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We present a theoretical investigation of the expected experimental signals produced by freely falling
atoms with time oscillating mass and transition frequency. These oscillations could be produced in a variety
of models, in particular, models of scalar dark matter nonuniversally coupled to the standard matter such as
axionlike particles and dilatons. Performing complete and rigorous calculations, we show that, on one
hand, two different atomic species would accelerate at a different rate, and, on the other hand, they would
produce a nonzero differential phase shift in atom interferometers (AI). The former would produce
observable signals in equivalence principle tests like the recent MICROSCOPE mission, and we provide a
corresponding sensitivity estimate, showing that MICROSCOPE can reach beyond the best existing
searches in the axionlike particle case. We also compare the expected sensitivity of two future AI
experiments, namely the AION-10 gradiometer and an isotope differential AI considered for MAGIS-100,
that we will refer to as SPID. We show that the SPID setup would be more sensitive to these dark matter
fields compared to the gradiometer one, assuming equivalent experimental parameters.
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I. INTRODUCTION

General relativity (GR) is, alongside the Standard Model
(SM) of particle physics, one of the building blocks of
fundamental physics [1]. One of the main assumptions of
this theory is the Einstein equivalence principle (EEP),
which includes the weak equivalence principle, local
position invariance, and local Lorentz invariance. The weak
equivalence principle, also referred as the universality of
free fall (UFF), states that gravitational and inertial masses
are equivalent, implying that all bodies fall at the same rate
in the same gravitational field. While being experimentally
tested at extraordinary levels of precision by on ground
measurements (e.g., [2]) or space tests [3], many theories
beyond GR and the SM predict its violation [4–6]. More
generally, the EEP postulates that all types of energy (i.e., all
SM fields) are universally coupled to gravity, such that the
underlying gravity theory must be metric [7]. Since EEP is
not based on a fundamental symmetry of the Universe, it is
also expected to be broken at some scale, for example by the
spacetime variation of fundamental constants [8].

Spacetime varying fundamental constants arise in many
theories [8–10], in particular models of massive scalar
fields nonuniversally coupled to SM. Many of these new
fields are good dark matter (DM) candidates, as they are
oscillating at their Compton frequency ω, thus behaving as
cold DM at late cosmological times, when ω > H, the
Hubble constant. In particular, these oscillations can lead
to spacetime variation of the rest mass and transition
frequency of atoms, with magnitudes depending on various
parameters including mass and charge numbers, making
such oscillations not universal. Spacetime varying con-
stants have been widely studied in the case of a scalar
dilatonic field non universally coupled to SM fields, e.g.,
in [9]. Recently, [11] showed that the coupling between an
axionlike particle (ALP), another promising ultralight dark
matter (ULDM) candidate [12], and the gluon field induces
a variation of the pion mass, leading to a variation of the
rest mass and transition frequency of atoms as well.
Therefore, we will be interested in the search for these
two ULDM candidates through various couplings, on one
hand using classical tests of UFF, and on the other hand
through atom interferometry. Atom interferometers (AIs)
provide quantum tests of the EEP where one can measure
the acceleration and/or transition frequency of atoms freely
falling in the Earth gravitational field, by using the wave
behavior of matter. In such experiments, light pulses are
used to split, reflect, and recombine the atomic wave
packets, replacing the beam splitters and mirrors of usual
optical interferometers. The phase shift between the two
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wave packets after recombination relies on the momentum
exchange between atom and light, the time between the
various light pulses, the transition frequencies, and the
acceleration of the wave packets.
The first ambition of this paper is to derive carefully the

classical differential acceleration between two tests masses
(see, e.g., [13]) and the phase shift in several AI setups,
taking into account all oscillating effects. For the former, we
show the signal is predominantly dependent on the atomic
rest mass oscillation amplitude, while, for the latter, it
depends on the AI configuration setup. The first one under
consideration is the two-photon transition configuration,
whose signal is a combination of both rest mass and
transition frequency oscillations, and whose dominant effect
depends on the setup. One of these contributions, coming
from the oscillation of the rest mass has already been
derived in [14] but we show that a non-negligible contri-
bution dependent on the velocity of the atoms in the galactic
DM rest frame must be added, which would improve the
corresponding signal presented in [14] by four orders of
magnitude.1 The second case regards single photon tran-
sition interferometers, in particular gradiometers, as pro-
posed in [15] and then considered for the search of ULDM
fields in the AION (Atom Interferometer Observatory and
Network) experiment [16,17]. In that setup, two interfero-
metric sequences are performed at different elevation, using
the same atomic species in both of them. This makes
possible the use of the same laser beam for both interactions,
which strongly suppresses the effect of laser phase noise. In
addition, a very large momentum transfer (LMT) from laser
beams to atomic wave packets is possible, making such
experiments very sensitive to transition frequency oscilla-
tions, as explicitly shown in [18]. However, the signal is
limited by the reduced time the atomic wave packets spend
in their excited state. The second single photon transitions
setup under consideration is based on the same LMT
sequence as in gradiometers but would consist on the
differential phase shift measurement between two atomic
isotopes that perform the AI sequence at the same elevation.
We name this variation SPID for single photon transition
isotope differential AI. A similar setup has already been
proposed for the search of ULDM in MAGIS-100 [19], but
using two-photon Bragg transitions instead of single photon
transition. However, as we shall see, both setups are
equivalent in terms of sensitivity to ULDM, since they
have identical signal and noise levels. Finally, for the
two ULDM candidates studied, ALP and dilatons, we show
that already existing experiments testing UFF or involving
AI measurements can put constraints on their couplings
with SM fields. Using the experimental parameters of
AION-10, [16,17], we demonstrate that the SPID variation

would be more sensitive to the couplings of these ULDM
fields with SM fields compared to the gradiometer version
of AION-10. Whilst a dual isotope mode with large LMT
has been previously proposed by the MAGIS-100 collabo-
ration [19], no detailed calculations and modeling have been
provided, and the sensitivity to couplings between the
dilaton field and SM fields was not calculated, which we
do in this paper.

