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A dynamical mechanism, based on a confining non-Abelian dark symmetry, which generates Majorana
masses for hyperchargeless fermions, is proposed. We apply it to the inverse seesaw scenario, which allows
us to generate light neutrino masses from the interplay of TeV-scale pseudo-Dirac mass terms and a small
explicit breaking of lepton number. A single generation of vectorlike dark quarks, transforming under a
SUð3ÞD gauge symmetry, is coupled to a real singlet scalar, which serves as a portal between the dark quark
condensate and three generations of heavy sterile neutrinos. Such a dark sector and the Standard Model
(SM) are kept in thermal equilibrium with each other via sizable Yukawa couplings to the heavy neutrinos.
In this framework, the lightest dark baryon, which has spin 3=2 and is stabilized at the renormalizable level
by an accidental dark baryon number symmetry, can account for the observed relic density via thermal
freeze-out from annihilations into the lightest dark mesons. These mesons, in turn, decay to heavy
neutrinos, which produce SM final states upon decay. This model may be probed by next generation
neutrino telescopes via neutrino lines produced from dark matter annihilations.
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I. INTRODUCTION

The tiny observed mass scale of the active neutrinos is
often explained via dynamical mechanisms that avoid the
need to consider a small ad hoc Yukawa coupling by hand.
Typically one either suppresses the contribution to mν by
the mass scale of a heavy mediator or one introduces
separate scalars with vacuum expectation values (VEVs)
below the electroweak scale; see, for instance, Ref. [1]. In
this work, we consider the inverse seesaw mechanism [2,3]
(see also Ref. [4]), where one combines both aforemen-
tioned ingredients by invoking heavy vectorlike fermionic
messengers, denoted as N from now on, and introduces a
small explicit or spontaneous breaking μ of lepton number.
Its main advantage, compared to the usual high-scale
seesaw paradigm, is that it may be tested in low-scale
experiments. However, note that the mechanism proposed
in this work may be also used to generate the high-scale
sterile neutrino Majorana mass present in the type I/III

seesaw [5–11], as well as light sterile Majorana masses
(e.g., eV to keV scale).
Parametrically, in the inverse seesaw scheme the result-

ing active neutrino mass scales as

mν ≃ 0.05 eV · y2ν

�
μ

1 keV

��
35 TeV
MD

�
2

; ð1Þ

where MD is the Dirac mass connecting both chiralities of
N, and yν is the Yukawa coupling of N to the active
neutrinos. While the original formulation of this mecha-
nism in Ref. [2], which was based on additional singlet
fermions added to a supersymmetric E6 grand unified
theory [12], assumed that this μ might arise from super-
symmetry breaking, its relative smallness is often left
unexplained. However, models with additional fermion
singlets that generate μ radiatively have been proposed,
see Refs. [13–15].
Here we pursue the idea that such a small breaking of

lepton number might arise not from the VEVof an elemen-
tary scalar but dynamically from the formation of a dark
quark condensate in a non-Abelian dark gauge theory. This
ideawas first applied in Ref. [16] to active neutrinomasses in
a field theory context by employing QCD and higher-
dimensional operators connecting neutrinos to the quark
condensate (see Ref. [17] for a string-theoretic realization
and Refs. [18–21] for further investigations of the associated
phenomenology). However such an approach requires at
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least one generation of massless quarks (unless additional
model building steps are undertaken [21]), since the quarks
are charged under the same symmetry that ensures the
absence of the renormalizable neutrino mass terms, which
is, however, heavily disfavored by recent lattice stud-
ies [22,23].
A compelling alternative is to consider an additional

confining gauge group, which only acts on the dark sector,
and to use this to generate a small Majorana mass for one
chirality of the gauge singlet N, which evades the com-
plications accompanying electroweak representations.
Additionally the required dark sector can have the right
ingredients for a successful dark matter (DM) candidate,
which in our case is the lightest dark baryon B. The
presence ofN with unsuppressed Yukawa couplings to both
sectors turns out to be crucial for maintaining thermal
equilibrium between them, which allows us to produce the
dark matter abundance via thermal freeze-out of annihila-
tions between B and the lightest dark meson M.
References [24,25] used a similar but scale-invariant setup
for generating electroweak symmetry breaking. When it
comes to neutrino masses in scale-invariant frameworks,
Ref. [26] generated (at most) TeV-scale right-handed
neutrino masses required for realizations of the low scale
[27,28] type I seesaw [5–8,10] from dynamical chiral
symmetry breaking. The authors of Refs. [29,30] used a
similar idea in order to explain a right-handed neutrino
mass scale of Oð107 GeVÞ in the context of the neutrino
option [31,32]. Some of the aforementioned works con-
sidered dark matter in the form of dark pions produced via,
e.g., the Higgs portal, whereas we consider dark baryons
with the neutrino portal playing an important role in their
thermalization with the Standard Model (SM) (for asym-
metric DM connected to the SM via the neutrino portal, see
Refs. [33–35]). Also our framework is not scale invariant
and relies on a positive mass squared m2

σ for the singlet
scalar.
This article is structured as follows: In Sec. II we

introduce the field content, in Sec. III we specify the
particle spectrum, and in Sec. IV we discuss the cosmo-
logical history. In Sec. V we elaborate on possible
signatures for indirect detection and in Sec. VI we
summarize our main results.

