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We study the constraints on low-energy coefficients of the νSMEFT generalization of the Standard
Model effective theory in the simple case of a Uð1Þ0 enlargement of the Standard Model gauge group. In
particular, we analyze the constraints imposed by the requirement that the extended theory remains free of
gauge anomalies. We present the cases of explicit realizations, showing the obtained correlations among the
coefficients of d ¼ 6 operators.
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I. INTRODUCTION

The search for physics beyond the Standard Model (SM)
is justified by several motivations. There are conceptual
issues and cosmological observations suggesting the exist-
ence of a more fundamental theory beyond SM. Tensions
between SM predictions and experimental results, in
particular in the flavor sector, reinforce such a widespread
conviction. However, direct searches at colliders have not
produced evidence of new particles and/or mediators of
new interactions yet; hence the alternative way to gain
evidence of physics beyond the Standard Model (BSM) is
investigating virtual effects of possible new heavy degrees
of freedom, as done in flavor physics [1].
In this framework, two approaches can be followed

towards BSM. The first one consists in formulating a
specific extended theory and deriving predictions to be
contrasted with experiment for a validation or a discrimi-
nation with respect to different new physics (NP) scenarios.
The second approach consists in extending the SM at the
electroweak (EW) scale in the most general way compatible
with the SM gauge symmetry, investigating the constraints
imposed by the experiments on the resulting generalization.
A remarkable example of the second approach is the

Standard Model effective field theory (SMEFT) [2–5],
widely used in the quest for BSM physics. The SM is

considered as an effective field theory describing physics at
and below the EW scale. At higher scales a new gauge
theory (the UV completion) should exist, with a gauge
group extending the SM one and undergoing spontaneous
symmetry breaking (SSB) to it. If Λ is the NP scale, then at
the EW scale the SMEFT Lagrangian consists of an
expansion in the parameter 1=Λ. The first term of the
expansion is the SM Lagrangian density containing oper-
ators of canonical dimension up to d ¼ 4. Subsequent
terms are suppressed by powers of 1=Λ and comprise
operators of increasing dimension:

LSMEFT ¼ Lð4Þ
SM þ Lð5Þ þ Lð6Þ þ…: ð1Þ

The apex (d) indicates the canonical dimension of the
operators entering in each term LðdÞ written as

LðdÞ ¼
X
i

Ci

Λd−4O
ðdÞ
i ; ð2Þ

with dimensionless Wilson coefficients Ci. The operators
are constructed in terms of the SM fields and satisfy the SM
gauge symmetry. SM accidental symmetries are allowed to
be violated: for example, baryon and lepton number violat-
ing operators are included in (2), namely odd-dimension
operators violating B and/or L conservation [6]. The
operators contain no reference to the field content of the
UV theory. However, their coefficients depend of the details
of such a theory, i.e., the couplings and masses of the new
particles that, supposed to beM ≃OðΛÞ, are integrated out
in the EFT Lagrangian at the EW scale. A few assumptions
concern the UV theory. It should contain only particles with
spin J ≤ 1; new vector fields could be either gauge fields
(massless before SSB in the UV theory) or massive Proca
fields; new fermions can be introduced provided that they
are vectorlike with respect to the SM gauge group, to

*Contact author: pietro.colangelo@ba.infn.it
†Contact author: fulvia.defazio@ba.infn.it
‡Contact author: francesco.loparco1@ba.infn.it
§Contact author: nicola.losacco@ba.infn.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 035007 (2024)

2470-0010=2024=110(3)=035007(11) 035007-1 Published by the American Physical Society

https://orcid.org/0000-0002-5921-7701
https://orcid.org/0000-0003-0695-2566
https://orcid.org/0000-0002-6494-767X
https://orcid.org/0000-0002-4481-4474
https://ror.org/022hq6c49
https://ror.org/027ynra39
https://ror.org/027ynra39
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.035007&domain=pdf&date_stamp=2024-08-06
https://doi.org/10.1103/PhysRevD.110.035007
https://doi.org/10.1103/PhysRevD.110.035007
https://doi.org/10.1103/PhysRevD.110.035007
https://doi.org/10.1103/PhysRevD.110.035007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


maintain the SMfree of gauge anomalies. Even though in the
construction of the SMEFToperators the latter requirement
is taken into account, in more general frameworks it can be
relaxed, provided that together with new fermions (not
necessarily vectorlike), other contributions are added that
maintain the SM gauge group anomaly free [7].
One can use the construction in two ways. Choosing the

