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Stable dark matter particles may arise as pseudo-Goldstone bosons from the confinement of dark quarks
interacting via a non-Abelian gauge force. Their relic abundance is determined not by annihilations into
visible particles but by dark pion number-changing processes within the dark sector, such as 3πD → 2πD.
However, if the dark vector mesons ρD are light enough for 3πD → πDρD annihilations to be kinematically
allowed, this process dominates and significantly delays freeze-out. As a result, the preferred dark matter
mass scale increases and bounds from the Bullet Cluster can be evaded.
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I. INTRODUCTION

An attractive alternative to the paradigm of weakly
interacting massive particles is the idea that dark matter
(DM) is part of a strongly interacting dark sector [1]. At
high energies, such a dark sector can be described in terms
of dark quarks interacting via the dark gluons of a non-
Abelian extension of the Standard Model (SM) gauge
group. At low energies, on the other hand, the dark sector
confines, and the dark quarks and gluons are bound in dark
mesons and dark baryons. In analogy to SM quantum
chromodynamics, the pseudoscalar mesons, called dark
pions, are expected to be the lightest dark sector state,
because they are the pseudo-Goldstone bosons of chiral
symmetry breaking. Indeed, if the dark quark masses are
sufficiently small, the dark pions can be significantly
lighter than the confinement scale. In contrast to the SM,
however, the dark pions may be stable, due to either a Uð1Þ
or a parity symmetry [2–4] (although the latter may be
broken through gravitational effects [5]), making them
attractive DM candidates [6–8].
Strongly interacting dark sectors are an attractive target

for collider searches due to their striking signature: If a pair

of dark quarks is produced in a hard process, it will gene-
rate a shower of dark hadrons, some of which may decay
into SM particles, while others evade detection [9–18].
The results are one or more semivisible [19,20] or emer-
ging [21] jets. These signatures have been explored in a
bottom-up way by varying phenomenological parameters
such as the masses of dark mesons and the fraction of
invisible particles [22–25], and corresponding searches
have been carried out by ATLAS [26] and CMS [27]. In
order to make a connection to the DM puzzle, however, it
becomes necessary to explore the cosmological history of
strongly interacting dark sectors and to understand whether
the dark pions can be produced in the right amount to
explain observations of the cosmic microwave back-
ground [8].
A central result in this context is the so-called strongly

interacting massive particle (SIMP) mechanism [6,28]:
dark pions may participate in number-changing processes,
such as 3πD → 2πD via the Wess-Zumino-Witten anomaly.
At low temperatures, these processes lead to the conversion
of rest mass into kinetic energy and hence a depletion of the
dark sector. The freeze-out temperature, when number-
changing processes become inefficient, then determines the
relic abundance of dark pions. Comparison to observations
leads to a strict upper bound ofmπD ≲ 100 MeV in order to
avoid an overabundance of DM [6,29–31]. This bound is in
tension with a lower bound on the dark pion mass obtained
from observations of the Bullet Cluster, which constrains
the DM self-interaction cross section [32–34].
In this paper, we point out an important modification of

the SIMP mechanism: In addition to number-changing
processes involving only dark pions, there may also be
processes involving heavier dark sector states, in particular,
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the vector mesons, called dark ρ mesons [35–37]. Indeed,
if the dark quarks have masses comparable to the confine-
ment scale, it is possible to have mρD < 2mπD . This
scenario is particularly interesting for collider experiments,
since the dark ρ meson in this case cannot decay into dark
pions and must instead decay into SM particles (e.g., via
kinetic mixing with the SM photon). The lifetime of the
dark ρmesons can be quite long, such that their decays lead
to displaced vertices in the detector [17,38].
We show that, if the process 3πD → πDρD is kinemat-

ically allowed at low temperatures, it will typically domi-
nate the rate of number-changing processes. This is due to a
favorable velocity dependence (the process proceeds via s
wave, whereas the process involving only pions proceeds
via dwave) and a resonant enhancement if the internal dark
pions can be nearly on shell. We calculate the relevant
cross sections, discuss how thermal effects determine the
width of the resonance, and solve the resulting Boltzmann
equation. Our central result is that the presence of dark ρ
mesons relaxes the cosmological bound on the dark pion
mass. It thus becomes possible to realize the SIMP
mechanism for heavier dark pions and smaller couplings,
thereby evading the Bullet Cluster constraint.
The remainder of this paper is structured as follows. We

first introduce the strongly interacting dark sector model
and discuss the spectrum of dark mesons expected from
nonperturbative calculations. We then present the relevant
Boltzmann equations and the required reaction rates and
finally calculate the dark pion relic density and the Bullet
Cluster constraint.