II. OBSERVATIONAL SIGNATURES INDUCED
BY OSCILLATIONS IN ATOM’S REST MASS

AND TRANSITION FREQUENCY

In this section, we consider a very generic phenomeno-
logical model where both the rest mass of an atom A and its
internal energy oscillate. We derive the observable signa-
tures of such oscillations in some systems of interest and we
will then apply those results in two different theoretical
models in Sec. III.
We start by introducing a phenomenological parametri-

zation of the oscillation of both the atom rest mass mA and
its transition frequency ωA as

mAðtÞ ¼ m0
Að1þQA

M cosðωtþ ϕ0ÞÞ; ð1aÞ

ωAðtÞ ¼ ω0
Að1þQA

ω cosðωtþ ϕ0ÞÞ; ð1bÞ

where ω is the oscillation frequency, ϕ0 a phase, m0
A;ω

0
A

are, respectively, the unperturbed rest mass and transition
frequency of A and QA

M;Q
A
ω are, respectively, the mass and

frequency charge of the atom A. These characterize the
relative amplitude of oscillation, supposed much smaller
than unity.
The motion of particles can be described by the point

mass action

Smat ¼ −
X
A

Z
A
dτðmAðtÞc2 þ EintðtÞÞ; ð2Þ

where the first term represents the rest mass and the second
term is the internal energy contribution (Eint ¼ 0 when the
atom is in its ground state and Eint ¼ ℏωA when the atom is
in the excited state). dτ is the proper time interval defined as
c2dτ2 ¼ −gαβdxαdxβ, where gμν is the spacetime metric.
For an atom of rest mass mA and in an internal state
characterized by an energy Eint, the Lagrangian derived
from Eq. (2) becomes

L ¼ −ðmAðtÞc2 þ EintðtÞÞ
�
1 −

v2AðtÞ
2c2

�
; ð3Þ

to first order in ðvA=cÞ2 (where vA is the coordinate velocity
of the atom) and considering a flat spacetime, i.e.,
gμν ¼ ημν ¼ diagð−1; 1; 1; 1Þ, the Minkowskian metric.

1More specifically, [14] derived the signal induced by oscil-
lations of rest mass of atoms and Earth gravitational field, and we
will only correct the former.
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In the following, we show how oscillating rest mass and
transition frequency characterized by Eq. (1) produce
observational signatures in different experiments.

A. Classical trajectories of test masses

In the classical derivation, as long as the atom is not in its
energetic ground state, both oscillations Eq. (1) contribute
to a violation of the equivalence principle through Eq. (3).
The Euler-Lagrange equation applied to the Lagrangian
from Eq. (3) leads to the conservation of the momentum of
body A, i.e., ðmAðtÞ þ EintðtÞ=c2Þ × vAðtÞ ¼ cst. The oscil-
lation of the mass and internal energy of the atom will
therefore induce a perturbation to the acceleration which, to
first order in both the Q factors and in Eint=m0

Ac
2, is

½a⃗A�UFF ≈ ωv⃗A

�
QA

M þ ℏω0
A

m0
Ac

2
QA

ω

�
sinðωtþ ϕ0Þ; ð4Þ

where a⃗A ¼ dv⃗A=dt is the acceleration. In general,
m0

Ac
2=ℏω0

A > 1010, while QA
ω=QA

M is of the order of 103

at maximum (see Table II) implying that the first term of
Eq. (4) is dominant. It follows a differential acceleration
between two macroscopic bodies of different composition
A and B with the same initial velocities given by

Δa⃗¼ a⃗A − a⃗B ≈ωv0ðQA
M −QB

MÞ sinðωtþϕ0Þêv; ð5Þ

where v⃗A ¼ v⃗B ≡ v⃗0 ¼ v0êv is the unperturbed velocity,
i.e., the velocity at zeroth order in QM.
If the two test masses have different charges QM, Eq. (5)

implies a nonzero differential acceleration between them,
corresponding to a UFF violation. The signature induced by
the differential acceleration from Eq. (5) can be searched for
using UFF measurements using macroscopic test masses
such as torsion balances on Earth [2], the MICROSCOPE
experiment [20] or Lunar Laser Ranging [21].2