UV completion, the Wilson coefficients of the SMEFT
operators can be determined through matching and running
procedure [8–10]. On the other hand, without assumptions
on the UV completion, the coefficients are treated as
parameters. These two steps are complementary to each
other. Having gained model independent information on
the coefficients in the effective theory, it is possible to
contrast them with the features required in a specific
scenario in order to validate or discard it.
The phenomenological evidence that neutrinos have

nonvanishing mass induces to consider the νSMEFT
extension of SMEFT, which comprises three right-handed
sterile neutrino fields in the sub-TeV mass range [11–18].
The inclusion does not invalidate the requirement that the
SM gauge group is free of gauge anomalies. In the
extension, Lð5Þ consists of three operators, while only
the Weinberg operator appears at this order in the absence
of νR [19]. The choice of the d ¼ 6 operators is not unique,
and different bases have been proposed, i.e., complete sets
of independent, nonredundant operators.1 A popular basis
is the Warsaw one [3]. In each basis the operators are
collected in classes according to their field content.
In our study we focus on the UV completion represented

by the simplest extension of the SMgauge group comprising
a newUð1Þ0 gauge group, featured by the gauge coupling gZ
[20–23]. Z0 is the corresponding gauge field and the z
hypercharge is the quantum number associated to the new
symmetry. Many NPmodels introduce such a mediator with
specific z-hypercharge assignments. Experimental searches
for Z0 rely on the assumptions for the hypercharges, and
produce exclusion plots in the plane of the Z0 production
cross section versus MZ0 .2 The NP scale can be identified
with MZ0 acquired after spontaneous breaking of the new
symmetry. We do not need to specify how such SSB occurs,
we only assume that it happens at a much higher scale than
the SM Higgs vacuum expectation value. We neglect the
mixing with other neutral gauge bosons.3

In the chosen extension we work out the coefficients of
the νSMEFT operators of dimension up to d ¼ 6, aiming at

the relations among them.4 While the gauge structure of the
theory already imposes nontrivial relations among various
coefficients, further relations can be established requiring
that the extended gauge group is anomaly free. We obtain
results holding for a generic Uð1Þ0 extension. We also
consider specific cases: universal Z0 couplings to the three
generations or only to the third generation; Z0 only coupled
to left- or right-handed fermions; lepto- or hadrophobic Z0;
the z-hypercharge assignment of the ABCD model [26]. In
all cases, we find that the number of independent coef-
ficients is reduced and remarkable correlations can be
established among them, which are peculiar of each
extension. The experimental test of such correlations would
shed light on the particular completion, providing the
widest information using measurements.
The plan of the paper is as follows. After Sec. II with the

notations, in Sec. III we list the νSMEFT operators
generated at the EW scale when the UV theory contains
the new gauge boson Z0. The impact of the new gauge
boson on the SMEFT Lagrangian density is considered in
Sec. IV, with the list of the operators obtained when the Z0
field is integrated out, the expressions of their Wilson
coefficients and the relations due to the gauge structure of
the extension. In Sec. V we consider the relations that the
fermion z hypercharges must satisfy to fulfil the require-
ment of gauge anomaly cancellation in the SM gauge group
extension, and how such relations can be translated into
analogous ones among the SMEFT coefficients. We than
discuss the results for the selected z-hypercharge assign-
ments. The last section comprises the conclusions.

II. NOTATIONS, Z0 COUPLINGS TO FERMIONS
AND TO THE HIGGS FIELD

The most general renormalizable UV Lagrangian terms
involving the gauge boson Z0 of a new Uð1Þ0 group can be
written as

LZ0 ¼ LZ0
free þ LZ0

int;fermions þ LZ0
φ : ð3Þ

The first term in (3) reads

LZ0
free ¼ −

1

4
Z0
μνZ0μν þ 1

2
M2

Z0Z0
μZ0μ: ð4Þ

Z0
μ is the gauge boson field and Z0

μν ¼ ∂μZ0
ν − ∂νZ0

μ is the
field strength tensor.
The second term in (3) describes the Z0 coupling to

fermions. We denote by qiL and li
L the SUð2ÞL left-handed

quark and lepton doublets, respectively, with generation
index i ¼ f1; 2; 3g. uiR; diR; νiR; eiR are right-handed singlets.
Before the electroweak SSB the Z0 couplings to fermions

are flavor conserving, hence we can write

1Sources of redundancies are, e.g., operators obtained one
from the other after integration by parts and discarding a total
derivative; operators that can be discarded using equations of
motion; equivalent operators upon Fiertz transformations (in the
case of four-fermion operators).

2See, e.g., the review: B.A. Dobrescu and S. Willocq,
“Z0-boson searches,” in [24].

3Mixing at tree-level vanishes in models where the SM Higgs
is assumed to be singlet under Uð1Þ0.

4In the same framework, relations among the coefficients of
d ¼ 6 and d ¼ 8 operators have been worked out in [25].
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LZ0
int;fermions ¼

X
ψ

LZ0
int; ð5Þ

where the sum extends over all the fermions generically
denoted by ψ and

LZ0
int ¼ gZzψ ψ̄γμψZ0

μ: ð6Þ

gZ is the Uð1Þ0 gauge coupling, and zψ the z hypercharge of
the fermion ψ , i.e., the fermion quantum number related to
the new symmetry group. In SM the fermions are chiral,
hence it is useful to write (6) in terms of the left- and right-
handed fermion fields ψLðRÞ:

LZ0
int ¼ ½ðΔψ

LÞijψ̄ i
Lγ

μψ j
L þ ðΔψ

RÞijψ̄ i
Rγ

μψ j
R�Z0

μ; ð7Þ

with

ðΔψ
L;RÞij ¼ gZzψL;R

δij: ð8Þ

The Z0 coupling to the SM Higgs field φ is described by
LZ0
φ . We write the covariant derivative acting on the SM

