-logarithm contributions
that are relevant to phenomenology. The most relevant one
is the product of the one-loop matrices UDT ×UTS, which
induces the one-loop mixing of a scalar into a tensor
operator, which then mixes into the dipole at one loop
again [23],

CDL
ij
ðμlowÞ ∝

e3Q2
qQlN

ðqÞ
c

ð16π2Þ2
mq

ml

�
log

�
μlow
μew

��
2

CðqÞ
SLL
ijkk

ðμewÞ:

ð23Þ

The loop-level constraints on CðqÞ
SLL

from lj → liγ can also
supersede the ones from tree-level processes despite the
additional suppression by 1=ð16π2Þ. In this case, the
chirality enhancement (∝ mq=ml) plays an important role
in making this contribution sizable when q is a
heavy quark.
Even though the two-loop anomalous-dimension matrix

in the low-energy EFT is not yet fully known for a
consistent analysis of these processes at order 1=ð16π2Þ2,
we opt to account for these contributions, by using the
expressions from Ref. [16], since they can be the dominant
effects in some cases. However, the constraints depending
on these effects should be more carefully reassessed when
the full two-loop anomalous-dimensions calculations will
become available. Finally, we remind the reader that the
RGE contributions that we consider below the electroweak
scale are summarized in Fig. 2.

B. SMEFT

The dimension d ¼ 6 SMEFT Lagrangian can be written
as

Lð6Þ
SMEFT ¼

X
i

CI
Λ2

OI; ð24Þ

where CI denotes the relevant Wilson coefficients and Λ
stands for the EFT cutoff. There are only a few types of
d ¼ 6 operators defined above the electroweak scale that
can violate lepton flavors by one unit:

(i) The semileptonic operators (ψ4) collected in Table I,
which contribute at tree level to the various semi-
leptonic transitions.

(ii) The four-fermion leptonic operators (ψ4):

O ll
ijkk

¼ðl̄iγμljÞðl̄kγμlkÞ; O le
ijkl
¼ðl̄iγμljÞðēkγμekÞ;

O ee
ijkl
¼ðēiγμejÞðēkγμekÞ; ð25Þ

2Note, in particular, that the uptype quark coefficients should
not contain the top quark as it has been integrated out.
Furthermore, one should use the basis defined in Sec. II A to
avoid redundancies related to Fierz identities.

3This is a well-known effect in the quark sector for the
b → sll transition, where the effective coefficient C7 mixes
into C9 at two-loop order in QCD, cf., e.g., Ref. [32]. See
Ref. [16] for a brief discussion on the renormalization-scheme
dependence of these two-loop contributions.
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and the leptonic dipole (ψ2HX) operators:

OeB
ij
¼ ðl̄iσμνejÞHBμν;

OeW
ij
¼ ðl̄iσμντIejÞHWI

μν; ð26Þ

where τI (I ¼ 1; 2; 3) are the Pauli matrices. These
operators become relevant when including RGE
effects which mix semileptonic operators into purely
leptonic ones.

(iii) The Yukawa operators (ψ2H3):

OeH
ij
¼ ðl̄iejHÞðH†HÞ; ð27Þ

which induce LFV Higgs decays after electroweak-
symmetry breaking.

(iv) The Higgs-current operators (ψ2H2D)4:

Oð1Þ
Hl
ij

¼ ðH†D
↔

μHÞðl̄iγμljÞ;

Oð3Þ
Hl
ij

¼ ðH†D
↔I

μHÞðl̄iτIγμljÞ; ð28Þ

OHe ¼ ðH†D
↔

μHÞðēiγμejÞ; ð29Þ

which induce LFV Z-boson decays, in addition to
LFV in semileptonic amplitudes mediated by the Z
boson, which are quark-flavor conserving.

Similar to Sec. II A, flavor indices are denoted by Latin
symbols. For semileptonic operators, our convention is that
the first two indices always correspond to lepton flavors.
For Hermitian operators such asOld, we further impose that
lepton indices satisfy i < j to avoid redundancy in the
operator basis. Moreover, we assume that down-quark

Yukawas are diagonal, i.e., the Cabibbo–Kobayashi–
Maskawa (CKM) matrix V appears in the upper component
of qi ¼ ½ðV†uLÞidLi�T , cf. Appendix A.
The SMEFT Lagrangian in Eq. (24) can be matched to

the low-energy EFT defined in Eq. (1), as provided at tree
level in Appendix C (see also Ref. [33]). We note, in
particular, that the leptonic scalar and tensor coefficients

CðlÞ
SXY

and CðlÞ
TX

vanish at d ¼ 6, only appearing at higher
dimensions via insertions of the Higgs doublets, which
are needed to make the operator invariant under
SUð2ÞL ×Uð1ÞY . The same holds for the downtype tensor

FIG. 2. Schematic representation of one- and two-loop diagrams that can induce nondiagonal operator-mixing via QED and QCD
below the electroweak scale [16], cf. Eq. (14) and Eqs. (22) and (23). The blue dots represent insertions of specific d ¼ 6 operators
appearing in Eq. (14).

TABLE I. Hermitian (left) and non-Hermitian (right) d ¼ 6
semileptonic operators in the SMEFT. We consider the Warsaw
basis [14], and we renamed the operator Oqe as Oeq to have
lepton flavor indices before the quark ones. The SUð2ÞL indices
are denoted by a, b, with ε12 ¼ −ε21 ¼ þ1, τI (I ¼ 1; 2; 3) are
the Pauli matrices, and SUð3Þc indices are omitted. Flavor indices
are denoted by i, j, k, l and should be assigned asO≡Oijkl in the
left columns of the table. See Appendix A for our notation for the
SM fields.

ψ4 Operator

Oð1Þ
lq

ðl̄iγμljÞðq̄kγμqlÞ
Oð3Þ

lq
ðl̄iγμτIljÞðq̄kγμτIqlÞ

Olu ðl̄iγμljÞðūkγμulÞ
Old ðl̄iγμljÞðd̄kγμdlÞ
Oeq ðēiγμejÞðq̄kγμqlÞ
Oeu ðēiγμejÞðūkγμulÞ
Oed ðēiγμejÞðd̄kγμdlÞ

ψ4 Operator þ H:c:

Oledq ðl̄ai ejÞðd̄kqal Þ
Oð1Þ

lequ
ðl̄ai ejÞεabðq̄bkulÞ

Oð3Þ
lequ

ðl̄ai σμνejÞεabðq̄bkσμνulÞ4We define H†D
↔

μH ≡H†ðDμHÞ − ðDμH†ÞH and H†D
↔I

μH≡
H†τIðDμHÞ − ðDμH†ÞτIH.
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coefficient CðdÞ
TX

and other four-fermion semileptonic oper-
ators, cf. Ref. [34].

1. Operator mixing

The different types of LFVoperators listed above can mix
through renormalization group evolution [20]. For the oper-
ators thatwe consider, the relevantRGEeffects are inducedby
the electroweak and the Yukawa interactions, which mix
different operators, in addition to the QCD running that can

only change the magnitude of scalar and tensor semileptonic
Wilson coefficients. The RGE effects generated by the
electroweak interactions are necessarily flavor conserving,
whereas the Yukawa ones can induce quark-flavor violation
through the CKM matrix, as depicted in Fig. 3.
In what follows, we consider the d ¼ 6 LFV operators

with fixed lepton flavor indices i < j.5 The leading-loga-
rithm solution to the RGEs can then be schematically
written as follows [20]:

0
BBBBBBBBBBB@

C⃗V

C⃗S

C⃗T

C⃗D

C⃗Yuk

C⃗Hl

1
CCCCCCCCCCCA

μew

≃
1−loop

0
BBBBBBBBBB@

UVV 0 0 0 0 UVHl

0 USS UST 0 0 0

0 UTS UTT UTD 0 0

0 0 UDT UDD 0 0

0 UYS 0 0 UYY 0

UHlV 0 0 0 0 UHlHl

1
CCCCCCCCCCA

·

0
BBBBBBBBBB@

C⃗V

C⃗S

C⃗T

C⃗D

C⃗Yuk

C⃗Hl

1
CCCCCCCCCCA

Λ

; ð30Þ

where we only kept the contributions proportional to the top and bottom quark Yukawas, as well as the SM gauge couplings,
which are taken at the scale μ ≃ μew. In the leading-logarithm approximation, the matrices UIJ can be obtained from the
SMEFTanomalous dimensions γJI given in Ref. [20] via the analogous expression of Eq. (13). The effective coefficients are
combined in the above equation in the following vectors:

C⃗V ¼
�
C⃗ð1Þlq

ij
; C⃗ð3Þlq

ij
; C⃗lu

ij
; C⃗ld

ij
; C⃗eq

ij
; C⃗eu

ij
; C⃗ed

ij
; C⃗ll

ij
; C⃗le

ij
; C⃗ee

ij

�
; ð31Þ

FIG. 3. Schematic representation of one-loop diagrams that can induce nondiagonal operator mixing via the SUð2ÞL ×Uð1ÞY gauge
and Yukawa interactions above the electroweak scale [20]. The blue dots represent insertions of specific d ¼ 6 operators appearing
in Eq. (30).

5To this order in the EFT expansion, these operators do not mix with operators with different combinations of lepton flavors. See
Ref. [35] for the double insertion of d ¼ 6 operators and their mixing into d ¼ 8 operators at one loop.
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C⃗S ¼
�
C⃗ledq

ij
; C⃗ð1Þlequ

ij

�
; ð32Þ

C⃗T ¼ ðC⃗ð3Þlequ
ij
Þ; ð33Þ

C⃗D ¼ ðCeB
ij
; CeW

ij
Þ; ð34Þ

C⃗Yuk ¼ ðCeH
ij
Þ; ð35Þ

C⃗Hl
¼

�
Cð1ÞHl

ij
; Cð3ÞHl

ij
; CHe

ij

�
; ð36Þ

where the four-fermion subvectors are defined in such a
way as to comprise all possible quark flavor indices, for
fixed lepton flavor indices fi; jg, e.g.,

C⃗ð1Þlq
ij

¼
�
Cð1Þlq

ij11
;Cð1Þlq

ij12
;Cð1Þlq

ij13
;Cð1Þlq

ij21
;Cð1Þlq

ij22
;Cð1Þlq

ij23
;Cð1Þlq

ij31
;Cð1Þlq

ij32
;Cð1Þlq

ij33

�
; ð37Þ

with similar definitions for the other operators.
Besides the leading-logarithm contributions discussed

above, we stress once again that two-loop RGE effects can
be relevant if they introduce a new source of mixing that
does not appear at the one-loop level. A relevant example in
the SMEFT is the double-logarithm mixing of the scalar
operator Cð1Þlequ into the tensor Cð3Þlequ, which then mixes into
the dipoles CeW and CeB, via the product UDT × UTS in
Eq. (30). This mixing induces a chirality enhancement
similar to Eq. (23), which provides the most stringent

constraint on the scalar coefficient Cð1Þlequ with third-
generation quarks, as will be shown in Sec. V.
Finally, we note that Eq. (30) was obtained by neglecting

the lepton Yukawas (ye). However, we found that one
particular type of contribution proportional to the lepton
Yukawas is relevant to phenomenology, namely the
Yukawa-induced mixing of the vector coefficients into
tensors [19],

μ
d
dμ

Cð3Þlequ
ijkl

¼yuk: − ½Y†
u�kw½Y†

e�iv
32π2

ðC eu
vjwl

þ C lu
vjwl

Þ

−
½Y†

u�wl½Y†
e�vj

32π2
ðCð1Þlq

ivkw
− 3Cð3Þlq

ivkw
Þ

−
½Y†

u�vl½Y†
e�iw

32π2
C eq

wjkv
þ…; ð38Þ

where Yu ¼ diagðyu; yc; ytÞ · V and Ye ¼ diagðye; yμ; yτÞ.
This effect is sizable for coefficients third-generation
quarks since their contribution is proportional to yt. The
tensor coefficient then mixes into dipoles [19], inducing
contributions scaling such as

CeW
ij
ðμewÞ ∝

g2Ncy2t yl
ð16π2Þ2

�
log

�
μew
Λ

��
2

C V
ij33
ðΛÞ; ð39Þ

where CV denotes one of the coefficients appearing in the
right-hand side of Eq. (38), and yl can be either yli or ylj

.
Similar expressions apply for CeB by replacing g2 → g1. We
will include these effects in our analysis in Sec. V,
which allow us to derive stringent limits on vector semi-
leptonic coefficients, with third-generation quarks, by using
lj → liγ (see also Ref. [17]).

C. Summary

Finally, we briefly summarize the loop effects that will
be considered in our phenomenological analysis in Sec. V,
which are classified in terms of a logarithmic expansion.
Firstly, for the low-energy EFT, we will consider:

(i) The one-loop mixing of the low-energy LFV oper-
ators from Ref. [16], which are proportional to

1

16π2
log

�
μlow
μew

�
; ð40Þ

as described in Eq. (14) (cf. also Ref. [19]).
(ii) The two-loop single logarithm mixing of semilep-

tonic vector and operators into leptonic dipoles
calculated in Ref. [16],

1

ð16π2Þ2 log
�
μlow
μew

�
; ð41Þ

as illustrated in Eqs. (22) and (23).
(iii) The two-loop double logarithm mixing

CðqÞ
SLL

⟶
1−loopCðqÞ

TLL
⟶
1−loopCðlÞ

DL
, which induces contribu-

tions to dipoles proportional to

1

ð16π2Þ2
�
log

�
μlow
μew

��
2

; ð42Þ

which are chirality enhanced for heavy quarks.
(iv) The finite matching contributions of scalar semi-

leptonic operators to the gluonic ones [25], as given
in Eq. (11).