B. Phase observable in atom interferometry

As derived in the previous section, the time-dependent
mass and internal frequency Eq. (1) produce a differential
acceleration between two atoms. Standard UFF tests search
for such a differential acceleration of macroscopic test
masses. Atom interferometry constitutes the quantum
equivalent of such classical experiments. Therefore, as
we shall see in this section, AI experiments are also
sensitive to oscillations from Eq. (1).
In this section, we will derive the observable signatures

produced by oscillating atomic rest mass and transition
energy on various AI configurations. In the most generic
case, AI consists of generating interference between atomic
wave packets that are split and then recombined using

atom-laser interactions. We classify the various AI schemes
into two classes: (i) AI schemes using two-photon tran-
sitions and (ii) AI schemes using single photon transitions.
In the former, the transition from a stable momentum state
to another stable momentum state is done using at least two
photons, while in the latter, only one photon is needed for
such a transition.
We will present the impact of the rest mass and atomic

transition frequency oscillations on the measurable phase of
an AI. The detailed calculations are performed following
the methodology described in [22] and are presented in
details in Appendix A while in the main text, we focus on
the discussion of the results.
To leading order the effects from ULDM in AIs decouple

from the “standard” effects of, e.g., accelerations and
rotations. We concentrate on the former and ignore the
latter, which have been extensively treated in many
previous publications (see, e.g., [22,23]), i.e., we consider
a simplified situation without local accelerations, rotations,
or other perturbations.

1. Two-photon transitions

We start by studying two different two-photon transition
interferometers. The first interferometric scheme considered
is known as two-photon transition Raman interferometry. Its
sequence is depicted in Fig. 1. In this setup, two-level free
falling atoms A enter the interferometer with an initial
momentum ℏk and in their internal energetic ground state,
noted jgi (i.e., their initial state is defined as jg;ℏki). After

FIG. 1. Two-photon Raman transition interferometry sequence
considered in this paper. The atomic wave packets start in the
ground state and the laser pulses change the internal energy state.
The Bragg equivalent has the same spacetime diagram, but the
wave packets do not change their internal energy state. In black
are shown the atomic paths without any perturbation, i.e., straight
lines. In green is shown the perturbed motion of the atoms
induced by Eq. (1), with exaggerated amplitude of oscillation.

2Note that Lunar Laser Ranging measures a combination of
both the weak and strong equivalence principle.
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entering the interferometer, they interact with a pair of laser
waves L1 and L2 with respective frequencies ωL1

;ωL2
,

whose energy difference is resonant with the transition of
the jgi → jei, where jei is the excited state of the two-levels
atom, i.e., ω0

A ¼ ωL1
− ωL2

. This means that the atom first
absorbs a photon from L1 and emits a photon in L2. This
process splits the atoms into two spatially distant wave
packets, which means the state of each atom becomes the
superposition of the two internal states: (i) the ground state
that remains unchanged jg;ℏki and (ii) the excited state that
has changed its momentum because of its interaction with

the two lasers je;ℏðkþ keffÞi, where ℏk⃗eff ¼ ℏðk⃗L1
− k⃗L2

Þ
denotes the effective momentum transfer, considering both
lasers. This whole experimental manoeuver is called a π=2
laser pulse since the transition amplitude from ground state
to excited state corresponds to a probability 1=2, i.e., the
state of the atoms is now a half-half superposition of the two
different states.
The atom freely propagates inside the interferometer and

at time t ¼ T, both wave packets undergo a π pulse, which
will invert the state of all atoms. In other words, depending
on the internal state of the atom prior to the π pulse, two
states transitions happen: je;ℏðkþ keffÞi → jg;ℏki and
jg;ℏki → je;ℏðkþ keffÞi.
A final laser-atom interaction happens at time t ¼ 2T,

where a second π=2 pulse divides the two incoming wave
packets into four different ones: two of them are in the
state jg;ℏki and the remaining two are in the state
je;ℏðkþ keffÞi. The study of interference pattern between
the wave packets in the same state allows one to measure a
phase shift difference.
The second two-photon transfer AI scheme considered is

the two-photon transition Bragg-type interferometer. This
scheme is similar to the Raman interferometry presented
above except that the atoms remain in the same energy state
during all the interferometric path, i.e., the laser pulses only
change the momentum state of the atom.
For both interferometers described above, the effective

wave vector keff depends on the setup of the experiment. If
counterpropagating lasers are used, then the atom absorbs a
photon in one direction as a result of the interaction with the
first laser, and emits another photon in the opposite direction
during the interaction with the second laser, implying
keff ¼ kL1

þ kL2
. In general, this effective wave vector is

multiple orders of magnitude larger than the transition
frequency of the atom, i.e., keff ≫ ω0

A=c. On the opposite,
if copropagating laser waves are used in the experimental
setup, then the absorption and emission directions are the
same, implying keff ¼ kL1

− kL2
. In that case, keff ¼ ω0

A=c.
As already discussed in [14], the velocity kick experi-

enced by the atom during its interaction with the laser
beams is perturbed by the effective mass of the atom at the
time of the kick. In addition to that effect, the beams being
locked to a given frequency reference, their own frequency

oscillates as ωLðtÞ ¼ ω0
Lð1þQL

ω cosðωtþ ϕ0ÞÞ, neglect-
ing the additional phase coming from the propagation of
photons to the atom (in the following sections, the traveling
distance of the photon to reach the freely falling atoms will
be of the order of 10 m maximum, which would induce a
significant phase for oscillation frequencies ω⪆ 106 rad=s,
way above the DM frequencies of interest for this paper, see
Sec. V). Therefore, if the atom interacts with the laser beam
at time t, still considering QA

M;Q
L
ω ≪ 1,

vAkickðtÞ ¼
ℏkeffðtÞ
mAðtÞ

≈
ℏkeff
m0

A

ð1þ ðQL
ω −QA

MÞ cosðωtþ ϕ0ÞÞ;

