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We propose a hybrid scoto-seesaw model based on the A4 × Z4 × Z3 × Z2 non-Abelian discrete flavor
symmetry. Light neutrino masses come from the tree-level type-I seesaw mechanism, and from the one-loop
scotogenic contribution accommodating viable dark matter candidates responsible for the observed relic
abundance of dark matter (DM). These contributions restore the atmospheric and solar neutrino mass scales,
respectively. With only one right-handed neutrino, the model features specific predictions with the normal
ordering of light neutrino masses, the lightest neutrino being massless, and only one relevant CP Majorana
phase. Further, an experimentally favorable TM1 mixing scheme is realized with concrete correlations and
constraints on the mixing angles and associated CP phases. The model predicts the atmospheric mixing
angle to be in the upper octant with specific ranges 0.531ð0.580Þ ≤ sin2 θ23 ≤ 0.544ð0.595Þ, and the Dirac
CP phase is restricted within the range �ð1.44–1.12Þ rad. The Majorana phase is also tightly constrained,
with the ranges 0.82–0.95 and 1.58–1.67 rad, which are otherwise unconstrained from neutrino oscillations.
Strict predictions on the Majorana phases also yield an accurate prediction for the effective mass parameter
for neutrinoless double beta within the range of 1.61–3.85 meV. The model offers a rich phenomenology
regarding DM relic density and direct-search constraints, and the fermionic DM scenario has been discussed
in detail, estimating its possible connection with the neutrino sector. As an example of the model studies at
colliders, the SM Higgs in the diphoton decay channel is examined. The model predicts strictly vanishing
τ → eγ, τ → 3e decays and testable signals by MEG-II and SINDRUM/Mu3e experiments for the μ → eγ
and μ → 3e decays, respectively.
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I. INTRODUCTION

In the last few decades, several experiments around the
globe have confirmed the phenomenon of neutrino oscil-
lation with incredible precision [1–8]. The immediate
consequence of neutrino oscillation is that at least two light
neutrinos have nonzero mass. Furthermore, if we combine
this with a bound on the absolute neutrino masses coming
from the end-point spectrum of the tritium beta decay [9], as
well as the bounds from cosmological surveys [10] and
the neutrinoless double beta decay [11], we conclude that
the neutrino masses are in the sub-eV scale. Despite these

spectacular accomplishments, the origin of tiny neutrino
masses (compared to other Standard Model fermions)
remains an open question in particle physics. Over the
years, various ideas have been proposed, and the most
common schemes are seesaw mechanisms [12–19] and the
radiative generation of neutrino masses [20]. Nonzero
neutrino masses can also be realized within the framework
of hybrid mass mechanisms where both seesaw and
radiative mass mechanisms contribute.
In addition to the tiny neutrino masses, we are yet to

understand the observed pattern of the lepton mixing
comprehensively. In fact, two of the three mixing angles—
namely, solar (θ12) and atmospheric (θ23)—are found to be
large, while the reactor (θ13) mixing angle is relatively
small. Such a finding clearly shows the distinctive feature
associated with the lepton sector in contrast to the quark
sector. The study of the underlying principle behind this
typical mixing is particularly interesting with the precise
measurement of the reactor mixing angle θ13 [7,8,21,22].
Neutrino oscillation data also constrains the two mass-
squared differences (solar and atmospheric) defined as
Δm2

21 ¼ m2
2 −m2

1 and jΔm2
31j ¼ jm2

3 −m2
1j, where m1, m2,
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m3 are the masses of the three light neutrinos. The present
global analysis from several experimental data can be
summarized as [23]

Δm2
21 ¼ ð6.82 − 8.03Þ × 10−5 eV2;

jΔm2
31j ¼ ð2.427 − 2.590Þ × 10−3 eV2;

sin2θ12 ¼ 0.270 − 0.341; sin2θ23 ¼ 0.408 − 0.603;

sin2θ13 ¼ 0.02052 − 0.02398 ð1Þ

for normal ordering (NO) of light neutrino masses, and
similar constraints for inverted ordering (IO) [23]. In this
regard, many conjectures have been put forward. A par-
ticular pattern yielding sin2 θ23 ¼ 1=2, sin2 θ12 ¼ 1=3, and
θ13 ¼ 0, known as tri-bimaximal mixing (TBM) [24],
received a lot of attention due to the proximity of θ23
and θ12 with experimental values. Such a mixing pattern can
also be elegantly generated using flavor symmetries.
Particularly, the use of non-Abelian discrete symmetries
like S3, A4, S4, A5 is very well known [25,26] in this
context. For a detailed discussion on such frameworks,
see [27–32] and references therein. Unsurprisingly, a
deformation from TBM mixing becomes inevitable after
precisely measuring θ13. Nevertheless, the TBM mixing
scheme can still be considered as a leading-order approxi-
mation, requiring adjustments such as accounting for
nonzero θ13 and the Dirac CP phase δ. Possible simple
deviations from the TBM mixing are called trimaximal
(TM1 and TM2) mixings, where the first and second
columns of the TBM mixing, respectively, remain identi-
cal [33–41]. Such deviations can be elegantly achieved by
considering larger residual symmetry (compared to the
TBM scenario) or introducing an additional constituent
that breaks the TBM structure [40–49]. Although the 3σ
allowed ranges for all three mixing angles can be explained
by both TM1 and TM2 mixings, the allowed value of the
solar mixing angle θ12 (within these trimaximal scenarios)
slightly prefers the TM1 over the TM2 mixing scheme. For
a detailed discussion on the relative comparison of both
mixings, see [32].
Apart from the neutrino masses and mixing, unraveling

the nature of dark matter (DM) remains a pressing challenge
in contemporary particle physics. While compelling astro-
physical evidence, including observations like galaxy rota-
tion curves, gravitational lensing, and the cosmic large-scale
structure, substantiates the existence of DM [50], the quest
for a laboratory-based confirmation persists. Satellite mis-
sions such as WMAP [51] and Planck [52] have precisely
determined that DM constitutes roughly 26.8% of the total
energy content of the Universe. Expressing the prevailing
dark matter abundance through the density parameter ΩDM
and the normalized Hubble parameter h (the Hubble
parameter divided by 100 km s−1Mpc−1) yields ΩDMh2 ¼
0.120� 0.001 at a 68% confidence level. Still, the intri-
cacies of its properties beyond gravitational interactions

remain elusive. Among all proposed particle dark matter, the
most sought-after paradigm is the weakly interacting
massive particle (WIMP) paradigm, which suggests a dark
matter particle with a mass and interaction strength akin to
the electroweak scale. Unfortunately, the Standard Model of
particle physics fails to comprehensively explain either
neutrino masses and mixings, or dark matter. Standing at
this juncture, certainly, it is a tempting challenge to find a
common origin of these two seemingly uncorrelated sectors,
if any. Hence, we aim to go beyond the SM of particle
physics to explore scenarios that can accommodate a
candidate of DM and explain nonzero neutrino masses
and mixings.
Neutrino oscillation data presented earlier [see Eq. (1)]

does not determine the absolute scale or ordering of
neutrino masses. The experiments have measured the
two mass-squared differences (solar and atmospheric)
associated with neutrino oscillations, and the ratio of the
solar to atmospheric mass-squared difference (r) is found to
be [23]

r ¼ Δm2
21=jΔm2

31j ∼ 0.03: ð2Þ

This may be an indication of the involvement of two
different mass scales that might originate from entirely
separate mechanisms.1 Following this ethos, the authors
in [61] showed a scotogenic extension of the type-I seesaw
scenario that can minimally explain the hierarchy of solar
and atmospheric neutrino mass scales. In this setup, the
Standard Model particle content is extended by including
one heavy isosinglet neutral lepton NR (for the type-I
sector) along with a dark fermion f and an inert scalar
doublet η (for the scotogenic sector), both being odd under
a dark Z2 symmetry. Here, the type-I contribution gives
rise to the larger atmospheric scale. In contrast, the one-
loop scotogenic contribution turns out to be the origin of
the smaller solar mass scale mediated by a dark fermion,
also providing a potential dark matter candidate [62,63].
Unfortunately, such constructions turn out to be inadequate
in explaining the observed neutrino oscillation data asso-
ciated with the mixing and the Dirac CP phase mentioned
above. This problem can be addressed by augmenting
well-motivated non-Abelian discrete flavor symmetries.
Earlier, in [64,65], the authors proposed a flavor symmetric
realization of the scoto-seesaw framework with two right-
handed neutrinos having Z8 and A4 discrete symmetries.
The use of A4 discrete flavor symmetry has the additional
advantage of obtaining analytic expressions for neutrino

1Within the framework of the type-I seesaw mechanism, the
hierarchy of the atmospheric and solar neutrino mass scales can
also be explained through the mechanisms of sequential domi-
nance [53–58] and constrained sequential dominance [59,60],
where one of the right-handed neutrinos is considered to
dominantly contribute the light neutrino masses.
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masses and mixing angles, as well as yielding interesting
correlations among the oscillation parameters with dis-
tinctive predictions. For instance, in [65], the authors
realized a TM2 mixing scheme within a flavor symmetric
scoto-seesaw (FSS) framework with A4 symmetry, which
can arise in various ways such as starting from a continu-
ous [66–71] or superstring theory in compactified extra
dimensions [26,43,72–81]. Furthermore, in another A4-
based scoto-seesaw framework [82], the authors showed
that the hierarchy of atmospheric and solar neutrino mass
splitting can be obtained as a prediction of the “discrete
dark matter”mechanism [83]. In this construction, both the
scotogenic contribution and the stabilizing symmetry for
DM (obtained as a residual symmetry of A4 breaking)
appear naturally; however, additional copies of right-
handed neutrinos and scalar doublets are essential.
In the present work, we show that the scoto-seesaw

mechanism can be embedded within a A4 × Z4 × Z3 × Z2

flavor symmetric framework with the involvement of only
one right-handed neutrino, and the experimentally favored
TM1 mixing scheme can be realized. We will call the
present model FSS1 from now on, as it explains the TM1