II. THE MODEL

In order to draw as much as possible from our knowledge
of QCD, we choose the confining gauge group SUð3ÞD
under which only the single vectorlike pair of dark quarks
ðqL; qRÞ transform in the fundamental representation. We
further add three generations of vectorlike gauge singlet
neutrinos ðNL;NRÞ and the real1 scalar σ. A Z4 symmetry

forbids bare Majorana masses for NLðNRÞ as well as a bare
mass term for the dark quarks (unlike the model in
Ref. [38]). The real singlet scalar σ transforms as a −1
under Z4 and has a positive mass squared m2

σ > 0. The
relevant terms read

−LLN ¼ yeL̄HeR þ yνL̄ H̃ NR þMDNLNR þ H:c:; ð2Þ

−LD ¼ yQσqLqR þ yNL
σNc

LNL þ yNR
σNc

RNR þ H:c:; ð3Þ

Vσ ¼ ðm2
σ þ λσσ

2 þ λHσjHj2Þσ2; ð4Þ

where we suppressed flavor indices and H is the SM Higgs
doublet (H̃ ≡ iσ2H�) with a VEV vH for its neutral
component and all relevant charges and representations
are summarized in Table I. Gauge confinement of SUð3ÞD
generates a quark condensate

hqLqRi ≃ Λ3
D; ð5Þ

where ΛD is the confinement scale of the dark sector.2 This
induces a vacuum expectation value for the new scalar σ

hσi ≃ yQ
Λ3
D

m2
σ
: ð6Þ

Such an “induced” VEV for σ is reminiscent of the well-
known type II seesaw [39–45]. In our study we typically
obtain hσi ≪ mH ≪ mσ , where mH is the SM Higgs mass,
so we can neglect mixing in the Higgs sector even for
non-negligible λHσ . A nonvanishing hσi implies Majorana

TABLE I. Field content of the dark sector and SM leptons. We
impose the gauged SUð3ÞD and discrete Z4, whereas Uð1ÞD is a
residual symmetry present only after the scalar σ condenses. All
dark fields are SM singlets.

SUð3ÞD Z4 Uð1ÞD Generations

qL 3 −i 1 1
qR 3 i 1 1
NL 1 i 0 3
NR 1 i 0 3
L 1 i 0 3
eR 1 i 0 3
σ 1 −1 0 1

1This simplification is just to avoid the presence of a Majoron
[36,37] and not crucial to our mechanism.

2RG running of the dark gauge coupling αD ¼ g2D=4π is given
at one loop by

1

αDðE2Þ
¼ 1

αDðE1Þ
þ β0
2π

log

�
E2

E1

�
; β0 ¼

11

3
Nc −

2

3
¼ 31

3
:

The confinement scale is defined as the energy at which the dark
gauge coupling turns nonperturbative, αDðΛDÞ ≃ 4π.

BERBIG, HERRERO-GARCIA, and LANDINI PHYS. REV. D 110, 035011 (2024)

035011-2



masses for NL;R from the Feynman diagram shown in
Fig. 1,

μL;R ≃ 10 keV · yQyNL;R

�
ΛD

10 TeV

�
3
�
3.1 × 108 GeV

mσ

�
2

:

ð7Þ

Note that the inverse seesaw requires only one of the two
mass terms μL;R to be present to induce a small mass formν;
if both terms are nonzero, one obtains that at leading order
in the seesaw expansion μL;R ≪ yνvH ≪ MD [46]

mν ≃
μLy2νv2H

M2
D − μLμR

: ð8Þ

For the remainder of this work we define μ≡ μL and ignore
the subleading correction in the denominator, hence we use
mν ≃ μðyνvH=MDÞ2. The small Majorana masses μL;R are
responsible for splitting the masses of the two chiralities of
N so that they become “pseudo-Dirac” fermions.
The spontaneous breaking of the Z4 symmetry leads to

the formation of domain walls. To avoid that, we break this
symmetry explicitly in the scalar potential by the bias term
κσjHj2 [47]. We assume a negligible trilinear term μ3σ

3 and
the linear piece μ31σ can always be set to zero by a field
redefinition [48]. The dimensionful coupling κ does not
induce a sizable shift to hσi in Eq. (6) as long as

κ ≪ 3 × 107 GeV · yQ

�
ΛD

10 TeV

�
3

; ð9Þ

and the domain walls decay before big bang nucleosyn-
thesis (BBN) for

κ ≳ 10−13 GeV · yQ

�
ΛD

10 TeV

�
3
�
108 GeV

mσ

�
: ð10Þ

We checked that decays before BBN occur long before the
domain walls dominate the energy budget of the Universe.
Another way to remove the domain walls could be to
invoke the fact that the Z4 symmetry is anomalous with
respect to SUð3ÞD [49], but that requires a dedicated study.