≡ vAkick;0 þ δvAkickðtÞ; ð6Þ

where vAkick;0 ¼ ℏkeff=m0
A is the unperturbed kick velocity

and δvAkickðtÞ is the perturbed contribution to the total
velocity kick imparted to the atom.
The calculation of the observable phase shift at the output

of the interferometer follows closely the ones presented
in [22] and is detailed in Appendix A. This method relies on
Feynman path integrals and can be used for Lagrangians
which are at most quadratic in the position and velocity [22]
and considering atomic plane waves at initial time t ¼ t0.
As shown in Eq. (3), in our case, the Lagrangian is quadratic
in the velocity and there is no dependence on the position;
hence this framework can be safely used. Note that in the
case of oscillations induced by a coupling with a DM
massive field, all calculations should formally be done in the
galactocentric frame that is the field rest frame, where the
Lagrangian describing the motion of the atom has no
dependency on the position. In all other reference frames,
the Lagrangian will exhibit a cos ðωt − k⃗ · x⃗þ ϕ0Þ depend-
ency and the methodology from [22] can formally not be
used. However, as the propagation of the field is negligible
at the frequencies of interest and for the size of experiments
considered, one can still recover the right phase observable
by working in the laboratory frame, see the discussion in
Appendix B.
As derived in, e.g., [24,25], there are three independent

contributions to the total phase shift in an AI: (i) the
separation phase noted Φu which corresponds to a spatial
incoincidence between the two output wave packets, (ii) the
laser phase Φl which gathers the additional phase factors of
the laser, due to displacement of the light-matter interaction
vertices, and (iii) the propagation phase shift denoted Φs,
which is essentially the phase accumulated by the atom
wave packets over the full interferometric path. All of these
contributions must be calculated accurately to predict the
phase shift at the output of the interferometer. In Raman-
type interferometers, the oscillation of the internal energy
impacts mainly the propagation phase of atoms when they
are in their excited internal states, i.e., on paths 2 and 3 in
Fig. 1. As it can be seen in Eq. (4), it also modifies the
equations of motion of the atom, implying a small
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contribution on the laser and separation phases, but these will be suppressed by a factor ℏω0
A=m

0
Ac

2. In Bragg-type
interferometers, the oscillation of the internal energy does not contribute as the energy state of the atoms is unchanged. The
rest mass contribution arises on all the three different contributions to the phase shift, and it can be shown that the total phase
shift of an atom A at the end of the interferometric sequence shown in Fig. 1 is (see Appendix A for the detailed calculation)

ΔΦBragg
A ¼ 4

ω

�
keffv0ðQA

M −QM
MÞêv · êkick þ

ℏk2eff
2m0

A

QA
M

�
sin2
�
ωT
2

�
sinðωT þ ϕ0Þ

þ 4QL
ωkeff

�
Lþ ℏkeffT

m0
A

�
sin2
�
ωT
2

�
cosðωT þ ϕ0Þ; ð7aÞ

ΔΦRaman
A ¼ 4

ω

�
keffv0ðQA

M −QM
MÞêv · êkick − ω0

AðQA
ω −QL

ωÞ þ
ℏk2eff
2m0

A

QA
M

�
sin2
�
ωT
2

�
sinðωT þ ϕ0Þ

þ 4QL
ωkeff

�
L

�
1 −

ω0
A

keffc

�
þ ℏkeffT

m0
A

�
sin2
�
ωT
2

�
cosðωT þ ϕ0Þ; ð7bÞ

at lowest order in v0=c, where L is the height of the
retroreflective mirror of the AI, QM

M the mass charge of the
Earth, and êkick is the direction of the kick imparted to
atoms. In practice, the mirror is used to reflect the beams in
order to create the counterpropagating waves. In the case of
copropagating beams, one needs to set L ¼ 0, since there is
no retroreflective mirror.
Note that in double diffraction interferometers, i.e., when

two pairs of laser beams transfer opposite momentum to the
atom [26], such that the spatial separation between the two
coherent wave packets is twice as large, the total phase shift
is the same with the change keff → 2keff , as expected.
If the mass charges QM are composition dependent,

then the first term in Eq. (7), proportional to v0, in the
following denoted as the mass term, is a signature of the
violation of the EEP. If the charge is universal, i.e.,
QM

M ¼ QA
M, this term vanishes as expected. However, both

terms quadratic in the effective wave vector and, respec-
tively, proportional to the mass charge of the atom A and
the frequency charge of the laser still remain. In fact, they
can be understood as a nonlocal measurement, whose
macroscopic counterpart would be to compare the free fall
of two test masses with different velocities. In the
following, we will neglect these terms, since we will
consider a practical situation where all the calculations are
made in the galactocentric frame [the frame where the
DM field takes the form from Eq. (1), see Appendix B for
a more detailed discussion on reference frames] charac-
terized by v0 ∼ vDM ∼ 105 m=s ≫ 10−2 m=s ∼ ℏkeff=m0

A,
where vDM is the Sun’s velocity in the galactic reference
frame. Indeed, in the galactocentric frame, the atoms have
an initial velocity which corresponds to the velocity of the
lab in the galactic DM rest frame v⃗DM plus a small velocity
⃗ṽ0 ∼ 10 m=s due to the motion of the atoms in the lab. ṽ0 is
the velocity impacting systematic effects such as gravity

gradients or second-order Doppler shift of the atoms when
interacting with light beams (see, e.g., [27] for a compre-
hensive list of such effects). ⃗ṽ0 is time dependent (e.g., due
to the local gravitational acceleration) and would generate
terms of order Oðkeff ṽ0QA