Higgs field as D̄μ ¼ Dμ þ igZzHZ0
μ. Dμ contains only the

SM gauge fields and zH is the Higgs z hypercharge.
Therefore, we have

ðD̄μφÞ†ðD̄μφÞ ¼ ðDμφÞ†ðDμφÞ þ gHðφ†iD
↔

μφÞZ0μ

þ g2HZ
0
μZ0μðφ†φÞ; ð9Þ

where φ†iD
↔

μφ ¼ φ†ðiDμφÞ − ðiDμφ
†Þφ and we have

defined

gH ¼ gZzH: ð10Þ

The last term in (9) can be neglected in the present study since
we are interested in d ¼ 6 operators arising at the EW scale
whenZ0 is integrated out. The last term in (9) produces ad ¼ 8
operator, its coefficient would be inversely proportional to
M4

Z0 . Therefore, in (3) we only include

LZ0
φ ¼ gHðφ†iD

↔

μφÞZ0μ: ð11Þ

III. νSMEFT OPERATORS GENERATED
IN THE Uð1Þ0 EXTENSION OF SM

In the Warsaw basis the operators are collected in classes
according to their field content. The scalar field is denoted
by φ, with φ̃ defined as φ̃j ¼ ϵjkðφkÞ� [j, k are SUð2ÞL
indices]. The gauge field strengths are indicated by X, X̃
being their duals. Fermions are denoted by ψ. Among the

various terms in Lð6Þ in Eq. (1), we focus on Lð6Þ
Z0 , the set of

operators generated at the EW scale when the SM group is
extended including Uð1Þ0 and the gauge boson Z0 is

integrated out. Lð6Þ
Z0 consists of the terms5

Lð6Þ
Z0 ¼ CllOll þ Cð1Þ

qqO
ð1Þ
qq þ CeeOee þ CuuOuu þ CddOdd þ Cð6Þ

νν O
ð6Þ
νν

þ Cð1Þ
lqO

ð1Þ
lq þ Cð1Þ

udO
ð1Þ
ud þ CeuOeu þ CedOed þ CleOle þ CluOlu þ CldOld þ CqeOqe

þ Cð1Þ
quO

ð1Þ
qu þ Cð1Þ

qdO
ð1Þ
qd þ CνeOνe þ CνuOνu þ CνdOνd þ ClνOlν þ CqνOqν

þ Cφ□Oφ□ þ CφDOφD þ CeφOeφ þ CuφOuφ þ CdφOdφ þ CνφOνφ

þ Cð1Þ
φlO

ð1Þ
φl þ CφeOφe þ Cð1Þ

φqO
ð1Þ
φq þ CφuOφu þ CφdOφd þ CφνOφν þ H:c: ð12Þ

The various operators can be classified in the following classes defined in [3,14]:
(1) Four-fermion operators Oψ1ψ2

(denoted as Oψψ if ψ1 ¼ ψ2) with structure ðL̄LÞðL̄LÞ:

½Oll�ijkp ¼ ðl̄i
Lγμl

j
LÞðl̄k

Lγ
μlp

LÞ;
½Oð1Þ

qq �ijkp ¼ ðq̄iLγμqjLÞðq̄kLγμqpLÞ;
½Oð1Þ

lq �ijkp ¼ ðl̄i
Lγμl

j
LÞðq̄kLγμqpLÞ: ð13Þ

5While in Eq. (2) the Wilson coefficients are dimensionless, in (12) it is convenient to include the mass dimension in the definition of
the coefficients. The operator Oð6Þ

νν is denoted by a superscript to distinguish it from the d ¼ 5 Weinberg operator Oνν.
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(2) Four-fermion operators Oψ1ψ2
with structure

ðR̄RÞðR̄RÞ:

½Oee�ijkp ¼ ðēiRγμejRÞðēkRγμepRÞ;
½Ouu�ijkp ¼ ðūiRγμujRÞðūkRγμupRÞ;
½Odd�ijkp ¼ ðd̄iRγμdjRÞðd̄kRγμdpRÞ;
½Oð1Þ

ud �ijkp ¼ ðūiRγμujRÞðd̄kRγμdpRÞ;
½Oeu�ijkp ¼ ðēiRγμejRÞðūkRγμupRÞ;
½Oed�ijkp ¼ ðēiRγμejRÞðd̄kRγμdpRÞ;
½Oð6Þ

νν �ijkp ¼ ðν̄iRγμνjRÞðν̄kRγμνpRÞ;
½Oνe�ijkp ¼ ðν̄iRγμνjRÞðēkRγμepRÞ;
½Oνu�ijkp ¼ ðν̄iRγμνjRÞðūkRγμupRÞ;
½Oνd�ijkp ¼ ðν̄iRγμνjRÞðd̄kRγμdpRÞ: ð14Þ

(3) Four-fermion operators Oψ1ψ2
with structure

ðL̄LÞðR̄RÞ:

½Ole�ijkp ¼ ðl̄i
Lγμl

j
LÞðēkRγμepRÞ;

½Oqe�ijkp ¼ ðq̄iLγμqjLÞðēkRγμepRÞ;
½Olu�ijkp ¼ ðl̄i

Lγμl
j
LÞðūkRγμupRÞ;

½Old�ijkp ¼ ðl̄i
Lγμl

j
LÞðd̄kRγμdpRÞ;

