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Dilaton effective field theory (dEFT) describes the long distance behavior of certain confining, near-
conformal gauge theories that have been studied via lattice computation. Pseudo-Nambu- Goldstone
bosons (pNGBs), emerging from the breaking of approximate, continuous, internal symmetries, are
coupled to an additional scalar particle, the dilaton, arising from the spontaneous breaking of approximate
scale invariance. This effective theory has been employed to study possible extensions of the standard
model. In this paper, we propose a complementary role for dEFT, as a description of the dark matter of the
Universe, with the pNGBs identified as the dark matter particles. We show that this theory provides a
natural implementation of the “forbidden” dark matter mechanism, and we identify regions of parameter
space for which the thermal history of dEFT yields the measured dark matter relic density.
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I. INTRODUCTION

The nature of the dark matter of the Universe is one of
the most important mysteries in fundamental science [1].
If dark matter takes the form of (nonrelativistic) new
particles, its nongravitational interactions with the standard
model (SM) must be very weak. Yet, current constraints on
cold dark matter (CDM) are compatible with a vast range
of masses and interaction strengths (see Ref. [2], and
references therein).
Global fits of cosmological data within the ΛCDM

paradigm (the standard cosmological model) determine
the present cold dark matter energy density to beΩCDMh2¼
0.120�0.001 [3],1 CDM providing about 26%–27% of the
energy content of the Universe.
A natural mechanism for populating the Universe with

dark matter and explaining the present abundance is
freezeout; in the early Universe, the dark matter was in
thermal equilibrium with the SM plasma, decoupling as the
Universe expanded, and decreasing its interaction rate with
the SM. When this mechanism is realized, the relic density,

ΩCDMh2, is determined by the annihilation and replenish-
ment cross sections of dark matter particles.
The dark matter particles could be composite, emerging

in a new strongly coupled dark sector. As discussed in
Ref. [5], and the review [6], this possibility may be relevant
to anomalies in small-scale structure [7,8]. Furthermore, if
the new strong dynamics leads to a first-order phase
transition in the early Universe, this might yield a relic
stochastic gravitational wave background [9–11], detect-
able in experiments such as LISA [12] or ET [13].
One intriguing extension of the freezeout idea is that,

within the dark sector, CDM particles annihilate into
heavier states, through a process that would be forbidden
at zero temperature, but is allowed at finite temperature.
This mechanism is known as forbidden dark matter (FDM).
See Refs. [14,15], and [16,17] for applications. The thermal
suppression in the FDM mechanism allows for realistically
large relic densities at freezeout, but with smaller CDM
masses and a broad range of self-interaction strengths.
Here, we propose a natural realization of FDM within

dilaton effective field theory (dEFT). This effective theory
extends the conventional chiral Lagrangian with its Pseudo-
Nambu- Goldstone boson (pNGB fields), π, to include
a dilaton field, χ. It has been extensively studied in our
Refs. [18–23] and in Refs. [24–42]. See also the precursors
in Refs. [43,44] and Ref. [45]. dEFT emerges as the low-
energy description of certain underlying gauge theories
amenable to lattice studies. One notable example is the
SUð3Þ gauge theory with Nf ¼ 8 fundamental Dirac
fermions [46–58]. Lattice studies of this theory have
reported evidence for the presence of a light singlet, scalar
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1h ≃ 0.674ð5Þ is Hubble’s constant, H0, in units of
100 km s−1 Mpc−1, and ΩCDM is the CDM energy density

normalized to criticality, ρc≡ 3H2
0

8πGN
¼1.878×10−26h2 kgm−3 [4].
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particle, along with N2
f − 1 pNGBs, in the accessible range

of fermion masses.
Although the SUð3Þ gauge theory provides a UV-

complete environment in which to implement the forbidden
dark matter dynamics, we restrict attention to only the
lightest spin-0 states, and describe the dark matter within
dEFT, ignoring all other, heavier, composite states. Our
approach therefore can apply to other gauge theories that
admit a dEFT low-energy description [30,34,37,59–61].
We take the dilaton mass, Md, and the pNGB multiplet

mass, Mπ , to be free parameters, with Md > Mπ. In the
SUð3Þ gauge theory, throughout the fermion-mass range
explored on the lattice, the dilaton is somewhat heavier
than the pNGBs, which are the dark matter particles. This
hierarchy is expected to persist down to the chiral limit,
since explicit breaking of conformal symmetry remains
even there. Finally, we discuss the coupling of the dark
sector to the standard model, which must be present to
achieve thermal equilibrium between the sectors.
The description of a dark sector in terms of pNGB fields