M=ωÞ with the precise form
depending on the geometry of the AI. We also neglect
them as ṽ0 ∼ 10 m=s ≪ vDM. Therefore, in this frame, one
can write the initial velocity of atoms and laser as

v⃗0 ≈ vDMêDM ≈ 10−3cêDM: ð8Þ

We will also drop the terms ∝ L, the height of the mirror, in
the following, as they are also much smaller than the leading
order term, in particular when measuring a differential phase
shift, see next paragraphs. Note that these terms appear only
in counterpropagating schemes. Therefore, in the Bragg
case, the mass term is the dominant contribution. The final
term appearing in the Raman phase shift is related to the
oscillation of the atomic and laser frequencies and will be
denoted as the frequency term. Depending on the setup, QL

ω

and QA
ω can be the same, canceling this term completely.

Two-photon transitions AI are commonly operating using
hyperfine transitions of alkaline-Earth atoms (e.g., the
hyperfine transition of Rb, Cs, K atoms [28–30]). For both
copropagating and counterpropagating configurations, the
laser beams are locked onto the optical transition of an
atomic ensemble of the same species as the atoms in free fall
inside the interferometer, and the frequency difference
ωL1

− ωL2
¼ ω0

A is provided by a radio-frequency source
(in the GHz range). Then QL

ω is the charge of that source,
which, depending on the experimental configuration, may
or may not be the same as QA

ω the charge of the hyperfine
transition of the atoms in the AI. As discussed previously, in
the case of copropagating lasers, the effective wave vector
corresponds to the frequency transition of the atom, i.e.,
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keff ¼ ω0
A=c. Therefore, the mass term of Eq. (7b) is

suppressed by a factor vDM=c compared to the frequency
term. For counterpropagating laser beams, the effective wave
vector keff ≫ ω0

A=c, implying that the mass term of Eq. (7b)
is much bigger than in the copropagating case. In that case,
both mass and frequency terms are relevant and need to be
taken into account. The mass term has already been derived
in [14], in the case of oscillating mass coming from a
coupling between matter and a classical oscillating dark
matter field. However, the calculation in [14] was performed
in the lab frame, but only considering the velocity of the
atoms in this frame, i.e., only ṽ0 ∼ 10 m=s, while we argue
that another component, due to the galactic velocity vDM ∼
105 m=s ≫ ṽ0 should be taken into account, see
Appendix B. Adding this contribution would improve the
expected sensitivity to the charge QA

M by several orders of
magnitude (see next sections for a practical example). In
addition, our calculations take into account the Earth
contribution, which was not the case in [14]. This is an
important contribution because in the case of universal rest
mass oscillations, the mass term of Eq. (7) cancels.
Transforming Eq. (7) to the laboratory reference frame

requires in principle to transform all the quantities appearing
in the equations (such as k⃗eff ;ω0

A; T;…) to the lab frame.
Such a Lorentz transformation would induce corrections of
orderOðvDM=cÞ which can safely be neglected as discussed
in Appendix B. One can notice that the leading term in
Eq. (7) is proportional to vDM [using Eq. (8)], a conclusion
that differs from existing results in the literature [14]. In
Appendix B, we show that such a conclusion can also be
obtained to first order in vDM=c by working directly in the
laboratory reference frame, strengthening our results.
Dual atom interferometers using two atomic species A

and B with different mass and frequency charges will
measure the difference of the interferometric phases, whose
amplitude is given by

��ΔΦBragg
AB j ¼ 4vDM

ω
j½kAeffðQA

M −QM
MÞ− kBeffðQB

M −QM
MÞ�

× êDM · êkickjsin2
�
ωT
2

�
; ð9aÞ

jΔΦRaman
AB j ¼ 4

ω
jvDMêDM · êkick½kAeffðQA

M −QM
MÞ

− kBeffðQB
M −QM

MÞ� − ðω0
AðQA

ω −QL;A
ω Þ

− ω0
BðQB

ω −QL;B
ω ÞÞj sin2

�
ωT
2

�
; ð9bÞ

where we neglected the subdominant terms ∝ k2eff ; L and
where QL;A

ω ; QL;B
ω are, respectively, the frequency charge of

the beams used for the transition of the atomic species A and
B in the Raman case. The mass terms of Eq. (9b) are the
quantum equivalent of the classical calculation Eq. (5) (with
v0 ≡ vDM, see previous discussion), while the second term

of Eq. (9b), proportional to the frequency chargesQω has no
classical counterpart. Assuming mass and frequency
charges of same order of magnitude, the frequency terms
of Eq. (9b) will dominate in copropagating laser Raman
interferometers, while for counterpropagating laser Raman
interferometers, both terms contribute to the phase shift.

2. Single photon transition

We will now focus on interferometric setup that involves
single photon transitions. The first setup considered is
known as a gradiometer and has already been studied
in [15,17]. In addition, we will also study an isotope
differential interferometric scheme that leads to an
improved sensitivity to mass and frequency oscillations.