mixing scheme. The scotogenic contribution contains
neutral particles in both the fermionic and scalar sectors.
Within this flavor symmetric framework, we perform a
phenomenological study of the fermionic dark matter and
determine its correlation with the observed neutrino mix-
ing. The obtained magnitude and flavor structure of the
scotogenic contribution dictates the observed neutrino
mixing pattern and facilitates us in obtaining the correct
dark matter relic density. Such a direct correlation with the
dark matter sector was missing in [65]; a detailed analysis
on fermionic dark matter in this work also completes the
associated phenomenology. The presence of flavor sym-
metry makes an interesting prediction for the neutrino mass
hierarchy, determines the octant of the atmospheric mixing
angle θ23, and tightly constrains the TM1 prediction for the
Dirac CP phase δCP. Here, the type-I contribution produces
a neutrino mass matrix of rank 1, yielding only one massive
light neutrino. Subsequently, the scotogenic contribution
generates another neutrino mass eigenstate, and together,
we obtain two massive neutrinos, which follow the normal
ordering of the light neutrino mass spectrum. In [61], the
authors showed that the type-I and scotogenic contributions
could be the origin of the atmospheric and solar mass
scales. Here, we show that such a hierarchy can also be
procured within a flavor symmetric construction, explain-
ing observed neutrino oscillation data. Furthermore, in the
present model, we can obtain the constraint on the
Majorana phase and predict the effective mass parameter
appearing in the neutrinoless double beta decay and the
sum of the absolute neutrino masses.
One of the essential aspects of any theoretical model is

its experimental viability. For the version of the FSS model

discussed here, we perform a comprehensive phenomeno-
logical analysis involving the h → γγ decay, where h is the
SM Higgs boson. The signal strength of the Higgs in the
diphoton decay channel, Rγγ, is measured at the LHC, the
value of which is around 1 [84]. The additional contribution
to the decay of h → γγ in the FSS1 model is the charged
scalar of the η field. Our analysis shows that Rγγ can be
fitted in our model, which can constrain the mass of the
charged component of the η field. Owing to the flavor
structure of this scoto-seesaw framework, we find that
only the scotogenic part contributes to the lepton-flavor-
violating decays such as μ → eγ, μ → 3e, whereas only the
seesaw part contributes in the decays such as τ → μγ,
τ → 3μ. However, the scotogenic and seesaw parts do not
contribute to the τ → eγ or τ → 3e decays, a distinctive
feature of the present construction. All these phenomeno-
logical analyses for the FSS1 framework serve as crucial
tests of the model’s predictions and provide valuable
insights into its compatibility with experimental data.
The rest of the paper is organized as follows: In Sec. II,

we briefly introduce the minimal scoto-seesaw framework.
In Sec. III, we present the complete A4 flavor symmetric
scoto-seesaw scenario, and in Sec. IV, we analyze corre-
sponding neutrino masses and mixing. We mention the
low-energy scalar potential in Sec. V. In Sec. VI, we discuss
the detailed phenomenology of fermionic dark matter, and
we further explore phenomenological implications for the
Higgs to the diphoton decay and lepton flavor violation in
Secs. VII and VIII, respectively. Then, in Sec. IX, we
summarize the phenomenological analysis. Finally, in
Sec. X, we present the conclusion and outlook of the
FSS1 framework.

II. MINIMAL SCOTO-SEESAW MODEL

In this section, we present the minimal scoto-seesaw
model which is introduced in [61]. The minimal scoto-
seesaw model consists of one2 right-handed neutrino NR,
one singlet dark fermion f, and one extra scalar doublet ηR.
In addition to these particles, one Z2 symmetry is intro-
duced to stabilize the dark matter. In this model,3 the usual
type-I seesaw mechanism with one right-handed neutrino
NR is combined with the scotogenic model with fermion f.
The type-I seesaw generates the atmospheric mass scale at
the tree level, while the solar mass scale is generated at the
loop level in the scotogenic mechanism. As a result, the
hierarchy between the solar mass scale and the atmospheric
mass scale is maintained. The relevant Lagrangian in the
model can be written as

2The number of right-handed neutrinos added [18] to the SM is
not fixed, as they do not carry any anomaly [85].

3For various extensions of the minimal scoto-seesaw scenario,
see Refs. [62–65,86–89].
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L ¼ −Yk
NL̄

kiσ2H�NR þ 1

2
MNN̄c

RNR þ Yk
fL̄

kiσ2η�f

þ 1

2
Mff̄cf þ H:c:; ð3Þ

where Lk are the lepton doublets. The scalars H and η are
the SUð2Þ doublets defined in Eq. (35). YN and Yf are
complex 3 × 1Yukawa coupling matrices, andMN;f are the
mass terms forNR and f. The total neutrino mass reads [61]

Mij
ν ¼ −

v2

MN
Yi
NY

j
N þ F ðMηR ;MηI ; MfÞMfYi

fY
j
f: ð4Þ

Here, the first term is due to the tree-level seesaw
mechanism, while the second term originates from the
one-loop scotogenic contribution with

F ðMηR ;MηI ; MfÞ ¼
1

32π2

"
M2

ηR logðM2
f=M

2
ηRÞ

M2
f −M2

ηR

−
M2

ηI logðM2
f=M

2
ηI Þ

M2
f −M2

ηI

#
; ð5Þ

whereMηR andMηI are the masses of the neutral component
of η. Although the ratio of the above two contributions in
Eq. (4) can explain the hierarchy of the solar and atmos-
pheric mass scales, it fails to explain the observed neutrino
mixing pattern. In this regard, the use of non-Abelian
discrete flavor symmetries is well motivated [28–32]. In
the following sections, we discuss the phenomenological
consequences of flavor-symmetric construction of the scoto-
seesaw framework with only one right-handed neutrino to
explain the correct neutrino masses and mixing. We also
provide a detailed analysis of the fermionic dark matter relic
abundance and direct detection search constraint to deter-
mine the parameter space consistent with neutrino oscil-
lation data and predictions for Higgs-to-diphoton signal
strength and lepton-flavor-violating decays.

III. SCOTO-SEESAW WITH FLAVOR
SYMMETRY: THE FSS1 MODEL

The model we are proposing is the flavor-symmetric
version of the scoto-seesaw model described in the
previous section with the usual scotogenic fermion f
and inert doublet η in addition to one right-handed neutrino
NR. To obtain the flavor structure, A4 × Z4 × Z3 × Z2

flavor discrete symmetry and flavons ϕs, ϕa, ϕT , and ξ
are introduced. To avoid unwanted terms in the Lagrangian
and get the correct flavor Yukawa structure, additional ZN
symmetries are introduced. The inclusion of flavon fields
and auxiliary symmetries are generic features of such
flavor-symmetric constructions [25,26,72,90]. A remnant
Z2 symmetry of the ZN symmetries acts as a dark
symmetry that ensures the stability of dark matter under

which only f and η are odd. Similar types of flavored
scoto-seesaw models were studied before in [64,65] with
Z8 and A4 × Z4 × Z3 × Z2 discrete symmetries, respec-
tively. No simple analytic correlation can be obtained due
to the use of the Z8 symmetry [64], whereas the TM2

mixing was reproduced in [65] with the A4 × Z4 × Z3 × Z2

symmetry. In both cases, two right-handed neutrinos are
introduced in the seesaw contribution to get the flavor
structure and mixing. In the present work, we construct the
framework with only one right-handed neutrino and realize
the experimentally preferred TM1 mixing scheme com-
pared to the TM2 mixing scheme (derived in [65]). The
particle content of our model and charge assignment under
different symmetries are shown in Table I. The role of each
discrete auxiliary symmetry will be described in detail as
we proceed further.
With the field content and charge assignment in Table I,

the charged lepton Lagrangian can be written up to leading
order as

Ll ¼
ye
Λ
ðL̄ϕTÞHeRþ

yμ
Λ
ðL̄ϕTÞHμRþ

yτ
Λ
ðL̄ϕTÞHτRþH:c:;

ð6Þ

where Λ is the cutoff scale of our model. ye, yμ, and yτ are
the coupling constants. Now, when the flavon ϕT gets a
vacuum expectation value (VEV) in the direction hϕTi ¼
ðvT; 0; 0ÞT and subsequently, the Higgs field also gets a
VEV as hHi ¼ v, where v is the SM VEV, we find the
charged lepton mass matrix to be in the diagonal form as

Ml ¼
vT
Λ

v

0
B@

ye 0 0

0 yμ 0

0 0 yτ

1
CA: ð7Þ

Now, the Lagrangian in the neutrino sector, which gen-
erates neutrino masses, constitutes two parts: a type-I
seesaw contribution with one right-handed neutrino NR,
and another one-loop scotogenic part with the presence of
the dark fermion f and scalar η. Following the symmetries
and particle content mentioned in Table I, the Lagrangian
for the neutrino sector can be written as

TABLE I. Field content and transformations under the sym-
metries of the FSS1 model. Product rules of the A4 singlets and
triplets are given in the Appendix. The flavon fields mentioned in
the second block are essential to implement the A4 symmetry, and
ωð¼ e2iπ=3Þ is the cube root of unity.