(but no dilaton) has appeared before in the literature on
strongly interacting massive particles (SIMPs) [5,62–64].
There, the depletion takes place through a 3 → 2 process,
with the relevant 5-point interaction arising from a
Wess-Zumino-Witten term. Our dEFT contains 3 → 2
processes even at leading order, but, in the parameter
range of interest, they are less important than the dominant
2 → 2 (forbidden) processes.
Models in which pNGB dark matter is coupled to a

dilaton, but which are not of the FDM type, have been
identified in the literature [65–67]. We also note that an
FDMmodel including a dilaton has appeared recently [68],
though in this case the dark matter is not a pNGB. All these
approaches are rather different from strongly coupled
models in which the dark matter candidate is a baryon [69].
In Sec. II, we summarize dEFT for describing the dark

matter pNGBs, π, and the dilaton, χ. The dEFT interactions
yield the annihilation process ππ → χχ, its inverse, and also
the self-interaction among the πs. In Sec. III, we compute
the relic density, mapping out the space of allowed masses
and coupling strengths. The interaction with the SM is
discussed in Sec. IV. We summarize and discuss open
questions in Sec. V.

II. DILATON EFFECTIVE FIELD THEORY

Our framework is defined by the three-term Lagrangian,

L ¼ LSM þ LD þ Lint; ð1Þ

where LSM describes the standard model and LD describes
a new composite dark sector with a confinement scale
that can be below the electroweak scale. The (highly
suppressed) interaction between the two sectors is
described by Lint.

The dark-sector Lagrangian, LD, is taken to be that of
dEFT. Its form, reviewed in Ref. [23], is given by

LD ¼ 1

2
∂μχ∂

μχ þ F2
π

4

�
χ

Fd

�
2

Tr½∂μΣð∂μΣÞ†�

þM2
πF2

π

4

�
χ

Fd

�
y
Tr½Σþ Σ†� − VðχÞ; ð2Þ

where Mπ and Fπ are the mass and decay constant of the
composite pNGBs, Σ includes the multiplet of pNGB fields
with Σ†Σ ¼ 1, and χ is the dilaton field. The potential,
VðχÞ, includes a term that explicitly breaks conformal
symmetry, and the exponent y is a constant. The dilaton
field has a full potential arising from VðχÞ and the third
term of Eq. (2):

WðχÞ≡ VðχÞ −M2
πF2

πNf

2

�
χ

Fd

�
y
; ð3Þ

and acquires a nonzero vacuum expectation value (VEV)
hχi ¼ Fd at the potential minimum, breaking approximate
scale invariance spontaneously. Expanding about the
minimum via the redefinition χ ¼ Fd þ χ̄ determines the
dilaton mass and self-interactions:

Wðχ̄Þ ¼ constantþM2
d

2
χ̄2 þ γ

3!

M2
d

Fd
χ̄3 þ…; ð4Þ

where γ is a constant greater than 2 [45], which depends on
y and the form of the term in VðχÞ that explicitly breaks
scale invariance.
To compute the dark matter relic density, we need to

know the cross section for the forbidden process, ππ → χχ,
and its inverse, χχ → ππ. These depend on the parameters
of dEFT: the masses, M2

d and M2
π , the decay constants, F2

d
and F2

π , the number of pNGBs, which we call Nπ , and the
dimensionless parameters y and γ.
Lattice studies of specific gauge theories, which

provide ultraviolet completions for dEFT, yield (model-
dependent) information about some of the dEFT parame-
ters. For example, in the SU(3) gauge theory with Nf ¼ 8

fundamental fermions, Nπ ¼ N2
f − 1 ¼ 63 and fits of

dEFT to lattice data constrain the parameter y to be close
to 2 [37–39], a value also supported by theoretical argu-
ments [70]. For simplicity, we set y ¼ 2 in the following,
although recovering the more general expressions is
straightforward. The parameter γ is less well-determined,
and we keep it general.
The lattice studies of the Nf ¼ 8 theory explore only a

particular range of Mπ values (in lattice units). Throughout
this range, Md is larger than Mπ , but of the same order. We
take this to be the case in our description of the dark sector.
In these data sets, fits to dEFT predictions indicate that the
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ratio F2
π=F2

d ≃ 0.1 [37–39], compatible with the expectation
that F2

π=F2
d ∼ N−1

f .
The effective expansion parameter of dEFT, at momentum

scales of order Mπ or smaller, is of order M2
πNπ=ð4πFdÞ2.