½Oð1Þ
qu �ijkp ¼ ðq̄iLγμqjLÞðūkRγμupRÞ;

½Oð1Þ
qd �ijkp ¼ ðq̄iLγμqjLÞðd̄kRγμdpRÞ;

½Olν�ijkp ¼ ðl̄i
Lγ

μlj
LÞðν̄kRγμνpRÞ;

½Oqν�ijkp ¼ ðq̄iLγμqjLÞðν̄kRγμνpRÞ: ð15Þ

(4) OperatorsOφ∂ involving the Higgs field φ, classified
as φ4D2 in the Warsaw basis:

Oφ□ ¼ ðφ†φÞ□ðφ†φÞ;
OφD ¼ ðφ†DμφÞððDμφÞ†φÞ: ð16Þ

(5) Operators Oψφ involving the Higgs field φ and the
fermion fields, classified as ψ2φ3:

½Oeφ�ij ¼ ðφ†φÞðl̄i
Lφe

j
RÞ;

½Ouφ�ij ¼ ðφ†φÞðq̄iLφ̃ujRÞ;
½Odφ�ij ¼ ðφ†φÞðq̄iLφdjRÞ;
½Oνφ�ij ¼ ðφ†φÞðl̄i

Lφ̃ν
j
RÞ: ð17Þ

(6) Operators Oφψ comprising the Higgs field φ and the
fermion fields, classified as ψ2φ2D:

½Oð1Þ
φl �ij ¼ ðφ†iD

↔

μφÞðl̄i
Lγ

μlj
LÞ;

½Oφe�ij ¼ ðφ†iD
↔

μφÞðēiRγμejRÞ;
½Oð1Þ

φq �ij ¼ ðφ†iD
↔

μφÞðq̄iLγμqjLÞ;
½Oφu�ij ¼ ðφ†iD

↔

μφÞðūiRγμujRÞ;
½Oφd�ij ¼ ðφ†iD

↔

μφÞðd̄iRγμdjRÞ;
½Oφν�ij ¼ ðφ†iD

↔

μφÞðν̄iRγμνjRÞ: ð18Þ

i, j, k, p are generation indices.

IV. RELATIONS AMONG THE WILSON
COEFFICIENTS

The coefficients of the operators in Sec. III can be
expressed in terms of the couplings in Eq. (7) [27]. For
four-fermion operators they read:

½Cll�ijkp ¼ −
ðΔl

LÞijðΔl
LÞkp

2M2
Z0

; ð19Þ

½Cð1Þ
qq �ijkp ¼ −

ðΔq
LÞijðΔq

LÞkp
2M2

Z0
; ð20Þ

½Cee�ijkp ¼ −
ðΔe

RÞijðΔe
RÞkp

2M2
Z0

; ð21Þ

½Cuu�ijkp ¼ −
ðΔu

RÞijðΔu
RÞkp

2M2
Z0

; ð22Þ

½Cdd�ijkp ¼ −
ðΔd

RÞijðΔd
RÞkp

2M2
Z0

; ð23Þ

½Cð6Þ
νν �ijkp ¼ −

ðΔν
RÞijðΔν

RÞkp
2M2

Z0
; ð24Þ

½Cð1Þ
lq �ijkp ¼ −

ðΔl
LÞijðΔq

LÞkp
M2

Z0
; ð25Þ

½Cð1Þ
ud �ijkp ¼ −

ðΔu
RÞijðΔd

RÞkp
M2

Z0
; ð26Þ

½Ceu�ijkp ¼ −
ðΔe

RÞijðΔu
RÞkp

M2
Z0

; ð27Þ

½Ced�ijkp ¼ −
ðΔe

RÞijðΔd
RÞkp

M2
Z0

; ð28Þ
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½Cle�ijkp ¼ −
ðΔl

LÞijðΔe
RÞkp

M2
Z0

; ð29Þ

½Clu�ijkp ¼ −
ðΔl

LÞijðΔu
RÞkp

M2
Z0

; ð30Þ

½Cld�ijkp ¼ −
ðΔl

LÞijðΔd
RÞkp

M2
Z0

; ð31Þ

½Cqe�ijkp ¼ −
ðΔq

LÞijðΔe
RÞkp

M2
Z0

; ð32Þ

½Cð1Þ
qu �ijkp ¼ −

ðΔq
LÞijðΔu

RÞkp
M2

Z0
; ð33Þ

½Cð1Þ
qd �ijkp ¼ −

ðΔq
LÞijðΔd

RÞkp
M2

Z0
; ð34Þ

½Cνe�ijkp ¼ −
ðΔν

RÞijðΔe
RÞkp

M2
Z0

; ð35Þ

½Cνu�ijkp ¼ −
ðΔν

RÞijðΔu
RÞkp

M2
Z0

; ð36Þ

½Cνd�ijkp ¼ −
ðΔν

RÞijðΔd
RÞkp

M2
Z0

; ð37Þ

½Clν�ijkp ¼ −
ðΔl

LÞijðΔν
RÞkp

M2
Z0

; ð38Þ

½Cqν�ijkp ¼ −
ðΔq

LÞijðΔν
RÞkp

M2
Z0

: ð39Þ

The coefficients of the operatorsOφ□ andOφD are given by

Cφ□ ¼ −
g2H

2M2
Z0
; ð40Þ

CφD ¼ −
2g2H
M2

Z0
; ð41Þ

so that

CφD ¼ 4Cφ□ ð42Þ

and CφD < 0.
The couplings to fermions enter in the coefficients of

Oeφ, Ouφ, and Odφ. However, when the UV completion
consists only of the new Uð1Þ0 group, as considered in the
present study, such coefficients vanish. The coefficients of

