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Pietro Colangelo®,"” Fulvia De Fazio®,"" Francesco Loparco®,"* and Nicola Losacco

12,8

Ustituto Nazionale di Fisica Nucleare, Sezione di Bari, via Orabona 4, 70126 Bari, Italy
2Dipartimento Interateneo di Fisica “Michelangelo Merlin,” Universita degli Studi di Bari,
via Orabona 4, 70126 Bari, Italy

® (Received 22 June 2024; accepted 11 July 2024; published 6 August 2024)

We study the constraints on low-energy coefficients of the YSMEFT generalization of the Standard
Model effective theory in the simple case of a U(1)’ enlargement of the Standard Model gauge group. In
particular, we analyze the constraints imposed by the requirement that the extended theory remains free of
gauge anomalies. We present the cases of explicit realizations, showing the obtained correlations among the

coefficients of d = 6 operators.
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I. INTRODUCTION

The search for physics beyond the Standard Model (SM)
is justified by several motivations. There are conceptual
issues and cosmological observations suggesting the exist-
ence of a more fundamental theory beyond SM. Tensions
between SM predictions and experimental results, in
particular in the flavor sector, reinforce such a widespread
conviction. However, direct searches at colliders have not
produced evidence of new particles and/or mediators of
new interactions yet; hence the alternative way to gain
evidence of physics beyond the Standard Model (BSM) is
investigating virtual effects of possible new heavy degrees
of freedom, as done in flavor physics [1].

In this framework, two approaches can be followed
towards BSM. The first one consists in formulating a
specific extended theory and deriving predictions to be
contrasted with experiment for a validation or a discrimi-
nation with respect to different new physics (NP) scenarios.
The second approach consists in extending the SM at the
electroweak (EW) scale in the most general way compatible
with the SM gauge symmetry, investigating the constraints
imposed by the experiments on the resulting generalization.

A remarkable example of the second approach is the
Standard Model effective field theory (SMEFT) [2-5],
widely used in the quest for BSM physics. The SM is
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considered as an effective field theory describing physics at
and below the EW scale. At higher scales a new gauge
theory (the UV completion) should exist, with a gauge
group extending the SM one and undergoing spontaneous
symmetry breaking (SSB) to it. If A is the NP scale, then at
the EW scale the SMEFT Lagrangian consists of an
expansion in the parameter 1/A. The first term of the
expansion is the SM Lagrangian density containing oper-
ators of canonical dimension up to d =4. Subsequent
terms are suppressed by powers of 1/A and comprise
operators of increasing dimension:

’CSMEFT - Lg\){ + L(S) + 5(6) + (1)

The apex (d) indicates the canonical dimension of the
operators entering in each term £@ written as

C.
£ =3%" o o\, (2)

i

with dimensionless Wilson coefficients C;. The operators
are constructed in terms of the SM fields and satisfy the SM
gauge symmetry. SM accidental symmetries are allowed to
be violated: for example, baryon and lepton number violat-
ing operators are included in (2), namely odd-dimension
operators violating B and/or L conservation [6]. The
operators contain no reference to the field content of the
UV theory. However, their coefficients depend of the details
of such a theory, i.e., the couplings and masses of the new
particles that, supposed to be M ~ O(A), are integrated out
in the EFT Lagrangian at the EW scale. A few assumptions
concern the UV theory. It should contain only particles with
spin J < 1; new vector fields could be either gauge fields
(massless before SSB in the UV theory) or massive Proca
fields; new fermions can be introduced provided that they
are vectorlike with respect to the SM gauge group, to
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maintain the SM free of gauge anomalies. Even thoughin the
construction of the SMEFT operators the latter requirement
is taken into account, in more general frameworks it can be
relaxed, provided that together with new fermions (not
necessarily vectorlike), other contributions are added that
maintain the SM gauge group anomaly free [7].

One can use the construction in two ways. Choosing the
UV completion, the Wilson coefficients of the SMEFT
operators can be determined through matching and running
procedure [8—10]. On the other hand, without assumptions
on the UV completion, the coefficients are treated as
parameters. These two steps are complementary to each
other. Having gained model independent information on
the coefficients in the effective theory, it is possible to
contrast them with the features required in a specific
scenario in order to validate or discard it.