For the SMEFT, we will consider:
(i) The one-loop mixing of the SMEFT operators taken

from Ref. [20], which are proportional to

1

16π2
log

�
μew
Λ

�
; ð43Þ

as shown in Eq. (30).
(ii) The double-logarithm two-loop mixing Oð1Þ

lequ⟶
1−loop

Oð3Þ
lequ⟶

1−loopOeV into dipoles, which is induced
by the product of gauge and Yukawa running, and

the Yukawa-induced fOð1;3Þ
lq ;Olu;Oeq;Oeug⟶1−loop

Oð3Þ
lequ⟶

1−loopOeV (with V ¼ W;B), which is sup-
pressed by lepton masses, but which remains
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relevant for phenomenology. These effects are pro-
portional to

1

ð16π2Þ2
�
log

�
μew
Λ

��
2

; ð44Þ

as described, e.g., in Eq. (39).
The expressions for the relevant anomalous dimensions

can be found in the references given above. Finally, we
stress once again that our analysis of two-loop contribu-
tions is not entirely self consistent and should be rather
understood as a qualitative indication of the dominant
effects, which must be refined in the future with a precise
two-loop calculation.

III. LOW-ENERGY PROBES

In this section, we provide the general expressions for the
low-energy LFVobservables in terms of the EFT defined in
Sec. II A. Firstly, we will discuss direct probes of semi-
leptonic operators at tree level in LFV meson and τ-lepton
decays in Secs. III A and III B, respectively.6 In Sec. III C,
we will then discuss the purely leptonic LFV decays, which
are sensitive to semileptonic operators at one loop,
cf. Figs. 2 and 3.

A. ql → qklilj

Firstly, we consider the leptonic and semileptonic decays
of pseudoscalar mesons. For convenience, we define the
following combinations of (axial-)vector coefficients that
will allow us to express the branching fractions in a more
compact form,

CðqÞ
VV ¼ CðqÞ

VRR
þ CðqÞ

VRL
þ ðL ↔ RÞ;

CðqÞ
AA ¼ CðqÞ

VRR
− CðqÞ

VRL
þ ðL ↔ RÞ; ð45Þ

CðqÞ
AV ¼ CðqÞ

VRR
þ CðqÞ

VRL
− ðL ↔ RÞ;

CðqÞ
VA ¼ CðqÞ

VRR
− CðqÞ

VRL
− ðL ↔ RÞ; ð46Þ

and similarly, for the (pseudo)scalar coefficients,

CðqÞ
SS ¼ CðqÞ

SRR
þ CðqÞ

SRL
þ ðL ↔ RÞ;

CðqÞ
PP ¼ CðqÞ

SRR
− CðqÞ

SRL
þ ðL ↔ RÞ; ð47Þ

CðqÞ
PS ¼ CðqÞ

SRR
þ CðqÞ

SRL
− ðL ↔ RÞ;

CðqÞ
SP ¼ CðqÞ

SRR
− CðqÞ

SRL
− ðL ↔ RÞ; ð48Þ

and for the tensor ones,

CðqÞ
T ¼ CðqÞ

TR
þ CðqÞ

TL
; CðqÞ

T5
¼ CðqÞ

TR
− CðqÞ

TL
; ð49Þ

where, for simplicity, flavor indices are omitted. The
current experimental limits on the most relevant processes
of this type are collected in Table II.

1. Leptonic decays: P → lilj

One of the simplest probes of LFV at low energies are
leptonic decays of pseudoscalar mesons. Firstly, we con-
sider decays of flavored mesons of the type P ¼ q̄kql, with
k ≠ l, such as K, D, and B mesons. The hadronic matrix
element needed to compute the decay rates reads

h0jq̄kγμγ5qljPðPÞi ¼ ifPpμ; ð50Þ

where fP denotes the P-meson decay constant, which has
been computed for the most relevant transition by means of
numerical simulations of QCD on the lattice, cf. Table III
[41]. In terms of the low-energy EFT defined in Eq. (1), the
P → lilj branching fraction then reads

BðP → l−
i l

þ
j Þ ¼ τP

f2PmPm2
lj

128πv4

�
1 −

m2
lj

m2
P

�2

×

	



CðqÞ
VA
ijkl

þ m2
P

mljðmqk þmqlÞ
CðqÞ

SP
ijkl






2

þ




CðqÞ

AA
ijkl

−
m2

P

mlj
ðmqk þmqlÞ

CðqÞ
PP
ijkl






2
�
; ð51Þ

where mP denotes the P-meson mass, and we have
assumed i < j and neglected the mass of the lightest lepton
(mli).

7 Note, also, that the sign of the interference term

between CðqÞ
VA and CðqÞ

SP changes for the decay P → lþ
i l

−
j ,

with opposite electric charges for the leptons, as it is
proportional to the difference of lepton masses, see, e.g.,
Ref. [42]. The above expressions can be used for the decays
of D and BðsÞ mesons with the appropriate replacement of
the flavor indices. Moreover, for the kaon decays
KLðSÞ → eμ, we have to take into account that

jKLðSÞi ≃ ðjK0i � jK0iÞ= ffiffiffi
2

p
, which implies that these

decays probe both K0 → eμ and K̄0 → eμ. In this case,
the above expression can be used after making the
following substitution [43]:

CðqÞ
I

ijkl
→

1ffiffiffi
2

p ðCðdÞ
I

1212

� CðdÞ
I

1221

Þ; ð52Þ

where I ∈ fVA; AA; SP; PPg, and the upper (lower) sign
corresponds to the KL (KS) decay.

6In principle, we could also consider baryon decays such as
Λb → Λlilj [36,37], but there are no experimental limits
available for these decays yet.

7See, e.g., Ref. [42] for the expression without this approxi-
mation.
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2. Leptonic decays: V → lilj

Next, we provide the expressions for the leptonic decays
V → l−

i l
þ
j of vector mesons of the type V ¼ q̄kqk, such as

V ∈ fρ;ϕ; J=ψ ;ϒg. These processes are typically much
less constraining than the other probes discussed in this

paper, since vector mesons typically have a large total
width (τV) that suppresses the LFV branching fractions
[47,48], but we also discuss them for completeness. The
relevant hadronic matrix elements can be defined as

h0jq̄kγμqkjVðp; λÞi ¼ fVmVε
μ
λðpÞ;

h0jq̄kσμνqkjVðp; λÞi ¼ ifTVðμÞ½εμλðpÞpν − ενλðpÞpμ�; ð53Þ

where mV is V-meson mass, εμλ denotes its polarization-
vector, and fV and fTV stand for the vector and tensor decay
constants, respectively. See Ref. [44–46,49–52] for lattice
QCD calculations of the relevant vector-meson decay
constants. The branching fraction can then be written in
terms of Eq. (1) as follows:

BðV → l−
i l

þ
j Þ ¼ τV

f2Vm
3
V

192πv4

�
1 −

m2
lj

m2
V

�2	�

CðqÞ
VV
ijkk



2þ

CðqÞ
AV
ijkk



2�1þ m2
lj

2m2
V

�
þ 8

�
fTV
fV

�
2�

CðqÞ

T
ijkk



2þ

CðqÞ
T5
ijkk



2�1þ 2m2
lj

m2
V

�

þ 12
mlj

mV

fTV
fV

Re½CðqÞ
T

ijkk
CðqÞ�

VV
ijkk

− CðqÞ
T5
ijkk

CðqÞ�
AV
ijkk

�
�
; ð54Þ

TABLE III. Pseudoscalar ðfPÞ and vector meson ðfVÞ decay
constants considered in our analysis.

P fPð MeVÞ Ref. V fVð MeVÞ Ref.

fπ 130.2(8) [41] fρ 209.4(1.5) [30]
fK 155.7(3) [41] fϕ 241(18) [44]
fD 212.0(7) [41] fJ=ψ 418(10) [45]
fB 190.0(1.3) [41] fϒ 649(31) [46]
fBs

230.3(1.3) [41]

TABLE II. Experimental (Exp.) limits on LFV decays considered in our analysis (95% CL). For the decays with two leptons in the
final state, we quote the limits on the sum of the branching fractions with different lepton charges, i.e., lilj ≡ l−

i l
þ
j þ lþ

i l
−
j . The dash

symbol represent decays that are kinematically allowed, but for which there is not an experimental limit yet. Experimental results
provided at (90% CL) are converted to (95% CL) following Ref. [3].

Process Exp. limit Ref. Process Exp. limit Ref. Process Exp. limit Ref.

π0 → eμ 4.8 × 10−10 [30] τ → eπ0 1.1 × 10−7 [30] τ → μπ0 1.5 × 10−7 [30]
η → eμ 8.1 × 10−6 [30] τ → eη 1.2 × 10−7 [30] τ → μη 8.7 × 10−8 [30]
η0 → eμ 6.3 × 10−4 [30] τ → eη0 2.1 × 10−7 [30] τ → μη0 1.8 × 10−7 [30]

τ → eρ0 2.4 × 10−8 [30] τ → μρ0 1.6 × 10−8 [30]
KL → eμ 6.3 × 10−12 [30] τ → eKS 3.5 × 10−8 [30] τ → μKS 3.1 × 10−8 [30]
Kþ → πþμ−eþ 1.1 × 10−10 [30] τ → eK�0 4.3 × 10−8 [30] τ → μK�0 7.9 × 10−8 [30]
KL → π0eμ 1.0 × 10−10 [30]
D0 → eμ 1.7 × 10−8 [30] τ → eD0 � � �
Dþ → πþeμ 4.5 × 10−7 [38]
Ds → Kþeμ 1.5 × 10−6 [38]
B0 → eμ 1.3 × 10−9 [30] B0 → eτ 2.1 × 10−5 [30] B0 → μτ 1.4 × 10−5 [30]
Bþ → πþeμ 1.2 × 10−7 [39] Bþ → πþeτ 1.0 × 10−4 [30] Bþ → πþμτ 9.7 × 10−5 [30]
B0 → ρ0eμ � � � B0 → ρ0eτ � � � B0 → ρ0μτ � � �
Bs → K0eμ � � � Bs → K0eτ � � � Bs → K0μτ � � �
Bs → eμ 7.2 × 10−9 [30] Bs → eτ 1.9 × 10−3 [10] Bs → μτ 4.2 × 10−5 [30]
Bþ → Kþeμ 1.8 × 10−8 [9] Bþ → Kþeτ 4.1 × 10−5 [10] Bþ → Kþμτ 4.1 × 10−5 [10]
B0 → K�eμ 1.2 × 10−8 [9] B0 → K�eτ � � � B0 → K�μτ 2.2 × 10−5 [9]
Bs → ϕeμ 2.0 × 10−8 [9] Bs → ϕeτ � � � Bs → ϕμτ � � �
ϕ → eμ 2.7 × 10−6 [30] τ → eϕ 5.5 × 10−8 [30] τ → μϕ 1.1 × 10−7 [30]
J=ψ → eμ 6.1 × 10−9 [40] J=ψ → eτ 1.0 × 10−7 [40] J=ψ → μτ 2.7 × 10−6 [30]
ϒ → eμ 5.2 × 10−7 [30] ϒ → eτ 3.6 × 10−6 [30] ϒ → μτ 3.6 × 10−6 [30]
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where we have once again assumed i < j and neglected the
light-lepton mass, mli . Note, in particular, that scalar
operators do not contribute to these decays, since the
hadronic-matrix element with a scalar density vanishes
in this case. Furthermore, we have not included the
contributions from the leptonic dipoles, as they are already
tightly constrained by lj → liγ.

3. Semileptonic decays: P → P0lilj

The P → P0l−
i l

þ
j decays (with i < j) can be generally

written in terms of the effective coefficients defined in
Eq. (1) as

BðP → P0l−
i l

þ
j Þ ¼ aVV jCðqÞ

VV j2 þ aAV jCðqÞ
AV j2 þ aTTðjCðqÞ

T j2 þ jCðqÞ
T5
j2Þ

þ aSSjCðqÞ
SS j2 þ aPSjCðqÞ

PS j2 þ aVSRe½CðqÞ
VVC

ðqÞ�
SS � þ aAPRe½CðqÞ

AVC
ðqÞ�
PS �

þ aVTRe½CðqÞ
VVC

ðqÞ�
T � þ aAT5

Re½CðqÞ
AVC

ðqÞ�
T5

�; ð55Þ

where CI are the effective coefficients, evaluated at the
relevant low-energy scale, and aI stand for numeric coef-
ficients that depend on the form factors. Flavor indices are
omitted in the above equation, for simplicity, and should be
replaced for the qk → qll−

i l
þ
j transition as follows:

CðqÞ
I → CðqÞ

I
ijkl
; ð56Þ

where I labels the Lorentz structure of the Wilson coef-
ficients. In the limit where the light-lepton mass (mli) is
neglected, we find that

aVV ≃aAV; aSS≃aPS; aVS≃−aAP; aVT ≃−aAT5
;

ð57Þ
which are valid up to Oðmli=mljÞ corrections. In the
following, we compute these numerical coefficients for
the most relevant decays based on down- and uptype

quark transitions, using the analytical expressions from
Appendix D and the P → P0 form factors described
below:

(i) dl → dkl−
i l

þ
j : Our numerical coefficients for the

downtype quark transitions are collected in Ta-
ble IV, where flavor indices are omitted for
simplicity and should be replaced following
Eq. (56). For these decays, the tensor coefficients
CTX

are highly suppressed since they only appear
at d ¼ 8 once the SUð2ÞL ×Uð1ÞY symmetry is
imposed [34], cf. also Appendix C. For this reason,
we will not quote the numerical values for the
coefficients involving tensor operators. The nu-
meric coefficients are computed using lattice QCD
form factors for the K → π [53], B → K [54]
(cf. Ref. [55]), and Bs → K [41] transitions. For
B → π decays, we have used the combined fit of
experimental [56] and lattice QCD [57] data
made in Ref. [41] to have better control of the

TABLE IV. Numerical coefficients defined in Eq. (55) for the decays P → P0l−
i l

þ
j based on the downtype transition dk → dll−

i l
þ
j

[cf. Eq. (56)]. Decays with opposite lepton electric charges in the final state can be obtained via the replacement aVS → −aVS. Moreover,
the expressions for the KLðSÞ → π0eþμ− decays are obtained through the replacement specified in Eq. (58). See text for details on the
hadronic inputs considered.