For the range of fermion masses explored in the most recent
Nf ¼ 8 lattice study [58], Mπ=Fπ ≈ 4, leading to an
expansion parameter of order 0.5. By reducing fermion
masses in the underlying theory, Mπ=Fπ and the effective
expansion parameter can be made smaller. We assume
Mπ=Fπ is small enough for us to reliably use dEFT to
compute the relevant cross sections at freezeout, where the
temperatures at play are small compared to Mπ. After
specifying the parameters of dEFT, there remains only the
question of the overall mass scale of the dark sector. We
consider a range of possibilities below the electroweak scale.
The dark sector must couple to the standard model,

with enough strength to maintain thermal equilibrium
between the sectors during freezeout, and yet without
enough strength to overwhelm the forbidden mechanism
within the dark sector. We discuss this interaction in
Sec. IV, noting that a sizable range of very weak couplings
satisfy these constraints.

III. RELIC DENSITY

In the FDMmechanism, the population of the dark matter
pNGBs is depleted through a 2 → 2 scattering process to
dilatons. These then decay into SM particles through weak
contact interactions to be discussed in Sec. IV. The relic
density is determined by the Boltzmann equation,

∂nπ
∂t

þ 3Hnπ ¼ −hσ2π→2χvin2π þ hσ2χ→2πviðneqχ Þ2; ð5Þ

where H is the Hubble scale and nπ is the total number
density of pNGBs (summed over all flavors). We assume
that due to the contact interaction the dilaton remains in
thermal equilibrium with the SM during freezeout. For the
relevant temperatures, T < Mπ;Md, we represent the pNGB
and dilaton number densities using the nonrelativistic
equilibrium expression,

neqi ¼ wi

�
MiT
2π

�
3=2

e−Mi=T; ð6Þ

where i ¼ π, d, is the pNGB or dilaton, and wi counts the
number of species (wd ¼ 1 and wπ ¼ Nπ). The quantities
hσ2π→2χvi and hσ2χ→2πvi are the thermally averaged cross
section and inverse cross section.
The cross section hσ2π→2χvi, vanishing at T ¼ 0 since

Mπ < Md, is nonzero at finite T, and given in terms of
hσ2χ→2πvi by

hσ2π→2χvi ¼
ð1þ ΔÞ3

N2
π

e−2Δxhσ2χ→2πvi; ð7Þ

where x ¼ Mπ=T and Δ ¼ ðMd −MπÞ=Mπ . The forbidden
rate is exponentially suppressed when T ≪ Md −Mπ .
Equation (7) can be derived by integrating the two cross
sections against the Maxwell-Boltzmann velocity distribu-
tion, or by using the principle of detailed balance [15].
Employing Eq. (7) for the thermally averaged ππ → χχ

cross section in the Boltzmann equation yields

∂nπ
∂t

þ 3Hnπ ¼ −hσ2χ→2πvi
�
n2π
N2

π
ð1þ ΔÞ3e−2Δx − ðneqχ Þ2

�
:

ð8Þ
The thermally averaged cross section, hσ2χ→2πvi, can be

computed at tree level in dEFT. For the case y ¼ 2, this
cross section is given approximately by

hσ2χ→2πvi ¼
M2

πNπ

36πF4
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δð2þ ΔÞ

p
ð1þ ΔÞð5þ γÞ2; ð9Þ

where we have neglected corrections of order 1=x ¼ T=Mπ.
We note that γ cannot be too large or else the cross section,
Eq. (9), would exceed unitarity bounds, signaling that the
dEFT is outside its domain of validity.
To solve the Boltzmann equation [Eq. (8)], we assume

a radiation dominated universe so that the Hubble scale, H,
is given by the expression,