The phenomenological evidence that neutrinos have
nonvanishing mass induces to consider the vSMEFT
extension of SMEFT, which comprises three right-handed
sterile neutrino fields in the sub-TeV mass range [11-18].
The inclusion does not invalidate the requirement that the
SM gauge group is free of gauge anomalies. In the
extension, £©°) consists of three operators, while only
the Weinberg operator appears at this order in the absence
of vg [19]. The choice of the d = 6 operators is not unique,
and different bases have been proposed, i.e., complete sets
of independent, nonredundant operators.l A popular basis
is the Warsaw one [3]. In each basis the operators are
collected in classes according to their field content.

In our study we focus on the UV completion represented
by the simplest extension of the SM gauge group comprising
anew U(1)’ gauge group, featured by the gauge coupling g,
[20-23]. Z' is the corresponding gauge field and the z
hypercharge is the quantum number associated to the new
symmetry. Many NP models introduce such a mediator with
specific z-hypercharge assignments. Experimental searches
for Z' rely on the assumptions for the hypercharges, and
produce exclusion plots in the plane of the Z' production
cross section versus M z’-2 The NP scale can be identified
with M, acquired after spontaneous breaking of the new
symmetry. We do not need to specify how such SSB occurs,
we only assume that it happens at a much higher scale than
the SM Higgs vacuum expectation value. We neglect the
mixing with other neutral gauge bosons.”

In the chosen extension we work out the coefficients of
the YSMEFT operators of dimension up to d = 6, aiming at

'Sources of redundancies are, e.g., operators obtained one
from the other after integration by parts and discarding a total
derivative; operators that can be discarded using equations of
motion; equivalent operators upon Fiertz transformations (in the
case of four-fermion operators).

2See, e.g., the review: B.A. Dobrescu and S. Willocq,
“Z'-boson searches,” in [24].

Mixing at tree-level vanishes in models where the SM Higgs
is assumed to be singlet under U(1)'.

the relations among them.* While the gauge structure of the
theory already imposes nontrivial relations among various
coefficients, further relations can be established requiring
that the extended gauge group is anomaly free. We obtain
results holding for a generic U(1)" extension. We also
consider specific cases: universal Z' couplings to the three
generations or only to the third generation; Z’ only coupled
to left- or right-handed fermions; lepto- or hadrophobic Z’;
the z-hypercharge assignment of the ABCD model [26]. In
all cases, we find that the number of independent coef-
ficients is reduced and remarkable correlations can be
established among them, which are peculiar of each
extension. The experimental test of such correlations would
shed light on the particular completion, providing the
widest information using measurements.

The plan of the paper is as follows. After Sec. II with the
notations, in Sec. III we list the vSMEFT operators
generated at the EW scale when the UV theory contains
the new gauge boson Z'. The impact of the new gauge
boson on the SMEFT Lagrangian density is considered in
Sec. IV, with the list of the operators obtained when the Z’
field is integrated out, the expressions of their Wilson
coefficients and the relations due to the gauge structure of
the extension. In Sec. V we consider the relations that the
fermion z hypercharges must satisfy to fulfil the require-
ment of gauge anomaly cancellation in the SM gauge group
extension, and how such relations can be translated into
analogous ones among the SMEFT coefficients. We than
discuss the results for the selected z-hypercharge assign-
ments. The last section comprises the conclusions.

II. NOTATIONS, Z' COUPLINGS TO FERMIONS
AND TO THE HIGGS FIELD

The most general renormalizable UV Lagrangian terms
involving the gauge boson Z’ of a new U(1)’ group can be
written as

‘CZ’ - ‘Cer;e + ‘Ciznrt.fermions + ‘C%/ (3)
The first term in (3) reads
4 1 1 7y 1 2 71 7l
Efree - - Z Z”DZ + EMZ/ZFZ . (4)

Z, is the gauge boson field and Z,, = 9,7, — 9,Z,, is the
field strength tensor.