Oð1Þ
φl , Oφe, O

ð1Þ
φq , Oφu, and Oφd are given by

½Cð1Þ
φl �ij ¼ −

ðΔl
LÞijgH
M2

Z0
; ð43Þ

½Cφe�ij ¼ −
ðΔe

RÞijgH
M2

Z0
; ð44Þ

½Cð1Þ
φq �ij ¼ −

ðΔq
LÞijgH
M2

Z0
; ð45Þ

½Cφu�ij ¼ −
ðΔu

RÞijgH
M2

Z0
; ð46Þ

½Cφd�ij ¼ −
ðΔd

RÞijgH
M2

Z0
; ð47Þ

½Cφν�ij ¼ −
ðΔν

RÞijgH
M2

Z0
: ð48Þ

For N generations, the coefficients in Eqs. (19)–(39) are
generally complex matrices in a N4-dimensional space.
However, the coefficients in (19)–(24) correspond to
Hermitian operators; hence they are real and have N4

components. In principle, the coefficients in Eqs. (43)–(48)
involve 2N2 independent parameters. This parameter
counting changes for the UV completion obtained extend-
ing the SM gauge group with the new Uð1Þ0. We derive
relations among the coefficients before SSB, with unrotated
fermion fields and diagonal Z0 couplings to fermions.
Moreover, in this case all coefficients are real, since they
are expressed in terms of the (real) z hypercharges and of
gH which is real as from (10).
Relations exist among the remaining coefficients.

We denote by Cψψ a generic coefficient among those
in Eqs. (19)–(24), and by Cψ1ψ2

a coefficient among those
in Eqs. (25)–(39). The coefficients in Eqs. (43)–(48) are
generically denoted as Cφψ (in all cases ψ ¼ l; q; ν;
e; u; d). We have

½Cψ1ψ2
�ijkp ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Cψ1ψ1

�ijij½Cψ2ψ2
�kpkp

q
; ð49Þ

½Cψψ �ijkp ¼ ½Cφψ �ij½Cφψ �kp
CφD

; ð50Þ

½Cψ1ψ2
�ijkp ¼ 2

½Cφψ1
�ij½Cφψ2

�kp
CφD

: ð51Þ

Considering Eq. (8), only the components Ciikk are non-
vanishing among the coefficients in (19)–(39). Moreover,
the coefficients in (19)–(24) are symmetric under the
exchange ii ↔ kk, so they comprise only six independent
components. It is convenient to use the notation i ¼ ii;
k ¼ kk. As for the coefficients ½Cφψ �ij in Eqs. (43)–(48),
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they are nonvanishing only for i ¼ j. We denote them
as ½Cφψ �i.6
Summarizing, the following structures of coefficients are

realized:

Cφψ ¼ � ½Cφψ �1 ½Cφψ �2 ½Cφψ �3
�
; ð52Þ

Cψψ ¼
1

CφD

0
BB@

ð½Cφψ �1Þ2 ½Cφψ �1½Cφψ �2 ½Cφψ �1½Cφψ �3
½Cφψ �2½Cφψ �1 ð½Cφψ �2Þ2 ½Cφψ �2½Cφψ �3
½Cφψ �3½Cφψ �1 ½Cφψ �3½Cφψ �2 ð½Cφψ �3Þ2

1
CCA;

ð53Þ

Cψ1ψ2
¼ 2

CφD

0
BB@

½Cφψ1
�1½Cφψ2

�1 ½Cφψ1
�1½Cφψ2

�2 ½Cφψ1
�1½Cφψ2

�3
½Cφψ1

�2½Cφψ2
�1 ½Cφψ1

�2½Cφψ2
�2 ½Cφψ1

�2½Cφψ2
�3

½Cφψ1
�3½Cφψ2

�1 ½Cφψ1
�3½Cφψ2

�2 ½Cφψ1
�3½Cφψ2

�3

1
CCA: ð54Þ

The number of independent coefficients in the dimension-
six Lagrangian density (12) is reduced to 19. They can be
the 18 coefficients ½Cψψ �i i for i ¼ 1; 2; 3 and the six
ψ ¼ l; q; ν; e; u; d, and CφD; alternatively, they can be
the 18 coefficients ½Cφψ �i and CφD. In the next section we
describe the constraints for such coefficients obtained
requiring that the extended gauge group is free of gauge
anomalies.