H ¼ π

ffiffiffiffiffiffiffiffiffi
gðTÞ
90

r
T2

Mpl
; ð10Þ

where Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
, with G Newton’s gravitational

constant, and gðTÞ is a continuous function that counts
the effective number of relativistic degrees of freedom.
It is then convenient to recast Eq. (8) in terms of the

co-moving number density, Yπ ¼ nπ=s, where s is the
entropy density given by the expression,

sðTÞ ¼ 2π2

45
hðTÞT3; ð11Þ

and hðTÞ is a different function that counts the effective
number of degrees of freedom. Free particles with masses
mi ≪ T contribute equally to the functions hðTÞ and gðTÞ.
However, these functions differ in general due to mass
thresholds and interactions.
We construct hðTÞ and gðTÞ using tabulated values taken

from micrOMEGAs6.0 [71]. Those values are derived
from determinations of the functions presented in Ref. [72],
themselves obtained using lattice QCD calculations of the
equation of state [73].
In terms of x ¼ Mπ=T, the Boltzmann equation for Yπ

takes the form,

dYπ

dx
¼ −

ξðMπ=xÞ
x2

e−2Δxð1þ ΔÞ3½Y2
π − ðYeq

π Þ2�; ð12Þ
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where Yeq
π ¼ neqπ ðTÞ=sðTÞ, with neqπ ðTÞ given by Eq. (6),

while

ξðTÞ≡ 2π
ffiffiffiffiffi
10

p
MπMpl

15N2
π

hσvi hðTÞffiffiffiffiffiffiffiffiffi
gðTÞp

�
1þ 1

3

d ln h
d lnT

�
: ð13Þ

We solve Eq. (12) numerically to obtain the comoving
number density at late times Yπð∞Þ, and from it the relic
density of CDM today. A boundary condition must be
provided. We take it to be Yπ at a higher temperature, before
freezeout but with T < Mπ (x > 1) so that dEFT is
applicable and the pNGBs are moving at a nonrelativistic
typical speed. At which point we set Yπ to its nonrelativistic,
thermal-equilibrium value Yeq

π [the right-hand side of
Eq. (12) causes Yπ to approach Yeq

π in the range x > 1,
independently of its behavior at higher temperatures]. The
requisite late-time value Yπð∞Þ is then insensitive to the
behavior of Yπ at smaller x, earlier in cosmological history.
We plot YπðxÞ in Fig. 1, for an illustrative choice of

dEFT parameters. Its qualitative behavior is similar for a
wide range of parameter choices. The late-time value,
Yπð∞Þ, which depends on dEFT parameters, determines
the relic density of CDM today through the expression,

ΩCDMh2 ¼
Mπs0Yπð∞Þ

ρc=h2
; ð14Þ

where s0 ¼ 2970 cm−3 is the entropy density today.
Setting the relic density to its observed value ΩCDMh2 ¼
0.120� 0.001 [3] allows us to derive a constraint on the
allowed parameter space of dEFT.
The form of this constraint depends on the parameter

sensitivity of Yπð∞Þ, determined through the numerical
solution to Eq. (12). A range of possible values of the dark-
matter mass scale Mπ emerges depending on the dEFT
parameters. In Fig. 2, we plot the value of Mπ versus Δ for
three values of the ratio Mπ=Fπ , corresponding to three

values of the effective expansion parameter. For a wide
range of dEFT parameters, we are led to a mass scaleMπ in
the broad GeV range.
Figure 2 can be understood qualitatively by inspection

of Eqs. (12) and (13), which determine Yπð∞Þ. It can be
argued that this quantity grows approximately linearly
with Mπ and exponentially with Δ. This behavior can be
exhibited explicitly if Eq. (12) is solved analytically, which
is possible if the evolution takes place at temperatures T
where gðTÞ and hðTÞ are approximately constant. These
functions however vary rapidly for temperatures around the
QCD confinement scale, giving rise to the kinks visible in
Fig. 2 for Mπ ∼ 3 GeV.
As indicated by the shading in Fig. 2, the range of Mπ

values is further constrained, from below, by the strength of
elastic dark matter scattering. The behavior of merging
galaxy clusters limits the size of this cross section to lie
below the bound [74,75]

σ

Mπ
≤
σmax

Mπ
≈ 2 cm2=g: ð15Þ

The elastic cross section has the form,

σ ¼ M2
π

128πF4
πN2

π

�
a2

4
−

b2M2
πF2

π

ð4M2
π −M2

dÞF2
d

þ c2M4
πF4

π

ð4M2
π −M2

dÞ2F4
d

�
;