III. PARTICLE SPECTRUM

At temperatures below ΛD the theory confines and the
dark quarks reorganize into dark hadrons. Since, unlike in
real QCD, we work with only one generation of dark
quarks, there are no spontaneously broken chiral sym-
metries and hence no Nambu-Goldstone modes similar to
the pions [50]. The only global symmetries would be

Uð1ÞD ⊗ Uð1ÞA; ð11Þ

where the vectorial Uð1ÞD is the dark equivalent of baryon
number and the axial symmetry Uð1ÞA is both explicitly
broken by the coupling to σ and anomalous to begin with.
We denote the lightest meson state jqqi as M, which is
parity odd [51]. Since the coupling to σ explicitly breaks a
chiral symmetry, one expects a dark quark mass of mQ ≃
yQhσi [26]. Because of the absence of spontaneously
broken chiral symmetries and thus dark pions, the equiv-
alent of the Gell-Mann–Oakes–Renner relation [52] mπ ∼ffiffiffiffiffiffiffiffiffiffiffiffiffi
mQΛD

p
is not valid for the meson M and to reduce the

number of free parameters we fix

mM ≃ ΛD: ð12Þ

If we added more than one flavor of dark quarks, we would
find that the resulting lighter dark pions would typically be
so long-lived that the injection of electromagnetic radiation
from the electroweak showers of their leptonic decay
products would alter BBN significantly [53] or they could
be stable enough to overclose the Universe.3

The lightest dark baryon B consisting of jqqqi has spin
3=2 [54,55], similar to the Δ resonance of the strong
interaction, and its mass is expected from large-Nc (number
of dark colors) arguments to scale as NcΛD [54]. In analogy
to QCD, Ref. [55] finds a mass scale of about 10ΛD and we
interpolate between these two estimates by setting

FIG. 1. Diagrammatic representation of the origin for the
Majorana mass for Nc

LNL from the chiral quark condensate
hqqi. The same diagram also exists for Nc

RNR. The mechanism
may be used to generate Majorana masses of heavy singlet/triplet
fermions in seesaw type I/III, as well as the μ term in inverse
seesaw.

3From the Gell-Mann–Oakes–Renner relation the dark pions
would get a tiny mass mπ ≃ yQΛ2

D=mσ typically belowMD. Thus
they would have to decay into active neutrinos with a highly
suppressed rate ∼m2

νΛ4
D=m

5
σ . A possible way to generalize our

model to Nf ≥ 2 generations of dark quarks is to introduce a bare
quark mass term, which softly breaks the Z4 symmetry. This
generates a larger mass for the dark pions above MD allowing
them to decay into N before BBN.
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mB ≃ 5ΛD: ð13Þ

The stability of B at the renormalizable level is ensured by
the conservation of dark baryon number Uð1ÞD and hence it
may be a good DM candidate.
For SUð3ÞD there can be glueball states that are odd or

even under the dark sector charge conjugation. The even
glueballs can decay into two mesons as long as their mass is
above 2mM in analogy to what is expected for QCD
glueballs [56,57]. Odd glueballs might be stable and could
be produced by similar dynamics to the dark baryons (see
Sec. IV), forming a component of DM [58–60]. In the
absence of more detailed knowledge of the mass spectrum
for the case at hand, which would certainly require a lattice
simulation, we focus on the dark baryon as DM and assume
that the odd glueballs decay away. Even if these glueballs
were stable, they would correct our results by only Oð1Þ
factors.4 If we chose the adjoint of SUð3ÞD for the
representation of the dark quarks, there could be exotic
hybrid bound states of dark quarks and dark gluons playing
the role of DM [61].

IV. COSMOLOGICAL HISTORY

We set both the reheating temperature TRH and the
maximum temperature during reheating Tmax, which can be
much larger than TRH [62,63] for noninstantaneous reheat-
ing, to be smaller than mσ so that we can safely integrate σ
out and treat it purely as a mediator. Reheating sets the
stage for a thermalized SM plasma and we assume that
TRH ≫ MD;ΛD. As long as the N are relativistic, they are
produced via their sizable Yukawa coupling to the SM
leptons at temperatures below

T in
N ≃ 7 × 107 GeV ·

�
yν

10−4

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
106.75
g�ρðT in

NÞ

s
; ð14Þ

where g�ρ is the number of relativistic degrees of freedom in
the energy density and they consequently populate the dark
sector via their fast σ-mediated annihilations into dark
quarks NN ↔ q̄q at T > ΛD;MD. Dark gluons are pro-
duced from the thermalized quarks via q̄q ↔ gg with a rate
of about g4DT. Requiring that this comes into thermal
equilibrium above the dark confinement scale amounts
to the requirement