The second term in (3) describes the Z' coupling to
fermions. We denote by ¢; and £} the SU(2), left-handed
quark and lepton doublets, respectively, with generation
index i = {1,2,3}. uk, d, v, ek are right-handed singlets.

Before the electroweak SSB the Z’ couplings to fermions
are flavor conserving, hence we can write

“In the same framework, relations among the coefficients of
d = 6 and d = 8 operators have been worked out in [25].

035007-2



CONSTRAINING vSMEFT COEFFICIENTS: THE CASE OF ...

PHYS. REV. D 110, 035007 (2024)

7' _ E 7'
‘Cint,fermions - £int’ (5)
W

where the sum extends over all the fermions generically
denoted by y and

LE = 922,07"WZ,. (6)

gz is the U(1)" gauge coupling, and z,, the z hypercharge of
the fermion y, i.e., the fermion quantum number related to
the new symmetry group. In SM the fermions are chiral,
hence it is useful to write (6) in terms of the left- and right-
handed fermion fields y g):

L2, = [(A]) 9 yy] + (AR) gk wi) 2y, (7)
with

(AIZ.R)U = QZZ.,/L,R&'/- (8)

The Z' coupling to the SM Higgs field ¢ is described by
ﬁg. We write the covariant derivative acting on the SM
Higgs field as l_)” = D, + igzznZ,. D, contains only the
SM gauge fields and zy is the Higgs z hypercharge.
Therefore, we have

(D) (D*g) = (D) (D"@) + gu(¢"iD,p) 2"
+ 9B Z, 2" (¢ ). )
|

where (pTiB”(pZ(pT(iDﬂ(p) - (iD,¢")p and we have
defined

9n = 9z3H- (10)

The last term in (9) can be neglected in the present study since
we are interested in d = 6 operators arising at the EW scale
when Z’ is integrated out. The last term in (9) produces ad = 8
operator, its coefficient would be inversely proportional to
M?,. Therefore, in (3) we only include

LZ = gy(e'iD,p)Z". (11)

IIL. Y'SMEFT OPERATORS GENERATED
IN THE U(1) EXTENSION OF SM

In the Warsaw basis the operators are collected in classes
according to their field content. The scalar field is denoted
by ¢, with @ defined as @' = e;;(¢*)* [j, k are SU(2),
indices]. The gauge field strengths are indicated by X, X
being their duals. Fermions are denoted by y. Among the
various terms in £ in Eq. (1), we focus on E(ZG,), the set of
operators generated at the EW scale when the SM group is
extended including U(1)" and the gauge boson Z’ is

integrated out. dz(i) consists of the terms’

‘C(Z6’) = Cffoff + Cglﬂl) Ogllq) + CeeOee + Cuuouu + Cddodd + C,E?,) OS/?/)
+ C;];O(flq) + Cild)oild) + Ceuoeu + Cedoed + Cfeot’e + Cfuofu + Cfdofd + quOqe

+ Cll Ol +

ld)ogld) + Cveove + Cuu Ovu + Cvdoud + Cfvofb + Cquoqy

+ Cya0,0 + CupOyp + CeyOeyp + CiiyOuyp + Cy Oy + € Oy
+ Cfplg O((plf? + C(pe O(/)e + C((ﬂ1q> Of(ﬂlq) + Ctpu Orpu + C(/)dofpd + Crpvorpv + H.c. (12)

The various operators can be classified in the following classes defined in [3,14]:
(denoted as O, if y; = y,) with structure (LL)(LL):

(1) Four-fermion operators O, ,,,

Oselijnp = oy, 1) (Ehreh),
00 )iy = (@hr,00) (@7 al),
Oy = Ziva €)@ r al). (13)