ð16Þ

FIG. 1. In red, the numerical solution to Eq. (12) for the yield
function Yπ is shown for the choice Mπ ¼ 1 GeV with model
parameters Mπ=Fπ ¼ 4, F2

π=F2
d ¼ 0.1, Δ ¼ 0.3, γ ¼ 3 and

y ¼ 2. The equilibrium yield Yeq
π is plotted as the solid black

line for comparison. The freezeout temperature, xf, is represented
as the vertical dashed line. The yield at late times (large x) is
plotted as the dashed horizontal line.

FIG. 2. The bands indicate the parts of the parameter space for
which the dark-matter relic density is within 10% of its observed
value. The red, gray, and blue colors correspond to three values
of the quantity Mπ=Fπ, which determines the dark matter self
interaction coupling. In the bottom right corner, there are portions
of the bands shaded in paler colors, for which the dark
matter mass falls below the lower bound shown in Eq. (17),
setting σmax=Mπ ¼ 2 cm2=g. For reference, we have also set
F2
π=F2

d ¼ 0.1, γ ¼ 3 and y ¼ 2.
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where the parameters a2, b2, and c2 are listed in Table I. In
the regime F2

π ≪ F2
d, the contribution of the dilaton to

Eq. (16) is negligible and the terms proportional to b2 and
c2 can be dropped. Our thermal cross section then coincides
with the result of Ref. [62]. For the Nf ¼ 8 theory, the
lower bound on Mπ becomes

Mπ ≥ 11.8 MeV

�
Mπ

Fπ

�
4=3

�
2 cm2=g
σmax=Mπ

�
1=3

: ð17Þ

Using the numerical solution of Eq. (12), we can also
determine the freezeout temperature, Tf. We take this to be
the temperature below which the comoving number density
of pNGBs, YπðxÞ, begins to rise significantly above the
value it would have if it were in thermal equilibrium with
the rest of the SM Yeq

π ðxÞ, indicating that the pNGBs have
decoupled from the SM bath. Following the convention
of [76], we take YπðxfÞ ¼ 2.5Yeq

π ðxfÞ, where xf ¼ Mπ=Tf.
We plot xf as a vertical dashed line in Fig. 1.
In Fig. 3, we show the dependence of xf on Mπ . The

figure indicates this dependence is approximately linear
when viewed using a log scale for Mπ, which can be
explained using Eq. (14). Since ΩCDMh2 is being fixed to
its observed value, it implies that MπYπð∞Þ ¼ 0.4 eV.
Furthermore, Yπð∞Þ ∼ neqπ ðTfÞ=sðTfÞ ∼ x3=2f e−xf up to
constants. Inverting this relationship approximately yields

xf ∼ constþ logðMπ=GeVÞ. Note that neqπ ðTÞ carries no
direct dependence on the ratio Mπ=Fπ , explaining the
observed lack of variation with this quantity. The kinks
visible around Mπ ≈ 3 GeV arise due to the abrupt change
in relativistic degrees of freedom hðTÞ around the QCD
confinement scale.

A. Subdominant 3 → 2 processes

In addition to the 2 → 2 annihilations of dark-matter
pNGBs to dilatons, the population of pNGBs can also be
depleted through 3 → 2 processes, as in the composite
SIMP models of Refs. [5,62–64]. There, with the dark
matter described only by pNGBs (no dilaton), the relevant
five-point interaction arises from the Wess-Zumino-Witten
term. In our framework, we must also account for the
3 → 2 process, πππ → χπ, with an outgoing dilaton, which
arises at leading order in dEFT. It is unsuppressed ther-
mally, as long as Md < 2Mπ.
The relative importance of this process during freezeout

is given by the ratio

R ¼ neqπ hσ3π→χπv2i
hσ2π→2χvi

�����
x¼xf

: ð18Þ

The denominator 2 → 2 cross section is given by Eqs. (7)
and (9), which at freezeout, with Δ and γ in the relevant
range, is of order

hσ2π→2χvi ≈
M2

πe−2Δxf

F4
dNπ

: ð19Þ

The numerator 3 → 2 cross section, with mass dimension
−5, arises from a tree-level amplitude of orderM2

π=ðF2
πFdÞ.