Gradiometers. The first single photon transition AI
scheme considered consists in gradiometers, i.e., a setup
where two atom interferometers are stacked at different
altitudes, for the study of, e.g., gravity gradients. We are
interested in the setup initially proposed by [15] and then
studied in, e.g., [17,18]. Practically, we consider two
ensembles of atoms A (one for each interferometer)
located, respectively, at x1 and x2, all initially in the state
jg;ℏk⃗i and two lasers, one at coordinate x ¼ 0 with
effective wave vector k⃗1 and the other at coordinate
x ¼ L with effective wave vector k⃗2. In those single
photon interactions configurations, k1 ≈ k2 ¼ k ¼ ω0

A=c.
At an initial time t0, the first laser sends a beam which

interacts with both atom ensembles and which corresponds
to a π=2 pulse. Then, the second laser beam sends a π
Doppler shifted laser pulse in order to interact only with
the excited state wave packets, whose motion induces a
change in transition frequency, and to convert entirely this
wave packet to the ground state. After this sequence, all
wave packets are in the ground state, however one of them
has gained momentum 2ℏk. Following the convention
of [17,18], at the end of the sequence, the fast wave packets
have received a LMT photon kick of order3 2. If another
pair of π pulses (with the first one from the bottom laser
and the second one from the top laser in the same way as
before) is sent to the faster half of the atom, one makes a
LMT beam splitter of order 4. More generally, ifm pairs of
π pulses are sent, the order of the LMT beam splitter is
2ðmþ 1Þ and the faster wave packet has gained total
momentum 2ðmþ 1Þℏk. In other words, the order n of the
LMT is defined as n ¼ 2ðmþ 1Þ.
Later at time t ¼ T, a sequence of state inversion similar

to the one used in two-photon transitions interferometers is
performed, but this time with three different π pulses: the
first one coming from the bottom laser, the second one from
the top laser, and the last one from the bottom laser again.

3Note that in the original proposal by [15], the LMT has a
slightly different definition.

JORDAN GUÉ, AURÉLIEN HEES, and PETER WOLF PHYS. REV. D 110, 035005 (2024)

035005-6



However, in order to slow down the faster wave packet, m
pairs of π pulses are added before this sequence, such that it
loses 2ðmþ 1Þℏk momentum. Symmetrically, m other
pairs of LMT pulses are added after the state inversion
to accelerate the other wave packet, such that it gains
2ðmþ 1Þℏk momentum.
Finally at time t ¼ 2T, a sequence of pulses opposite to

the one sent at the initial t ¼ 0 is sent to the wave packets,
i.e., m LMT pairs of π pulses are sent to the wave packets
before the final π − π=2 pulses used for recombination.
This whole sequence is depicted in Fig. 2 with n ¼ 2
(i.e., m ¼ 0) and only one interferometer.
In gradiometers, two such interferometers are stacked at

different altitudes, separated by a distanceΔr, and the same
laser beam is used for the laser-atom interaction in both
interferometers, which is depicted in Fig. 3. The main
advantage of this setup is that laser phase noise is entirely
canceled when measuring the differential phase shift
between the two interferometers.
Assuming ωL=c ≪ 1 and nL=c ≪ T where the LMT

kick is of order n, and L is the baseline separation between
the two lasers, which we assume for simplicity to be the
distance between the two interferometers, the differential
phase shift can be computed following the exact same
methodology as in Appendix A and reads

jΔΦGrad
A j ≈ 4nω0

AΔrQA
ω

c
sin2
�
ωT
2

�
; ð10Þ

which is the phase shift amplitude derived in [15,17].

SPID. In this section, we focus on another interferometric
scheme, which is a variation of the interferometric
sequence presented in Sec. II B 2 a. We will show that

this experimental setup is more sensitive to oscillations in
atom rest mass and transition frequency compared to
regular gradiometers. This type of setup has already been
proposed, without any detail, for ULDM detection in
MAGIS-100 [19]. The goal of this section is to show the
expected signals of such a setup, in order to compare it
directly with gradiometers, as the one expected to be used
in AION-10 [17].
Contrary to usual gradiometers which only use one

single species of atom, we consider two different atom
isotopes, each of them undergoing individually the inter-
ferometric path described earlier in Sec. II B 2 a. The setup
is presented in Fig. 4. The two interferometers overlap at
the same elevation, so the experiment will test the univer-
sality of free fall between the two isotopes. This setup
employs single photon transition (meaning we will con-
sider only optical transitions) and measures the differential
acceleration between two isotopes, so we will refer to this
setup as SPID. Typically, an optical transition has a
frequency of the order of ∼1014 Hz while the typical
frequency shift between two isotopes is of order
∼109 Hz (i.e., typically 5–6 orders of magnitude smaller
than the nominal transition frequency, see [31] for Sr).
Then, a unique laser source can be used in this setup and
separated in two different beams: one which is directly used
in the laser-atom interactions inside the interferometer of
the first isotope; and the other one whose frequency is
shifted, e.g., using an electro-optic modulator (EOM), in
order to interact with the second isotope.
The calculation of the differential phase shift for such a

setup can be computed following the exact same meth-
odology as in Appendix A. If we assume the optical
transition frequencies to be close, i.e., ω0

A ≈ ω0
B ≡ ω0 and

the initial velocity to be much larger than the velocity kick

FIG. 2. Space-time diagram of a single photon transition, as
proposed in [15] with n ¼ 2 (using the convention of [18], see
text). Two lasers are used, one located at x ¼ 0, with emission
(in red) towards the second laser located at x ¼ L (with blue
emission). The frequencies of the lasers are selected carefully to
interact only with the wave packet of interest (see text). The black
dots indicate the location of matter-wave interactions.