Fields eR, μR, τR Lα H NR f η ϕs ϕa ϕT ξ

A4 1, 100, 10 3 1 1 1 1 3 3 3 100
Z4 −1 i 1 1 1 1 i i −i 1
Z3 1 ω ω 1 1 1 ω2 ω 1 1
Z2 −1 1 1 1 −1 −1 1 −1 −1 −1
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L ¼ yN
Λ

ðL̄ϕsÞH̃NR þ 1

2
MNN̄c

RNR þ ys
Λ2

ðL̄ϕaÞξiσ2η�f

þ 1

2
Mff̄cf þ H:c:; ð8Þ

where yN and ys are the coupling constants and MN is the
Majorana mass of the right-handed neutrino NR, whileMf

is the mass of the fermion f. In the above Lagrangian, we
have considered VEVs of the flavons ϕs, ϕa, and ξ in
the directions hϕsi ¼ ð0;−vs; vsÞ, hϕai ¼ ð2va; va; 0Þ, and
hξi ¼ vξ, respectively. A similar vacuum alignment can be
found in the literature for neutrino model building [60,91],
which can be realized inherently by analyzing the com-
plete scalar potential [28,48,59,92–94]. The light neutrino
mass matrix involving both type-I seesaw and scotogenic
contributions can be written as

ðMνÞij ¼ −
v2

MN
Yi
NY

j
N þ F ðMηR ;MηI ; MfÞMfYi

fY
j
f; ð9Þ

where the Yukawa couplings take the following form:

YN ¼ ðYe
N; Y

μ
N; Y

τ
NÞT ¼

�
0; yN

vs
Λ
;−yN

vs
Λ

�
T
; ð10Þ

YF ¼ ðYe
F; Y

μ
F; Y

τ
FÞT ¼

�
ys

vξ
Λ
va
Λ
; ys

vξ
Λ
2va
Λ

; 0

�
T

≡ ðκ; 2κ; 0ÞT: ð11Þ

Within this setup, the total effective light neutrino mass
matrix of Eq. (9) is the following:

Mν ¼

0
B@

b 2b 0

2b −aþ 4b a

0 a −a

1
CA; ð12Þ

with

a ¼ y2N
v2

MN

v2s
Λ2

; ð13Þ

b ¼ y2s
v2ξ
Λ2

v2a
Λ2

F ðmηR ; mηI ; MfÞMf

≡ κ2F ðMηR ;MηI ; MfÞMf; ð14Þ

where F is the loop function defined in Eq. (5). Clearly,
from Eqs. (10)–(14), it is evident that the parameters a and b
originate from type-I seesaw and scotogenic contributions,
respectively. In the next section, we show how these
parameters’ relative magnitudes help us explain the hier-
archy of the atmospheric and solar oscillation mass scales.
Though the neutrino mass matrix given in Eq. (12) is

obtained through a combination of type-I seesaw and

scotogenic mechanisms, there can be additional operators
like LHLH=Λ, contributing to the light neutrino masses. In
our model, this higher-dimensional term is not invariant
explicitly under the Z4 symmetry given in Table I. Also,
terms like LHLHðϕa;ϕs;ϕT; ξÞ=Λ2 are disallowed due to
the considered discrete ZN symmetries. For the same ZN

symmetries, the scotogenic contribution (L̄iσ2η�f) is only
allowed at 1=Λ2 with the involvement of flavons ϕa and ξ,
which are both odd under the Z2 symmetry along with f and
η. Here, in principle, there could be another contributing
term via L̄iσ2η�fϕaξ

†=Λ2. This term, however, can be
absorbed in the previous contribution through a redefinition
of the Yukawa coupling. Owing to the A4 symmetry, in the
charged lepton sector, the leading-order contribution
appears only at dimension 5. However, for example, there
could be a next-to-leading correction at Oð1=Λ2Þ via
ðL̄ϕ†

sϕaÞHαR=Λ2, where αR is the corresponding right-
handed charged lepton. Interestingly, such a contribution is
disallowed due to the Z4 symmetry given in Table I. As the
right-handed Majorana neutrino present in our model is also
a singlet under A4 symmetry, any higher-order correction
can be absorbed in the leading-order contribution to MN .
For the same reason, we can also absorb any higher-order
contribution to Mf, as it does not affect the flavor structure
of our model. Finally, the Dirac Yukawa coupling is allowed
at dimension 5, as given in Eq. (11). The next-to-leading-
order contributions at Oð1=Λ2Þ, such as ðL̄ϕ†

aϕTÞH̃NR and
ðL̄ϕ†

sϕTÞH̃NR, are not allowed due to the Z4 symmetry.

IV. NEUTRINO MASSES AND MIXINGS
IN THE FSS1 MODEL

The model we presented in the last section has two parts.
One is coming from a type-I seesaw with one right-handed
neutrino NR. Another part is the scotogenic contribution
with the dark fermion f. The full light neutrino mass matrix
is given in Eq. (12), and both contributions are essential in
explaining observed neutrino masses and mixing. To
diagonalize the mass matrix in Eq. (12), we first write
the mass matrix in the TBM basis as

M0
ν ¼ UT

TBMνUTB ¼

0
BB@

0 0 0

0 3b −
ffiffiffi
6

p
b

0 −
ffiffiffi
6

p
b 2ðb − aÞ

1
CCA; ð15Þ

where

UTB ¼

0
BBBBBB@

ffiffi
2
3

q ffiffi
1
3

q
0

−
ffiffi
1
6

q ffiffi
1
3

q
−

ffiffi
1
2

q
−

ffiffi
1
6

q ffiffi
1
3

q ffiffi
1
2

q

1
CCCCCCA
: ð16Þ
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As is evident from Eq. (15), a further rotation by U23

(another unitary matrix) in the 23 plane will diagonalize the
light neutrino mass matrix via Mdiag

ν ¼ UT
23M

0
νU23. The

unitary rotation matrix U23 can be parametrized as

U23 ¼

0
B@

1 0 0

0 cos θ sin θe−iψ

0 − sin θeiψ cos θ

1
CA; ð17Þ

where θ and ψ are the rotation angle and the associated
phase factor, respectively. So, the diagonalization of Mν

can be achieved through

ðUTBU23ÞTMνðUTBU23Þ ¼ diagðm1eiγ1 ; m2eiγ2 ; m3eiγ3Þ;
ð18Þ

where m1;2;3 are the real and positive mass eigenvalues, and
γ1;2;3 are the phases that are extracted from the correspond-
ing complex eigenvalues. In our framework, we have only
one right-handed neutrino, which, via type-I seesaw [the first
term in Eq. (9)], yields a rank-1 mass matrix which makes
one light neutrino massive. Together with the scotogenic
contribution, we obtain a rank-2 mass matrix given in
Eq. (12), generating two massive neutrinos. Hence, within

this flavor-symmetric construction, one mass eigenvalue (the
lightest) will be zero. So, we have m1 ¼ 0, which implies
γ1 ¼ 0. Now, we can get the form of the neutrino mixing
matrix Uν such that UT

νMνUν ¼ diagð0; m2; m3Þ. Thus, Uν

becomes Uν ¼ UTBU23Um, where Um ¼ diagð1; 1; eiα32=2Þ
is the Majorana phase matrix with α32 ¼ γ3 − γ2. Therefore,
we have only one nonzero phase in the Majorana phase
matrix Um, as the lightest neutrino is massless. The explicit
form of Uν follows

Uν ¼

0
BBBBB@

ffiffi
2
3

q
cos θffiffi

3
p e−iψ sin θffiffi

3
p

− 1ffiffi
6

p cos θffiffi
3

p þ eiψ sin θffiffi
2

p − cos θffiffi
2

p þ e−iψ sin θffiffi
3

p

− 1ffiffi
6

p cosθffiffi
3

p − eiψ sin θffiffi
2

p cos θffiffi
2

p þ e−iψ sin θffiffi
3

p

1
CCCCCAUm: ð19Þ

This form ofUν is well known in the literature as a deviation
from UTBM and is called the TM1 mixing pattern, where the
first column of the lepton mixing matrix is trimaximal. The
VEValignment of the flavons ϕa;s mentioned earlier plays a
crucial role in obtaining such a mixing pattern. The lepton
mixing matrix Uν can now be compared with UPMNS, which
in its standard parametrization is given by [95]

UPMNS ¼

0
BBB@

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

1
CCCAUm; ð20Þ

where cij ¼ cos θij, sij ¼ sin θij, δCP is the Dirac CP-
violating phase, and Um is the Majorana phase matrix. We
can see that the total light neutrino mass matrix of Eq. (12)
contains two parameters a and b associated with the
type-I seesaw and scotogenic contributions, which can
be complex in general. We can write these parameters as
a ¼ jajeiϕa and b ¼ jbjeiϕb , where ϕa and ϕb are the
associated phases. For calculational purposes, we define the
parameter α ¼ jaj=jbj and the difference of phases by
ϕab ¼ ϕa − ϕb. As M0

ν is diagonalized by U23, the rotation
angle θ and the phase ψ appearing in Eq. (17) can be
expressed in terms of the model parameters as

tanψ ¼ 2α sinϕab

5 − 2α cosϕab
;

tan 2θ ¼ 2
ffiffiffi
6

p

cosψ þ 2α cosðψ þ ϕabÞ
: ð21Þ

As the charged lepton mass matrix is diagonal, to obtain the
correlation among the mixing angles and phases, we can

compareUν ¼ UTBU23Um of Eq. (19) withUPMNS given in
Eq. (20). These correlations can be written as [37–39]

sin θ13e−iδCP ¼ e−iψ sin θffiffiffi
3

p ; sin2θ12 ¼ 1 −
2

3 − sin2θ
;

sin2θ23 ¼
1

2

�
1 −

ffiffiffi
6

p
sin 2θ cosψ
3 − sin2θ

�
: ð22Þ

The above relations among the three mixing angles imply a
mutual correlation. These correlations are the unique
feature of the considered A4 × Z4 × Z3 × Z2 flavor sym-
metry, giving rise to the TM1 mixing scheme. More
specifically, relations in Eq. (22) are general for the TM1

mixing scheme [37–39], where the mixing angles θ13 and
θ12 are being correlated to each other. The correlation plot
among these mixing angles can be found in Ref. [38],
where sin2 θ12 is restricted to some narrow range corre-
sponding to the 3σ regions of sin2 θ13. Relations in Eq. (21)
are unique for the considered FSS1 model. From Eqs. (21)
and (22), it is clear that the angle θ and the associated phase
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ψ in U23 can be linked with the parameters involved inMν.
Relations in Eq. (22) imply that δCP ¼ ψ when sin θ > 0,
and δCP ¼ ψ � π for sin θ < 0, which can be written in a
compact form as tan δCP ¼ tanψ . Now, from Eq. (12), the
complex mass eigenvalues are calculated to be

mc
1 ¼ 0; ð23Þ

mc
2 ¼

1

2

�
−2aþ 5b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ 4abþ 25b2

p �
; ð24Þ

mc
3 ¼

1

2

�
−2aþ 5bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ 4abþ 25b2

p �
: ð25Þ

The real and positive mass eigenvalues are calculated as

m1 ¼ 0; ð26Þ

m2 ¼
jbj
2
½ð5 − 2α cosϕab − PÞ2 þ ðQþ 2α sinϕabÞ2�1=2;

ð27Þ

m3 ¼
jbj
2
½ð5 − 2α cosϕab þ PÞ2 þ ðQ − 2α sinϕabÞ2�1=2;

ð28Þ

where

P2 ¼M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þN2

p

2
; Q2 ¼−M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þN2

p

2
; ð29Þ

M ¼ 25þ 4α cosϕab þ 4α2 cos 2ϕab;

N ¼ 4α sinϕab þ 4α2 sin 2ϕab: ð30Þ

Now, from Eqs. (23)–(25), we get the phases associated
with the complex eigenvalues mc