ΛD ≲ 1010 GeV ·
�

gD
0.01

�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
106.75
g�ρðT in

ggÞ

s
; ð15Þ

which, as we will see in Eq. (18), is always satisfied,
especially for nonperturbative gD.
The abundance of dark baryons is determined via

thermal freeze-out of the annihilations B̄B ↔ M̄M, which
occurs in the s wave5 with a geometric cross section [58]
of [65]

hσDjv⃗ji ≃
π

Λ2
D
≃ 2.2 × 10−26

cm3

s
·

�
41 TeV
ΛD

�
2

: ð16Þ

Here we neglect any potential enhancement of the cross
section due to intermediate resonances, as occurs, e.g.,
for the proton due to the deuteron resonance [66]. To
logarithmic accuracy we find that these annihilations
decouple at

Tout
BM ≃

mB

25
ð17Þ

and that the relic abundance, in general, is reproduced for
values of [54,55]

ΛD ≃ ð1–100Þ TeV: ð18Þ

We stress that, due to Oð1Þ uncertainties in the hadron
spectrum, as well as in the thermally averaged cross
section of Eq. (16), we are unable to determine the precise
value of ΛD that reproduces the relic abundance and can
only estimate a reasonable range in Eq. (18). Even though
the dark baryon is self-interacting with σB=mB ∼ 1=Λ3

D,
the above range for ΛD precludes a strong enough elastic
cross section that would be necessary to solve the “cusp-
core” [67–70] or “too-big-to-fail” problems [71,72] (for
an overview, see Ref. [66] and references within), which
would require sub-GeV values of ΛD. For the same reason,
our scenario is not constrained by bounds from the halo
elipticity [73] or the Bullet Cluster [74].
A crucial ingredient of the freeze-out estimate is that the

dark sector maintains the same temperature as the SM bath.
Indeed, below the confinement scale, all the dark hadrons
are nonrelativistic. Therefore, in absence of thermal contact
with the SM, the temperature of the dark thermal bath
would redshift only logarithmically with the scale factor,
analogously to “cannibal” DM models [75,76], leading to
an overabundant population of dark baryons. Thermal

4Glueballs have a typical mass mDG ≃ ΛD and annihilate with
cross section σDG ≃ 1=Λ2

D, leading to qualitatively the same
dynamics as for the dark baryons.

5Following the argument in Refs. [61,64], the maximum
angular momentum of the annihilation process can be estimated
as l ¼ μjv⃗jb, where b ≃ 1=ΛD is the impact parameter, jv⃗j ≃ffiffiffiffiffiffiffiffiffiffiffiffi

T=mB

p
the relative velocity, and μ ¼ mB=2 is the reduced mass.

As l ≃
ffiffiffiffiffiffiffiffiffiffi
TmB

p
=ð2ΛDÞ we find l < 1 both at the time of DM

freeze-out [l ≃ 1=2 see Eq. (17)] and today, so the relevant
processes always take place in the fully quantum regime. In this
regime, the s-wave contribution is expected to dominate the total
annihilation cross section hσDjv⃗ji [61]. Notice that in [61,64]
some of the processes take place in the semiclassical regime
because they consider hadrons made of heavy quarks.
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equilibrium (between both sectors6) below the confinement
scale is maintained via decays and inverse decays
M ↔ N̄N, because the N are tightly coupled with the
SM at temperatures above their massMD, see Eq. (14). One
finds a decay rate of

ΓðM → N̄NÞ ≃ y2Qy
2
N

32π

mMf2M
m4

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
D

m2
M

s
; ð19Þ

in terms of the matrix element fM, that we parametrize as

fM ≡ h0jq̄γ5qjMi ≃ Λ2
D; ð20Þ

and yN ≡ yNL
þ yNR

. By employing Maxwell-Boltzmann
statistics, we find that the thermally averaged decay rate for
M → N̄N reads [78]

hΓDi ¼
K1ðmM

T Þ
K2ðmM

T ÞΓðM → N̄NÞ ð21Þ

in terms of the modified Bessel functions of the second
kind K1;2ðmM=TÞ. From the principle of detailed balance,
we obtain for the thermal average of the inverse decay rate
N̄N → M,

hΓIDi ¼
neqM
neqN

hΓDi: ð22Þ

Here we introduced the equilibrium number density of
particles species i with mass mi and gi internal degrees of
freedom via

neqi ¼ giT3

2π2

�
mi

T

�
2

K2

�
mi

T

�
; ð23Þ

with gM ¼ 1, gN ¼ 2. We require that that the inverse
decay remains in equilibrium until at least the temperature
of the B freeze-out defined in Eq. (17). On top of that we
impose mM ¼ ΛD > 2MD so that the decay channel is
kinematically open. Further, we check that the dark matter
relic density is not diluted by entropy release: we find that
decay M → N̄N is always fast, as expected from the
previous arguments, and that the decay width of N given by
ΓðN → LHÞ ≃ y2νMD=ð8πÞ equals the Hubble rate before
the temperature Tdom ≃ 7MD=ð4g�ρðTdomÞÞ [79] (when N
would start to dominate over the energy density of
radiation) as long as

yν ≳ 7.8 × 10−9 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MD

10 TeV

r �
g�ρðTdecÞ
106.75

�1
4

�
106.75

g�ρðTdomÞ
�
:

ð24Þ

In Fig. 2 we depict the parameter space in the ΛD versusmσ

plane subject to the previously discussed constraints. For
the showcased benchmark point, we obtain the observed
relic density of ΩBh2 ¼ 0.120� 0.001 [80] by using
Eq. (16) and values of μ > Oð100 MeVÞ corresponding

FIG. 2. Allowed parameter space for the successful production of the dark matter together with isocontours for μ and the
corresponding yν required to explain mν ¼ 0.05 eV in the inverse seesaw mechanism for two sets of benchmark parameters with TeV-
scale (left) and GeV-scale (right)N. The green lines indicate the current and projected lower limits onΛD from indirect detection via dark
matter annihilations into dark mesons, followed by a chain of two-body decays producing neutrinos. For N around the GeV-scale, the
parameter space might also be probed by displaced vertex searches at future colliders.