II. MODEL DETAILS

We start from an SUðNcDÞ gauge group, with NfD mass-
degenerate Dirac fermions qD in its fundamental represen-
tation. The high-energy Lagrangian for such a theory is
given by

LUV ¼ −
1

4
Ga

DμνG
μν;a
D þ q̄D

�
iγμDμ −MqD

�
qD; ð1Þ

where MqD is the mass of the dark quarks, Gμν
D denotes the

dark gluon field strength tensor, and Dμ is the gauge
covariant derivative. While we leave NcD; NfD as free
parameters, it is important to note that chiral symmetry
breaking only takes place for NfD < 3NcD.
At low energies, chiral symmetry breaking leads to

confinement. The dynamics of the resulting pseudo-
Nambu-Goldstone bosons, called dark pions πD, are
described by a chiral Lagrangian. The kinetic term and
the mass term are contained in

LCh ¼
f2πD
4

Trð∂μU∂
μU†Þ þ

�
μ3D
2
TrðMqDU

†Þ þ H:c:

�
ð2Þ

with the SUðNfDÞ matrix U ≡ exp ð2iπD=fπDÞ, the dark
pion decay constant fπD , and the quark condensate μ3D. In
addition, the terms in Eq. (2) give rise to interactions
between even numbers of dark pions. In the chirally broken
phase, the dark pions are the lightest mesons in the
spectrum, and they can be stabilized by a suitable discrete
or continuous symmetry.
In addition, there will also be heavier dark mesons in the

spectrum, in particular, vector mesons analogous to the SM
ρ mesons. Interactions between dark pions and dark vector
mesons are introduced by using the massive Yang-Mills
approach. The corresponding covariant derivative is
given by [39]

DμU ¼ ∂μU þ ig½U; ρDμ�; ð3Þ

with the πDπDρD coupling g ≈mρD=ð
ffiffiffi
2

p
fπDÞ obtained

from the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin
relation [40,41]. Hence, the chiral Lagrangian of dark
pions and dark vector mesons, expanded up to terms with
at most four dark pion fields, reads

LCh ⊃ TrðDμπDDμπDÞ þm2
πDTrðπ2DÞ þ

m2
πD

3f2πD
Trðπ4DÞ

−
2

3f2πD
Tr
�
π2DDμπDDμπD − πDDμπDπDDμπD

� ð4Þ

in agreement with the literature. For NfD ≥ 3, the Wess-
Zumino-Witten (WZW) term induces an anomalous five-
point interaction given by

LWZW ¼ 2NcD

15π2f5πD
ϵμνρσTr

�
πD∂μπD∂νπD∂ρπD∂σπD

�
: ð5Þ

The free parameters in the above chiral Lagrangian
(mπD; mρD; fπD) need to be calculated using nonperturbative
methods. Along with NcD; NfD , a QCD-like strongly
interacting theory with mass-degenerate quarks has two
additional free parameters, one mass ratio and one mass
scale [18]. Once these inputs are fixed, the dark meson
spectrum can be computed using nonperturbative methods,
e.g., lattice simulations. In the UV the two free parameters
could be consideredMqD;MqD=ΛD, which are traded in for,
e.g., mπD; mπD=fπD in the chirally broken phase.
In the following, we are particularly interested in the

process 3πD → πDρD (see Fig. 1 for the corresponding
Feynman diagrams) and its effect on the relic density of dark
pions. For this process to be allowed in the nonrelativistic
limit (i.e., for negligible kinetic energy of the initial state
particles), we require mρD=mπD < 2. Incidentally, this con-
dition also implies that dark ρmesons cannot decay into pairs
of dark pions. Nevertheless, dark ρ mesons do, in general,
decay into SM particles (for example, through kinetic mixing
with the SM photon [42,43], see Refs. [7,12,17,44,45]
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for explicit constructions). These (inverse) decays can
efficiently transfer energy and entropy between the dark
sector and the SM and keep the two sectors in thermal
equilibrium.
It will therefore be convenient to use mπD and the mass

ratio mρD=mπD as free parameters for our analysis. Using
the results from Ref. [46] and neglecting the effect of
varying NcD and NfD , we obtain an approximate relation
between fπD , mπD , and mρD ,