FIG. 3. Space-time diagram of a gradiometer, where two
interferometers as shown in Fig. 2 are stacked at different
altitudes. In this figure, trajectories of the atom in its ground
state are represented by dashed lines, while full lines represent
paths where the atom is in its excited state.
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vDM ≫ ℏkeff=m0 (see Appendix B), the leading order
differential phase shift between the two interferometers
reads

jΔΦSPID
AB j ≈ 4nω0vDM

ωc
jêDM · êkickðQA

M −QB
MÞj sin2

�
ωT
2

�
:

ð11Þ

Here, we did not take into account the effect of an oscillating
EOM frequency through QEOM

ω ≠ 0. Nonetheless, its effect
is suppressed by a factor ωL=v0 × Δω0=ω0 ≤ 10−7 com-
pared to the leading term, where Δω0 is the isotope shift. In
such a case (and similarly for L ¼ 0), we recover the
leading order differential Bragg phase shift derived in
Eq. (9a) with nω0=c ¼ kAeff ∼ kBeff , as expected.
The advantage of this setup compared to usual gradi-

ometers can be immediately visualized by comparing
Eqs. (10) and (11): the SPID setup does not suffer from
a small factor ωΔr=vDM. More precisely, the ratio of
amplitude of signals between this variation and usual
gradiometers is roughly vDM=ðωΔrÞ × ðQA

M −QB
MÞ=QA

ω ∼
ð1 rad:s−1=ωÞ for the following values: Δr ∼ 5 m,
vDM ∼ 10−3c, êDM · êkick ∼Oð1Þ and mass and frequency
charges presented in Table II). This implies that, at low
angular frequency (ω < 1 rad=s), the signal of the single
photon transition isotope differential AI will be larger than
the one in a gradiometer. The simple reason for this
difference in signal amplitudes is that the gradiometer

leading order phase shift in Eq. (10) is proportional to
the frequency charge Qω, or, in other words, it is propor-
tional to the time in which the wave packets are in their
excited state. As can be noticed from Fig. 2, this happens for
a limited time, of the order of nL=c. Conversely, the signal
amplitude of the SPID variation is proportional to mass
charges QM whose effect is imprinted in the phase shift,
whatever the internal state, i.e., for a time ∼T.
In addition, as we shall see in Sec. III, in some of the

theoretical models considered, the frequency charge of
optical transition is suppressed, making the gradiometer
insensitive to such models, at leading order, while for all
models of interest, the difference of mass charges of
isotopes QA

M −QB
M ≠ 0 (see Table II).

In the next sections, we show how these theoretical
results Eqs. (5) and (9)–(11) could constrain dark matter
models that would produce such time oscillations, namely
axions and dilatons.

III. MASS AND FREQUENCY CHARGES
FOR SOME DM CANDIDATES

In the previous section, we have considered a particular
phenomenological time oscillation of atomic rest mass and
transition frequencies, see Eq. (1). We have derived the
observable signatures produced by such an oscillations on
various types of observables. In this section, we will focus
on two particularly well studied and motivated DM
candidates: the pseudoscalar field axion and the scalar
field dilaton. We will show that these DM candidates
induce oscillations of atomic rest mass and transition
frequency and derive the expression of the mass and
frequency charges appearing in Eq. (1) from the funda-
mental parameters of the theory.

A. Axion

The QCD axion was originally proposed to solve the
strong CP problem [32] by promoting the θ vacuum of
QCD to a dynamical field [12]. A new U(1) symmetry is
introduced and spontaneously broken at a given energy
scale fa. The axion a is the pseudo Goldstone boson of
mass ma of this broken symmetry. It is defined as

θ ¼
ffiffiffiffiffiffi
ℏc

p a
fa

: ð12Þ

The QCD axion mass is inversely proportional to fa. A
particle similar to the QCD axion, with the exception that it
does not solve the strong CP problem, i.e., whose mass is
not proportional to 1=fa is called an ALP.
A scalar ALP field follows the usual Klein-Gordon

equation in an expanding Universe, and when mac2=
ℏ ≫ H, the field oscillates at its Compton frequency ωa
and behaves as cold dark matter [12].
Let us consider an ALP in the galactic centered reference

frame

FIG. 4. Simplified setup for the SPID experiment. For the sake
of simplicity, we assume two different isotopes with respective
transition frequencies f1 ¼ ftr ¼ 1014 Hz, f2 ¼ ftr þ fEOM ¼
ð1þ 10−5Þ × 1014 Hz. The laser is locked on the transition
frequency of isotope 1 and essentially split in two: the first
output is used for the isotope 1 AI (whose trajectory is shown in
full lines), while the second output enters an EOM to shift its
frequency by fEOM to account for the isotope shift in order to be
used with the second isotope (whose trajectory inside the AI is
shown in dashed lines).
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a ¼ a0 cosðωatþ ϕaÞ; ð13Þ

with a0;ωa;ϕa, respectively, the amplitude, frequency, and
phase of the field. In this equation, the field a has units
of

ffiffiffiffiffiffiffiffi
J=m

p
.