P → P0l−
i l

þ
j aVV aAV aSS aPS aVS aAP

Kþ → πþe−μþ 0.1570(11) 0.1578(11) 2.71(3) 2.72(3) −0.723ð7Þ 0.735(7)
KL → π0e−μþ 0.690(5) 0.693(5) 12.18(14) 12.23(14) −3.19ð3Þ 3.24(3)
KS → π0e−μþ 0.001208(9) 0.001213(9) 0.0213(2) 0.0214(2) −0.00558ð5Þ 0.00567(5)
Bþ → πþe−μþ 1.46(12) 1.46(12) 2.37(14) 2.37(14) −0.154ð10Þ 0.156(10)
Bþ → πþe−τþ 1.01(7) 1.01(7) 1.49(9) 1.49(9) −1.29ð8Þ 1.29(8)
Bþ → πþμ−τþ 1.00(7) 1.03(7) 1.45(8) 1.53(9) −1.17ð7Þ 1.42(8)
Bs → KSe−μþ 0.42(9) 0.42(9) 0.69(8) 0.69(8) −0.043ð8Þ 0.043(8)
Bs → KSe−τþ 0.31(4) 0.31(4) 0.43(4) 0.43(4) −0.39ð4Þ 0.39(5)
Bs → KSμ

−τþ 0.31(4) 0.32(4) 0.42(4) 0.44(4) −0.35ð4Þ 0.42(5)
Bþ → Kþe−μþ 1.92(6) 1.92(6) 2.72(7) 2.72(7) −0.209ð6Þ 0.211(6)
Bþ → Kþe−τþ 1.20(3) 1.20(3) 1.55(3) 1.55(3) −1.53ð4Þ 1.53(4)
Bþ → Kþμ−τþ 1.18(3) 1.22(3) 1.49(3) 1.60(4) −1.37ð3Þ 1.68(4)
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uncertainties associatedwith the extrapolation of the
lattice form factors to the entire physical region.8

We remind the reader that the KLðSÞ → π0e−μþ

decays have to be treated separately, since jKLðSÞi ≃
ðjK0i � jK0iÞ= ffiffiffi

2
p

[43]. Therefore, we have to
amend Eq. (55) via the replacements

CðqÞ
VXY

→
1

2
ðCðqÞ

VXY
1221

∓CðqÞ
VXY
1212

Þ; CðqÞ
SXY

→
1

2
ðCðqÞ

SXY
1221

�CðqÞ
SXY
1212

Þ;
ð58Þ

for X; Y ∈ fL;Rg, where the upper (lower) sign
corresponds to the KL (KS) decays. Similar replace-
ments must be made for the coefficients with
L ↔ R.

(ii) ul → ukl−
i l

þ
j : The only uptype transition relevant

for our study is c → ueμ, which can induce, e.g., the
decays D → πeμ and Ds → Keμ. Notice that proc-
esses with the τ-lepton are phase-space forbidden.
For the c → ueμ decays, we consider the D → π
lattice QCD form factors from Ref. [59] and the
Ds → K ones from Ref. [60],9 which allow us to
determine the numerical coefficients collected in
Table V by neglecting the electron mass.

4. Semileptonic decays: P → Vlilj

We turn now our attention to the semileptonic decays
P → Vl−

i l
þ
j with a vector meson V in the final state

decays. In this case, the branching fraction can be
expressed in terms of Eq. (1) as follows:

BðP → Vl−
i l

þ
j Þ ¼ aVV jCVV j2 þ aVAjCVAj2 þ aAV jCAV j2 þ aAAjCAAj2

þ aPPjCPPj2 þ aSPjCSPj2 þ aAPRe½CVAC�
SP� þ aASRe½CAAC�

PP�
þ aTTðjCT j2 þ jCT5

j2Þ þ aSTRe½CSPC�
T � þ aPTRe½CPPC�

T �
þ aST5

Re½CSPC�
T5
� þ aPT5

Re½CPPC�
T5
�; ð59Þ

with CI are the relevant Wilson coefficients, defined at the
relevant low-energy scale, and aI are numerical coefficients
related to the hadronic matrix elements. Flavor indices are
omitted and should be replaced as in Eq. (55). In the limit
where the light-lepton mass (mli ) is neglected, we find the
relations

aVV ≃ aAV; aAP ≃ aAS; aPT ≃ −aST5
;

aVA ≃ aAA; aPP ≃ aSP; aST ≃ −aPT5
; ð60Þ

which are once again valid up to corrections of the order
mli=mlj .
For the P → V based on the dk → dllilj transition, we

use the general analytical expressions provided in Ref. [42],
which are summarized in Appendix D 2, and the light-
cone-sum-rules form factors from Ref. [61] to obtain the ai

values collected in Table VI for the B → ρ, B → K�, and
Bs → ϕ decays (see also Ref. [62]). Once again, we do not
quote the numerical coefficients corresponding to tensor
coefficients since the corresponding effective coefficients
are necessarily suppressed once SUð2ÞL ×Uð1ÞY gauge
symmetry is imposed [34]. The only uptype decays that
would appear in this case are Dþ → ρþμ−eþ and
Ds → K�þμ−eþ, which are experimentally challenging,
and for which the form factors have not yet been deter-
mined on the lattice. For these reasons, we only report
numerical results for the P → V based on downtype quark
transitions.

B. τ → lM

The simplest LFV decays of the τ lepton into hadrons are
τ → lM, where M ¼ q̄kql can be a light pseudoscalar or
vector meson. Here, it is important to distinguish light

TABLE V. Numerical coefficients defined in Eq. (55) for the decays P → P0e−μþ based on the uptype transition c → ue−μþ. These
expressions have been obtained by neglecting the electron mass, cf. Eq. (60). See caption of Fig. 4 for details.

P → P0l−
i l

þ
j aVV ¼ aAV aSS ¼ aPS aVS ¼ −aAP aTT aVT ¼ aAT5

Dþ → πþe−μþ 0.0166(10) 0.0337(11) −0.0066ð3Þ 0.019(3) 0.0081(7)
D0 → π0e−μþ 0.00326(19) 0.0066(2) −0.00130ð5Þ 0.0038(6) 0.00160(14)
Ds → Kþe−μþ 0.00622(6) 0.00893(3) −0.002364ð8Þ 0.00377(4) 0.00250(2)

8Note, also, that we have not included effects from Bs − B̄s
mixing in the above expressions, but these could be easily
implemented following Ref. [58].

9See also the recent lattice QCD results for the D → π from
Ref. [60].
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pseudoscalar mesons P with open flavor (k ≠ l), such as
KS, from the unflavored ones (k ¼ l), such as
P∈ fπ0; η; η0g [63]. This is because the latter decays are
also sensitive to the CP-odd gluonic operators defined in
Eq. (7) in addition to the semileptonic ones. We will also
briefly discuss the τ decays into vector mesons V, such as
K�, and ρ and ω.

1. Pseudoscalar mesons: τ → lP

Firstly, we consider the τ → lP process, where P ¼ q̄kql
denotes a generic pseudoscalar meson. We discuss sepa-
rately the case where k ≠ l from the one where k ¼ l:
Flavored mesons In the first case, it is sufficient to

consider the decay constant fP defined in Eq. (50), which
allows us to write, e.g., for P ¼ KS,

Bðτ → liKSÞ ¼ ττ
f2Pm

3
τ

256πv4

�
1 −

m2
P

m2
τ

�
2

×

	



CðqÞ
VA þ m2

PC
ðqÞ
SP

mτðmQ þmqÞ





2

þ




CðqÞ

AA −
m2

PC
ðqÞ
PP

mτðmQ þmqÞ





2
�
; ð61Þ

where we have used that jKSi ≃ ðjK0i − jK0iÞ= ffiffiffi
2

p
and we

have neglected the light-lepton mass (mli), as before.
Flavor indices in the above expressions are to be replaced
as follows:

CðqÞ
I →

1ffiffiffi
2

p ðCðdÞ
I

i312
− CðdÞ

I
i321
Þ; ð62Þ

for I ∈ fVA; AA; SP; PPg. Similar expressions can be
obtained for τ → liKL by changing the relative sign of
the coefficients in the above equation. However, these
decay modes are experimentally challenging due to the KL
lifetime.

Unflavored mesons The case of light unflavored mes-
ons is rather different since there is not a simple relation
between the axial and pseudoscalar matrix elements, and
since the matrix element of the GG̃ operator does not
vanish in this case. Following Ref. [64], we define the axial
and pseudoscalar densities as follows

hPðpÞjq̄γμγ5qj0i≡ −
ifðqÞPffiffiffi

2
p pμ;

2mqhPðpÞjq̄γ5qj0i≡ −
ihðqÞPffiffiffi

2
p ; ð63Þ

hPðpÞjs̄γμγ5sj0i≡−ifðsÞP pμ; 2mshPðpÞjs̄γ5sj0i≡−ihðsÞP ;

ð64Þ

and

hPðpÞj αs
4π

GμνG̃
μνj0i≡ aP; ð65Þ

where q ¼ u or d, and exact isospin symmetry is assumed,
with mq ≡ ðmu þmdÞ=2. The π0 pseudoscalar density is

given in this limit by hðuÞπ ¼ −hðdÞπ ¼ fπm2
π, and the

anomaly contribution can be computed by taking the
divergence of the axial current [65],

aπ ¼ −
1 − z
1þ z

fπm2
πffiffiffi

2
p ; ð66Þ

where z ¼ mu=md. For ηð0Þ, we rely on the computation of

aηð0Þ , f
ðqÞ
ηð0Þ
, and hðqÞ

ηð0Þ
from the so-called Feldmann–Kroll–

Stech (FKS) mixing scheme [64,66], which leads to the
phenomenological estimations collected in Table VII. The
final branching fraction for P∈ fπ0; η; η0g thus reads

Bðτ→liPÞ¼ ττ
m3

τ

256πv4

�
1−

m2
P

m2
τ

�
2

½jAτ→liP
V j2þjAτ→liP

A j2�;

ð67Þ

TABLE VI. Numerical coefficients defined in Eq. (55) for the decays P → Vl−
i l

þ
j based on the downtype transition dk → dll−

i l
þ
j .

Flavor indices are omitted and should be replaced as in Eq. (56). Decays with opposite lepton electric charges in the final state can be
obtained via the replacement aAP → −aAP. See text for details on the hadronic inputs considered.

P → Vll aVV aVA aAV aAA aPP aSP aAP aAS

B0 → ρe−μþ 0.62(10) 2.9(6) 0.62(10) 2.9(6) 1.1(2) 1.1(2) 0.12(2) −0.12ð2Þ
B0 → ρe−τþ 0.32(5) 1.6(3) 0.32(5) 1.6(3) 0.49(9) 0.49(9) 0.63(12) −0.63ð12Þ
B0 → ρμ−τþ 0.35(6) 1.6(3) 0.31(5) 1.5(3) 0.52(10) 0.47(9) 0.56(11) −0.71ð13Þ
B0 → K�0e−μþ 0.68(11) 3.4(5) 0.68(11) 3.4(5) 1.06(15) 1.06(15) 0.127(17) −0.128ð18Þ
B0 → K�0e−τþ 0.34(5) 1.8(3) 0.33(5) 1.8(3) 0.46(7) 0.46(7) 0.62(9) −0.62ð9Þ
B0 → K�0μ−τþ 0.35(6) 1.9(3) 0.31(5) 1.8(3) 0.48(7) 0.43(7) 0.54(8) −0.69ð10Þ
Bs → ϕe−μþ 0.58(5) 3.7(5) 0.58(5) 3.7(5) 1.21(17) 1.21(17) 0.15(2) −0.15ð2Þ
Bs → ϕe−τþ 0.29(2) 1.9(2) 0.29(2) 1.9(2) 0.51(7) 0.51(7) 0.71(10) −0.71ð10Þ
Bs → ϕμ−τþ 0.30(3) 1.9(3) 0.27(2) 1.8(2) 0.53(8) 0.48(7) 0.62(9) −0.79ð11Þ
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with

Aτ→liP
V ¼

X
qk¼u;d;s

bqk

�
fðqkÞP CðqÞ

VA
i3kk

þ hðqkÞP

2mτmqk

CðqÞ
SP
i3kk

�

− i
2aP
v2

ðC̃GR
− C̃GL

Þ; ð68Þ

Aτ→liP
A ¼

X
qk¼u;d;s

bqk

�
fðqkÞP CðqÞ

AA
i3kk

−
hðqkÞP

2mτmqk

CðqÞ
PP
i3kk

�

þ i
2aP
v2

ðC̃GR
þ C̃GL

Þ; ð69Þ

where k spans the light-quark flavors (i.e., qk ∈ fu; d; sg)
and we have neglected the light-lepton mass, mli . The

prefactors bq are given by buðdÞ ¼ 1=
ffiffiffi
2

p
and bs ¼ 1 for

P ¼ ηð0Þ, and bu ¼ −bd ¼ 1=
ffiffiffi
2

p
and bs ¼ 0 for P ¼ π0.

The CðlÞ
GL

and CðlÞ
G̃L

coefficients are generated by heavy

quarks at one loop, cf. Eq. (11).