V. CONSTRAINTS FROM GAUGE ANOMALY
CANCELLATION

The issue of gauge anomaly cancellation in presence of a
new Uð1Þ0 symmetry has been considered in many studies
[26,28–34]. In case of a new Z0 gauge boson, six gauge
anomalies are generated. They can be expressed introduc-

ing the quantities zðnÞψ defined in terms of the sums

zðnÞψ ¼
X3
i¼1

znψ i
; ð55Þ

with ψ i a fermion in the i generation [28]. The
½SUð3ÞC�2Uð1Þ0, ½SUð2ÞL�2Uð1Þ0, and ½Uð1ÞY �2Uð1Þ0
anomaly cancellation conditions involve the linear combi-
nations of hypercharges in (55) and read as follows:

A33z ¼ 2zð1Þq − zð1Þu − zð1Þd ¼ 0; ð56Þ

A22z ¼ 3zð1Þq þ zð1Þl ¼ 0; ð57Þ

A11z ¼
1

6
zð1Þq −

4

3
zð1Þu −

1

3
zð1Þd þ 1

2
zð1Þl − zð1Þe ¼ 0: ð58Þ

The triangular graph involving two gravitons and Z0 also
produces a relation linear in the z hypercharges:

AGGz¼3
�
2zð1Þq −zð1Þu −zð1Þd

�þ2zð1Þl −zð1Þe −zð1Þν ¼0; ð59Þ

which can be simplified using Eq. (56):

AGGz ¼ 2zð1Þl − zð1Þe − zð1Þν ¼ 0: ð60Þ

The Uð1ÞY ½Uð1Þ0�2 anomaly cancellation condition
involves the quadratic sums in (55):

A1zz ¼
�
zð2Þq − 2zð2Þu þ zð2Þd

�
−
�
zð2Þl − zð2Þe

� ¼ 0: ð61Þ

The ½Uð1Þ0�3 anomaly cancellation condition involves the
cubic sums in (55):

Azzz¼3
�
2zð3Þq −zð3Þu −zð3Þd

�þ�
2zð3Þl −zð3Þν −zð3Þe

�¼0: ð62Þ

The previous equations provide constraints to the coef-
ficients in (12). We define

C̃ðnÞ
φψ ¼

X3
i¼1

ð½Cφψ �iÞn; ð63Þ

denoting for simplicity C̃ð1Þ
φψ ¼ C̃φψ. Using Eqs. (43)–(48)

we have

zψ i
¼ −

M2
Z0

gZ

1

gH
½Cφψ �i; ð64Þ

and Eq. (55) becomes

zðnÞψ ¼
�
−
M2

Z0

gZ

1

gH

�n

C̃ðnÞ
φψ : ð65Þ

With such definitions, the equations of the gauge anomaly
cancellation conditions read as follows:

A33z → 2C̃φq − C̃φu − C̃φd ¼ 0; ð66Þ
6To avoid confusion, when pedices refer to pairs of indices or

to a single index we write i ¼ 1; 2; 3 and i ¼ 1, 2, 3, respectively.
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A22z → 3C̃φq þ C̃φl ¼ 0; ð67Þ

A11z → C̃φq − 8C̃φu − 2C̃φd þ 3C̃φl − 6C̃φe ¼ 0; ð68Þ

AGGz → 2C̃φl − C̃φe − C̃φν ¼ 0: ð69Þ

They produce the relations:

C̃φq ¼
C̃φu þ C̃φd

2
; ð70Þ

C̃φl ¼ −3C̃φq ¼ −3
C̃φu þ C̃φd

2
; ð71Þ

C̃φe ¼ −2C̃φu − C̃φd; ð72Þ

C̃φν ¼ −C̃φu − 2C̃φd: ð73Þ

We also have

A1zz → C̃ð2Þ
φq − 2C̃ð2Þ

φu þ C̃ð2Þ
φd − C̃ð2Þ

φl þ C̃ð2Þ
φe ¼ 0; ð74Þ

Azzz → 3½2C̃ð3Þ
φq − C̃ð3Þ

φu − C̃ð3Þ
φd � þ ½2C̃ð3Þ

φl − C̃ð3Þ
φν − C̃ð3Þ

φe � ¼ 0:

ð75Þ

Examples on how the equations representing the ano-
maly cancellation conditions (ACE) can be exploited
are discussed below, considering models with specific
z-hypercharge assignments.

VI. APPLICATIONS TO MODELS WITH SPECIFIC
z-HYPERCHARGE ASSIGNMENTS

The anomaly cancellation equations involve 18 para-
meters: ½Cφψ �i for ψ ¼ qi;li; ui; di; νi; ei, and i ¼ 1; 2; 3.
Taking into account the constraints from the six ACE, there
are 12 independent parameters. With other assumptions,
further constraints can be imposed, as discussed below for
selected cases.

A. Z0 only coupled to the third generation, and Z0
universally coupled to the three generations

If Z0 only couples to one of the generations, e.g., the third
one, then we have zψ3

¼ zψ and zψ1
¼ zψ2

¼ 0. The number
of parameters involved in the ACE is 6, denoted C̄φψ :

½Cφψ �3 ¼ C̄φψ ; ½Cφψ �1 ¼ ½Cφψ �2 ¼ 0: ð76Þ

It follows that

C̃ðnÞ
φψ ¼ ðC̄φψÞn: ð77Þ

Before discussing the ACE, let us consider the scenario
in which Z0 universally couples to the three generations:

zψ1
¼ zψ2

¼ zψ3
¼ zψ , as in models where the z

hypercharge is a linear combination of the SM hypercharge
Y and of B − nL, with B and L the baryon and total
lepton number and n an integer number [28,35,36].7