6An alternative possibility is that the dark sector particles
thermalize among themselves, but not with the SM, forming a
secluded dark bath that evolves with its own temperature Td ≡ ξT
[77]. In such a case the DM evolution depends on the additional
free parameter ξ, which encodes some unknown initial condition,
so that ξ ≃ 10−3 is needed to reproduce the correct relic
abundance for TeV-scale DM. We do not consider this possibility
here.
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to yν < Oð10−3Þ, bounded from below by Eq. (24). These
values for the lepton number breaking parameter are larger
than the conventionally assumed keV scale [see, e.g.,
Eq. (1)], but bear the additional advantage that
MD ¼ OðTeVÞ, which is in range of future collider experi-
ments. One can understand the largeness of μ from the plot
in Fig. 2 by noting that for smaller values of μ (equivalent to
larger yν for fixed mν) the relic abundance would only be
reached in the red colored region where M is not
thermalized long enough. For values of μ above the scale
of MD, the inverse seesaw expansion breaks down and we
would be in the usual type I seesaw regime. A smaller value
for the product yQyN moves the μ isocontours upward
along the ΛD axis and increases the size of the region
excluded by the meson thermalization. Finally, let us point
out that our scheme involving TeV-scaleN might reproduce
the baryon asymmetry of the Universe [81] via resonantly
enhanced [82–84] out-of-equilibrium decays.

V. SIGNALS AND CONSTRAINTS

For our parameter space with μ > Oð10 MeVÞ, the
mixing between active neutrinos of flavor i ¼ e, μ, τ,
and N scales as jViN j2 ≃mν=μ ≲Oð10−½9;8�Þ. A recent
review of all pertinent laboratory constraints was compiled
in Ref. [85]: For MD ¼ OðTeVÞ the constraint from
electroweak precision observables due to the modification
of charged- and neutral-current reactions induced by the

nonunitarity in the active neutrino sector reads jViN j2 <
10−3 [86–88]. Next generation electron colliders such as
FCC-ee or CEPC could improve the nonunitarity bound for
the mixing with electron neutrinos down to jVeNj2 <
10−½5;4� [89]. Displaced vertex searches for N masses below
about 100 GeV at the high luminosity upgrade of the LHC
might probe values down to jViN j2 ≃ 5 × 10−10, while the
proposed hadronic collider FCC-hh might reach jViN j2 ≃
5 × 10−11 [89], whereas FCC-ee or CEPC could potentially
test mixings as small as jViN j2 ≃ 10−11 [90–92]. These
searches for long-livedN far below the TeV scale could test
our cosmologically preferred parameter space (see the right
plot in Fig. 2), as can be observed in Fig. 3.
When it comes to charged lepton flavor violation, the

strongest constraints come from the nonobservation of the
decay μ → eγ at MEG [93] and MEG II [94], setting a
combined limit of 3.1 × 10−13 [95], and nonobservation of
muon-to-electron conversion on titanium by the SINDRUM
IICollaborationwith an upper limit on the branching ratio for
ground state transitions of RTi

μ→e < 4.3 × 10−12 [96], that
impose jVeNV�

μN j < 10−5 in the range 100 GeV < MD <
10 TeV [85]. At two loops in the inverse seesaw [97,98],
there are contributions to the electric dipole moment of the
electron, which is measured by the ACME II experiment to
be jdej < 1.1 × 10−29 e cm [99] and in the future this result
is expected to improve by about an order of magnitude. The
authors of Ref. [100] found for MD ¼ OðTeVÞ the largest

FIG. 3. Sensitivity projections of displaced vertex searches for GeV-scale N together with limits and projections from neutrino
telescopes in the parameter space that is compatible with our cosmological considerations. Our cosmological analysis is independent of
flavor and the collider limits are for the electron and muon channels. In the gray region, the inverse seesaw scheme breaks down as the
Majorana masses μ of N become larger than their Dirac masses MD.
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possible value of jdej ¼ 10−½32;31� e cm, which could be
testable in the future. For the muon electric dipole moment,
the current direct limit of jdμj < 1.9 × 10−19 e cm [101] was
obtained at Brookhaven National Laboratory (BNL) and
indirect limits from heavy atoms and molecules via muon
loops reach down as far as 2 × 10−20 e cm [102], whereas
future experiments at PSI and J-PARC are expected to
improve these bounds to 6 × 10−23 [103–105] and
10−24 e cm [106], respectively. By rescaling the result from
Ref. [100] for the electron electric dipole moment in the
inverse seesaw by a factor of mμ=me we find jdμj≃
2 × 10−½30;29� e cm, which is out of reach of future experi-
ments. In Ref. [107] it was concluded that the inverse seesaw
cannot account for the discrepancy in the anomalous mag-
netic dipole moment of the muon observed by BNL [108].
ForN above the GeV scale one expects that the dominant