ξ≡mπD

fπD
¼ 7.79

mπD

mρD

þ 0.57
�
mπD

mρD

�
2

; ð6Þ

which is valid for 1 < mρD=mπD ≲ 20, where the lower
limit on mρD=mπD corresponds to ξ ∼ 8.
In principle, one could consider the entire range of above

fit. For large ξ, however, the validity of chiral perturbation
theory becomes increasingly dubious and higher-order
corrections become relevant [29]. In the present work,
we therefore only consider dark ρmeson masses larger than
1.45mπD (equivalently ξ≲ 5.7), corresponding to the range
where the Gell-Mann–Oakes–Renner relation [47] is
expected to be satisfied [48–51]. This bound implies, in
particular, that the forbidden annihilation process πDπD →
ρDρD studied in Ref. [8] is not relevant for the calculation
of the dark pion relic density. The casemρD > 2mπD , on the
other hand, has previously been studied in Ref. [35]. In
this case, the process 3πD → 2πD may receive a strong
resonant enhancement from on-shell intermediate dark
vector mesons.

III. DARK PION RELIC DENSITY

Let us now turn to the calculation of the dark pion relic
density. The Boltzmann equation describes the evolution of
the density of a particle species as it falls out of equilibrium.
Integrating the Boltzmann equation yields the relic abun-
dance of a stable particle given the contributing freeze-out
processes. If ρD is in equilibrium with the SM bath
throughout and 3πD → πDρD annihilations dominate the
depletion of dark pions, we can use the principle of detailed
balance to write the Boltzmann equation as

ṅπD þ 3HnπD ¼ hσv2i3πD→πDρD
nπD

��
neqπD

�
2 − n2πD

�
; ð7Þ

where nπD is the dark pion number density and H denotes
the Hubble rate.
In the nonrelativistic limit, the thermally averaged cross

section is given by

hσv2i3πD→πDρD
¼ jMj23πD→πDρD

144πSαSβm3
πD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 5yþ y2

q
; ð8Þ

with Sα ¼ 3! and Sβ ¼ 1 denoting the number of permu-
tations of identical particles in the initial and final state,
respectively, and y ¼ m2

ρD=ð4m2
πDÞ.

Representative diagrams for the process are shown in
Fig. 1. Diagrams with an s-channel ρD are velocity sup-
pressed and thus negligible in the final amplitude. The sum
of all diagrams yields the total squared amplitude

jMj23πD→πDρD
¼

8m4
πDð1 − yÞð4 − yÞ

	
Γ2
th

m2
πD
þ 4y2


	
5N4

fD
Γ2
th

m2
πD
ð13yþ 2Þ2 þ 32

�
2Ay2 þ 2Byþ C

�


3f6πD

	
Γ2
th

m2
πD
þ 64



ð2yþ 1Þ2

	
9

Γ2
th

m2
πD
þ 64ð1 − yÞ2Þ


 ; ð9Þ

with

FIG. 1. Representative Feynman diagrams for the processes that contribute to the 3πD → πDρD cross section. Additional diagrams are
obtained from the first, third, fourth, and fifth diagram through permutations of the pion states.
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A ¼
�
821N4

fD
− 168N2

fD
þ 36

�
NfD

�
N2

fD
− 1

�
2

;

B ¼
�
245N4

fD
− 114N2

fD
þ 36

�
NfD

�
N2

fD
− 1

�
2

;

C ¼
�
37N4

fD
− 30N2

fD
þ 18

�
NfD

�
N2

fD
− 1

�
2

; ð10Þ

and Γth being the thermal width of dark pions discussed
below. Details of this calculation can be found in
Supplemental Material [52].
As mρD approaches 2mπD from below, the internal dark

pion can go on shell and the cross section grows rapidly.
At first sight, this should lead to a divergence, since the
dark pion is stable and therefore does not have a decay
width. In a thermal plasma, however, dark pions do not
have an infinite lifetime, due to interactions with other
particles in the plasma. This leads to a thermal self-energy,
the imaginary part of which can be interpreted as an
effective decay width [56].
We present the derivation of the dark pion thermal width

Γth in Supplemental Material [52]. The main contribution is
found to arise from the scattering of two dark pions. For
mρD ≈ 2mπD and low temperatures, i.e., x≡mπD=T ≫ 1,
we find