>While in Eq. (2) the Wilson coefficients are dimensionless, in (12) it is convenient to include the mass dimension in the definition of
the coefficients. The operator (’),(,,6,> is denoted by a superscript to distinguish it from the d = 5 Weinberg operator O, ,.
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2) F9ur—fe_rmion operators O, with
(RR)(RR):
[Oee]ijkp = (‘_33’37’;4@{?)(_]&7”61];)7
[Ouilijep = (a}ey,,u{e)(ﬁ’,‘ey”u,’;),
[Odd]ijkp = (aﬁehd@(‘_ﬂfeyﬂd@v
(Ouliip = k) (i ),
[Oulijip = (Cyye) (ihy" uf).,
[Oed]ijkp = (éﬁenefé)(flﬁ%y”d;@%
(O )ik = W) (Thrvh).
[Ovelijip = (D}yﬂué)(éﬁy”eﬁ),
[Ovu]ijkp = (DkVMVé)(ﬁ]feV””;;)’
[Oudlijiy = Prruvi) (dfr"dy).
(3) Four-fermion operators O, ,, with
(LL)(RR):
{Ofe]ijkp = (ZILVMKJL)(_IICQVMZ)’
[Oqe]ijkp = (Qi?’u%)@fﬂ”e@’
Ocdijep = (CiLra 1) (hr uf),
[Ofd]ijkp = (ﬁ)’yﬁ)(%?"ﬁ%
(051 = (@741 @hruf),
(Ohllijey = (@17,a1) @i ).
[Oft/]ijkp = (?:”iy”fi)("érﬂﬂé),
[Oqu]ijkp = (ZIZL?’”C]D(D%V”VZ»

structure

(6) Operators O,,, comprising the Higgs field ¢ and the
fermion fields, classified as y2@’D:

O] = (¢"iD,) (@11 e)),
[Oel;; = (07iD,0) @y el).
[0, = (w*igﬂfp)(%w‘q{),
[Opli; = (¢7iD,0) (@),
(Opali; = (@' D) (i),
Opl;; = (#'iD,0) Ty v)- (18)

i, j, k, p are generation indices.

(14)

structure

IV. RELATIONS AMONG THE WILSON

COEFFICIENTS

The coefficients of the operators in Sec. III can be
expressed in terms of the couplings in Eq. (7) [27]. For

four-fermion operators they read:

(15)

(4) Operators O, involving the Higgs field ¢, classified

as @*D? in the Warsaw basis:

O,0 = (¢'9)T(7).
Oup = (9" D) (D) ).

(16)

(5) Operators O,,, involving the Higgs field ¢ and the

fermion fields, classified as y?g?:

[Ocylij = (@7 0)(ZL0eR),
[Ouga]ij = ((P+§0)(5]2¢”{e)’
[Od(/)]ij = (fP%fP)(ZIZde;e)v
[pr]ij = (fﬂ%(/’)(’?iL(b’/ge)-

035007-4

(A7)7 (A0

[Ceelijup = — , (19)
P 2M2,
(1) (ADY(AD)*P
[qu]]i'k =T s (20)
e 2M2,
(Ae)ij(Ae)kp
(Ceelijip = —R2MigR7 (21)
Z/
(AR)Y (AR
[Cuu]i'k = - ) (22)
s 2M2,
(AR)Y (AR
[Cadlijpp = —— 577 > (23)
TEP 2M§/
(A%)"(85)"
(Cijep = = , (24)
s 2M2,
(1) (AD)Y(AD)*P
[Cf ]i'k - T 2 (25)
qiLjkp Mé/
(Af)Y(ag)r
[Chdlip = = , (26)
JKp M%,
(AR)Y (AR
[Colijip =557 (27)
o M,
(Ae )ij(Ad)kp
[Ced]ijkp = - # M2 R s (28)
Z/
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(A7) (AR)

[Ct’e]i‘k = , (29)
s M7,
(AD)Y(AR)P
[Codijip = "> (30)
JKkp M%,
(AD)Y(Ag)P
[Cralijgy = =" (31)
7k M2,
(AD)Y(AR)*”
[C eL"k = > (32)
qelijkp M%,
(1) (AD)Y (AR
(Coilijiy = =77 (33)
ke M2,
(AD)Y (AR
[Codlip = =22, (34)
qd lijkp M%,
(AR)Y(AR)”
[Cve]i'k = - —, (35)
o M7,
(AR)Y(AR)”
[Colijiep == (36)
A M3,
(Av)ij(Ad)kp
[Cud]ijkp =R M2 # s (37)
Z/
(Af)ij(Au)kp
[sz’v}ijkp e M2 K ’ (38)
ZI
(AQ)ij(Ay )kp
[qu]ijkp =t M2 R : (39)
Z/

The coefficients of the operators O, and O, are given by

2

9u
Cro=— , 40
oM, (40)
293
C(pD = - M_%/ ’ (41)
so that
Cop =4C,n (42)

and C,p < 0.