contribution to neutrinoless-double-β decay comes from
the exchange of the light neutrinos. An estimate of the
resulting rate depends on assumptions about flavor, and for
the normal hierarchy of active neutrinomasses there remains
the possibility of an accidental cancellation drastically
reducing the rate below future sensitivities, depending on
the interplay of so far unknown lightest neutrino mass, the
observedmixing angles, and the possibleMajorana phases in
the Pontecorvo-Maki-Nakagawa-Sakata matrix [109].
There will not be a signal in the gravitational wave

spectrum from the minimal dark confinement transition
considered here, since for three dark colors and one dark
flavor one expects a smooth crossover (see Ref. [110] and
references within). Our setup is not constrained by direct
detection of DM due to the smallness of the mixing
between σ and the SM Higgs boson [see the discussion
below Eq. (6)].
Indirect detection on the other hand, offers the intriguing

prospect of signals at future neutrino telescopes:
Annihilations of B into mesons followed by the immediate
decay of M into two TeV-scale N, which in turn is
followed by the decays N→

P
iH0νi;

P
i Zμνi;

P
iW

∓
μ l�i

with BRðN →
P

i H0νiÞ ¼ BRðN →
P

i ZμνiÞ ¼ BRðN →P
i W

∓
μ l�i Þ=2 [111], would produce monoenergetic primary

neutrinos with an energy of mB=4 (assuming mB ≫ mM
for simplicity) plus less energetic secondary neutrinos and a
background of SM particles from the decays and inter-
actions of the H0; Z0;W∓; l� also present.7 For reactions
producing initially monoenergetic neutrinos with energies
above Oð100 GeVÞ, there would never be an exactly
monochromatic neutrino line as the produced neutrinos
would be so energetic that they would produce electroweak
bremsstrahlung resulting in cascades similar to QCD jets at

colliders [112–114]. Reference [115] concluded that the
widening of the line is not larger than the energy resolution
of high energy neutrino telescopes [116] for dark matter
masses in the range 10½3;8� GeV, which is why in the
following we neglect this effect.
Current and projected bounds on neutrinos produced in

dark matter annihilations were compiled in Ref. [117] and
for the mB ¼ Oð10½4;5� TeVÞ mass range the strongest
bound (for s-wave annihilations) for neutrino telescopes
of hσjv⃗ji < ð5 × 10−24–10−23Þ cm3=s was obtained by the
ANTARES Collaboration [118]. This limit is expected
to improve to 10−24 cm3=s [119] for the expansion of
the current IceCube observatory [120], ð10−25 − 5 ×
10−25Þ cm3=s for the proposed Pacific Ocean Neutrino
experiment [121], and 5 × 10−½26;25� cm3=s for the
KM3NeT [122,123] water Cherenkov detector currently
being constructed with a km3 volume in the Mediterranean
sea. From the aforementioned electroweak showers and the
charged SM particles that can also be emitted in the N
decays, we also expect that high energy photons should be
produced, which is constrained by γ ray data from Fermi-
LAT [124] and H.E.S.S. [125] leading to hσjv⃗ji <
10−23 cm3=s [126,127] and will be probed further by the
upcoming Cherenkov Telescope Array [128] with a pro-
jected limit of ð10−24 − 5 × 10−24Þ cm3=s [126,127]. Note
that a detailed limit for our case will depend on the energy
fraction deposited in the photons, which requires a dedi-
cated simulation of the decay chain and showering [127].
All of the above limits assume spin 1=2 Majorana dark

matter (2 degrees of freedom), but since we have a spin 3=2
Dirac fermion [2 × ð2 × 3=2þ 1Þ ¼ 8 degrees of freedom]
we need to rescale the limits by a factor of 1=4. Also limits
from annihilations assume a neutrino energy equal to the
dark matter mass, but for our case the right energy range is
roughly mB=4. We estimate the thermally averaged dark
matter annihilation cross section by using (16) and with the
rescaled limit from ANTARES [118] we find

ΛD > 12 TeV ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.25 × 10−24 cm3=s

hσjv⃗ji

s
; ð25Þ

which will improve to 54 TeVonce KM3NeT [122,123] is
operational so that our benchmark of ΛD ¼ 41 TeV should
be tested by next generation experiments; we demonstrate
the impact on our parameter space in Fig. 2. Of course, we
should stress that this is just an order of magnitude estimate
due the uncertainties related to the nonperturbative dynam-
ics of the dark hadrons and setting BRðM → N̄NÞ ≃ 1.
If DM is stabilized by a global symmetry such as our

accidental Uð1ÞD, there might be higher-dimensional oper-
ators from the putative field theoretic UV completion that
break this symmetry or Planck-suppressed operators due to
nonperturbative quantum gravitational effects, which are
expected to violate all global symmetries [129–132] and