1;2;3. These phases can be
written as γi ¼ ϕb þ ϕi, i ¼ 2; 3. i ¼ 1 is excluded here, as
the lightest mass eigenvalue is zero, and the phase
associated with mc

1 is γ1 ¼ 0. Now, ϕ2;3 in our model
can be written as

ϕ2 ¼ tan−1
�

Qþ 2α sinϕab

5 − 2α cosϕab − P

�
;

ϕ3 ¼ tan−1
�

Q − 2α sinϕab

5 − 2α cosϕab þ P

�
: ð31Þ

Using the above relations, we can calculate the Majorana
phase α32 in Um, which can be written as

α32 ¼ tan−1
�

Q − 2α sinϕab

5 − 2α cosϕab þ P

�

− tan−1
�

Qþ 2α sinϕab

5 − 2α cosϕab − P

�
: ð32Þ

The phase ϕb is irrelevant while calculating the Majorana
phase, as it is the difference between γ3 and γ2. Finally, the
Jarlskog invariant JCP [96,97],

JCP ¼ IðU11U22U�
12U

�
21Þ ¼ s12c12s13c213s23c23 sin δCP;

ð33Þ

will be used to quantify theCP violation in the FSS1 model.
From Eqs. (21)–(32), we observe that the mixing angles
and all the phases depend on the parameters α and ϕab,
while the light neutrino masses depend on these parameters
as well as on jbj. Now, we will estimate these model
parameters (α, jbj, and ϕab) using neutrino oscillation data
on neutrino mixing angles and mass-squared differences.
With measured values [23,98,99] of mixing angles θ13, θ12,
and θ23; mass-squared differences Δm2

21, jΔm2
31j (men-

tioned in Eq. (1), taken from [23]); and the ratio r defined in
Eq. (2), we first estimate α and the phase ϕab using the 3σ
range of neutrino oscillation data. The allowed ranges for α
and ϕab are plotted in the left panel of Fig. 1 in the α − ϕab
plane. Here, we find that the allowed ranges of α vary
between 4.82 and 5.27, whereas two distinct regions of ϕab
are allowed: 4.72–4.76 rad and 5.03–5.06 rad. As men-
tioned earlier, the effective light neutrino mass matrix in the
FSS1 model has rank 2 due to the considered A4 symmetry.
Hence, we obtain two massive light neutrinos as given in
Eqs. (26)–(28), predicting only the normal ordering (NO) of
light neutrino masses. To obtain the absolute values of m2

and m3, we need to find the overall factor jbj appearing in
Eqs. (27) and (28). Though the factor jbj cancels out while
calculating r, it can be calculated by fitting solar or
atmospheric mass-squared differences after knowing α
and ϕab from the left panel of Fig. 1. After evaluating
jbj, jaj can be easily estimated using the relation jaj ¼ αjbj.
Hence, in the right panel of Fig. 1, we have plotted the
allowed region in the jaj − jbj plane for the 3σ range of
neutrino oscillation data. Corresponding to two distinct
regions of ϕab in the left panel, there also exist two distinct
regions of the parameters jaj, as shown in the right panel of
Fig. 1. Now, from Eqs. (27) and (28), we find that the light
neutrino masses are functions of both a and b, whose
origins lie in the type-I seesaw and the scotogenic con-
tributions, respectively. Since m1 ¼ 0 in the FSS1 frame-
work, m2 and m3 are proportional to the solar and
atmospheric mass-squared differences. Hence, in Fig. 2,
we have plotted the variation of jbj with respect to jaj
(represented by the color variation from blue to red) to
reproduce correct r. This plot shows that the hierarchy
between jaj and jbj essentially explains the observed value
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of the ratio of the solar to atmospheric mass-squared
differences r, where jaj is the dominant contribution
originating from the type-I seesaw.
With the allowed values of α, ϕab, jaj, and jbj obtained

from Fig. 1, we are in a position to study the correlations
among neutrino mixing angles, phases, and masses. Due
to the presence of the A4 discrete flavor symmetry, we
have realized the TM1 mixing scheme yielding interesting
correlations among the observables appearing in the
neutrino mixing. It is well known that there are still
some unsettled issues in the measurement of θ23 and
δCP [23,98,99]. These are (i) the octant of θ23 (i.e.,
whether θ23 < 45° or θ23 > 45°) and (ii) the precise
measurement of δCP. Following Eqs. (21) and (22), we
find a correlation between the atmospheric mixing angle
θ23 and the Dirac CP phase δCP for the TM1 mixing
scheme. Together with Eq. (21) and Fig. 1 within the FSS1

framework, the predictions regarding θ23 and δCP for the
TM1 scheme get constrained further, as plotted in the left
panel of Fig. 3. Here, the gray-shaded region represents
the TM1 prediction in the θ23 − δCP plane, where the red-
shaded region is the prediction for the FSS1 framework.
We find that our model prefers the higher octant of θ23 for
narrow regions of δCP. The allowed regions of sin2 θ23 are
0.531–0.544 and 0.580–0.595, whereas the allowed
regions of δCP are �ð1.44–1.12Þ rad. Here, the relative
phase between type-I and scotogenic contributions
(denoted by ϕab) is the source of CP violation in the
lepton sector—see Eq. (21) and subsequent discussion.
Hence, in the right panel of Fig. 3, we have plotted the
dependence of δCP on ϕab (the relative phase between a
and b) denoted by the red shaded regions. It is established
that the Majorana phases cannot be constrained from
neutrino oscillation data directly, as they do not appear in
the neutrino oscillation probability [100–102]. In the FSS1
framework, the Majorana phase α23 can be constrained
using Eq. (32) with the allowed range for α and
ϕab. Hence, in the left panel of Fig. 4, we show the
correlation among the CP phases in the α23 − δCP plane,
and the Majorana phase is found to be within the ranges
0.82–0.95 rad and 1.58–1.67 rad. Estimating the Majorana
phase will play a crucial role in predicting the effective
mass parameter appearing in the neutrinoless double
decay [100]. Now, following Eq. (33), we have plotted
the Jarlskog invariant JCP as a function of ϕab in the right
panel of Fig. 4. Here, the magnitude of JCP is found to be
within the ranges 0.0290–0.0313 and 0.0318–0.0344.
Finally, with the allowed parameter space obtained in
Fig. 1, we make predictions for the light neutrino masses
(m2, m3), their sum (

P
mi), and the effective mass

parameter appearing in the neutrinoless double decay
(mββ), as summarized in Table II. The prediction forP

mi is consistent with cosmological observation [10],

FIG. 1. The allowed regions for α and ϕab (left panel), and jaj and jbj (right panel) for the 3σ ranges of neutrino oscillation data [23].

FIG. 2. r vs jbj with variation of jaj.
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whereas the prediction for mββ falls below the upper limit
provided by the next-generation double beta decay experi-
ment nEXO [103].

V. SCALAR POTENTIAL

The FSS1 model considered here consists of two SUð2Þ
doublet scalars, H and η. To obtain the flavor structure of
the leptons, we have four flavons—ϕs;ϕa;ϕT , and ξ—as
mentioned in Table I. These SUð2Þ singlet flavons are
considered to be very heavy compared to H and η and
hence remain decoupled from the low-energy phenomenol-
ogy of scalars. The low-energy scalar potential of the model
can be written as

V ¼ −μ21ðH†HÞ þ μ22ðη†ηÞ þ λ1ðH†HÞ2 þ λ2ðη†ηÞ2
þ λ3ðH†HÞðη†ηÞ þ λ4ðH†ηÞðη†HÞ

þ λ5
2
fðH†ηÞðH†ηÞ þ H:c:g: ð34Þ

The doublets in the model can be parametrized as

H ¼
�

Hþ

v=
ffiffiffi
2

p þ ðhþ iζÞ= ffiffiffi
2

p
�
;

η ¼
 

ηþ

ðηR þ iηIÞ=
ffiffiffi
2

p
!
: ð35Þ

FIG. 3. sin2θ23 − δCP correlation plot (denoted by red dots) is presented in the left panel. The gray-shaded region represents the
generic prediction for the TM1 mixing scheme. In the right panel, δCP is plotted against the relative (between a and b) phase factor ϕab.

FIG. 4. Correlation plot between the Dirac CP phase δCP and the Majorana phase α32 (left panel); dependence of the Jarlskog invariant
JCP on ϕab (right panel).
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The electroweak gauge symmetry is given by

H ¼
�

0

v=
ffiffiffi
2

p
�
; η ¼

�
0

0

�
: ð36Þ

The above symmetry-breaking pattern ensures that the Z2

symmetry will remain unbroken and results in twoCP-even
scalars (h; ηR) and one CP-odd neutral scalar ηI, in addition
to a pair of charged scalars (η�). Due to the dark Z2

symmetry, there is no mixing between h and ηR, and h plays
the role of the SM Higgs boson. The Z2 symmetry also
ensures the stability of the lightest scalar (ηR or ηI) that can
act as a dark matter candidate. The masses of all scalars can
be written in terms of the following parameters:

fμ2; λ1; λ2; λ3; λ4; λ5g: ð37Þ

These parameters can be written in terms of physical
masses of scalars as [104]

λ1 ¼
m2

h

2v2
; λ3 ¼

2

v2
ðM2

η� − μ22Þ; ð38Þ

λ4 ¼
M2

ηR þM2
ηI − 2M2

η�

v2
; λ5 ¼

M2
ηR −M2

ηI

v2
: ð39Þ

We can choose all the λ’s as free parameters—or, equiv-
alently the four physical scalar masses, λ2 and μ2—namely

fμ22; mh;MηR ;MηI ; Mη� ; λ2g: ð40Þ

The quartic couplings are constrained theoretically by
perturbativity and vacuum stability. We force the scalar

potential to be perturbative, which requires all quartic
couplings of the scalar potential to obey

jλij ≤ 8π: ð41Þ

To get the scalar potential to be bounded from below, the
following conditions can be obtained [105,106]:

λ1;2 > 0 and λ3 þ λ4 − jλ5j þ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0

and λ3 þ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0: ð42Þ

Equation (42) gives constraints based on the bare couplings
of the Lagrangian. Another approach with running param-
eters of the model evaluated at the cutoff scale Λ of the
theory is possible—see, for instance, Refs. [63,105–108].
Apart from these theoretical constraints, λ3, λ4, and λ5 given
in Eq. (39) can also be constrained from experimental and
phenomenological constraints. As we will discuss in the
subsequent sections, λ5 is crucially relevant in determining
the scotogenic Yukawa coupling and hence is constrained
from DM relic density and direct-search constraints, as well
as the neutrino phenomenology. Similarly, λ3;4 can also be
constrained from DM direct search, as well as SM Higgs
diphoton signal strength.
The presence of the doublet scalar η in our model can

have important consequences in the context of CDF-II
W-boson mass anomaly [109] (for instance, see [110–117]),
as it can affect the EW precision observables S, T, and
U [95]. Through the self-energy correction of the W-boson
with the doublet scalar in the loop, theW-bosonmass can be
increased from the SM prediction to the value obtained by
the CDF-II Collaboration. Parametrizing the new physics
effects in terms of the S, T, U parameters as [118,119],
we find

S ¼ 1

12π
ln
M2

η0

M2
ηþ
;

T ¼ GF

4
ffiffiffi
2

p
π2αem

 
M2

η0
þM2

ηþ

2
−

M2
η0
M2

ηþ

M2
η0
−M2

ηþ
ln
M2

ηþ

M2
η0

!
;

U ¼ 1

12π

"ðM2
η0
þM2

ηþÞðM4
η0
− 4M2

η0
M2

ηþ þM4
ηþÞ lnð

M2

ηþ
M2

η0
Þ

ðM2
ηþ −M2

η0
Þ3 −

5M4
η0
− 22M2

η0
M2

ηþ þ 5M4
ηþ

3ðM2
ηþ −M2

η0
Þ

#
; ð43Þ

where η0 ¼ ðηR þ iηIÞ=
ffiffiffi
2

p
, and the W-boson mass can be written as [120]

TABLE II. Predictions for m2, m3,
P

mi, and mββ (all in meV)
for the FSS1 framework.

m2 m3

P
mi mββ

8.3–9.0 49.7–51.3 58.0–60.3 1.61–3.85
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M2
W ¼ ðM2

WÞSM þ αemcos2θW
cos2θW − sin2θW

M2
Z

�
−
1

2
Sþ cos2θWT

þ ðcos2θW − sin2θWÞ
4sin2θW

U

�
; ð44Þ

where αem is the fine structure constant, θW is the Weinberg
angle, and ðM2

WÞSM is the SM predicted value of the W-
boson mass. The dominant correction to MW comes from
the T parameter, which is very much sensitive to the mass
difference between the charged scalar and the neutral scalar
components of the inert doublet. And the CDF-II W mass
can be obtained if the mass difference between ηþ and η0 is
around 80 to 100 GeV. However, we should stress that
CDF-II data on theW mass are in contradiction with global
electroweak eþe− fits and recent ATLAS LHC analysis,
with systematic uncertainty improved by 15% [121] and
optimized reconstruction of the W-boson transverse
momentum [122].

VI. DM PHENOMENOLOGY
FOR THE FSS1 MODEL

In this FSS1 framework, both type-I seesaw and scoto-
genic mechanisms are combined to obtain correct neutrino
masses and mixing. The scotogenic contribution contains
two potential candidates for DM: the lightest neutral scalar,
and the singlet fermion. Determining the DM relic density
hinges on these candidates’ production mechanisms during
the early Universe. While the literature extensively covers
the scalar DM phenomenology,4 which aligns with the inert
doublet model (IDM) perspective, our focus here is on the
singlet fermion denoted as f, an odd Z2 particle in the
scoto-seesaw scenario. We explore various mechanisms
that can yield the correct relic density and delve into the
associated parameter space. Since f is a gauge singlet, its
production mechanism is intricately tied to its Yukawa
couplings—see Eqs. (11) and (14)—with SM leptons and
the inert doublet scalar η. The magnitude of these Yukawa
couplings plays a pivotal role in determining whether the
correct relic density can be achieved through thermal
freeze-out or freeze-in mechanism.

A. Relic density of DM

As outlined in the preceding section, in our FSS1 model,
the scotogenic contribution to neutrino mass is parame-
trized in terms of the parameter b given in Eq. (14), which
also plays a crucial role in explaining the observed neutrino
oscillation data, which is constrained within in a range
jbj∈ ½0.0048; 0.0056� eV. Thus, to obtain the magnitude of
Yukawa couplings that can satisfy this constraint with the
masses of the loop particles of the order Oð1–103Þ GeV,

we perform a numerical scan, the result of which is shown
in the plane of κ versus λ5 in Fig. 5. We have used Eqs. (14)
and (39) to obtain the estimations of κ and λ5. It is worth
noticing from the neutrino mass expression that in the limit
λ5 → 0, the scotogenic contribution to neutrino mass
vanishes. This is due to the fact that in this limit, the
CP-even and CP-odd scalars ηR and ηI become degenerate,
and thus F ðMηR ;MηI ; MfÞ → 0. Thus, to satisfy the con-
straints on b from neutrino oscillation data, if λ5 is made
small, then κ can be enhanced, and vice versa. We see that
with this constraint on b, it is not possible to obtain Yukawa
couplings smaller than Oð10−6Þ even if λ5 is Oð1Þ.
Consequently, the singlet fermion also remains in thermal
equilibrium with the SM bath. This equilibrium is guar-
anteed by the doublet scalar η, which, due to its gauge
interactions, consistently maintains equilibrium with the
SM bath during the early stages of the Universe. Hence, the
DM relic density is governed through the WIMP mecha-
nism. Several pertinent processes contribute to the relic
density of DM. Specifically, the essential parameters
influencing the relic density are the Yukawa couplings
and the mass differences between the singlet fermion f and
other particles in the dark sector, namely ηR;I; η�.
For WIMP-type DM which is produced thermally in the

early Universe, its thermal relic abundance can be obtained
by solving the Boltzmann equation for the evolution of the
DM number density,

dn
dt

þ 3Hn ¼ −hσvieffðn2 − ðneqÞ2Þ; ð45Þ

FIG. 5. Correlation between λ5 defined in Eqs. (34) and (39),
and κ defined in Eq. (14), consistent with the constraint
from neutrino oscillation data—i.e., jbj∈ ½0.0048; 0.0056� eV
(see Fig. 1).

4For scalar dark matter phenomenology within the scoto-
seesaw framework, see Ref. [63].
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where n ¼Pi ni represents the total number density of all the dark sector particles, and neq is the equilibrium number
density. hσvieff represents the effective annihilation cross section which takes into account all number-changing processes
for DM freeze-out. It can be written as [123]

hσvieff ¼
g2f
g2eff

hσviff þ
gfgηR
g2eff

hσvifηRð1þ ΔηRÞ3=2 expð−xΔηRÞ þ
gfgηI
g2eff

hσvifηIð1þ ΔηI Þ3=2 expð−xΔηI Þ

þ gfgη�

g2eff
hσvifη�ð1þ Δη�Þ3=2 expð−xΔη�Þ þ

g2ηR
g2eff

hσviηRηRð1þ ΔηRÞ3 expð−2xΔηRÞ

þ gηRgηI
g2eff

hσviηRηIð1þ ΔηRÞ3=2ð1þ ΔηIÞ3=2 exp ð−xðΔηR þ ΔηIÞÞ

þ gηRgη�

g2eff
hσviηRη�ð1þ ΔηRÞ3=2ð1þ Δη�Þ3=2 exp ð−xðΔηR þ Δη�ÞÞ

þ g2ηI
g2eff

hσviηIηIð1þ ΔηIÞ3 expð−2xΔηIÞ þ
g2
η�

g2eff
hσviη�η∓ð1þ Δη�Þ3 expð−2xΔη�Þ

þ gηI gη�

g2eff
hσviηIη�ð1þ ΔηIÞ3=2ð1þ Δη�Þ3=2 expð−xðΔηI þ Δη�ÞÞ; ð46Þ

where gf, gηR , gηI , and gη� represent the internal degrees of
f, ηR, ηI , and η�, respectively, and Δi stands for the ratio
ðMi −MfÞ=Mf, with Mi denoting masses of ηR; ηI; η�.
Here, geff is the effective degree of freedom, which is
given by

geff ¼ gf þ gηRð1þ ΔηRÞ3=2 expð−xΔηRÞ
þ gηIð1þ ΔηIÞ3=2 expð−xΔηI Þ
þ gη�ð1þ Δη�Þ3=2 expð−xΔη�Þ; ð47Þ

and x is the dimensionless parameter Mf=T. The relic
density of DM f can then be evaluated as

Ωfh2 ¼
1.09 × 109 GeV−1ffiffiffiffiffi

g�
p

MPl

�Z
∞

xF:O:

dx
hσvieff
x2

�
−1
: ð48Þ

Here, MPl is the Planck mass, xF:O: ¼ Mf=TF:O:, and TF:O:

denotes the freeze-out temperature of f. For this scenario,
we have implemented the model in micrOMEGAs [124] to
calculate the relic abundance of f. As is evident from
Eq. (46), the mass difference between the dark sector
particles—namely f and η, along with the coupling κ—is
pivotal in determining the ultimate relic abundance of dark
matter in this configuration. Smaller mass splittings can
induce effective coannihilations between η and f, poten-
tially reducing the relic abundance to the observed ballpark.
The dominant number-changing processes relevant in
governing the relic density are as shown in Figs. 6–8.
Clearly, the processes pivotal in establishing the relic

abundance of dark matter fall into three distinct categories:

(i) the annihilation of dark matter particles into both charged
and neutral SM leptons (Fig. 6), (ii) the coannihilation of
dark matter particles with scalar particles from the dark
sector (Fig. 7), and (iii) the coannihilation contribution
arising from the annihilation of dark sector scalars (Fig. 8).
As denoted by Eq. (46), the coannihilation contribution to
the effective annihilation cross section hσvieff is predomi-
nantly shaped by the mass difference between dark matter
and the dark scalars.
To elucidate the influence of Yukawa couplings and mass

splitting on the relic abundance of dark matter, in Fig. 9, we
illustrate the variation of relic density with the dark matter
mass. In the left panel of Fig. 9, the Yukawa coupling κ is
varied within the range κ∈ ½10−4; 10−3�, while the mass
difference between the lightest neutral scalar ηR and f (i.e.,
MηR −Mf) is varied in three different ranges, as indicated in
the figure’s inset. Evidently, an increase in the mass
difference leads to a corresponding increase in the relic
density. This trend arises because the coannihilation con-
tribution to hσvieff gradually diminishes with an increase in
ðMηR −MfÞ, thereby boosting the relic abundance of f.