The couplings to fermions enter in the coefficients of
Oe(p, Ouw’ and (qu,. However, when the UV completion
consists only of the new U(1)’ group, as considered in the
present study, such coefficients vanish. The coefficients of
o o, ok o

ves Opes and O, are given by

pu>

[C((,;IL'}]U = —(AI]/L:/I);;QH, (43)
[Coelij = —%, (44)
[Cl(ﬂlq)]ij = _(A]ZVI);W], (45)
[Coulij = —%, (46)
[Cpalij = —%, (47)
(Culy = -8, (48)

For N generations, the coefficients in Egs. (19)—(39) are
generally complex matrices in a N“*-dimensional space.
However, the coefficients in (19)—(24) correspond to
Hermitian operators; hence they are real and have N*
components. In principle, the coefficients in Egs. (43)—(48)
involve 2N’ independent parameters. This parameter
counting changes for the UV completion obtained extend-
ing the SM gauge group with the new U(1)". We derive
relations among the coefficients before SSB, with unrotated
fermion fields and diagonal Z' couplings to fermions.
Moreover, in this case all coefficients are real, since they
are expressed in terms of the (real) z hypercharges and of
gy Wwhich is real as from (10).

Relations exist among the remaining coefficients.
We denote by C,,, a generic coefficient among those
in Egs. (19)~(24), and by C,,,,, a coefficient among those
in Egs. (25)—(39). The coefficients in Eqs. (43)—(48) are
generically denoted as C,, (in all cases y =7,q,v,
e,u,d). We have

[Cy/]y/z]ijkp = :tz\/[Cl//ll//l]ijij[cvlzlllz]kpkp’ (49)

[Copli;[Copli
[Cw]ijkp - w, (50)
@D
[Cop Jij[Co,Ji
{Clll]l//z]ijkp — ZW' (51)
@D

Considering Eq. (8), only the components C,;;, are non-
vanishing among the coefficients in (19)-(39). Moreover,
the coefficients in (19)—-(24) are symmetric under the
exchange ii <> kk, so they comprise only six independent
components. It is convenient to use the notation i = ii,

k = kk. As for the coefficients [Cf/’l//]ij in Eqgs. (43)—(48),

035007-5
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they are nonvanishing only for i = j. We denote them
6
as [Cpy ;-
Summarizing, the following structures of coefficients are
realized:

Cpy = ([Ct/n//]l [Cr/n//]z [C‘/’W}é)’ (52)
|
[C‘/}Wl]l[cf/nlfz]l
Cor = o | [C L[C]
Wy, quD oy 120~ pwrl1

a

oy ]§ [an//z]l

The number of independent coefficients in the dimension-
six Lagrangian density (12) is reduced to 19. They can be
the 18 coefficients [CW] ;; for i=1,2,3 and the six
w=70,q,v,e,u,d, and C,p; alternatively, they can be
the 18 coefficients [C,,,]; and C,p. In the next section we

describe the constraints for such coefficients obtained
requiring that the extended gauge group is free of gauge
anomalies.

V. CONSTRAINTS FROM GAUGE ANOMALY
CANCELLATION

The issue of gauge anomaly cancellation in presence of a
new U(1)" symmetry has been considered in many studies
[26,28-34]. In case of a new Z' gauge boson, six gauge
anomalies are generated. They can be expressed introduc-

ing the quantities Z.S," ) defined in terms of the sums

( 3
) = E s
i=1

with y; a fermion in the i generation [28]. The
SUG)CRU(LY,  [SU(2),PU(1Y. and  [U(1),2U(1)
anomaly cancellation conditions involve the linear combi-
nations of hypercharges in (55) and read as follows:

(55)

Ane =22 =2 =2 =0, (56)
A22z = 3Z£1]) + Z)(;) = 0, (57)
1 4 1 1
Aniz :6ng> —51541) —51511) +§Z(fl) -V =o. (58)

The triangular graph involving two gravitons and Z’ also
produces a relation linear in the z hypercharges:

®To avoid confusion, when pedices refer to pairs of indices or
to a single index we write i = 1,2,3 and i = 1, 2, 3, respectively.