The phase-space integral is similar to that of the 2 → 2
cross section. Thus, we expect the cross section to be
roughly of order

hσ3π→χπv2i ≈
Mπ

F4
πF2

dNπ
: ð20Þ

Using Eq. (6) for the equilibrium number density, we have

R ≈ Nπ
M2

πF2
d

F4
π

x−3=2f e−ð1−2ΔÞxf : ð21Þ

Thus R is exponentially suppressed due to the factor neqπ
associated with the 3 → 2 process, provided that Δ < 0.5.
This restriction, implemented in Fig. 2, is satisfied by the
LSD lattice data, and for a range ofMπ values closer to the
chiral limit. We note that the relative importance of 2 → 2
and 3 → 2 processes has also been discussed in a different
set of models [77–81].

TABLE I. Coefficients that appear in the 2π → 2π scattering
cross section in Eq. (16).

a2N2
f 8ðN2

f − 1Þð3N4
f − 2N2

f þ 6Þ
b2Nf 64ðN2

f − 1Þð2N2
f − 1Þ

c2 256ðN2
f − 1Þ2

FIG. 3. Plot of xf ¼ Mπ=Tf as a function of the dark-matter
mass, Mπ , for different choices of Mπ=Fπ . The value of Δ has
been adjusted to ensure that the dark matter relic density is equal
to its observed value. For reference, we have also set
F2
π=F2

d ¼ 0.1, γ ¼ 3 and y ¼ 2.
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IV. INTERACTION WITH THE SM

The FDM mechanism and the form of Eq. (5) incorpo-
rate thermal equilibrium between the standard model and
the dark-sector dilaton. To provide the necessary coupling
between the dilaton and the standard model, we introduce
weak contact interactions of the form,

Lint ¼ ϵF4−dSM
d

�
χ̄

Fd

�
OSM; ð22Þ

where χ̄ ≡ χ − Fd, andOSM is an SM-singlet operator with
engineering dimension dSM. We envision that this inter-
action arises at high scales, well above those of the dEFT
and the SM, leading to a small value for the dimensionless
parameter ϵ. We do not describe the operatorsOSM in detail
here, noting only two key features. Firstly, they are built
from SM fields that are sufficiently light after electroweak
symmetry breaking to contribute to the decay of the dilaton.
Secondly, since the dilaton, χ, emerges within only the dark
sector, they are not directly associated with the possibility
of spontaneous breaking of approximate scale symmetry in
the SM. Thus the operators OSM are not constrained to be
related to the trace of the energy momentum tensor of
the SM.
We denote the inclusive decay rate of the dilaton into SM

particles as Γχ→SM. It must be large enough to ensure that
the dark sector and the SM reach thermal equilibrium well
before the freezeout process begins. We take this to be at a
common temperature of orderMπ, just as the dark matter is
becoming nonrelativistic. The lower limit is taken to be

Γχ→SM ≳HT¼Mπ
: ð23Þ

It is also important that the direct annihilation of pNGBs
to SM particles through a virtual dilaton does not dominate
the forbidden annihilations. This leads to the inequality,

hσ2π→SMvi ≲ hσ2π→2χvi; ð24Þ

where the strongest bound comes when the right hand side
is taken to be the cross section at roughly the freezeout
temperature. There, hσ2π→2χvi ≈HT¼Tf

=neqπ ðTfÞ.
Equation (24) leads to an upper bound on Γχ→SM since

the dominant contribution to the left-hand side comes from
an s-channel dilaton exchange. The general “resonance”
expression for this cross section is

hσ2π→SMvi ¼
M5

dΓχ→SM

4NπM2
πF2

dð4M2
π −M2

dÞ2
; ð25Þ

where we have assumed a narrow width and taken y ¼ 2,
as before. Since 2Mπ > Md throughout the parameter space
we consider, the dilaton is unable to decay to two pNGBs,

and is well off shell. However, the resonance formula may
still be applied in this case [82].
We combine Eqs. (23)–(25), employing Eq. (7) for