2. Vector mesons: τ → lV

Lastly, we consider the decays τ → lV, where V ¼ q̄kql
denotes a generic vector meson such as V ∈ fK�;ω; ρ;ϕg.
By using the decay constants defined in Eq. (53), we can
show that

Bðτ → liVÞ ¼ ττ
f2Vm

3
τ

256πv4

�
1 −

m2
V

m2
τ

�
2
	
½jCðqÞ

VV
i3kl
j2 þ jCðqÞ

AV
i3kl
j2�
�
1þ 2m2

V

m2
τ

�
þ 32

�
fTV
fV

�
2

½jC̄ðqÞ
T
i3kl
j2 þ jC̄ðqÞ

T5
i3kl

j2�
�
1þ m2

V

2m2
τ

�

þ 24
mV

mτ

fTV
fV

Re½C̄ðqÞ
T
i3kl
CðqÞ�

VV
i3kl

− C̄ðqÞ
T5
i3kl

CðqÞ�
AV
i3kl

�
�
; ð70Þ

with

C̄ðqÞ
T

i3kl
≡ CðqÞ

T
i3kl

− δkleQq
mτfV
mVfTV

ðCðlÞ
DR
i3

þ CðlÞ
DL
i3
Þ; ð71Þ

C̄ðqÞ
T5
i3kl

≡ CðqÞ
T5

− δkleQq
mτfV
mVfTV

ðCðlÞ
DR
i3

− CðlÞ
DL
i3
Þ; ð72Þ

where Qq denotes the qk;l electric charges, and we have
neglected again the light-lepton mass, mli . For V ∈ fρ;ωg,
in the isospin limit, we have to perform the following trivial
replacements in the above expression:

CðqÞ
I →

V¼ρ 1ffiffiffi
2

p ðCðuÞ
I

i311
− CðdÞ

I
i311
Þ;

CðqÞ
I →

V¼ω 1ffiffiffi
2

p ðCðuÞ
I

i311
þ CðdÞ

I
i311
Þ; ð73Þ

where I ∈ fVV; AV; T; T5g.

C. lj → liγ and lj → lilklk

We now turn our discussion to purely leptonic observ-
ables (see, e.g., Ref. [15,16,67] for previous EFT studies).
These processes receive contributions from semileptonic
operators at loop level, as illustrated in Fig. 3. The

experimental limits considered in our analysis are collected
in Table VIII.
Radiative decays The simplest of these processes is the

radiative decay lj → liγ with i < j, where the photon is on
shell. This process is described by

Bðlj → liγÞ ¼
τljm

5
lj

4πv4
ðjCðlÞ

DL
ij
j2 þ jCðlÞ

DR
ij
j2Þ; ð74Þ

where we have neglected the lightest lepton mass, as
before.
Three-body decays The l−

j → l−
i l

þ
k l

−
k decays receive

contributions from the dipole operators, in addition to
operators with four leptons. We distinguish the case where
j > i ¼ k from j > i ≠ k which have slightly different
expressions. In the first case (i.e., τ− → e−eþeþ and
τ− → μ−μþμþ) [15],

TABLE VII. Hadronic inputs for ηð0Þ obtained in Refs. [64,66]
by using the FKS scheme.

P fðqÞP ð MeVÞ fðsÞP ð MeVÞ hðqÞP ðGeV3Þ hðsÞP ðGeV3Þ aPðGeV3Þ
η 108(3) −111ð6Þ 0.001(3) −0.055ð3Þ −0.022ð2Þ
η0 89(3) 136(6) 0.001(2) 0.068(5) −0.057ð2Þ

TABLE VIII. Experimental limits on purely leptonic LFV
decays at 95% CL [30].

Process Exp. limit Process Exp. limit Process Exp. limit

μ → eγ 5.6 × 10−13 τ → eγ 4.4 × 10−8 τ → μγ 5.6 × 10−8

μ → eee 1.3 × 10−12 τ → eee 3.6 × 10−8 τ → μμμ 2.8 × 10−8

τ → eμμ 3.6 × 10−8 τ → μee 2.4 × 10−8
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Bðl−
j → l−

i l
þ
i l

−
i Þ ¼

τlj
m5

lj

1536π3v4

	
2jCðlÞ

VLL
ijii
j2 þ jCðlÞ

VLR
ijii
j2 þ 64e2

�
log

mlj

mli

−
11

8

�
jCðlÞ

DL
ij
j2

þ 8eRe½CðlÞ
DR
ij
ð2CðlÞ

VLL
ijii

þ CðlÞ
VLR
ijii
Þ�� þ ðL ↔ RÞ

�
; ð75Þ

where the light lepton masses are neglected in the above expression, except in the dipole term, which would otherwise be
infrared divergent. Note, also, that we have not included the contributions from the scalar coefficients CSXY (with
X; L∈ fL; Rg), as they are not induced by d ¼ 6 operators in the SMEFT, cf. Appendix C.
A similar expression can be obtained for the decays with j > i ≠ k (i.e., τ− → μ−eþe− and τ− → e−μþμ−), which has no

identical particles in the final state [15],

Bðl−
j → l−

i l
þ
k l

−
k Þ ¼

τlj
m5

lj

1536π3v4

	
jCðlÞ

VLL
ijkk
j2 þ jCðlÞ

VLR
ijkk
j2 þ 64e2

�
log

mlj

mlk

−
3

2

�
jCðlÞ

DL
ij
j2

þ 8eRe½CðlÞ
DR
ij
ðCðlÞ

VLL
ijkk

þ CðlÞ
VLR
ijkk
Þ�� þ ðL ↔ RÞ

�
; ð76Þ

where we have kept the mass mlk in the logarithmic term,
which regularizes the infrared divergence coming from the
photon propagator in the squared dipole term. Moreover, we
neglect mli in this expression. We do not include the contri-
butions from the scalarCSXY and tensorCTX

coefficients (with
X; L∈ fL; Rg), as before, since they do not appear in the tree-
level matching to the SMEFT, as shown in Appendix C.

D. μN → eN

Lastly, we discuss μ → e conversion in nuclei, which has
been thoroughly studied within the EFT approach, e.g., in
Ref. [68,69]. The nucleon effective coefficients are given in
terms of our Wilson coefficients as follows [69]:

C̃VX
ðpÞ ¼

X
qk¼u;d;s

X
Y¼L;R

CðqÞ
VXY
12kk

fðqkÞVp ;

C̃SX
ðpÞ ¼

X
qk¼u;d;s

X
Y¼L;R

mp

mqk

CðqÞ
SXY
12kk

fðqkÞSp þmμmp

4πv2
CðlÞ

GX
12

fGp; ð77Þ

where X ¼ L;R, with analogous expressions for p ↔ n.
The effective coefficients are evaluated at μ ≈ 1 GeV, thus
including contributions from scalar operators made of
heavy quarks [25], as described in Eq. (11). For the vector
current, the nucleon form factors are given by

fðuÞVp ¼ fðdÞVn ¼ 2, fðdÞVp ¼ fðuÞVn ¼ 1 and fðsÞVp ¼ fðsÞVn ¼ 0. We
consider the numerical results for the scalar form factors
from Ref. [16], which are based on Ref. [70],

fðuÞSp ¼ð20.8�1.5Þ×10−3; fðuÞSn ¼ð18.9�1.4Þ×10−3;

ð78Þ

fðdÞSp ¼ð41.1�2.8Þ×10−3; fðuÞSn ¼ð45.1�2.7Þ×10−3;

ð79Þ

fðsÞSp ¼ fðsÞSn ¼ ð53� 27Þ × 10−3; ð80Þ
with the gluonic form factors given by

fGpðnÞ ¼ −
8π

9

�
1 −

X
q¼u;d;s

fðqÞSpðnÞ

�
: ð81Þ

The μ → e conversion rate normalized by the muon capture

rate ðΓcaptÞ is denoted by BðNÞ
μe and it can be written in terms

of nucleon EFT Wilson coefficients as follows [69]:

BðNÞ
μe ¼ m5

μ

4υ4ΓðNÞ
capt

jCðlÞ
DL
DNþ2½C̃VR

ðpÞV
ðpÞ
N þC̃SL

ðpÞS
ðpÞ
N þðp→nÞ�j2

þðL↔RÞ: ð82Þ
For the nuclear-physics inputs, we consider the results of

Ref. [68] (see also Ref. [71]), which are summarized in
Table IX, and the nuclear capture rates determined exper-
imentally [72],

ΓðAlÞ
capt ≃6.99×10−7 ps−1; ΓðAuÞ

capt ≃1.32×10−5 ps−1: ð83Þ
Currently, the most stringent experimental limit is

BðAuÞ
μe < 7 × 10−13 (90% CL.), which was set by the

SINDRUM-II experiment [73]. The experimental sensitiv-
ity is planned to be considerably improved in the near
future by the Mu2e experiment at Fermilab [5] and
COMET [7] at J-PARC, which are expected to reach a
sensitivity of Oð10−17Þ with aluminum atoms.

TABLE IX. Overlap integrals for gold and aluminum atoms
from Ref. [71].

Nuclei D VðpÞ VðnÞ SðpÞ SðnÞ

Au 0.189 0.0974 0.146 0.0614 0.0918
Al 0.0362 0.0161 0.0173 0.0155 0.0167
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IV. HIGH-ENERGY PROBES

In this section, we describe the high-energy probes of
LFV in terms of the SMEFT Lagrangian defined in
Eq. (24). We will consider the decays of the Z boson,
the Higgs boson, and the top quark, which are subject to the
experimental limits collected in Table X. Furthermore, we
will briefly discuss the Drell–Yan processes pp → lilj at
the LHC that are sensitive to nonresonant contributions
from the SMEFT operators.

A. Z → lilj

The Z-boson LFV decays receive contributions at tree

level from the effective coefficients Cð1ÞHl and C
ð3Þ
Hl , as well as

the dipoles CeB and CeW , which are both sensitive to one-
loop contributions from semileptonic operators (see, e.g.,
Ref. [80]),10

BðZ→l−
i l

þ
j Þ¼

τZm3
Zv

2

24πΛ4
½jCð1þ3Þ

Hl
ij

j2þjCHe
ij
j2þjCeZ

ij
j2þjCeZ

ji
j2�;
ð84Þ

where we define CeZ ≡ − cos θWCeW − sin θWCeB, θW as

the Weinberg angle, and Cð1�3Þ
Hl ≡ Cð1ÞHl � Cð3ÞHl . The Z-boson

mass and lifetime are denoted by mZ and τZ, respectively,
and we neglect lepton masses in the above expression. We
notice that far more stringent constraints on CeW and CeB
can be obtained by the lj → liγ processes. However, these

observables can still provide useful constraints on Cð1;3ÞHl and

CHe. The latter coefficients are related to Cð1;3Þlq and Ceu,
respectively, with third-generation quarks, through the
RGE effects depicted in Fig. 3, cf., e.g., Ref. [22].

B. h → lilj

The Higgs boson decays are also efficient probes of LFV
[81] (see also Ref. [82]). The only SMEFT d ¼ 6 operator
that contributes at tree level to this process is OeH, which
can receive sizable one-loop contributions from the scalar
operator Cledq through RGEs [29]. After electroweak-
symmetry breaking, this contributes not only to the

Higgs coupling to leptons, but it also induces a nondiagonal
contribution to the fermion masses,

LSMEFT ⊃
1

Λ2
CeH

ij
ðl̄iejHÞðH†HÞ þ H:c:

→
hHi≠0 v3

2
ffiffiffi
2

p
Λ2

CeH
ij
ðl̄iPRljÞ

�
1þ 3

h
v
þ 3

h2

v2
þ h3

v3

�

þ H:c:; ð85Þ
which must be reabsorbed by a rotation of the lepton fields.
The effective Higgs coupling to leptons is then given by11

yeffe
ij

≡ ffiffiffi
2

p mli

v
δij −

v2

Λ2
C�eH

ji
; ð86Þ

which implies that

BðH → l−
i l

þ
j Þ ¼

τhv4mh

32πΛ4
½jCeH

ij
j2 þ jCeH

ji
j2�; ð87Þ

where the lepton masses have been neglected, and mh and
τh denote the Higgs-boson mass and lifetime, respectively.

C. t → clilj

The top-quark decays t → clilj can also be used to
probe LFV at high energies [83]. The current experimental
precision only allows us to consistently probe tree-level
contributions, cf. Table X. The branching fractions for these
decays are given by

Bðt → cl−
i l

þ
j Þ

¼ τtm5
t

1536π3Λ4

�
jC0ð1−3Þlq

ij23
j2 þ jC0eq

ij23
j2 þ jC eu

ij23
j2 þ jC lu

ij23
j2

þ 1

4
ðjC0ð1Þlequ

ij23
j2 þ jC0ð1Þlequ

ji32
j2Þ þ 12ðjC0ð3Þlequ

ij23
j2 þ jC0ð3Þlequ

ji32
j2Þ

�
; ð88Þ

where lepton and charm-quark masses have been neglected,
and mt and τt denote the top-quark mass and lifetime,
respectively. We use once again the shorthand notation

Cð1�3Þ
lq ¼ Cð1Þlq � Cð3Þlq , and we define the primed Wilson

coefficients as follows:

TABLE X. Experimental limits on LFV decays of the Z boson, Higgs, and top quark at 95% CL. Note that the decays with opposite
lepton charges are combined, i.e., lilj ≡ lþ

j l
−
i þ l−

j l
þ
i .

Process Exp. limit Ref. Process Exp. limit Ref. Process Exp. limit Ref.

Z → eμ 2.6 × 10−7 [74] Z → eτ 5.0 × 10−6 [30] Z → μτ 6.5 × 10−6 [30]
h → eμ 4.4 × 10−5 [75] h → eτ 2.0 × 10−3 [76] h → μτ 1.5 × 10−3 [30]
t → ceμ 2.6 × 10−6 [77] t → ceτ 1.9 × 10−5 [78] t → cμτ 1.1 × 10−6 [79]

10We note that the orthogonal combination Ceγ ≡ −sWCeW þ
cWCeB of the dipole coefficients is already tightly constrained by
li → ljγ.