1 ([Ctﬂwh)z [C(m//]l[cfpw]z [C(/7l/’]l[cf/’ll/]§
CWZCT)D [CIPW]Z{CW/]l ([Cw]z)z [CW]Z[CW]Q ’
[C(W/]Q{Clﬂll/]l [Cw]é[cww]z ({CW]E)Z
(53)
Crpm]l[ctpl//z]z [Cfﬂw]l[clﬂw]i
Cf/nm ]2 [C«w/z]z [Crﬂvn ]2 [C¢Wz]§ (54)
Cop, ]é [Ctm//z] 2 [C(/’V/l ]é [vafz]é

Ago. =322 =2l =]+ 2 =2~V =0, (59)
which can be simplified using Eq. (56):
Aggy =220 =2V =V —o0. (60)
The U(1),[U(1)]> anomaly cancellation condition
involves the quadratic sums in (55):
A= [0 =20+ P - [P =P =0 (61)

The [U(1)']* anomaly cancellation condition involves the
cubic sums in (55):
H =32 = =4 - - =0, (@)

The previous equations provide constraints to the coef-
ficients in (12). We define

Cow = ([Cp )" (63)

=1

denoting for simplicity Cyy) = C,,,. Using Eqgs. (43)—(48)

we have
MZ 1
Ty, = — —|Coylis 64
Vi 9z gH[ W]‘ (64
and Eq. (55) becomes
M2, 1)"~
(n) z (n)
Zy = |——=—] Cyy. 65
(22 ) e (65)

With such definitions, the equations of the gauge anomaly
cancellation conditions read as follows:

A33z - 2C¢q - CQJM - C(pd =0, (66)

035007-6
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Ay, —3C,,+C,r =0, (67)
Ay, —~C,,—8C,, —2C,y+3C,r —6C,, =0, (68)
Agg. = 2C,p—C,— C,, = 0. (69)

They produce the relations:

C _ C(/m + C(/;d

?q 2 ’ (70)

. . C,+C
Copr = =3C,, = =322, (71)
Cpo = 28,0~ Cpu. (72)
a(pu - _C(pu 26(/151 (73)

Examples on how the equations representing the ano-
maly cancellation conditions (ACE) can be exploited
are discussed below, considering models with specific
z-hypercharge assignments.

VI. APPLICATIONS TO MODELS WITH SPECIFIC
z-HYPERCHARGE ASSIGNMENTS

The anomaly cancellation equations involve 18 para-
meters: [C,,,]; for w = ¢;,¢;, u;.d;,v;, e;, and i =1,2,3.
Taking into account the constraints from the six ACE, there
are 12 independent parameters. With other assumptions,
further constraints can be imposed, as discussed below for
selected cases.

A. Z' only coupled to the third generation, and Z’
universally coupled to the three generations

If Z' only couples to one of the generations, e.g., the third
one, then we have z,,, = z,, and z,, = z,,, = 0. The number

of parameters involved in the ACE is 6, denoted CW:

[an//]g =C [C(py/h = [Cz/n//]g =0. (76)

oy
It follows that
oy = (Cpy )" (77)

Before discussing the ACE, let us consider the scenario
in which Z’ universally couples to the three generations:

Zy, = 2y, = %y, = Zy> as in models where the z
hypercharge is a linear combination of the SM hypercharge
Y and of B—nL, with B and L the baryon and total
lepton number and n an integer number [28,35,36].7
The six parameters involved in the ACE are denoted again
by C

oy

[th = [C(IHI/}% = [C¢W]§ = Coy» (78)

and the relation holds:
Co = 3(Cpy)". (79)

The factor 3 factorizes in the ACE, hence the two cases are
identical from the viewpoint of solving the equations and
can be discussed together.