The six parameters involved in the ACE are denoted again
by C̄φψ :

½Cφψ �1 ¼ ½Cφψ �2 ¼ ½Cφψ �3 ¼ C̄φψ ; ð78Þ
and the relation holds:

C̃ðnÞ
φψ ¼ 3ðC̄φψÞn: ð79Þ

The factor 3 factorizes in the ACE, hence the two cases are
identical from the viewpoint of solving the equations and
can be discussed together.
Since Eqs. (74)–(75) are automatically satisfied, they do

not represent additional constraints, hence there are two
independent coefficients. One can express all coefficients in
terms of C̄φd and C̄φe:

C̄φq ¼
C̄φd − C̄φe

4
;

C̄φu ¼ −
C̄φd þ C̄φe

2
;

C̄φl ¼ −
3ðC̄φd − C̄φeÞ

4
; C̄φν ¼

−3C̄φd þ C̄φe

2
: ð80Þ

Correlations among the four coefficients depending on the
two independent ones are obtained, as shown in Fig. 1
varying C̄φd and C̄φe.
In this specific scenario, information can also be

obtained on ½Cψψ �3 3. Indeed, Eqs. (19)–(23) imply

zψ i
¼ �

�
2
M2

Z0

g2Z

�
1=2

ð−½Cψψ �i iÞ1=2: ð81Þ

As done for Cφψ we define ½Cψψ �3 3 ¼ C̄ψψ . The ACE can

be used to relate the nonvanishing z hypercharges:

zq3 ¼
1

4
ðzd3 − ze3Þ;

zu3 ¼ −
1

2
ðzd3 þ ze3Þ;

zl3 ¼ −
3

4
ðzd3 − ze3Þ;

zν3 ¼
1

2
ðze3 − 3zd3Þ: ð82Þ

7Replacing L with a family lepton number or a combination of
Le, Lμ, Lτ different from L does not belong to the generation
independent category [35,37].
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Two different cases can be analyzed, depending whether zd3
and ze3 have same or opposite signs:
(1) zd3 > 0; ze3 > 0 and zd3 < 0; ze3 < 0: we have

C̄qq ¼ −
� ffiffiffiffiffiffiffiffiffiffiffi

−C̄dd

p
−

ffiffiffiffiffiffiffiffiffiffiffi
−C̄ee

p
4

�2

;

C̄uu ¼ −
� ffiffiffiffiffiffiffiffiffiffiffi

−C̄dd

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
−C̄ee

p
2

�2

;

C̄ll ¼ −
9

16

� ffiffiffiffiffiffiffiffiffiffiffi
−C̄dd

q
−

ffiffiffiffiffiffiffiffiffiffiffi
−C̄ee

q �
2

;

C̄νν ¼ −
� ffiffiffiffiffiffiffiffiffiffiffi

−C̄ee

p
− 3

ffiffiffiffiffiffiffiffiffiffiffi
−C̄dd

p
2

�2

: ð83Þ

(2) zd3 < 0, ze3 > 0, and zd3 > 0, ze3 < 0: we have

C̄qq ¼ −
� ffiffiffiffiffiffiffiffiffiffiffi

−C̄dd

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
−C̄ee

p
4

�2

;

C̄uu ¼ −
� ffiffiffiffiffiffiffiffiffiffiffi

−C̄dd

p
−

ffiffiffiffiffiffiffiffiffiffiffi
−C̄ee

p
2

�2

;

C̄ll ¼ −
9

16

� ffiffiffiffiffiffiffiffiffiffiffi
−C̄dd

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
−C̄ee

q �
2

;

C̄νν ¼ −
� ffiffiffiffiffiffiffiffiffiffiffi

−C̄ee

p
þ 3

ffiffiffiffiffiffiffiffiffiffiffi
−C̄dd

p
2

�2

: ð84Þ

Correlations among the four coefficients are obtained
varying C̄dd and C̄ee, as shown in Fig. 2.

B. Z0 only coupled to left-handed fermions

The possibility that Z0 only couples to fermions of a
given chirality has been considered, e.g., in [38]. If Z0 only
couples to left-handed fermions the nonvanishing coeffi-
cients are ½Cφψ �i for ψ ¼ fqi;lig, hence six parameters.
The number of constraints is reduced to 4 since Eqs. (67)
and (68) are redundant. The linear equations (66) and (69)
provide the relations

C̃φq ¼ C̃φl ¼ 0: ð85Þ

The quadratic and cubic ACE provide further relations,
hence the number of independent coefficients is 2. Varying
½Cφl�3 and ½Cφq�3, correlations are obtained among the
remaining coefficients. They are shown in Fig. 3.
Also in this case the ACE can be exploited to derive

correlations among ½Cψψ �, choosing ½Cll�3 3; ½Cqq�3 3 as
independent coefficients, for same-sign or opposite-sign
zl3 and zq3 . The correlations between the remaining
coefficients ½Cll�3 3 and ½Cqq�3 3 are shown in Fig. 4.