11See Appendix E for a discussion of Yukawa coupling
running in the SM.
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C0ð1−3Þlq ≡ VCð1−3Þlq V†;

C0eq ≡ VCeqV†;

C0ð1Þlequ ≡ VCð1Þlequ;

C0ð3Þlequ ≡ VCð3Þlequ; ð89Þ

where the CKM matrix (V) acts on quark-flavor indices,

e.g., C0ð1Þlequ
ijkl

≡P
k0 Vkk0C

ð1Þ
lequ
ijk0 l

. Analogous expressions apply to

the t → ulilj decays.

D. pp → lilj

The study of pp → l−
i l

þ
j at high-pT can also provide

useful probes of LFV in semileptonic operators since these
EFT contributions are energy enhanced at the tails of the
distributions [84]. The qlq̄k → l−

i l
þ
j partonic cross section

(with q ¼ u; d) can be written as [85]

σ̂ðqlq̄k → l−
i l

þ
j Þ ¼

ŝ
144πv4

X
IJ

CðqÞ�I ΩIJC
ðqÞ
J ; ð90Þ

where ŝ is the partonic center-of-mass energy, and CðuÞ and
CðdÞ are vectors of effective coefficients [47,48],12

C⃗ðuÞ ¼ �
C0ð1−3Þlq

ijkl
; C lu

ijkl
; C0eq

ijkl
; C eu

ijkl
; C0ð1Þlequ

ijkl
; C0ð1Þ�lequ

jilk
; C0ð3Þlequ

ijkl
; C0ð3Þ�lequ

jilk


; ð91Þ

C⃗ðdÞ ¼ �
Cð1þ3Þ

lq
ijkl

; C ld
ijkl
; C eq

ijkl
; C ed

ijkl
; Cledq

ijkl
; C�ledq

jilk
; 0; 0


; ð92Þ

where the primed effective-coefficients appearing in C⃗ðuÞ

are defined in Eq. (89). Moreover, Ω is a 8 × 8 matrix that
takes a diagonal form ΩIJ ¼ ΩIδIJ for the full partonic
cross section,

Ω ¼ diagð1; 1; 1; 1; 3=4; 3=4; 4; 4Þ: ð93Þ

The Drell–Yan cross section is given by the convolution
of (90) with the parton luminosity functions,

σðpp → l−
i l

þ
j Þ ¼

X
k;l

Z
dŝ
s
Lqkq̄l σ̂ðqkq̄l → l−

i l
þ
j Þ; ð94Þ

where

Lqkq̄lðŝÞ≡
Z

1

ŝ=s

dx
x

�
fqkðx; μFÞfq̄l

�
ŝ
sx

; μF

�
þ ðqk ↔ q̄lÞ

�
;

ð95Þ
wherefqk and fq̄l are the parton distribution functions (PDFs)
of qk and q̄l, and μF denotes the factorization scale. In this
paper, we consider the constraints on SMEFT operators
derived in the HighPT package [86] through an appropriate
recast of the latest CMS search (with 140 fb−1) for heavy
resonances decaying into LFV lepton pairs [87].

TABLE XI. Lower limits on Λ in TeVunits (for C ¼ 1) derived from LFVobservables for each effective coefficient (coeff.) coupled to
third-generation couplings that contributes to the μ → e transition. The cells highlighted in gray correspond to the most stringent limits
on each operator. The dashes denote processes that are not sensitive to a given coefficient within the approximations described in Sec. II.
The asterisks denote upper limits for which the SMEFT is not the valid description, i.e., with Λ=

ffiffiffiffiffiffijCjp ≲ v=
ffiffiffiffiffi
4π

p
. The symbols in

superscript identify the order of the leading contribution for each operator in the logarithmic expansion described in Sec. II C: tree level

(no symbol), one-loop single logarithm (•), two-loop double logarithm (••), and two-loop single logarithm (⋄⋄); as well as the one-loop
matching of gluonic operators (□).

Lower limits on Λ (for C ¼ 1)

Coeff. s → deμ b → deμ b → seμ μ → eγ μ → eee μN → eN Z → eμ h → eμ pp → eμ

Cð1þ3Þ
lq

1233

� � 1.0 TeV• 69 TeV•• 14 TeV• 44 TeV• � � � � 2.5 TeV

Cð1–3Þlq
1233

� � � � � � � � � 100 TeV•• 70 TeV• 200 TeV• 2.0 TeV• � � � � � �
C eq

1233
� � � � � � � � � 69 TeV•• 70 TeV• 210 TeV• 2.1 TeV• � � � 2.5 TeV

C eu
1233

� � 0.6 TeV• 69 TeV•• 71 TeV• 220 TeV• 2.1 TeV• � � � � � �
C lu

1233
� � 0.6 TeV• 69 TeV•• 70 TeV• 220 TeV• 2.1 TeV• � � � � � �

C ld
1233

� � � � � � � � � 3.7 TeV⋄⋄ 17 TeV• 43 TeV• � � � � 2.5 TeV
C ed

1233
� � � � � � � � � 4.6 TeV⋄⋄ 17 TeV• 43 TeV• � � � � 2.5 TeV

Cð1Þlequ
1233

� � � 3.2 × 103 TeV•• 600 TeV•• 580 TeV•• � 7.6 TeV• � � �

Cð3Þlequ
1233

� � � � � � � � � 4.0 × 104 TeV• 8.4 × 103 TeV• 8.2 × 103 TeV• 1.0 TeV• � � � � � �
Cledq

1233
� 2.2 TeV• 3.7 TeV• 23 TeV⋄⋄ 5.1 TeV⋄⋄ 57 TeV□ � � � � 2.4 TeV

12The zeros in the CðdÞ reflect the fact there are no tensor
effective coefficients for the di → djll transition at d ¼ 6 in the
SMEFT [34].
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V. NUMERICAL RESULTS

A. LFV from top-quark loops

In this section, we illustrate our results by considering EFT
scenarios with semileptonic operators only involving third-
generation quarks at high energies. This choice is motivated
by minimal flavor violation [88] or the Uð2Þ5 flavor sym-
metry [89] (see also Ref. [90]), in which the couplings to
quarks are hierarchical. This example is also convenient from
a pragmatic point of view since the various quark-level
transitions become related through RGE effects induced,
e.g., by the top-quark Yukawa, allowing us to compare the
sensitivity of different observables with a minimal set of
Wilson coefficients.
With the assumption that only the effective operators

made of third-generation quarks are present at the scale
Λ ≫ v, we have derived constraints on Λ (for C ¼ 1) for
each semileptonic operator appearing in Table I, by using

the various processes that receive contributions at tree-
and loop-level, cf. Figs. 2 and 3. We collect these results in
Tables XI–XIII for the μ → e, τ → e, and τ → μ transi-
tions, respectively, in which the superscript symbols are
used to distinguish the origin of the leading contribution
for each operator. We find that the different low-energy
processes are complementary in probing these operators
through loop-level contributions, which can appear at one
or two loops. The only relevant constraints at tree level for
such scenarios are the high-pT processes pp → lilj

[47,48,85,86]. By inspecting Tables XI–XIII, we arrive
at the following conclusions:

(i) μ → e: For the μ → e transition, the dominant
bounds come from the experimental limits on
the purely leptonic processes μ → eγ and
μ → eee, as well as on the μ → e conversion in
nuclei (see Ref. [16,17]). More specifically, we find

TABLE XII. Same as Table XI for the τ → e transition.

Lower limits on Λ (for C ¼ 1)

Coeff. b → deτ b → seτ τ → eγ τ → ell τ → eP τ → eV Z → eτ h → eτ pp → eτ

Cð1þ3Þ
lq

1333

� � 0.9 TeV•• 0.7 TeV• � 0.8 TeV• � � � � 1.8 TeV

Cð1–3Þlq
1333

� � � � � � 1.7 TeV•• 2.6 TeV• 2.2 TeV• 3.1 TeV• 0.8 TeV• � � � � � �
C eq

1333
� � 0.9 TeV•• 2.7 TeV• 2.2 TeV• 3.0 TeV• 0.9 TeV• � � � 1.8 TeV

C eu
1333

� � 0.9 TeV•• 2.7 TeV• 2.2 TeV• 2.9 TeV• 0.8 TeV• � � � � � �
C lu

1333
� � 1.0 TeV•• 2.7 TeV• 2.2 TeV• 2.9 TeV• 0.8 TeV• � � � � � �

C ld
1333

� � � � � � � 0.7 TeV• � 0.8 TeV• � � � � 1.8 TeV
C ed

1333
� � � � � � � 0.7 TeV• � 0.8 TeV• � � � � 1.8 TeV

Cð1Þlequ
1333

� � 15 TeV•• 3.6 TeV•• � 2.4 TeV•• � 2.5 TeV• � � �

Cð3Þlequ
1333

� � � � � � 300 TeV• 93 TeV• � 69 TeV• � � � � � � �
Cledq

1333
� � � � 0.9 TeV□ � � � � � 1.7 TeV

TABLE XIII. Same as Table XI for the τ → μ transition.

Lower limits on Λ (for C ¼ 1)

Coeff. b → dμτ b → sμτ τ → μγ τ → μll τ → μP τ → μV Z → μτ h → μτ pp → μτ

Cð1þ3Þ
lq

2333

� � 0.8 TeV•• 0.7 TeV• � 0.7 TeV• � � � � 2.3 TeV

Cð1–3Þlq
2333

� � � � � � 1.5 TeV•• 2.8 TeV• 2.0 TeV• 3.5 TeV• 0.7 TeV• � � � � � �
C eq

2333
� � 0.8 TeV•• 2.9 TeV• 1.9 TeV• 3.3 TeV• 0.8 TeV• � � � 2.4 TeV

C eu
2333

� � 0.8 TeV•• 2.9 TeV• 1.9 TeV• 3.1 TeV• 0.8 TeV• � � � � � �
C lu

2333
� � 0.9 TeV•• 2.9 TeV• 2.0 TeV• 3.1 TeV• 0.8 TeV• � � � � � �

C ld
2333

� � � � � � � 0.8 TeV• � 0.8 TeV• � � � � 2.4 TeV
C ed

2333
� � � � � � � 0.8 TeV• � 0.8 TeV• � � � � 2.4 TeV

Cð1Þlequ
2333

� � 13 TeV•• 4.0 TeV•• � 2.8 TeV•• � 2.7 TeV• � � �

Cð3Þlequ
2333

� � � � � � 280 TeV• 100 TeV• � 77 TeV• � � � � � � �
Cledq

2333
� � � � 0.9 TeV□ � � � � � 2.2 TeV
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that the best constraints on the vector-type operators

fCð1Þlq ; C
ð3Þ
lq ; Ceq; Ceu; Clu; Cldg come from μN → eN,

which receives contributions from one-loop penguin
diagrams and Yukawa induced mixing, cf. Figs. 2
and 3. For the scalar operator Cledq, we find that the
most stringent constraint comes from the one-loop

finite contribution to the gluonic operators OðlÞ
GX

(cf. Fig. 1), which is again strictly constrained by

μN → eN. Lastly, the tensor Cð3Þlequ and the scalar C
ð1Þ
lequ

are better constrained by μ → eγ via the one-loop
ðT → DlÞ and the two-loop double-logarithm

mixings ðS → T → DlÞ, which supersede the con-
straints from μN → eN and give the most stringent
constraint in Table XI, probing scales as large as
Oð104 TeVÞ. This canbeunderstood from the chirality
enhancement (∝ mt=mμ) of the one-loop tensor con-
tribution to the dipole operators entering μ → eγ [29].

(ii) τ → l (with l ¼ e, μ): For the τ → l transitions
(with l ¼ e, μ), there is an even more pronounced
complementarity between the various experimental
probes that are available. We find that the most
stringent constraints come from the τ → lP and
τ → lV decays, which are induced at loop level,

FIG. 4. Constraints on selected μ → e semileptonic Wilson coefficients, associated to third-generation quarks, derived to 95%
accuracy from μN → eN (blue), μ → eee (orange), and μ → eγ (magenta), cf. Table XI. The combined constraint is shown in green in
the upper left and bottom right panels. The EFT cutoff is fixed to Λ ¼ 1 TeV.
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or from the LHC searches for pp → lτ at high pT ,
which receives tree-level contributions in our setup.
The τ-lepton decays are particularly useful to probe
the vector operators containing the top quark (i.e.,

Cð1–3Þlq ; Ceq; Ceu; Clu), which mixes into operators such
as ðμ̄γμτÞðq̄γμqÞ (with q ¼ u, d, s) via gauge-induced
penguins, as well as the Yukawa running depicted in
Fig. 3. Instead, for the vector operators containing the

b quark (i.e., Cð1þ3Þ
lq ; Cld; Ced), these contributions are

smaller, giving constraints that are weaker than the

tree-level ones arising from Drell–Yan processes.

Finally, we find once again that the tensor Cð3Þlequ and

the scalar Cð1Þlequ are tightly constrained thanks to their
chirality-enhanced contributions to τ → lγ at one
and one-loop squared, respectively.