7For the case of light N with masses below the electroweak
scale, the available decay modes of N depend on its mass, which
will affect the number of produced neutrinos and their energy
spectra. We do not expect the order of magnitude estimates
obtained for TeV-scale N to drastically change in this limit.
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thus induce DM decay [133]. We summarized the relevant
effective operators for our case in the Appendix and find
that the lowest-dimensional ones occur at dimension d ¼ 8
in Eqs. (A10) and (A11). On dimensional grounds, we
parametrize

fB ≡ h0jqqqjBi ≃ Λ3
D: ð26Þ

The operator in Eq. (A10) induces the decays
Bμ →

P
i H0νi, Bμ →

P
i Zμνi and Bμ →

P
i W

∓
μ l�i .

Owing to the fact that mB ≫ mH;mZ;mW one finds that
[134] ΓðBμ →

P
i H0νiÞ ¼ ΓðBμ →

P
i ZμνiÞ ¼ ΓðBμ →P

i W
∓
μ l�i Þ=2 and their sum reads [134]

Γð1Þ
2 ¼ jcð1Þ8 j2Λ6

D

Λ8
UV

m3
B

256π
: ð27Þ

There also exist the three-bodymodesBμ →
P

i H0Zμνi and
Bμ →

P
i H0Wμli that are enhanced by a factor of m2

B=v
2
H

compared to the previous two-body decays and thus domi-
nate over them. We estimate their sum to be

Γð1Þ
3 ≃

jcð1Þ8 j2Λ6
D

Λ8
UV

3m5
B

8192π2v2H
: ð28Þ

In Ref. [115] it was found that the energy spectrum for a
three-body decay can be approximated by a power law with
dN=dE ∼ ðE=mBÞ−½2;3� for which they derive a limit of about
τB > 1028 s in the window mB ¼ Oð104–105 GeVÞ using
data from IceCube [135] and we obtain

ΛUV

1012 GeV
≳ jcð1Þ8 j14

�
mB

5ΛD

�5
8

�
ΛD

40 TeV

�11
8

�
1028 s
τB

�1
8

: ð29Þ

The second operator in Eq. (A11) leads to the decay modes
Bμ → AμN and Bμ → ZμN followed by the aforementioned
two-body decay of N to SM states. The total width for our
case of mB ≫ MD is found to be [134]

Γð2Þ
2 ¼ jcð2Þ8 j2Λ6

D

Λ8
UV

m3
B

4π
: ð30Þ

Consequently,we expectmonochromatic neutrino lines from
the DM decays due the operator in Eq. (A11), while the
previously mentioned, but negligible, widening of the lines
due to electroweak cascades applies again. The authors of
[115] derived a limit on theDM lifetime for two-body decays
of about τB > 1028 s in the aforementioned window of DM
masses. Applying this limit to the rate in (30) leads to the
constraint

ΛUV

6 × 1011 GeV
> jcð2Þ8 j14

�
mB

5ΛD

�3
8

�
ΛD

40 TeV

�9
8

�
1028 s
τB

�1
8

;

ð31Þ

which is slightly weaker than Eq. (29), and the bound for the

rate in Eq. (27) would be found by replacing cð2Þ8 with cð1Þ8 =8.

VI. CONCLUSIONS

We have proposed a dark sector that dynamically
generates the lepton number breaking mass term of an
electrically neutral fermion via the condensation of a single
generation of dark quarks. This may be used to generate
either the Majorana mass of the heavy right-handed
neutrinos present in type I/III seesaw8 or the small μ term
present in the inverse seesaw mechanism. We focus on the
latter possibility because it has a richer phenomenology.
The resulting massive spin 3=2 dark baryon which

emerges from the confinement of the dark sector is analogous
to the Δ baryon of QCD and is stabilized by a dark baryon
number symmetry, which is only violated by higher-dimen-
sional operators starting at dimension 8 due to its larger spin.
Thus it constitutes a good DM candidate and we obtain its
yield from thermal freeze-out in the dark sector. This model
predicts a dark confinement scale of the order of ΛD ¼
Oð1–100Þ TeV to reproduce the darkmatter relic abundance
from which we find that μ > Oð10 MeVÞ and a heavy
neutrino mass of MD ¼ OðTeVÞ. The neutrino portal from
the inverse seesaw is crucial for keeping the dark hadrons in
thermal contact with the SM. We have studied the phenom-
enological implications of the TeV-scale pseudo-Dirac neu-
trinos and the potential signals from DM decays and
annihilations, the latter of which may be probed by the
upcoming KM3NeT experiment. Furthermore, a detailed
analysis of the energy spectra of the decay products relevant
for indirect detection would be interesting to pursue.
In the case of GeV-scale sterile neutrinos, displaced vertex

searches at proposed future colliders FCC-ee and FCC-hh
may probe a significant part of the allowed parameter space.
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APPENDIX: SPIN 3=2 FERMIONS AND DARK
MATTER STABILITY