C. Z0 only coupled to right-handed fermions

If Z0 only couples to right-handed fermions, then the
nonvanishing coefficients are ½Cφψ �i for ψ ¼ fui; di; ei; νig,
hence 12 parameters. The number of constraints is
reduced to 5 since Eq. (67) is automatically satisfied.
Equations (66), (68), and (69) provide the relations

C̃φu ¼ −C̃φd ¼ −C̃φe ¼ C̃φν: ð86Þ

The quadratic and cubic ACE give further relations, so that
the number of independent coefficients is 7.

D. Leptophobic Z0

If Z0 only couples to quarks, then the nonvanishing
coefficients are ½Cφψ �i for ψ ¼ fqi; ui; dig, therefore nine
parameters. The number of constraints is 5, since Eq. (69) is

FIG. 1. Z0 only coupled to the third fermion generation:
Correlations among nonvanishing coefficients, varying C̄φd

and C̄φe in the range ½−1; 1�.
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automatically verified. The other linear equations provide
the relations

C̃φq ¼ C̃φu ¼ C̃φd ¼ 0; ð87Þ

while the quadratic and cubic ACE read

C̃ð2Þ
φq − 2C̃ð2Þ

φu þ C̃ð2Þ
φd ¼ 0; ð88Þ

2C̃ð3Þ
φq − C̃ð3Þ

φu − C̃ð3Þ
φd ¼ 0: ð89Þ

Consequently, there are four independent coefficients.

E. Hadrophobic Z0

The situation is specular to the leptophobic Z0. The
expressions of the ACE are

C̃φl ¼ C̃φν ¼ C̃φe ¼ 0;

−C̃ð2Þ
φl þ C̃ð2Þ

φe ¼ 0;

2C̃ð3Þ
φl − C̃ð3Þ

φν − C̃ð3Þ
φe ¼ 0: ð90Þ

The number of independent coefficients is 4.
For suchmodels the experimental bounds areweaker than

in previous cases, and allow a relatively light Z0. Moreover,
Z0 can contribute to lepton-flavor violating decays and to the
lepton anomalous magnetic moments [39–46], an issue of
great interest at present [47,48]. Models gauging La − Lb
(a, b being the lepton flavors) belong to this class, namely
models gauging Lμ − Lτ [49–54].
As an example of a hadrophobic model, we can also

consider the Z0 only coupled to right-handed neutrinos, a
scenario belonging to the class of neutrinophilic NP
models [55–57]. As for the ACE, setting all z hypercharges
to 0 but for right-handed neutrinos, we have that Eq. (90) is
satisfied only if at least one of the three right-handed
neutrinos is sterile under Uð1Þ0. Choosing zν3 ¼ 0, the ACE
imply ½Cφν�3 ¼ 0 and ½Cφν�1 ¼ −½Cφν�2.

FIG. 3. Z0 only coupled to left-handed fermions: Correlation
among nonvanishing coefficients, varying ½Cφl�3 and ½Cφq�3 in
the range ½−1; 1�.

FIG. 2. Z0 only coupled to the third generation: Correlation
among nonvanishing coefficients, varying C̄dd and C̄ee in the
range ½−1; 0�. The green points refer to same-sign C̄dd and C̄ee,
the orange points to the case of opposite signs.
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F. ABCD model [26]

A model with a heavy gauge boson Z0 with flavor
nonuniversal quark and lepton couplings has been consid-
ered in [26]. The assignment of the z hypercharge to a
generic fermion ψ i ¼ fqi; ui; di;li; νi; eig (i a generation
index) is

zψ i
¼ yψ þ ϵi: ð91Þ

yψ denote the generation universal SM hypercharges, ϵi are
parameters generation dependent, but universal within a
given generation. This construction produces quark-lepton
correlations. As shown in [26], all ACE are satisfied
provided

X3
i¼1

ϵi ¼ 0: ð92Þ

The assignment implies the relation

C̃φψ ¼ 3

�
−
g2ZCφD

2M2
Z0

�
1=2

yψ : ð93Þ

For right-handed neutrinos one has C̃φν ¼ 0 since yν ¼ 0.
Nontrivial relations among the SMEFT coefficients are
predicted:

−6
C̃φq

C̃φe
¼ −

3

2

C̃φu

C̃φe
¼ 3

C̃φd

C̃φe
¼ 2

C̃φl

C̃φe
: ð94Þ

VII. CONCLUSIONS

The possibility of gaining information on possible
extensions of the SM, in a bottom-up approach, is largely
based on the SM effective field theory framework. It is
important to obtain the widest information from the
phenomenological analysis of the coefficients of the
operators in the effective field theory Lagrangian. We have
discussed the set of constraints and relations among the
coefficients of the d ¼ 6 operators if the SM extension
includes a nonanomalous Uð1Þ0. In particular, we have
investigated how the anomaly cancellation equations,
involving the z hypercharges, can be translated into
constraints for the νSMEFT Wilson coefficients. Such
constraints become more stringent if particular features
are assumed for the Z0 couplings to fermions.
We have discussed examples on how the constraints can

be exploited, and which correlations among the coefficients
emerge. Correlations among different coefficients imply
relations among different physical processes, which can be
searched and tested in experiment. Such processes could
also involve neutrinos, which motivates our choice of
considering the νSMEFT formulation. The correlations
could also be included in global fit analyses using the
data already available, or that will be collected in the near
future. This provides us with a way for accessing the long-
sighted extension of the Standard Model.
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