Γth ¼
8π

�
N2

fD
− 1

�
x2

e−xm3
πDσc; ð11Þ

with

σc ≈
1

64π

3N4
fD

− 2N2
fD

þ 6

N2
fD

�
N2

fD
− 1

� m2
π

f4π

¼ 3

64π

m2
π

f4π

�
1þO

�
N−2

fD

�� ð12Þ

denoting the two-pion scattering cross section in the limit
of vanishing initial velocities.
We emphasize that the thermal width becomes exponen-

tially suppressed at small temperatures, as a result of the
suppressed number density of dark pions that can partici-
pate in scattering. In the temperature range relevant
for freeze-out (x ≈ 20) the contribution from the dark
pion width is therefore negligible unless mρD is extremely
close to 2mπD .
It is instructive to compare our result to the conventional

freeze-out of SIMPs through the WZW anomaly. The
corresponding Boltzmann equation reads

ṅπD þ 3HnπD ¼ hσv2i3πD→2πD
n2πD

�
neqπD − nπD

�
; ð13Þ

where the thermally averaged cross section is given by

hσv2i3πD→2πD
¼ 5

ffiffiffi
5

p
N2

cDκ3πD→2πDξ
10

1536π5m5
πDx

2
; ð14Þ

with

κ3πD→2πD ¼ NfD

�
N2

fD
− 4

�
�
N2

fD
− 1

�
2

¼ 1

NfD

þO
�
N−3

fD

�
: ð15Þ

The cross sections for the processes 3πD → πDρD and
3πD → 2πD can both be written as

hσv2i≡ αeff

m5
πD

: ð16Þ

To understand where the 3πD → πDρD process dominates
over the well-known 3πD → 2πD SIMP process, it is useful
to consider the ratio

R≡ hσv2i3πD→πDρD

hσv2i3πD→2πD

¼ αeff3πD→πDρD

αeff3πD→2πD

≈ ð600–2800Þ × 1

N2
cDξ

4

x2ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p ; ð17Þ

where the range for the numerical factor has been obtained
by varying y in the range 0.6 < y < 1 and NfD between 3
and 6, noting that the process 3πD → 2πD does not exist for
NfD ¼ 2 [8]. We find that the ratio R is much larger than
unity for all values that we consider. As expected, R grows
rapidly for y → 1 and also grows with increasing x. This is
because the process 3πD → 2πD proceeds via d wave,
whereas the process 3πD → πDρD proceeds via s wave.
We conclude that the latter process will completely
dominate dark pion freeze-out for mρD < 2mπD. As shown
in Supplemental Material [52], also direct annihilations of
the dark pions into SM fermions via an off-shell dark ρ
meson are negligible as long as the SM coupling of the dark
ρ meson is sufficiently small.

IV. RESULTS AND DISCUSSION

It is convenient to express the Boltzmann equation in
terms of the dimensionless quantity YπD ¼ nπD=s, where
s ¼ 2π2=45g⋆T3 is the total entropy density. The
Boltzmann equation (7) then takes the form

dY
dx

¼ s2

H̃x
hσv2iY�Y2

eq − Y2
�
; ð18Þ

where following Ref. [57] we have introduced the modified

Hubble rate H̃ ¼ ð8π3
90

gÞ1=2 T2

MPl
½1þ 1

3

dðln g⋆Þ
dðln TÞ �−1, with g (g⋆)

denoting the energy (entropy) degrees of freedom taken
from Ref. [58]. We solve the Boltzmann equation in
log-space.
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In Fig. 2 we show the solution of the Boltzmann equation
for mπD ¼ 100 MeV, NfD ¼ NcD ¼ 3, and different values
of mρD=mπD . As expected, the dimensionless dark pion
number density YπD follows the equilibrium value Yeq

πD ¼
ðN2

fD
− 1Þm3

πDðx=ð2πÞÞ3=2 expð−xÞ until it freezes out at
xf ≈ 20 and becomes constant. For the chosen parameters,
the observed DM relic abundance ΩDh2 ¼ 0.12 is approx-
imately reproduced. For comparison, we also show the
evolution of YπD obtained when only the process 3πD →
2πD is considered [59]. For the same masses, the predicted
relic abundance is too large by approximately an order of
magnitude.
We can understand this result analytically, by writing