Since Eqs. (74)—(75) are automatically satisfied, they do
not represent additional constraints, hence there are two
independent coefficients. One can express all coefficients in
terms of C,, and C,,:

=~ C(d_Ce

C'(/”I: . 4 . ’

~ C(d+C(e

C(pu:_%’

] 3(Cpi=Cpt) . =3Cyy+Cyp
C(pf:—%, Cq)v:%- (80)

Correlations among the four coefficients depending on the
two independent ones are obtained, as shown in Fig. 1
varying C(pd and (_f(/,e.

In this specific scenario, information can also be

obtained on [C,,,|,,. Indeed, Eqgs. (19)—~(23) imply

z :i<2M§'>1/2(—[C i)' (81)
Wi g% yylit :

As done for C,,, we define [C,,];; = C,,,. The ACE can
be used to relate the nonvanishing z hypercharges:

1
g, = Z<Zd3 - 263),

Ty = _E(Zd3 + Ze,),
3
lpy = _Z(Zd3 - Ze3)’
1
Zv3 = E <Z93 - 3Zd3)' (82)

"Replacing L with a family lepton number or a combination of
L., L,, L, different from L does not belong to the generation
independent category [35,37].
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FIG. 1. Z only coupled to the third fermion generation:
Correlations among nonvanishing coefficients, varying C'q,d
and C,, in the range [—1,1].

Two different cases can be analyzed, depending whether z,,
and z,, have same or opposite signs:
(1) z4, > 0,z,, >0 and z4, <0,z,, <0: we have

C __<\/_Cdd_\/_Cee :
q9 4 ’
(—: __<\/_Cdd+ V_Cee ?
uu 2 )

(2) z4, <0, z,, >0, and z4, > 0, z,, < 0: we have
e o V _Cdd + _Cee ?
Cog =~ 4 ’
- (\/ _Cdd Y _Cee>2
CMM - - 2 )

Cee = —% <\/ ~Caa + @)2

C, = _(\/_Cee + 3\/_Cdd)2. (84)

2

Correlations among the four coefficients are obtained
varying Cy,, and C,,, as shown in Fig. 2.

B. Z’ only coupled to left-handed fermions

The possibility that Z’' only couples to fermions of a
given chirality has been considered, e.g., in [38]. If Z' only
couples to left-handed fermions the nonvanishing coeffi-
cients are [C,,|; for w = {q,,¢;}, hence six parameters.

The number of constraints is reduced to 4 since Eqs. (67)
and (68) are redundant. The linear equations (66) and (69)
provide the relations

C,y=C,r=0. (85)

The quadratic and cubic ACE provide further relations,
hence the number of independent coefficients is 2. Varying
[Cyrl; and [C,, ], correlations are obtained among the
remaining coefficients. They are shown in Fig. 3.

Also in this case the ACE can be exploited to derive
correlations among [C,,,], choosing [C/]33.[Cyyl;5 as
independent coefficients, for same-sign or opposite-sign
Z¢, and z,. The correlations between the remaining
coefficients [C,]55 and [C,]5, are shown in Fig. 4.

C. Z' only coupled to right-handed fermions
If Z' only couples to right-handed fermions, then the
nonvanishing coefficients are [C,,, |; fory = {u;, d;, e;, v},
hence 12 parameters. The number of constraints is

reduced to 5 since Eq. (67) is automatically satisfied.
Equations (66), (68), and (69) provide the relations

Cpu=-Cpa=-C,o=C,,. (86)

The quadratic and cubic ACE give further relations, so that
the number of independent coefficients is 7.

D. Leptophobic Z’

If Z' only couples to quarks, then the nonvanishing
coefficients are [C,,]; for w = {g;, u;, d;}, therefore nine

parameters. The number of constraints is 5, since Eq. (69) is
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FIG. 2. Z' only coupled to the third generation: Correlation
among nonvanishing coefficients, varying C,; and C,, in the
range [—1,0]. The green points refer to same-sign C,; and C,,,
the orange points to the case of opposite signs.

automatically verified. The other linear equations provide
the relations

(@Y
<

q = C(/m - Crpd =0, (87)
while the quadratic and cubic ACE read

Chy —2C + €2 =0, (88)

51..\_/

~(3 ~(3
205y~ -l

0. (89)

Consequently, there are four independent coefficients.