hσ2π→2χvi. This leads to the order-of-magnitude double-
sided bound,

HT¼Mπ
≲ Γχ→SM ≲HT¼Tf

MπNπF2
d

neqπ ðTfÞ
; ð26Þ

where we have disregarded numerical factors in the upper
bound, anticipating that its relative largeness is determined
dominantly by the exponential suppression of neqπ in the
denominator. The two bounds insure a sizable allowed
range for the decay rate Γχ→SM, but restricted to very small
values relative to Md ≈Mπ .
If the decay rate Γχ→SM arises from a single interaction of

the form Eq. (22), we can roughly bound the parameter ϵ.
For the case dSM ¼ 3, and taking the decay to be into
two light SM states, we have Γχ→SM ≈ ϵ2Md=16π. For the
choice Mπ=Fπ ¼ 1 for example, and taking Mπ ≈Md ¼
1 GeV, the forbidden mechanism is viable providing
10−9 ≲ ϵ≲ 10−4. Both the lower and upper bounds grow
with Mπ , but remain very small for the range of allowed
mass values shown in Fig. 2.
The magnitude of the weak dilaton-SM interactions in

Eq. (22), the structure of the operators OSM, and the mass
scale Mπ will determine possible experimental signatures
of the dark matter. These could include dilaton production
and decay in collider searches as well as signals in direct
and indirect detection experiments. It will be valuable to
develop predictions for these phenomena, which will
involve further modeling of the dilaton-SM interactions.

V. SUMMARY AND DISCUSSION

We have proposed a description of composite dark
matter based on dilaton effective field theory (dEFT).
The dark-matter particles are pNGBs arising from an
underlying, near conformal gauge theory. Lattice studies
of near conformal gauge theories have led also to a
relatively light scalar particle, identified as an approximate
dilaton in dEFT. In the fermion-mass range of the lattice
studies, the dilaton mass Md is of order the pNGB mass
Mπ , but somewhat larger.
Thus the dEFT provides a natural implementation of the

forbidden dark-matter framework [14,15], in which freeze-
out of the dark matter population is described by 2 → 2
scattering to somewhat heavier particles. The process takes
two pNGBs to two dilatons (which then transition rapidly
to SM particles). Forbidden at zero temperature by the
dilaton-pNGB mass gap, this process becomes allowed but
suppressed at finite temperatures small compared to Mπ .
The dark-sector dEFT we have employed derives from

an underlying SU(3) gauge theory with Nf ¼ 8 Dirac
fermions. After describing the dEFT, along with an
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effective coupling to the SM, we have discussed the
computation of the relic dark-matter density in terms of
the late-time, co-moving number density Yπð∞Þ [Eq. (14)].
Setting the relic density to its observed value has then
allowed us to derive a constraint on the allowed parameter
space of the dEFT.
We have adopted the value F2

π=F2
d ∼ 0.1 for the ratio of

pNGB and dilaton decay constants, as suggested by the
lattice computations. We have then considered several
values for the ratio Mπ=Fπ , which determines the inter-
action strength of the dEFT. One,Mπ=Fπ ¼ 4, is typical of
the current range of lattice data. It leads to an effective
dEFT coupling strength of order 0.5 (at the edge of weak
coupling). The other, smaller values forMπ=Fπ will emerge
from lattice studies closer to the chiral limit, and place the
dEFT further inside the weak coupling range.
With either of these choices for Mπ=Fπ, a correlated set

of values for Mπ and Δ≡ ðMd −MπÞ=Mπ yields the
measured relic dark matter density, as shown in Fig. 2.
For the case Mπ=Fπ ¼ 1, for example, Mπ can range up to
roughly 10 GeV without the need to fine tune Δ close to 0.
It can range down to roughly 10MeV, keepingΔ below 0.4,
ensuring that the forbidden process dominates the SIMP
(3 → 2) process. Freezeout of the dark matter takes place at
temperatures of order Mπ=25, where the dEFT is reliable
and the dark matter is nonrelativistic.

We have briefly discussed the effective interaction that
must be present between the dEFT dark sector and the
particles of the SM, observing that a range of very weak
couplings are allowed, indicating that the interactions arise
from new physics at a very high scale. The detailed form of
these interactions will dictate possible experimental sig-
natures of the dark matter.
The particular dEFT we have employed to describe the

dark sector, linked reassuringly to a specific underlying
gauge theory studied on the lattice, should be regarded as
only one possibility. Other underlying gauge theories that
yield a light scalar could lead to other dEFTs describing all
the emergent light bound states.

No new data were generated for this manuscript.
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