FIG. 6. Annihilations of dark matter into SM leptons.
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FIG. 7. Coannihilations among dark matter and other dark sector particles.

FIG. 8. Annihilations of scalar coannihilation partners.

FIG. 9. DM relic density as a function of DMmass with the Yukawa couplings (left panel) and mass differenceMηR −Mf (right panel)
varied randomly as mentioned in the inset of the figure. The horizontal cyan line represents the observed relic density [52].
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Expanding the analysis, in the right panel of Fig. 9, the
mass difference ðMηR −MfÞ is varied within a small range
of [50, 60] GeV, and the variation of relic density with dark
matter mass is then showcased for three different ranges of
Yukawa couplings, as outlined in the figure’s inset. It is
evident that an increase in Yukawa coupling leads to a
decrease in relic density, attributed to the increase in hσvieff .
Additionally, an intriguing observation from this figure is
that, when ðMηR −MfÞ∈ ½50; 60� GeV and Yukawa cou-
plings are small [i.e., κ ≲Oð10−3Þ], the relic density does
not change with further reduction in Yukawa couplings for
dark matter masses exceeding 500 GeV, as indicated by the
red- and blue-colored points. This phenomenon can be
explained by the fact that, in scenarios with small Yukawa
couplings, neither the annihilation of DM nor the coanni-
hilation of DMwith dark sector scalars efficiently affects the
relic density. Instead, it is primarily determined by the
coannihilation contribution from the annihilation of dark
scalar partners. Conversely, in situations where Yukawa
couplings are large and the mass difference is substantial,
the relic density is primarily influenced by the annihilation
of DM, as indicated by the purple-colored points.
Thus, in summary of the effects that affect the relic

density, in scenarios characterized by small Yukawa cou-
plings and substantial mass differences (Δi), the relic
density is predominantly governed by the coannihilation
contribution from the dark scalars. In such scenarios, DM
annihilation becomes subdominant, and coannihilation
among dark matter and dark scalars is suppressed due to
the large mass splitting. Conversely, when the mass differ-
ence between dark matter and dark scalars is not consid-
erably large, coannihilation among DM and dark scalars, as
well as dark scalar annihilations, plays a crucial role in

determining the relic density. Only in cases where Yukawa
couplings are significantly large and the mass difference is
also substantial do dark matter annihilations become
relevant for achieving the correct relic density.
We present the parameter-space-satisfying correct relic

density in the plane of Mf and κ, with the color code
representing the corresponding value of MηR −Mf, in
Fig. 10. The gray-colored points are ruled out by imposing
a conservative limit on the doublet scalar mass given by the
LEP experiment of aboutMη ≥ 100 GeV. It is evident that,
when the DM mass is small and κ is small, the effective
annihilation cross section is very small, and thus it is not
possible to achieve correct relic density even with coanni-
hilation contributions. Thus, we obtain an overabundant
region below Mf around 30 GeV and κ ≲Oð10−2Þ. In the
small-DM-mass range Mf ≲ 100 GeV, the correct relic
density can be obtained only when the Yukawa couplings
are significant—i.e., κ ∼Oð1Þ—such that the DM annihi-
lation cross section is appropriate to match the thermal
cross section, as in this region the coannihilation contri-
butions are negligible. When the DM mass is greater than
100 GeV, and the Yukawa coupling κ ≲Oð10−2Þ, we see
that with an increase in DM mass, the value of MηR −Mf

shows a gradual decrease to achieve the correct relic
density. This is attributed to the fact that as the DM mass
increases, the effective cross section gradually decreases,
thereby increasing the relic density, and thus it needs more
effective coannihilations, which are made possible by
decreasing MηR −Mf to bring the relic density within
the correct ballpark. We also observe an underabundant
region when κ ≳Oð10−1Þ, even with very largeMηR −Mf.
This is due to the fact that, with very large κ, the DM
annihilation cross section is large. So even if the coanni-
hilation contribution is suppressed because of large
MηR −Mf, it is still not possible to achieve the correct
density.

B. Direct detection of DM

As the sole interaction connecting f with SM particles is
the Yukawa term in Eq. (8), direct interactions between
quarks and dark matter are absent at the tree level. However,
at the one-loop level, f can have effective couplings with
various SM particles, such as the photon, Z boson, and
Higgs boson. Specifically, the exchange of the Z-boson
results in the emergence of an effective axial vector
interaction, which gives rise to a spin-dependent DM-
nucleon scattering and is dominant only when the couplings
between Higgs and η are very small. The constraints of spin-
dependent DM nucleon scattering is also relatively less
constrained as compared to the spin-independent scattering
cross sections. Thus, we focus here on the spin-independent
DM-nucleon scattering rate, as the direct-search experi-
ments very stringently constrain it. The detection rate of
dark matter particles within a detector can experience an

FIG. 10. Correct relic-density-satisfying points in the plane of
DMmassMf and κ. The color code shows the value ofMηR −Mf.
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amplification if the quartic couplings λ3 and λ4 are signifi-
cant. When this condition is met, the exchange of Higgs
bosons, as depicted in Fig. 11, leads to the emergence of
an effective scalar interaction term between the quark q and
the dark matter particle f. This interaction is effectively
described by Sqq̄qf̄f, where

Sq ¼ −
κ2

16π2M2
hMf

�
λ3G
�
M2

f

M2
η�

�
þ ðλ3 þ λ4Þ

2
G
�
M2

f

M2
0

��
;

ð49Þ

with the loop function GðxÞ defined as

G1ðxÞ ¼
xþ ð1 − xÞ lnð1 − xÞ

x
; ð50Þ

and its value spans between 0 and 1 for 0 ≤ x ≤ 1. This
interaction then results in the computation of the spin-
independent cross section σSI for the interaction of f with a
proton, and the expression for σSI is given by

σSI ¼
4

π

M2
fm

2
p

ðMf þmpÞ2
m2

pS2qf2p; ð51Þ

where fp represents the scalar form factor. We show the
DM-nucleon scattering cross section as a function of DM
mass for the points satisfying correct relic density in Fig. 12.
Because of the loop suppression, we observe that even when
the Yukawas and scalar quartic couplings are large, none of
the points are ruled out, and the parameter space remains
safe from the DM direct-search constraints. However,
interestingly, future experiments like XENON-nT [125]
and DARWIN [126] with enhanced sensitivity can probe
the Yukawa coupling κ down to Oð0.1Þ.

VII. HIGGS BOSON IN THE DIPHOTON
DECAY CHANNEL

The SM Higgs boson has a mass of mh ≃ 125 GeV
[84,127], and one of the main decay channels is the
diphoton, where the SM rate for h → γγ is dominated
by the W-boson loop contribution. The signal strength of
h → γγ is the ratio between the observed cross section
pp → h → γγ and the same quantity computed in the SM.
The observed cross section pp → h → γγ should match
the FSS1 model prediction. Since the dominant process
of the Higgs boson production is gluon fusion, in the first
approximation, the production cross section of the Higgs
boson in the FSS1 model is the same as in the SM. As a
result, following [104], after using narrow-width approxi-
mation, the signal strength of h → γγ in the model can be
written as

Rγγ ¼
½σðgg → hÞ × Brðh → γγÞ�FSS1
½σðgg → hÞ × Brðh → γγÞ�SM

¼ Γh
SM

Γh
FSS1

Γðh → γγÞFSS1
Γðh → γγÞSM

: ð52Þ

Here, the quantities with the FSS1 and SM suffixes are
computed in the flavored scoto-seesaw and the Standard
Model, respectively. Γh

FSS1;SM
is the total decay width for

these models. The h → γγ decay is experimentally well
established, and in the LHC, the signal strength of h → γγ
is R ¼ 1.04þ0.10

−0.09 [84]. While computing Rγγ , we take for
the total decay width of the Higgs boson Γh

SM ¼ 4.07 ×
10−3 GeV with a relative uncertainty of þ4.0%−3.9% [95]. For a
theoretical error estimate, see also [128]. For detailed
studies on h → γγ decays within miscellaneous beyond-
SM scenarios, see [104,129–132]. In the framework of the
FSS1 model, this decay can be enhanced with the charged

FIG. 12. Spin-independent DM-nucleon scattering cross sec-
tion as a function of DM mass for the points satisfying correct
relic density. The color code represents the value of κ. The black
solid line represents the most recent constraint from the Lux-
Zeplin experiment. The green and red dot-dashed lines represent
the projected sensitivities of the XENON-nT and DARWIN
experiments, respectively.

FIG. 11. Spin-independent elastic DM-nucleon scattering aris-
ing at one loop.
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scalars (η�) in the loop, over the SM contribution with
charged fermions and W bosons in the loop. Using
Eq. (52), the expression for the partial decay width of
h → γγ in the FSS1 model induced by the η� loop can be
written as [133]

Γðh → γγÞ ¼ GFα
3
emm3

h

128
ffiffiffi
2

p
π3

				X
f

NfQ2
fF1=2ðβfÞ þ F1ðβWÞ

þ λ3v2

2M2
ηþ
F0ðβη�Þ

				2; ð53Þ

where βi ¼ 4M2
i =m

2
h, i ¼ f;W; ηþ. Nf is the color factor,

and Qf is the charge of quarks. αem and GF are the fine
structure constant and the Fermi constant. The F functions
in Eq. (53) are the form factors of spin-1=2, 1, and 0 fields
for the h → γγ decay:

F1=2ðβfÞ ¼ −2β½1þ ð1 − βÞfðβÞ�; ð54Þ

F1ðβWÞ ¼ ½2þ 3β þ 3βð2 − βÞfðβÞ�; ð55Þ

F0ðβη�Þ ¼ β½1 − βfðβÞ�; ð56Þ

where

fðβÞ ¼
�
sin−1

1ffiffiffi
β

p
�

2

; β ≥ 1 ð57Þ

¼ −
1

4

�
ln
1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − β
p

1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p − iπ

�
2

; β < 1: ð58Þ

In the FSS1 model, therefore, the total decay width of the
Higgs boson can be written as