Here we briefly review the properties of spin 3=2 Rarita-
Schwinger fields [136] in order to construct the interactions
of our DM candidate B ∼ jqqqi which is analogous to the
Δ baryon of QCD. We begin with a “spinor-vector” ψμ,
which is the direct product of the vector representation
ð1
2
; 1
2
Þ and the spinor representation of a Dirac fermion

ð1
2
; 0Þ ⊕ ð0; 1

2
Þ, which gives�

1;
1

2

�
⊕

�
0;
1

2

�
⊕

�
1

2
; 1

�
⊕

�
1

2
; 0

�
; ðA1Þ

and corresponds to 16 degrees of freedom (d.o.f.). By
imposing the constraint on the free theory [137] that

γμψ
μ ¼ 0; ðA2Þ

one can eliminate the spin 1=2 Dirac spinor ð1
2
; 0Þ ⊕ ð0; 1

2
Þ,

which corresponds to four d.o.f. Further imposing a second
constraint [137],

∂μψ
μ ¼ 0; ðA3Þ

eliminates four more d.o.f. from another spin 1=2 Dirac
spinor and the remaining eight physical d.o.f. correspond to
a spin 3=2 Dirac fermion of mass m that obeys the Dirac
equation. It has a kinetic term given by

ψ̄μΛμνψ
ν ðA4Þ

in terms of [138]

Λμν ¼ −ð=p −mÞgμν þ Aðγμpν þ pμγνÞ

þ 1

2
ð1þ 2Aþ 3A2Þγμ=pγν þmð1þ 3Aþ 3A2Þγμγν:

ðA5Þ
Here A is a free parameter with the requirement A ≠ −1=2
to avoid a singular propagator [138] and the structure of the
kinetic term can be obtained by requiring invariance under
the following field redefinition [139,140]:

ψμ → ðgμν þ aγμγνÞψν; ðA6Þ

A →
A − 2a
1þ 4a

; ðA7Þ

in terms of another free parameter a ≠ −1=4. One can think
of A as parametrizing the admixture of the spin 1=2
component γμψμ in the off shell ψμ field [139]. Because
of the invariance of the Lagrangian under the above
transformations the parameter A will drop out of all
physical observables as shown by Ref. [141]. By imposing
invariance under the aforementioned field redefinitions,
one can construct the interaction of ψμ with fermions and

pseudoscalars, e.g., the coupling of Δ to pions π and
nucleons n [139,140],

LΔπn ¼ cΔπnΔμθμνð∂νπÞnþ H:c:; ðA8Þ

where we suppressed isospin and the electric charges and
one defines [139,140]

θμν ≡ gμν þ
�
A
2
ð1þ 4zÞ þ z

�
γμγν; ðA9Þ

where the free parameter z is known as the “off shell
parameter,” which arises because the interaction involves
the spin 1=2 components of the off shell ψμ. In the context
of chiral perturbation theory (see Ref. [142] for a review),
one can absorb z in the Wilson coefficients of certain
contact terms via a field redefinition [143–145], rendering
it redundant. In supergravity theories (see Ref. [146] for a
review), the elementary spin 3=2 fermion known as the
gravitino obtains its mass from a spin 1=2 fermion known
as the Goldstino via the super-Higgs mechanism [147], so
that it has a spin 1=2 component even when on shell, and
one finds for its couplings to fermions and pseudoscalars
that A=2ð1þ 4zÞ þ z ¼ −1=2 [148,149]. In this work, we
will not concern ourselves with the details of the off shell
parameters because we are only interested in on shell
composite spin 3=2 fermions; for the remainder of this
work, we set θμν ¼ gμν similar to Ref. [134].
Since B fields caries a Lorentz index and due to the

constraint in Eq. (A2), the higher-dimensional operators
destabilizing the dark baryon must involve derivatives. This
is why the lowest allowed operator dimension for DM
decay starts at d ¼ 8 compared to DM with spin 1=2,
where, e.g., dimension 7 operators are possible [55].
Schematically, the leading operators are at dark quark level,

cð1Þ8

Λ4
UV

ðqqqÞμL̄ðDμH̃Þ þ H:c:; ðA10Þ

cð2Þ8

Λ4
UV

ðqqqÞμ½γα; γβ�γμNL;RBαβ þ H:c:; ðA11Þ

c10
Λ6
UV

ðqqqÞμNL;Rð∂μq̄qÞ þ H:c:; ðA12Þ

c11
Λ7
UV

ðqqqÞμL̄ð∂μq̄qÞH̃ þ H:c:; ðA13Þ

where Dμ denotes the gauge covariant derivative, Bμν is the
hypercharge field strength, and ðqqqÞμ indicates that we
need a spinor vector from the symmetric spin contraction of
three dark quarks for spin 3=2. The operators in Eqs. (A10)
and (A11) were already mentioned in Ref. [150] for the
gravitino and in Ref. [134] for a general elementary spin
3=2 fermion.
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