E. Hadrophobic Z'

The situation is specular to the leptophobic Z'. The
expressions of the ACE are

1.5
1.0
0.5
0.0
-0.5
-1.0

" 215 -1.0 -05 0.0 05 1.0 15

[Ctp/ ]l

[Corl2

15
10|
0.5
0.0

05

-1.0

-1.
—51.5 -1.0 -05 00 05 1.0 15

[Cg:q ]l

[C(pq ];

1.5
1.0
0.5
0.0
-0.5
-1.0

—51.5 -1.0 -05 00 05 1.0 15

[C‘pl’ ]l

[C¢q];

FIG. 3. Z' only coupled to left-handed fermions: Correlation
among nonvanishing coefficients, varying [C,/|; and [C,,]; in
the range [—1, 1].

Cpp=Cp=C,po =0,
~2) | #2) _
~(3 ~(3 ~(3
2~ €y - Tyl = 0. (90)

The number of independent coefficients is 4.

For such models the experimental bounds are weaker than
in previous cases, and allow a relatively light Z’. Moreover,
7' can contribute to lepton-flavor violating decays and to the
lepton anomalous magnetic moments [39-46], an issue of
great interest at present [47,48]. Models gauging L, — L,
(a, b being the lepton flavors) belong to this class, namely
models gauging L, — L, [49-54].

As an example of a hadrophobic model, we can also
consider the Z’ only coupled to right-handed neutrinos, a
scenario belonging to the class of neutrinophilic NP
models [55-57]. As for the ACE, setting all z hypercharges
to 0 but for right-handed neutrinos, we have that Eq. (90) is
satisfied only if at least one of the three right-handed
neutrinos is sterile under U(1)". Choosing z,, = 0, the ACE
imply [C,,]; =0 and [C,, ], = —[C,,],.
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FIG. 4. Z' coupled only to left-handed fermions: Correlations
among coefficients, varying [Csz];; and [Cyls5 in the range

[—1,0]. The color code is the same as in Fig. 2.

F. ABCD model [26]

A model with a heavy gauge boson Z' with flavor
nonuniversal quark and lepton couplings has been consid-
ered in [26]. The assignment of the z hypercharge to a
generic fermion y; = {q;, u;,d;,¢;,v;, e;} (i a generation
index) is

Zy, = Yy T € (91)

Y, denote the generation universal SM hypercharges, ¢; are
parameters generation dependent, but universal within a
given generation. This construction produces quark-lepton
correlations. As shown in [26], all ACE are satisfied
provided

D e =0. (92)

i=1

The assignment implies the relation

B C 1/2
Cpy = 3(-9% ‘”D> Yy (93)

2
2M2,

For right-handed neutrinos one has Cq,y = 0 since y, = 0.
Nontrivial relations among the SMEFT coefficients are
predicted:

_6Srs _ 3Co _3C0a_ 5 Cur (94)
C(/}e 2 C(pe C(pe C(pe

VII. CONCLUSIONS

The possibility of gaining information on possible
extensions of the SM, in a bottom-up approach, is largely
based on the SM effective field theory framework. It is
important to obtain the widest information from the
phenomenological analysis of the coefficients of the
operators in the effective field theory Lagrangian. We have
discussed the set of constraints and relations among the
coefficients of the d = 6 operators if the SM extension
includes a nonanomalous U(1)". In particular, we have
investigated how the anomaly cancellation equations,
involving the z hypercharges, can be translated into
constraints for the vSMEFT Wilson coefficients. Such
constraints become more stringent if particular features
are assumed for the Z’ couplings to fermions.

We have discussed examples on how the constraints can
be exploited, and which correlations among the coefficients
emerge. Correlations among different coefficients imply
relations among different physical processes, which can be
searched and tested in experiment. Such processes could
also involve neutrinos, which motivates our choice of
considering the vSMEFT formulation. The correlations
could also be included in global fit analyses using the
data already available, or that will be collected in the near
future. This provides us with a way for accessing the long-
sighted extension of the Standard Model.
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