Γh
FSS1

¼ Γh
SM þ Γðh → ηRηRÞ þ Γðh → ηIηIÞ

þ Γðh → ηþη−Þ: ð59Þ

In the above equation, the decay width of the Higgs boson
to different scalar particles is calculated using tree-level
couplings:

λhηRηR ¼ 2

v
ðM2

ηR − μ22Þ; ð60Þ

λhηIηI ¼
2

v
ðM2

ηI − μ22Þ: ð61Þ

Doing numerical analysis for Γðh → γγÞ, we scan the
parameters of the FSS1 model in the range

100 GeV <MηR ;MηI ;Mηþ < 2000 GeV; jλ3;4;5j ≤ 4π:

ð62Þ

In Eq. (59), the total decay width of SM Higgs h in the
FSS1 model has three extra contributions over the SM. In
the FSS1 framework, the scalars ηR and ηI are not the
lightest neutral Z2-odd particles of the theory, f being the
DM candidate. Thus, with a judicious choice of the DM
mass Mf (satisfying relic density and direct-search con-
straints), the Higgs boson decays to ηRηR and ηIηI can be
made kinematically forbidden. The result of numerical
analysis is shown in Fig. 13, where the signal strength of
Rγγ in the wide λ3 range is given as a function of the
charged scalar mass Mηþ . The horizontal white region
(Rγγ ¼ 1.04þ0.10

−0.09 ) represents the currently allowed region
measured by the ATLAS experiment using 139 fb−1 of pp
collision data at

ffiffiffi
s

p ¼ 13 TeV [84]. This shows that the
Mηþ masses heavier than 1000 GeV are completely safe
from LHC constraints. As follows from Eq. (53), if λ3 < 0,
the partial decay width of h is smaller than in the SM,
while positive λ3 will give an enhancement beyond the SM
value. So, depending on the positive or negative value of
λ3, we get Rγγ > 1 or Rγγ < 1, respectively. This behavior
can be seen in Fig. 13.

VIII. LEPTON FLAVOR VIOLATION

The constraints on lepton-flavor-violating (LFV) proc-
esses are an important aspect of the FSS1 model under
consideration. The model offers specific predictions, given
that the flavor structure of the Yukawa couplings is entirely
dictated by the A4 discrete flavor symmetry and the align-
ment of flavon vacuums. Along with neutrino masses,
mixing, and DM phenomenology, LFV decays also give
valuable insight on the FSS1 model parameters. As a
consequence of the considered flavor symmetry, the
Yukawa couplings in the charged lepton sector are diagonal;
see Eq. (7). However, the Yukawa couplings yN and ys in
Eq. (8), associated with the type-I seesaw and scotogenic

FIG. 13. Rγγ is plotted againstmηþ in the plane of λ3. The white-
shaded region is the allowed region determined by the ATLAS
experiment [84].
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mechanisms, respectively, contribute to the LFV decays.
These Yukawa couplings can generate lepton-flavor-
violating processes5 like lα → lβγ and lα → 3lβ (α; β ¼ e,
μ, τ). Studies on these LFV decays completely depend on
the FSS1 model construction as described below.
In our framework, the branching ratios of the lα → lβγ

decays for the scotogenic contribution can be written
as [61,134]

Brðlα → lβγÞ ≈
3παem
64G2

F
jYβ�

F Yα
Fj2

1

M4
ηþ

�
F1

�
M2

f

M2
ηþ

��
2

× Brðlα → lβναν̄βÞ: ð63Þ

Here, GF is the Fermi constant, and YF is the Yukawa
coupling matrix from the scotogenic contribution given in
Eq. (11). The expression for the function F1 is given by

F1ðxÞ ¼
1 − 6xþ 3x2 þ 2x3 − 6x2 log x

6ð1 − xÞ4 : ð64Þ

As mentioned earlier, the Yukawa couplings are determined
by the considered discrete symmetries of the model. Due to
the specific VEV structure of the A4 triplet flavon, Yτ

F ¼ 0

as given in Eq. (11). Therefore, the scotogenic contribution
alone yields a vanishing contribution for τ → eγ and
τ → μγ lepton-flavor-violating decays. So, the only non-
vanishing contribution arising in the decays of the form
lα → lβγ comes from the μ → eγ decay, with its branching
fraction given by [61,134]

Brðμ → eγÞ ≈ 3παem
64G2

F
j2ysy�sϵ4j2

1

M4
ηþ

�
F1

�
M2

f

M2
ηþ

��
2

× Brðμ → eνμν̄eÞ ð65Þ

¼ 3παem
16G2

FM
2
f

� jbj
F ðMηR ;MηI ; MfÞ

�
2 1

M4
ηþ

�
F1

�
M2

f

M2
ηþ

��
2

× Brðμ → eνμν̄eÞ; ð66Þ

where we have substituted Eq. (11) into Eq. (65) to obtain
Eq. (66). In the above, ϵ ¼ vf=Λ, where for simplicity we
have assumed all flavon VEVs to be the same—i.e.,
vξ ¼ vs;a ¼ vf. Clearly, Brðμ → eγÞ depends on the
parameter jbj, which is constrained from neutrino oscil-
lation data ranging from 0.0048 to 0.0056 eV, as given in
Fig. 1. Another type of LFV decays appearing in our FSS1
framework are the lα → 3lβ (lα → lβ l̄βlβ) processes. The
corresponding branching ratios are given by [134]

Brðlα→3lβÞ≈
3αem

2

512G2
F
jYβ�

F Y
α
Fj2

1

M4
ηþ
G
�
mα

mβ

��
F2

�
M2

f

M2
ηþ

��
2

×Brðlα→ lβναν̄βÞ; ð67Þ

where

F2ðxÞ ¼
2 − 9xþ 18x2 − 11x3 þ 6x3 log x

6ð1 − xÞ4 ; ð68Þ

G
�
mα

mβ

�
¼
�
16

3
log

�
mα

mβ

�
−
22

3

�
: ð69Þ

Again, following Eq. (11), we find that Yτ
F ¼ 0, hence the

branching fractions for τ → 3e and τ → 3μ decays vanish.
The only nonvanishing contribution originates from the
μ → 3e decay, and its branching fraction can be written
as [134]

Brðμ → 3eÞ ≈ 3αem
2

512G2
F
j2ysy�sϵ4j2

1

M4
ηþ
G
�
mμ

me

�

×

�
F2

�
M2

f

M2
ηþ

��
2

; ð70Þ

¼ 3α2em
128M2

fG
2
F

� jbj
F ðMηR ;MηI ; MfÞ

�
2 1

M4
ηþ
G
�
mμ

me

�

×

�
F2

�
M2

f

M2
ηþ

��
2

; ð71Þ

where we have substituted Eq. (11) into Eq. (70) to obtain
Eq. (71) with ϵ ¼ vf=Λ. Similarly to Eq. (66), here we also
find that Brðμ → 3eÞ depends on the scotogenic mass
parametersMf;ηþ;ηR;ηI as well as jbj, the parameter involved
in explaining the correct neutrino oscillation parameter and
DM relic density. The variation of the corresponding
coupling λ5 is given in the inset. In Fig. 14, we have
shown plots for μ → eγ (left panel) and μ → 3e (right
panel) branching ratios against the dark matter mass Mf,
satisfying the bound on jbj obtained from Fig. 1. The
current constraint (denoted by a red line) for the branching
ratio of the μ → eγ decay is given by the MEG-II experi-
ment as Brðμ → eγÞ ≤ 3.1 × 10−13 [137], whereas for μ →
3e decay the constraint by the SINDRUM experiment is
given as Brðμ → 3eÞ ≤ 1 × 10−12 [138]. In both plots, a
current upper bound on both these decays constrains the
dark matter mass Mf specifically in the low-mass region.
Mf will be further constrained by the future MEG-II (Proj.)
[139] andMu3e Phase-I [140] experiments. To illustrate the
dependence of the LFV branching ratio on the neutrino
oscillation parameters and its consistency with the DM
phenomenology, in Fig. 15, we have plotted Brðμ → eγÞ

5To study lepton flavor violation in the pure scotogenic model,
see Refs. [134–136].
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against jbj. Here, the white-shaded region is consistent with
correct neutrino masses and the mixing given in the right
panel of Fig. 1. Hence, the cyan-shaded regions are ruled
out by neutrino oscillation data. This plot also depicts the
dependence of the branching ratio on the scotogenic
Yukawa coupling shown by the variation of κ. The upper
shaded region is already ruled out by the recent updated
constraint from MEG-II [137], and the projected sensitivity
of MEG-II can probe κ of the order Oð10−2Þ.

For the type-I seesaw contributions to LFV decays, the
branching fractions for lα → lβγ decays can be cast in the
following form:

Brðlα → lβγÞ ≈
3αemv4

8πM4
N

				Yβ
NY

α�
N f

�
M2

N

M2
W

�				2; ð72Þ

where YN is given in Eq. (10). The loop function fðxÞ in
Eq. (72) is

fðxÞ ¼ xð2x3 þ 3x2 − 6x − 6x2 logðxÞ þ 1Þ
2ð1 − xÞ4 : ð73Þ

Similarly to the scotogenic contribution, the A4 discrete
symmetry and the VEV alignment of the flavon ϕs play a
crucial role in estimating the branching ratio for lα → lβγ.
The VEV alignment of the flavon ϕs is such that it gives
Ye
N ¼ 0, as a result of which the branching fractions for

μ → eγ and τ → eγ decays vanish. The only nonvanishing
contribution arising in the type of lα → lβγ decay is τ → μγ,
and the branching fraction is given by

Brðτ → μγÞ ¼ 3αemv4

8πM4
N

				ðyNy�Nϵ2f
�
M2

N

M2
W

�				2

¼ 3αem
8πM2

N
jaj2
				f
�
M2

N

M2
W

�				2: ð74Þ

For MN ∼ 104 GeV and jaj ¼ 0.0250 eV, the branching
fraction in Eq. (74) gives 5.4 × 10−33, which is very small
compared to the experimental limit (4.4 × 10−8) [141]. For
higher MN values, the branching ratio will be even more
suppressed. Similarly, the branching ratio for the τ → 3μ
conversion is found to be very small compared to the
experimental bound [142].