It is important to stress that K- and B-meson decays
are not competitive with the other constraints depicted in
Tables XI–XIII because of our assumption on the quark-
flavor content of the operators appearing at theΛ scale. Since
the only source of quark-flavor violation that we introduce is

FIG. 5. Constraints on selected τ → μ semileptonic Wilson coefficients, associated to third-generation quarks, derived to 95%
accuracy from pp → μτ (red), τ → μll (orange), τ → μV (purple), τ → μP (gray), and τ → μγ (magenta), cf. Table XIII. The combined
constraint is shown in green in the upper left, upper right, and bottom right panels. The EFT cutoff is fixed toΛ ¼ 1 TeV. Similar results
are obtained for the τ → e decays, which are not shown above.
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the top Yukawa, we find that the s → d, b → d, and b → s
decays are suppressed by VtsV�

td, VtbV�
td, and VtbV�

ts,
respectively. For this reason, we are not able to obtain
meaningful constraints from these processes. However, it is
clear that these observables can be useful to probe scenarios
with different flavor assumptions, with several concrete
examples recently studied in the context of leptoquark
models [36,91–93].
For the sake of comparison, we also quote the limits that

we derive from the ϒ → lilj decays at tree level
(cf. Table II). For instance, for the Ced Wilson coefficients,

Λffiffiffiffiffiffiffiffiffiffiffi
jC ed

1233
j

q ≳ 0.5 TeV;
Λffiffiffiffiffiffiffiffiffiffiffi
jC ed

1333
j

q ≳ 0.3 TeV;

Λffiffiffiffiffiffiffiffiffiffiffi
jC ed

2333
j

q ≳ 0.3 TeV; ð96Þ

which aremuchweaker than the loop constraints collected in
Tables XI–XIII. Similar conclusions can be derived for the
other operators that contribute to quarkonium decays at tree
level. This exercise demonstrates once again the importance
of accounting for the loop constraints discussed in this paper
for the quark-flavor conserving operators made of c and b
quarks, which allow us to derive far better constraints, e.g.,
via μ → e conversion in nuclei or the various τ-lepton LFV
decays. These limits are also superseded by the Drell–Yan
constraints, as shown in Tables XI–XIII and as previously
discussed in Refs. [47,48].
The complementarity between the different types of

processes is more striking when more than one Wilson
coefficient is simultaneously present, as it is in fact predicted
in several concrete scenarios (cf. Sec. V B). In Fig. 4, we plot
constraints from μ → e observables on selected pairs of
effective coefficients to illustrate this complementarity. In
particular, we find that it is necessary to consider more than

one μ → e observable to remove flat directions that could

appear, e.g., in the Cð1Þlq vs Cð3Þlq (upper left) and Cð1Þlequ vs Cledq
(bottom right) planes. Other combinations of effective cou-

plings are dominated by a single observable, such as Cð1Þlequ vs

Cð3Þlequ (upper right) and Ced vs Cld (bottom left). Similar
conclusions hold for the τ → μ observables, as shown in
Fig. 5, where the pp → μτ bounds play an important role in
constraining potential flat directions. Notice that we do not
show the analogous plot for the τ → e transition since it has
the same qualitative features as Fig. 5.
Lastly, we have also performed a numerical comparison

of our results for the observables that have been imple-
mented in flavio [94], by using the RGEs from the
wilson package [95]. These observables are the LFV
decays of theK andBmesons, the purely leptonic processes
l → l0γ and l → 3l0, as well as μN → eN and LFV decays
of the Z boson. These packages are based on numerical
integration of the one-loop RGEs, thus resumming the
logarithms, which is a very useful cross-check of our
numerical results. We find an overall good agreement
between our results for the relevant Wilson coefficients,
with deviations smaller than ≈20% in most cases.13

However, there are a few disagreements that we fully
understand. For instance, for the coefficient Cledq, we
find more stringent constraints, e.g., from τ → lP than
flavio, which can be traced back to the higher-
dimensional gluonic operators that contribute to these
processes via the (finite) one-loop effects depicted in
Fig. 1. Another discrepancy that we have encountered
concerns the contributions from Ced and Cld from
μ → eγ, which are a factor of Oð10Þ stronger for us.

TABLE XIV. Bosonic mediators that can induce the semileptonic LFVoperators at tree level are classified in terms of the SM quantum
numbers, ðSUð3Þc; SUð2ÞL; YÞ, with Q ¼ Y þ T3 as hypercharge convention. The tree-level matching between these concrete models
and the SMEFT is provided in Appendix F.

Field Spin Quantum numbers Cð1Þlq Cð3Þlq Clu Cld Ceq Ceu Ced Cledq Cð1Þlequ Cð3Þlequ

Φ0 0 ð1; 2; 1=2Þ ✓ ✓
Z0 1 (1,1,0) ✓ ✓ ✓ ✓ ✓ ✓
V 1 (1,3,0) ✓
S1 0 ð3̄; 1; 1=3Þ ✓ ✓ ✓ ✓ ✓

S̃1 0 ð3̄; 1; 4=3Þ ✓

S3 0 ð3̄; 3; 1=3Þ ✓ ✓

R2 0 ð3; 2; 7=6Þ ✓ ✓ ✓ ✓

R̃2 0 ð3; 2; 1=6Þ ✓

U1 1 ð3; 1; 2=3Þ ✓ ✓ ✓ ✓

Ũ1 1 ð3; 1; 5=3Þ ✓

V2 1 ð3̄; 2; 5=6Þ ✓ ✓ ✓

Ṽ2 1 ð3̄; 2;−1=6Þ ✓

U3 1 ð3; 3; 2=3Þ ✓ ✓

13We have verified that these small deviations are due to the
running of the electroweak parameters and the SM Yukawa cou-
plings, which for simplicity is not included in our numerical analysis.
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This disagreement can be traced back to the two-loop single-
logarithmmixing of vector operators into dipoles in the low-
energy EFT [16], which is not implemented in flavio.14

B. Correlations in concrete models

To further demonstrate the relevance of our results, we
consider the bosonic mediators that can induce the semi-
leptonic operators in Tables XI–XIII at tree level and we
explore the correlation between the LFV effective coef-
ficients arising in these models [96]. To this purpose, we
assume a minimalistic flavor structure, only considering
couplings to third-generation quarks and leptons with
different flavors, in agreement with the assumption made
in the previous section. These mediators are collected in
Table XIV. They can be a second Higgs doublet [97,98], a

FIG. 6. Combined constraints on Cð1Þlq vs Cð3Þlq , with third-generation quark flavor indices, derived from the most constraining τ → e
(top left), τ → μ (top right), and μ → e (bottom) observables to 95% CL. accuracy. The correlations between these effective coefficients
arising in the concrete scenarios listed in Table XIVare depicted by the dashed lines. The masses of the mediators are fixed to Λ ¼ 1 TeV.

14Note that similar discrepancies do not appear for the vector
operators containing the top quark such as Cð1–3Þlq , Ceq, Ceq, and Clu,
because there are two-loop double-logarithm contributions of these
coefficients in the SMEFT that are dominant over the two-loop
single logarithm ones. Since wilson integrates the RGEs numeri-
cally, the double logarithm effects are included in their results.
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singlet or triplet SUð2ÞL vector-boson [99], or various low-
energy scalar and vector leptoquarks [42,100].15 The
Lagrangian of each scenario and the tree-level matching
to the SMEFT Lagrangian are given in detail in
Appendix F.
In Fig. 6, we consider the specific example of operators

coupled to left-handed fermions, which are induced by
several of the concrete models listed in Table XIV, and we
confront them to the global constraints from the LFV
observables discussed above, by fixing the mediator masses
to Λ ¼ 1 TeV. We choose this example, since the corre-

lations between Cð1Þlq and Cð3Þlq are fixed by the quantum
numbers of the mediators in several cases, without requir-
ing specific assumptions about the new physics couplings.
For the μ → e transition, the least constrained scenario is
U1 ∼ ð3; 1; 2=3Þ with left-handed couplings, which lies

along the diagonal Cð1Þlq ¼ Cð3Þlq , since LFV operators con-
taining the top quark do not appear at tree level in this
scenario [36,92,93].16 For the other scenarios, we find even
more stringent constraints via the loop effects discussed
above. For the τ → l transition, we obtain comparable
bounds for the various models that are shown in Fig. 6.

Finally, we note that correlations between the scalar Cð1Þlequ

and tensor Cð3Þlequ also can arise for the scenarios with

R2 ∼ ð3; 2; 7=6Þ and S1 ∼ ð3̄; 1; 1=3Þ [29], cf. Appendix F.
In this case, the constraints on the tensor operators are far
more stringent than on the scalar ones, thanks to the
chirality enhancement of the leptonic dipoles operators,
as shown in the Tables XI–XIII. These observables give the
dominant bounds on the Yukawa couplings appearing in
these models; see, e.g., Ref. [102].

VI. CONCLUSION

In this paper, we have studied lepton flavor violation
(LFV) in semileptonic observables using an effective field
theory (EFT) approach with a general flavor structure.
Besides the tree-level effects that have been extensively
studied in the literature, we have included the one-loop
effects induced by the renormalization group equations
(RGEs) below [16,19] and above [20] the electroweak
scale, as well as the relevant two-loop effects that are
available in the literature [16]. In this way, we provided
general expressions for several high-energy observables
such as the decays h → ll0, Z → ll0, and t → cll0, in
addition to the high-energy tails of pp → ll0 that were
studied in Refs. [47,48]. At low energies, we have provided
general expressions for the semileptonic processes
μN → eN, M → ll0, M → M0ll0, and τ → lM, where

Mð0Þ stands for a vector or pseudoscalar meson, and the
purely leptonic processes l → l0γ and l → 3l0 that can
constrain semileptonic operators at the loop level.
In particular, we have updated the predictions for the
M → M0ll0 decays by using the latest determination of
the relevant form factors on the lattice.
The loop effects that we consider induce important

correlations between the various LFV observables and, in
several instances, they allow us to derive even stronger
constraints than those we would obtain at tree level. To
illustrate these results, we have considered in Sec. V the
scenarios where only semileptonic LFV Wilson coeffi-
cients with third-generation-quarks are nonzero at the high-
scale Λ and we have computed the various observables
induced either at tree or loop level. We have obtained the
lower limits on the EFT cutoff (Λ) that are given in
Tables XI–XIII by taking CaðΛÞ ¼ 1, where Ca denotes
the possible effective coefficient at the scale Λ. For the
μ → e transition, we have found that the most stringent
constraints arise from the searches for μ → eγ, μ → eee,
and μN → eN, depending on the operator one considers;
see also Ref. [16]. For the τ → l transitions (with l ¼ e,
μ), we highlight an interesting complementarity between
the processes τ → lγ, τ → lll, τ → lP, and τ → lV,
which are induced at one loop, with pp → lτ that receives
tree-level contributions. The complementarity between the
different probes is even more evident in the two-dimen-
sional plane, where pairs of effective coefficients are
considered, as shown in Figs. 4 and 5 for the μ → e and
τ → μ transitions, respectively.
It is important to emphasize that going beyond the

leading-logarithm solution is needed to probe several
effective coefficients at the loop level (cf. Refs. [16,17,103]).
Among the effects that we have included, we accounted for
the finite matching of scalar to gluonic operators, which
contributes to μN → eN and to the τ → lP decays, where
P∈ fπ0; η; η0g [26], as depicted in Fig. 1. We have also
accounted for the two-loop single-logarithm mixing
between vector operators and dipoles, which provides the
most stringent constraint on several μ → e operators, as
computed in Ref. [16] for the low-energy EFT, cf. Table XI.
Lastly, several two-loop double-logarithm effects are rel-
evant to the phenomenology of μ → eγ and τ → lγ. These
include themixing of a scalar into a tensor, which thenmixes
into dipoles, both in the low-energy EFT and within the
SMEFT.Another example is themixing of vector into tensor
operators in the SMEFT, which mixes again into dipoles,
and which has also been included in our phenomenological
analysis. Even though these are only partial results, since the
full two-loop anomalous dimension is not known yet, it
shows the importance of computing these effects that can be
relevant given the current precision of the experimental
searches.
Finally, we have briefly discussed the implications of our

results to concrete scenarios that generate semileptonic

15Note, in particular, that we neglect diquark couplings of
leptoquarks since they would make the proton unstable [100].

16See Ref. [101] for detailed one-loop calculation in ultra-
violet-complete models containing the U1 leptoquark.
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operators at tree level. We have provided the tree-level
matching of these models to the SMEFT in Appendix F.
Moreover, we have shown that these scenarios induce
different correlations of the effective coefficients that can
be tested experimentally, as depicted in Fig. 6 for the

effective coefficients Cð1Þlq and Cð3Þlq . This example again
shows the importance of accounting for loop-induced
effects to constrain the size of LFV contributions to low-
energy decays, with an interesting complementarity to
high-energy processes.
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APPENDIX A: CONVENTIONS

We consider the same notation of Ref. [20] for the
operators in the Warsaw basis [14]. Quark and lepton weak
doublets are denoted by q and l, while up- and downtype
quarks and lepton singlets are denoted by u, d, and e,
respectively. The covariant derivative acting on a quark-
doublet reads

Dμ ¼ ∂μ þ ig0YBμ þ ig
τI

2
WI

μ þ ig3TAGA
μ ; ðA1Þ

where TA ¼ λA=2 are the SUð3Þc generators, τI are the
Pauli matrices, and Y denotes the hypercharge. The
Yukawa interactions are defined in the flavor basis as
follows:

−Lyuk ¼ H†d̄ydqþ H̃†ūyuqþH†ēyelþ H:c:; ðA2Þ

where yf (with f∈ fu; d; eg) stand for the Yukawa matrices
and flavor indices have been omitted. The SM Higgs
doublet is denoted by H, with the conjugate field defined
as H̃ ≡ ϵH� and the SUð2Þ antisymmetric tensor is ϵ≡ iτ2.
We opt to work in the basis where yl and yd are diagonal
matrices, while yu depends on the CKMmatrix, V ≡ VCKM
(i.e., yu ¼ ŷuV).