Eq. (18) as

dY
dx

¼ λ3→2

x5
Y
�
Y2
eq − Y2

�
; ð19Þ

with

λ3→2 ¼
2

ffiffiffi
5

p

675
π5=2g3=2MPlm4

πDhσv2i; ð20Þ

where g ¼ g� ¼ 10.75 in the temperature range of interest
and we can drop the derivative in the expression for H̃.
Typically, Yeq ≪ Y during freeze-out and the corre-

sponding term in the Boltzmann equation can be neglected.
Treating λ3→2 as a constant during freeze-out by setting
λ3→2 ≡ λ3→2ðx ¼ xfÞ, Eq. (19) can be approximately
solved analytically, which yields the asymptotic solution

Y∞ ≈
ffiffiffi
2

p x2fffiffiffiffiffiffiffiffiffi
λ3→2

p : ð21Þ

Hence, the DM relic abundance scales with the DM mass
and effective coupling [as defined in Eq. (16)] as ΩDh2 ∼
m3=2

πD =
ffiffiffiffiffiffiffi
αeff

p
. Therefore, when 3πD → πDρD annihilations

dominate over 3πD → 2πD, the preferred dark pion mass
scale increases as mπD ∼ R1=3 relative to the usual expect-
ation for SIMPs annihilating via theWZW term. For typical
values of ξ, mρD=mπD , and NcD this corresponds to a factor
of 2–3, and even more for mρD → 2mπD, see Eq. (17).
We explicitly confirm this expectation in Fig. 3, where

we plot the combinations of mπD and ξ [or, equivalently,
mρD=mπD as related to ξ by Eq. (6)] that yield ΩDh2 ¼ 0.12
via a numerical solution of the Boltzmann equation for
different choices of NfD and NcD . As before, we show for
comparison the result when considering 3πD → 2πD only,
which is robustly excluded by the Bullet Cluster constraint
on DM self-interactions, given by [33,34]

σc
mπD

≲ 2 cm2=g; ð22Þ

with σc as in Eq. (12). Including the dark ρ mesons in the
final state, on the other hand, increases the dark pion mass
scale sufficiently to evade these constraints. Because of
the interplay between ξ and mρD=mπD in Eq. (9), we find
that the preferred value of mπD is largely independent of
these parameters and can be approximately written as
mπD ≈ 330 MeV=N2=3

fD
.

FIG. 3. Combinations of mπD and ξ ¼ mπD=fπD [or mρD=mπD
via Eq. (6)] that yield ΩDh2 ¼ 0.12 in agreement with observa-
tions. For the red lines only the process 3πD → 2πD is included,
whereas for the blue lines 3πD → ρDπD is also taken into
consideration. Note that the process 3πD → 2πD does not exist
for NfD ¼ 2. The gray shaded region is excluded by the Bullet
Cluster bound on the DM self-interaction cross section (evaluated
for NfD ≫ 1).

FIG. 2. Solutions of the Boltzmann equation for the (dimen-
sionless) dark pion number density as a function of inverse
temperature. For the red lines only the process 3πD → 2πD is
included, whereas the blue lines include 3πD → πDXD with
XD ¼ πD; ρD. The value of YπD that corresponds to the observed
DM relic abundance is indicated by the dot-dashed black line,
while the equilibrium value of YπD is represented by the dashed
gray line.
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In conclusion, we have shown that, for strongly interact-
ing dark sectors with mρD=mπD < 2, the dominant process
that changes the number density of dark pions in the early
Universe is 3πD → πDρD. We emphasize that this process
does not depend on any nonperturbative parameters other
than mπD , fπD , and mρD and—in contrast to the conven-
tionally studied process 3πD → 2πD—does not rely on the
WZWanomaly, i.e., it also exists for theories with only two
light flavors. In contrast to the recently proposed Co-SIMP
mechanism [60,61], the process that we consider requires no
interactions between the dark sector and SM particles
beyond those needed for thermalization (which only places
a very weak lower bound on the decay width of the dark ρ
mesons). As a result, we obtain a theoretically clean and
robust prediction for the dark pion mass that reproduces the
observed DM relic abundance. We have specifically con-
sidered the range 1.45 ≤ mρD=mπD < 2 corresponding to
4≲mπD=fπD ≲ 6, within the validity of chiral perturbation
theory. We find typical values of mπD around 100 MeV
reproduce the measured DM relic abundance, with only mild
dependence on the other parameters. Crucially, these dark
pion masses satisfy the Bullet Cluster constraint on DM
self-interactions—unlike the masses favored by freeze-out

via 3πD → 2πD—and therefore provide an important bench-
mark scenario for further exploration. We emphasize that the
required mass spectrum implies that the dark ρ mesons can
only decay into SM particles, leading to exciting signatures
at laboratory experiments.
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