FIG. 14. The branching ratio of μ → eγ (μ → 3e) is plotted against the dark matter massMf in the left (right) panel. In both panels, the
red line corresponds to the present upper bound, and the brown line corresponds to the future sensitivity (see text for details).

FIG. 15. The branching ratio for μ → eγ is plotted against jbj
for the points satisfying correct relic density of DM. The variation
of color legends is for the variation of κ. Cyan-shaded regions rule
out values of jbj other than those consistent with the neutrino
oscillation data: (0.0048–0.0056) eV. Solid red and dot-dashed
brown lines represent the recent updated constraint from MEG-II
and its projected sensitivity, respectively.
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In Table III, we have summarized the allowed LFV
decays in the FSS1 model. The considered discrete
flavor symmetry and corresponding vacuum alignment of
the flavons completely disallow decay channels such as
τ → eγ and τ → 3e. Such a decisive prediction can be made
since we have vanishing values for the Yukawa couplings
Yτ
F and Ye

N—see Eqs. (10) and (11)—associated with the
scotogenic and type-I seesaw contributions, respectively.
Present experiments already exclude branching ratios larger
than about Oð10−8Þ. Any positive signal by the future
experiments will essentially test the validity of the FSS1
framework.

IX. SUMMARY OF PHENOMENOLOGICAL
ANALYSIS

Both the type-I seesaw and the scotogenic contribution
within our FSS1 framework are crucial in explaining the
hierarchy associated with the neutrino mass-squared
differences. The scotogenic contribution is characterized
by the parameter b, and its magnitude is restricted within
a narrow range, 0.0048–0.0056 eV. The estimation of
DM relic density depends on the scotogenic contribution
Yukawa coupling κ associated with jbj, as given in Eq. (11).
This dependence is shown in Fig. 10 in the DM mass Mf-κ
plane. The allowed parameter space gets further constrained
to satisfy correct neutrino oscillation data and experimental
limits on LFV decays discussed in Secs. IV and VIII,
respectively. Although the allowed range of jbj is tightly
constrained from neutrino oscillation data, interplay of DM
f and other dark sector particles ηI;R;� can satisfy correct
DM relic density with contributions from various annihi-
lation and coannihilation contributions mentioned in
Figs. 6–8. Hence, updating Fig. 10, in Fig. 16, we have
plotted the final parameter space, which includes constraints
from DM relic density, neutrino oscillation data, and LFV
decays. The points with the color code represent the
parameter space consistent with the DM relic density and
direct-search constraints. Once we impose the constraints for
jbj from the neutrino oscillation data obtained from Fig. 1,
we get the magenta-colored points. Finally, we obtain the red
star points when we impose the constraint from LFV decays
along with the constraints mentioned above from DM

phenomenology and neutrino oscillation. LFV constraints
restrict the maximum allowed Yukawa coupling to be less
than Oð10−2Þ, and DM masses within (100–1000) GeV are
found to be simultaneously consistent with neutrino oscil-
lation data, DM relic density, direct search, and LFV decay
constraints.

X. CONCLUSIONS AND OUTLOOK

We propose the flavor-scoto-seesaw (FSS) model, which
explains the observed hierarchy between the solar and
atmospheric neutrino mass scales, experimentally allows
the trimaximal mixing scheme, and naturally accommo-
dates viable dark matter candidates. In this framework,
type-I seesaw and one-loop scotogenic mechanisms con-
tribute to the effective light neutrino mass. With only one
right-handed neutrino, the type-I seesaw contribution
dominantly contributes to generating the atmospheric
neutrino mass scale, and the scotogenic contribution (with
the involvement of the dark fermion f and scalar η) is
mainly responsible for the solar neutrino mass scale. The
whole framework is embedded within A4 × Z4 × Z3 × Z2

discrete flavor symmetry predicting the lightest neutrino to
be massless and one nonvanishing Majorana phase. The
model also contains a few flavon fields to realize the
appropriate flavor structure to explain observed neutrino
mixing. The inclusion of auxiliary ZN (N ¼ 4; 3; 2) sym-
metries is a generic feature of discrete flavor-symmetric
models to forbid several unwanted terms, and the charged
lepton mass matrix is found to be a diagonal one. These ZN
symmetries are broken down to a dark Z2 symmetry,

TABLE III. Possible lepton-flavor-violating decay modes and
their origin in the FSS1 framework. The ✓ and ✗ symbols stand
for allowed and disallowed regimes.

Decay modes Scotogenic Seesaw Remarks

μ → eγ ✓ ✗ Ye
N ¼ 0

τ → eγ ✗ ✗ Yτ
F ¼ 0; Ye

N ¼ 0

τ → μγ ✗ ✓ Yτ
F ¼ 0

μ → 3e ✓ ✗ Ye
N ¼ 0

τ → 3e ✗ ✗ Yτ
F ¼ 0; Ye

N ¼ 0

τ → 3μ ✗ ✓ Yτ
F ¼ 0

FIG. 16. Final parameter space for the two important param-
eters of the FSS1 model—namely, the Yukawa coupling κ and the
DM fermion mass Mf—after imposing the constraints from DM
relic density, direct search, neutrino oscillation data, and LFV
decays.
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ensuring the stability of dark matter under which only f and
η are odd. With a judicious choice of the flavon vacuum
alignments, the TM1 mixing scheme can be realized, and
hence we call our flavor-symmetric scoto-seesaw model an
FSS1 model.
The considered flavor symmetry completely dictates the

flavor structure of the model and makes it highly predictive.
The FSS1 model provides rich phenomenology for neutrino
masses, mixing, LFV decays, and collider studies, and it
accommodates potential dark matter candidates with the
DM f fermion and η scalar. With both type-I and scotogenic
contributions, a rank-2 light neutrino mass matrix is
obtained, predicting normal ordering of the light neutrino
mass. The presence of flavor symmetry in FSS1 implies a
preference for the higher octant of the atmospheric mixing
angle θ23, where the allowed ranges are given by 0.531 ≤
sin2 θ23 ≤ 0.544 and 0.580 ≤ sin2 θ23 ≤ 0.595. The model
also tightly constrains the TM1 prediction for the Dirac CP
phase δCP [within the range �ð1.44–1.12Þ rad] and the
Jarlskog CP invariant. Moreover, correlations among neu-
trino mixing parameters within the FSS1 model (see Figs. 3
and 4) give a strict determination of the MajoranaCP phase,
thus giving an accurate prediction for mββ (see Table II)
within the range 1.61–3.85 meV. Here, the dark fermion f is
considered as the DM candidate whose production mecha-
nism is connected with its Yukawa coupling with SM
leptons and the inert doublet scalar η. The magnitude of
these Yukawa couplings plays a critical role in determining
correct neutrino mixing and DM relic density through the
thermal freeze-out mechanism. With the flavor structure of
the FSS1 framework, only the scotogenic part contributes to
the lepton-flavor-violating decays such as μ → eγ, μ → 3e.
On the other hand, though they are very small, the seesaw
part of FSS1 only contributes to decays such as τ → μγ,
τ → 3μ. Interestingly, owing to the flavor symmetry and
vacuum alignment of the flavons, LFV decays such as
τ → eγ and τ → 3e are completely disallowed, and any
positive signal LFV for these two decays will test the
viability of this model. Within the FSS1 framework, the
WIMP DM masses within (100–1000) GeV are simulta-
neously consistent with the constraints from neutrino
oscillation data, DM relic density, direct search, and LFV
decays.
The FSS1 model can also be tested at the colliders via a

wide range of phenomenological studies. For example,
FSS1 can contribute to the Higgs boson diphoton decay
channel h → γγ. Figure 13 shows that Mηþ masses up to
1 TeV can have implications at the diphoton Higgs decay
channel using the present LHC experimental results. With
the increasing data collection at LHC and HL-LHC, the
precision of Rγγ will improve, giving prospects for better
determination of allowed regions for specific flavor model
parameters. Thus, phenomenology-based Rγγ constraints
can be used for further studies and predictions for pro-
ducing exotic discrete flavor model signals at present and

future colliders. The same statement is valid for further
phenomenological studies of the model based on DM and
LFV constraints. Thus, in alignment with all pertinent
constraints, the model retains its predictiveness across LFV
experiments and direct detection of DM, as well as collider
experiments.
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APPENDIX: A4 SYMMETRY

A4 is a discrete group of even permutations of four
objects.6 Geometrically, it is an invariance group of a
tetrahedron. It has 12 elements which can be generated by
two basic objects S and T, which obey the following
relations:

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1: ðA1Þ
The A4 group has three one-dimensional irreducible rep-
resentations—1, 10, and 100—and one three-dimensional
irreducible representation—3. Products of the singlets and
triplets are given by [27]

1 ⊗ 1 ¼ 1; 10 ⊗ 100 ¼ 1; ðA2Þ

10 ⊗ 10 ¼ 100; 100 ⊗ 100 ¼ 10; ðA3Þ

3 ⊗ 3 ¼ 1 ⊕ 10 ⊕ 100 ⊕ 3s ⊕ 3a; ðA4Þ

where the subscripts “s” and “a” denote symmetric and
antisymmetric parts, respectively. Writing two A4 triplets as
X ¼ ðx1; x2; x3ÞT and Y ¼ ðy1; y2; y3ÞT , respectively, their
product can be written as [27]

X ⊗ Y ¼ ðX ⊗ YÞ1 ⊕ ðX ⊗ YÞ10 ⊕ ðX ⊗ YÞ100
⊕ ðX ⊗ YÞ3s ⊕ ðX ⊗ YÞ3a; ðA5Þ

where

ðX ⊗ YÞ1 ∼ x1y1 þ x2y3 þ x3y2; ðA6Þ

6For a detailed discussion on A4, see Refs. [27,28].
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ðX ⊗ YÞ10 ∼ x3y3 þ x1y2 þ x2y1; ðA7Þ

ðX ⊗ YÞ100 ∼ x2y2 þ x1y3 þ x3y1; ðA8Þ

ðX ⊗ YÞ3s ∼

0
B@

2x1y1 − x2y3 − x3y2
2x3y3 − x1y2 − x2y1
2x2y2 − x1y3 − x3y1

1
CA; ðA9Þ

ðX ⊗ YÞ3a ∼

0
B@

x2y3 − x3y2
x1y2 − x2y1
x3y1 − x1y3

1
CA: ðA10Þ

These relations are used in the construction of the mass
matrices given in Eqs. (7) and (12).
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