APPENDIX B: LEFT BASIS FOR b → slilj

For the convenience of the reader, we provide the
matching of our operator basis for the b → slilj transition
to the one that is usually considered in the literature on B-
meson LFV decays [42,91],

Heff ¼−
4GFffiffiffi

2
p VtbV�

ts

×
X

a¼9;10;S;P

½Cij
a ðμÞOij

a ðμÞþCij
a0 ðμÞOij

a0 ðμÞ�þH:c:;

ðB1Þ

where

Oij
9 ¼ e2

ð4πÞ2 ðs̄γμPLbÞðliγ
μljÞ; Oij

S ¼ e2

ð4πÞ2 ðs̄PRbÞðliljÞ;

Oij
10 ¼

e2

ð4πÞ2 ðs̄γμPLbÞðliγ
μγ5ljÞ; Oij

P ¼ e2

ð4πÞ2 ðs̄PRbÞðliγ
5ljÞ: ðB2Þ

The two operator bases are related via

C
lilj
9 ¼ π

λtαem
ðCðdÞ

VRL
ij23

þ CðdÞ
VLL
ij23

Þ; C
lilj
90 ¼ π

λtαem
ðCðdÞ

VRR
ij23

þ CðdÞ
VLR
ij23

Þ

C
lilj
10 ¼ π

λtαem
ðCðdÞ

VRL
ij23

− CðdÞ
VLL
ij23

Þ; C
lilj
100 ¼ π

λtαem
ðCðdÞ

VRR
ij23

− CðdÞ
VLR
ij23

Þ;

C
lilj
S ¼ π

λtαem
ðCðdÞ

SRR
ij23

þ CðdÞ
SLR
ij23

Þ; C
lilj
S0 ¼ π

λtαem
ðCðdÞ

SRL
ij23

þ CðdÞ
SLL
ij23

Þ;

C
lilj
P ¼ π

λtαem
ðCðdÞ

SRR
ij23

− CðdÞ
SLR
ij23

Þ; C
lilj
P0 ¼ π

λtαem
ðCðdÞ

SRL
ij23

− CðdÞ
SLL
ij23

Þ; ðB3Þ

with λt ¼ VtbV�
ts. The results for the b → dlilj transition can be obtained by a trivial replacement of the flavor indices.
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APPENDIX C: MATCHING TO THE SMEFT

The matching between LEFT coefficients defined above with the SMEFT operators introduced in Sec. IV reads:

1. Vector operators

CðuÞ
VLL
ijkl

¼ v2

Λ2
C0ð1−3Þlq

ijkl
þ 2gZuLδkl

v2

Λ2
Cð1þ3Þ

Hl
ij

; CðuÞ
VRR
ijkl

¼ v2

Λ2
C eu

ijkl
þ 2gZuRδkl

v2

Λ2
CHe

ij
;

CðuÞ
VLR
ijkl

¼ v2

Λ2
C lu

ijkl
þ 2gZuRδkl

v2

Λ2
Cð1þ3Þ

Hl
ij

; CðuÞ
VRL
ijkl

¼ v2

Λ2
C0eq

ijkl
þ 2gZuLδkl

v2

Λ2
CHe

ij
;

CðdÞ
VLL
ijkl

¼ v2

Λ2
Cð1þ3Þ

lq
ijkl

þ 2gZdLδkl
v2

Λ2
Cð1þ3Þ

Hl
ij

; CðdÞ
VRR
ijkl

¼ v2

Λ2
C ed

ijkl
þ 2gZdRδkl

v2

Λ2
CHe

ij
;

CðdÞ
VLR
ijkl

¼ v2

Λ2
C ld

ijkl
þ 2gZdRδkl

v2

Λ2
Cð1þ3Þ

Hl
ij

; CðdÞ
VRL
ijkl

¼ v2

Λ2
C eq

ijkl
þ 2gZdLδkl

v2

Λ2
CHe

ij
;

CðlÞ
VLL
ijkk

¼ υ2

Λ2
C ll

ijkk
þ 2gZeL

v2

Λ2
Cð1þ3Þ

Hl
ij

; CðlÞ
VRR
ijkk

¼ υ2

Λ2
C ee

ijkk
þ 2gZeR

v2

Λ2
CHe

ij
;

CðlÞ
VLR
ijkk

¼ υ2

Λ2
C le

ijkk
þþ2gZeR

v2

Λ2
Cð1þ3Þ

Hl
ij

; CðlÞ
VRL
ijkk

¼ υ2

Λ2
C le

kkij
þ 2gZeL

v2

Λ2
CHe

ij
; ðC1Þ

where the couplings of the Z boson to the SM fermions are defined as gZfL ¼ Tf
3 −Qfsin2 θW and gZfR ¼ −Qfsin2 θW , where

Tf
3 stands for the third component of the weak isospin andQf is the electric charge of the fermion f. The primed coefficients

are defined in Eq. (89) and we use again the shorthand notation Cð1�3Þ
lq ¼ Cð1Þlq � Cð3Þlq for the left-handed operators.

2. Scalar operators

CðuÞ
SRL
ijkl

¼ −δkl
υ3mukffiffiffi
2

p
m2

hΛ2
CeH

ij
; CðuÞ

SLR
ijkl

¼ −δkl
v2

Λ2

vmukffiffiffi
2

p
m2

h

C�eH
ji
;

CðuÞ
SRR
ijkl

¼ −
υ2

Λ2
C0ð1Þlequ

ijkl
−
v2

Λ2

vmukffiffiffi
2

p
m2

h

CeH
ij
; CðuÞ

SLL
ijkl

¼ −
υ2

Λ2
C0ð1Þ�lequ

jilk
− δkl

v2

Λ2

vmukffiffiffi
2

p
m2

h

C�eH
ji
;

CðdÞ
SRL
ijkl

¼ υ2

Λ2
Cledq

ijkl
− δkl

v2

Λ2

vmdkffiffiffi
2

p
m2

h

CeH
ij
; CðdÞ

SLR
ijkl

¼ υ2

Λ2
C�ledq

jilk
− δkl

v2

Λ2

vmdkffiffiffi
2

p
m2

h

C�eH
ji
;

CðdÞ
SRR
ijkl

¼ −δkl
υ3mdkffiffiffi
2

p
m2

hΛ2
CeH

ij
; CðdÞ

SLL
ijkl

¼ −δkl
υ3mdkffiffiffi
2

p
m2

hΛ2
C�eH

ji
;

CðlÞ
SRL
ijkk

¼ −
v2

Λ2

vmlkffiffiffi
2

p
m2

h

CeH
ij
; CðlÞ

SLR
ijkk

¼ −
v2

Λ2

vmlkffiffiffi
2

p
m2

h

C�eH
ji
;

CðlÞ
SRR
ijkk

¼ −
v2

Λ2

vmlkffiffiffi
2

p
m2

h

CeH
ij
; CðlÞ

SLL
ijkk

¼ −
v2

Λ2

vmlkffiffiffi
2

p
m2

h

C�eH
ji
: ðC2Þ

3. Tensor operators

CðuÞ
TR
ijkl

¼ −
υ2

Λ2
C0ð3Þlequ

ijkl
; CðuÞ

TL
ijkl

¼ −
υ2

Λ2
½C0ð3Þlequ

jilk
��;

CðdÞ
TL
ijkl

¼ CðdÞ
TR
ijkl

¼ 0;

CðlÞ
TL
ijkk

¼ CðlÞ
TR
ijkk

¼ 0: ðC3Þ
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4. Leptonic dipole operators

CðlÞ
DR
ij

¼ υ3ffiffiffi
2

p
mlΛ2

ð− sin θWCeW
ij
þ cos θWCeB

ij
Þ;

CðlÞ
DL
ij

¼ υ3ffiffiffi
2

p
mlΛ2

ð− sin θWC�eW
ji
þ cos θWC�eB

ji
Þ: ðC4Þ

APPENDIX D: SEMILEPTONIC DIFFERENTIAL FORMULAS

1. P → P0l−
i l

+
j

The expression for the differential distribution of P → P0l−
i l

þ
j can be expressed in full generality as

dΓ
dq2 d cos θl

¼ aðq2Þ þ bðq2Þ cos θl þ cðq2Þcos2 θl; ðD1Þ

where θl stands for the angle between l−
i and the P0 meson line of flight, in the rest frame of the lepton-pair rest frame, and

q2 is the dilepton invariant mass. The kinematical coefficients aðq2Þ, bðq2Þ, and cðq2Þ can be expressed in terms of effective
coefficients defined in Eqs. (45)–(48) as follows,

aðq2Þ ¼ N P
λ1=2l

4q2

�
jhV0 ðq2Þj2 þ jhA0 ðq2Þj2 þ

ðmli −mljÞ2
q2

jhVSt ðq2Þj2 þ ðmli þmlj
Þ2

q2
jhAPt ðq2Þj2

�
;

bðq2Þ ¼ N P
λ1=2l

2q2
ðm2

li
−m2

lj
ÞRe½hV0 ðq2ÞðhVSt ðq2ÞÞ� þ hA0 ðq2ÞhAPt ðq2Þ��;

cðq2Þ ¼ −N P
λl
4q4

ðjhV0 ðq2Þj2 þ jhA0 ðq2Þj2Þ; ðD2Þ

where the normalization is defined by,

N P ¼ τPG2
Fλ

1=2
P λ1=2l

512π3m3
P

; ðD3Þ

and we define λP¼ λðm2
P;m

2
P0 ;q2Þ and λl¼ λðm2

li
;m2

lj
;q2Þ,

with λða2; b2; c2Þ ¼ ða2 − ðb − cÞ2Þða2 − ðbþ cÞ2Þ. The
transversity amplitudes for a decay based on the dk →
dll−

i l
þ
j transition is given by the following equations,

hV0 ðq2Þ ¼
CðqÞ
VVffiffiffiffiffi
q2

p fþðq2Þλ1=2P ; ðD4Þ

hA0 ðq2Þ ¼
CðqÞ
AVffiffiffiffiffi
q2

p fþðq2Þλ1=2P ; ðD5Þ

hVSt ðq2Þ¼
�
CðqÞ
VVþ

CðqÞ
SS

mli −mlj

q2

mqk −mql

�
m2

P−m2
P0ffiffiffiffiffi

q2
p f0ðq2Þ;

ðD6Þ

hAPt ðq2Þ¼
�
CðqÞ
AVþ

CðqÞ
PS

mli þmlj

q2

mqk −mql

�
m2

P−m2
P0ffiffiffiffiffi

q2
p f0ðq2Þ;

ðD7Þ

where flavor indices should be replaced following Eq. (56).
The form factors in the above equations are defined as
usual,

hP0ðkÞjq̄lγμqkjPðpÞi¼
�
ðpþkÞμ−ðm2

P−m2
P0 Þ

q2
qμ
�
fþðq2Þ

þm2
P−m2

P0

q2
qμf0ðq2Þ; ðD8Þ

where fþ (f0) stands for the vector (scalar) form factors.
Note, in particular, that the above expressions are in
agreement with the ones obtained for the charged current
decays d → ulν̄ in the limit where ml → 0, as provided,
e.g., in Ref. [104].17

2. P → Vl−
i l

+
j

The expressions for the angular distributions of P →
Vl−

i l
þ
j have been derived in Ref. [42]. For completeness,

we collect these expressions in this appendix,

17Notice that we have neglected tensor operators in the above
formulas since they represent subleading corrections to the dk →
dll−

i l
þ
j transition in the SMEFT. See Ref. [105] for a calculation

of the branching fractions including these operators.
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dΓ
dq2d cos θld cos θKdϕ

¼ 9

32π
Iðq2; θl; θK;ϕÞ; ðD9Þ

with

Iðq2; θl; θK;ϕÞ≡ Is1ðq2Þsin2 θK þ Ic1ðq2Þcos2 θK þ ½Is2ðq2Þsin2 θK þ Ic2ðq2Þcos2 θK� cos 2θl
þ I3ðq2Þsin2 θKsin2 θl cos 2ϕþ I4ðq2Þ sin 2θK sin 2θl cosϕ

þ I5ðq2Þ sin 2θK sin θl cosϕþ ½Is6ðq2Þsin2 θK þ Ic6ðq2Þcos2 θK� cos θl
þ I7ðq2Þ sin 2θK sin θl sinϕþ I8ðq2Þ sin 2θK sin 2θl sinϕ

þ I9ðq2Þsin2 θKsin2 θl sin 2ϕ; ðD10Þ

where we adopt the same angular conventions used for B̄ → K̄�0ð→ KπÞl−
i l

þ
j in Ref. [42]. These angular coefficients can

be expressed in terms of effective coefficients defined in Eqs. (45)–(48) [42],

Is1ðq2Þ ¼ ½jAL⊥j2 þ jAL
k j2 þ ðL → RÞ�

λl þ 2½q4 − ðm2
li
−m2

lj
Þ2�

4q4
þ 4mlimlj

q2
ReðAL

kA
R�
k þ AL⊥AR�⊥ Þ; ðD11Þ

Ic1ðq2Þ ¼ ½jAL
0 j2 þ jAR

0 j2�
q4 − ðm2

li
−m2

lj
Þ2

q4
þ 8mlimlj

q2
ReðAL

0A
R�
0 − AL

t AR�
t Þ

− 2
ðm2

li
−m2

lj
Þ2 − q2ðm2

li
þm2

lj
Þ

q4
ðjAL

t j2 þ jAR
t j2Þ; ðD12Þ

Is2ðq2Þ ¼
λl
4q4

½jAL⊥j2 þ jAL
k j2 þ ðL → RÞ�; ðD13Þ

Ic2ðq2Þ ¼ −
λl
q4

ðjAL
0 j2 þ jAR

0 j2Þ; ðD14Þ

I3ðq2Þ ¼
λl
2q4

½jAL⊥j2 − jAL
k j2 þ ðL → RÞ�; ðD15Þ

I4ðq2Þ ¼ −
λlffiffiffi
2

p
q4

½ReðAL
kA

L�
0 Þ þ ðL → RÞ�; ðD16Þ

I5ðq2Þ ¼
ffiffiffi
2

p
λ1=2l

q2

�
ReðAL

0A
L�⊥ − ðL → RÞÞ −

m2
li
−m2

lj

q2
ReðAL

t AL�
k þ ðL → RÞÞ

�
; ðD17Þ

Is6ðq2Þ ¼ −
2λ1=2l

q2
½ReðAL

kA
L�⊥ − ðL → RÞÞ�; ðD18Þ

Ic6ðq2Þ ¼ −
4λ1=2l

q2
m2

li
−m2

lj

q2
ReðAL

0A
L�
t þ ðL → RÞÞ; ðD19Þ

I7ðq2Þ ¼ −
ffiffiffi
2

p
λ1=2l

q2

�
ImðAL

0A
L�
k − ðL → RÞÞ þ

m2
li
−m2

lj

q2
ImðAL⊥AL�

t þ ðL → RÞÞ
�
; ðD20Þ

I8ðq2Þ ¼
λlffiffiffi
2

p
q4

ImðAL
0A

L�⊥ þ ðL → RÞÞ; ðD21Þ
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I9ðq2Þ ¼ −
λl
q4

ImðAL⊥AL�
k þ AR⊥AR�

k Þ; ðD22Þ

where the transversity amplitudes are defined by

ALðRÞ
⊥ ¼ N V

ffiffiffi
2

p
λ1=2V

Vðq2Þ
mP þmV

ðCðqÞ
VV ∓ CðqÞ

VAÞ; ðD23Þ

ALðRÞ
k ¼ N V

ffiffiffi
2

p
ðmP þmVÞA1ðq2ÞðCðqÞ

AV ∓ CðqÞ
AAÞ; ðD24Þ

ALðRÞ
0 ¼ N VðmP þmVÞ

2mV

ffiffiffiffiffi
q2

p
�
ðm2

P −m2
V − q2ÞA1ðq2Þ −

λVA2ðq2Þ
mP þmV

�
ðCðqÞ

AV ∓ CðqÞ
AAÞ; ðD25Þ

ALðRÞ
t ¼ N V

λ1=2Pffiffiffiffiffi
q2

p A0ðq2Þ
�
CðqÞ
AV ∓ CðqÞ

AA −
q2

mqk þmql

�
CðqÞ
PS

mli −mlj

∓ CðqÞ
PP

mli þmlj

��
; ðD26Þ

where, for simplicity, flavor indices are omitted. The square of the normalization reads

N 2
V ≡ τPG2

Fλ
1=2
V λ1=2l

3 × 210π3m3
P
; ðD27Þ

where λV ¼ λðm2
P;m

2
V; q

2Þ and λl ¼ λðm2
li
; m2

lj
; q2Þ, and the P → V form factors are defined as follows [106]:

hVðkÞjq̄lγμð1 − γ5ÞqkjPðpÞi ¼ εμνρσε
�νpρkσ

2Vðq2Þ
mP þmV

− iε�μðmP þmVÞA1ðq2Þ

þ iðpþ kÞμðε� · qÞ
A2ðq2Þ

mP þmV
þ iqμðε� · qÞ

2mV

q2
½A3ðq2Þ − A0ðq2Þ�; ðD28Þ

where εμ is the polarization vector of the V meson, and the
form factor A3ðq2Þ is related to A1;2ðq2Þ via 2mVA3ðq2Þ¼
ðmPþmVÞA1ðq2Þ−ðmP−mVÞA2ðq2Þ. Notice, once again,
that we have not included the contributions from tensor
operators in the above expressions.

APPENDIX E: SM YUKAWA RUNNING

In this appendix, we briefly discuss the impact of the SM
Yukawa renormalization, which can impact semileptonic
observables through loop-induced nondiagonal elements
that are not necessarily present in the ultraviolet. More
specifically, the Yukawa RGEs read [107]

16π2
d yd

d log μ
≃
3

2
ðydy†dyd − ydy

†
uyuÞ

þ 3Tr½y†uyd þ y†dyd�yd − 8g23yd; ðE1Þ

where the up- and downtype quark Yukawas are denoted by
yu and yd, respectively, and we have neglected the lepton
Yukawas and the electroweak gauge couplings,
cf. Appendix A for our notation. Keeping only the top-
quark Yukawa contribution, it is straightforward to show

that off-diagonal contributions are induced via the Yukawa
running,

yd
ij
ðμ ¼ mtÞ ≃

3VtiV�
tjyby

2
t

32π2
log

�
Λ
mt

�
; ði ≠ jÞ; ðE2Þ

where yb and yt are the physical top- and bottom-quark
Yukawas to first approximation. The contributions in
Eq. (E2) must be reabsorbed when diagonalizing the SM
Yukawas at μ ≃ μew via the following rotation of the left-
handed downtype quarks,

UdL ≃ 13×3 þ
3y2t
32π2

log

�
Λ
mt

�

×

0
B@

0 0 V�
tdVtb

0 0 V�
tsVtb

−VtdV�
tb −VtsV�

tb 0

1
CA; ðE3Þ

whereas the other fermions are not affected by the running
to first approximation. These effects are included in our
analysis, but we find that they are subleading for the
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effective scenarios and the observables that we consider in Sec. V. Explicit examples where these effects could be larger
have been discussed, e.g., in Ref. [108].

APPENDIX F: TREE-LEVEL MEDIATORS

In this appendix, we collect the Lagrangian of each tree-level mediator considered in Sec. V B, as well as the matching to
the SMEFT semileptonic Wilson coefficients at tree level. For simplicity, we omit SUð3Þc and SUð2ÞL indices in the
expressions below.
(1) Φ0 ∼ ð1; 2; 1

2
Þ:18

(a) UV Lagrangian:

LΦ0 ⊃ −ðydΦ0 ÞijΦ0†d̄iqj − ðyuΦ0 ÞijΦ̃0†ūiqj − ðyeΦ0 ÞijΦ0†ēilj þ H:c: ðF1Þ

(b) SMEFT coefficients:

1

Λ2
Cð1Þlequ

ijkl
¼ ðyuΦÞklðyeΦÞ�ji

M2
Φ

;
1

Λ2
Cledq

ijkl
¼ ðydΦÞklðyeΦÞ�ji

M2
Φ

: ðF2Þ

(2) Z0 ∼ ð1; 1; 0Þ:
(a) UV Lagrangian:

LZ0 ⊃
X

ψ¼l;q;e;u;d

ðgψZ0 Þijψ̄ iγμψ jZ0μ: ðF3Þ

(b) SMEFT coefficients:

1

Λ2
Cð1Þlq

ijkl
¼ −

ðglZ0 ÞijðgqZ0 Þ�kl
M2

Z0
;

1

Λ2
C eq

klij
¼ −

ðgeZ0 ÞijðgqZ0 Þ�kl
M2

Z0
;

1

Λ2
C lu

ijkl
¼ −

ðglZ0 ÞijðguZ0 Þ�kl
M2

Z0
;

1

Λ2
C eu

ijkl
¼ −

ðgeZ0 ÞijðguZ0 Þ�kl
M2

Z0
;

1

Λ2
C ld

ijkl
¼ −

ðglZ0 ÞijðgdZ0 Þ�kl
M2

Z0
;

1

Λ2
C ed

ijkl
¼ −

ðgeZ0 ÞijðgdZ0 Þ�kl
M2

Z0
: ðF4Þ

(3) V ∼ ð1; 3; 0Þ:
(a) UV Lagrangian:

LV ⊃ ðgqVÞijðq̄iτIγμqjÞVI
μ þ ðglVÞijðl̄iτIγμljÞVI

μ: ðF5Þ

(b) SMEFT coefficients:

1

Λ2
Cð3Þlq

ijkl
¼ −

ðglVÞijðgqVÞkl
M2

V
: ðF6Þ

(4) S1 ∼ ð3̄; 1; 1
3
Þ:

(a) UV Lagrangian:

LS1 ⊃ ðyLS1Þijq̄ci iτ2ljS1 þ ðyRS1Þijūci ejS1 þ H:c: ðF7Þ

18For simplicity, we assume that Φ0 does not acquire a vacuum expectation value and does not mix with the SM Higgs.
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(b) SMEFT coefficients:

1

Λ2
Cð1Þlq

ijkl
¼ ðyLS1ÞljðyLS1Þ�ki

4M2
S1

;
1

Λ2
Cð3Þlq

ijkl
¼ −

ðyLS1ÞljðyLS1Þ�ki
4M2

S1

;

1

Λ2
Cð1Þlequ

ijkl
¼ ðyRS1ÞljðyLS1Þ�ki

2M2
S1

;
1

Λ2
Cð3Þlequ

ijkl
¼ −

ðyRS1ÞljðyLS1Þ�ki
8M2

S1

;

1

Λ2
C eu

ijkl
¼ ðyRS1ÞljðyRS1Þ�ki

2M2
S1

: ðF8Þ

(5) S̃1 ∼ ð3̄; 1; 4
3
Þ:

(a) UV Lagrangian:

LS̃1
⊃ ðyR

S̃1
Þijd̄ci ejS̃1 þ H:c: ðF9Þ

(b) SMEFT coefficients:

1

Λ2
C ed

ijkl
¼

ðyR
S̃1
ÞljðyRS̃1Þ

�
ki

2M2
S̃1

: ðF10Þ

(6) S3 ∼ ð3̄; 3; 1
3
Þ:

(a) UV Lagrangian:

LS3 ⊃ ðyLS3Þijðq̄ci iτ2τIljÞSI3 þ H:c: ðF11Þ

(b) SMEFT coefficients:

1

Λ2
Cð1Þlq

ijkl
¼ 3ðyLS3ÞljðyLS3Þ�ki

4M2
S3

;
1

Λ2
Cð3Þlq

ijkl
¼ ðyLS3ÞljðyLS3Þ�ki

4M2
S3

: ðF12Þ

(7) R2 ∼ ð3; 2; 7
6
Þ:

(a) UV Lagrangian:

LR2
⊃ −ðyLR2

ÞijūiR2iτ2lj − ðyRR2
Þijq̄iejR2 þ H:c:

ðF13Þ

(b) SMEFT coefficients:

1

Λ2
C lu

ijkl
¼ −

ðyLR2
ÞkjðyLR2

Þ�li
2M2

R2

;
1

Λ2
C eq

ijkl
¼ −

ðyRR2
ÞkjðyRR2

Þ�li
2M2

R2

;

1

Λ2
Cð1Þlequ

ijkl
¼ ðyRR2

ÞkjðyLR2
Þ�li

2M2
R2

;
1

Λ2
Cð3Þlequ

ijkl
¼ ðyRR2

ÞkjðyLR2
Þ�li

8M2
R2

: ðF14Þ

(8) R̃2 ∼ ð3; 2; 1
6
Þ:

(a) UV Lagrangian:

LR̃2
⊃ −ðyL

R̃2
Þijd̄iR̃2iτ2lj þ H:c: ðF15Þ
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(b) SMEFT coefficients:

1

Λ2
C ld

ijkl
¼ −

ðyL
R̃2
ÞkjðyLR̃2

Þ�li
2M2

R̃2

: ðF16Þ

(9) U1 ∼ ð3; 1; 2
3
Þ:

(a) UV Lagrangian:

LU1
⊃ ðxLU1

Þijq̄iγμljU1μ þ ðxRU1
Þijd̄iγμejU1μ þ H:c: ðF17Þ

(b) SMEFT coefficients:

1

Λ2
Cð1Þlq

ijkl
¼ −

ðxLU1
ÞkjðxLU1

Þ�li
2M2

U1

;
1

Λ2
Cð3Þlq

ijkl
¼ −

ðxLU1
ÞkjðxLU1

Þ�li
2M2

U1

;

1

Λ2
C ed

ijkl
¼ −

ðxRU1
ÞkjðxRU1

Þ�li
M2

U1

;
1

Λ2
Cledq

ijkl
¼ 2ðxRU1

ÞkjðxLU1
Þ�li

M2
U1

: ðF18Þ

(10) Ũ1 ∼ ð3; 1; 5
3
Þ:

(a) UV Lagrangian:

LŨ1
⊃ ðxR

Ũ1
ÞijūiγμejŨμ

1 þ H:c: ðF19Þ

(b) SMEFT coefficients:

1

Λ2
C eu

ijkl
¼ −

ðxR
Ũ1
ÞkjðxRŨ1

Þ�li
M2

Ũ1

: ðF20Þ

(11) V2 ∼ ð3̄; 2; 5
6
Þ:

(a) UV Lagrangian:

LV2
⊃ ðxLV2

Þijd̄ci γμVμ
2iτ2lj þ ðxRV2

Þijq̄ci γμVμ
2iτ2ej þ H:c: ðF21Þ

(b) SMEFT coefficients:

1

Λ2
C eq

ijkl
¼ ðxRV2

ÞljðxRV2
Þ�ki

M2
V2

;
1

Λ2
C ld

ijkl
¼ ðxLV2

ÞljðxLV2
Þ�ki

M2
V2

;

1

Λ2
Cledq

ijkl
¼ −

2ðxRV2
ÞljðxLV2

Þ�ki
M2

V2

: ðF22Þ

(12) Ṽ2 ∼ ð3̄; 2;− 1
6
Þ:

(a) UV Lagrangian:

LṼ2
⊃ ðxL

Ṽ2
Þijūci γμṼμ

2iτ2lj þ H:c: ðF23Þ

(b) SMEFT coefficients:

1

Λ2
C lu

ijkl
¼

ðxL
Ṽ2
ÞljðxLṼ2

Þ�ki
M2

Ṽ2

: ðF24Þ

(13) U3 ∼ ð3; 3; 2
3
Þ:
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(a) UV Lagrangian:

LU3
⊃ ðxU3

Þijðq̄iγμτIljÞUI
3μ þ H:c: ðF25Þ

(b) SMEFT coefficients:

1

Λ2
Cð1Þlq

ijkl
¼ −

3ðxU3
ÞkjðxU3

Þ�li
2M2

U3

;
1

Λ2
Cð3Þlq

ijkl
¼ ðxU3

ÞkjðxU3
Þ�li

2M2
U3

: ðF26Þ
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