Similarly to [11], we consider a model where the ALP
and gluons couple as follows:

Lint ¼
ffiffiffiffiffiffi
ℏc

p
g2s

32π2
a
fa

G̃μνGμν; ð14Þ

in SI units and where Gμν is the gluon strength tensor field,
G̃μν its dual and gs is the dimensionless strong coupling.
If the ALP is identified as DM, then its amplitude of

oscillation a0 is fixed by the local DM density ρDM, i.e.,
4

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
c

ωa
: ð15Þ

1. Axionic mass charge

In [11], it is shown that the interaction Lagrangian from
Eq. (14) induces a dependency of the mass of pions to the
axion field, which implies a dependency of the mass of
nucleons and atomic binding energy on the axion field. As
a consequence, the mass of any atom will also depend on
the axion field and its coupling strength with gluons. In this
sense, we can define the dimensionless axionic mass charge
of the atom A as

½QA
M�a ¼

∂ lnmA

∂ðθ2Þ ; ð16Þ

such that the mass of the atom A has a small time
dependency

dmAðtÞ ¼ m0
A½QA

M�adθ2ðtÞ; ð17aÞ

with m0
A the nominal mass of the atom. We can use

Eqs. (12), (13), and (15) to derive the full expression of
the mass of the atom A, i.e.,

mAðtÞ ¼ m0
Að1þ ½QA

M�aθ2ðtÞÞ; ð17bÞ

≡m0
A

�
1þ ℏc3ρDM½QA

M�a
f2aω2

a
cosð2ωatþ 2ϕaÞ

�
; ð17cÞ

at first order in axionic mass charge and where we made a
reparametrization of the nominal mass of the atom at the last
line, i.e., m0

A → m0
Að1þ ℏc3ρDM½QA

M�a=f2aω2
aÞ. Note that,

through this reparametrization, we neglect the time constant
amplitude ∝ ða=faÞ2, which could still be detected through
its variation due to finite DM coherence time, see [33]. The
time dependency of atomic masses induced by an ALP can
therefore be parametrized using the parametrization used
in Sec. II [see Eq. (1a)] by using the changes of variables
ω → 2ωa and QA

M → ℏc3ρDM½QA
M�a=f2aω2

a.
Equation (16) describes how much the mass of an atom

depends on the axion field. In the following, we derive the
expression of the axionic charge of an atom. To do so, we
will combine the work of [11] who derived how the pion
mass depends on the axion field with the explicit calcu-
lation of the dependency of the nucleons rest mass and the
binding energy on the pion mass from [9].
The rest mass of an atom, with charge number Z and

neutron number N, can be parametrized as

matom ¼ mconst: þ Ebind; ð18aÞ

¼ Zðmp þmeÞ þ Nmn þ Ebind; ð18bÞ

where mp, me, mn are, respectively, the rest masses of
the proton, the electron, and the neutron, and where
mconst:; Ebind represent, respectively, the rest mass of the
particle constituents of the atom (proton, neutron, electron)
and the nuclear binding energy.
In [11], it is shown the pion mass is θ dependent and

influence the nucleon mass mN through

∂ lnmN

∂ lnm2
π
≈ 0.06; ð19aÞ

∂ lnm2
π

∂ðθ2Þ ¼ −
mumd

2ðmu þmdÞ2
¼ −0.109 ð19bÞ

⇒
∂ lnmN

∂ðθ2Þ ≈ −0.065; ð19cÞ

such that, for an atom made of (N þ Z) nucleons, the
contribution of the nucleons rest mass to the atom rest mass
to the axionic charge is given by

½Qatom
M �a

���
const:

¼ ∂ lnmN

∂ðθ2Þ ¼ QN ≈ −0.065; ð20Þ

meaning that it is independent of the number of nucleons
inside the atom, or in other words of the atomic species. If
we consider only the impact of the axion field on the rest
mass of nucleons inside the atoms, the macroscopic
observable (5) would be independent of the atomic species.
In other word, at this level of approximation (i.e., consid-
ering only the rest mass of nucleons), following Eq. (4), all
atom will undergo an additional acceleration, proportional
to the universal axionic charge, implying, e.g., a null
differential acceleration Eq. (5). However, following

4The scalar field a energy density is ρ ¼ h ȧ2
2c2 þ ω2

aa2

2c2 i ¼
ω2
aa20
2c2 ,

where hi represents the average over several field oscillations.
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Eq. (7), this nucleon rest mass contribution would induce
a nonzero phase shift in AI but not relative to a violation of
the UFF, as explained earlier and in agreement with the
macroscopic measurement.
Let us now focus on the contribution of the binding

energy of the nuclei to the axionic mass charge and show
that it is composition dependent.
As computed in [9], the binding energy of the nuclei

depends to first order on the mass of the pions and
therefore, following Eq. (19), on the ALP. We will now
use the results from Sec. IV of [9] to infer the analytical
expression of the dependency of the binding energy to the
ALP and to the mass number A and the charge number Z.
Three different interactions contribute to the binding

energy [9]: the central force Ecentral coming from the isospin
symmetric central nuclear force, the asymmetry energy
Easym, i.e., the residual energy from the asymmetry between
neutrons and protons inside the nucleus and the Coulomb
force ECoulomb depending on how tightly the nucleons are
packed together, leading to5

Ebind ¼ Ecentral þ Easym
ðA − 2ZÞ2

A
þ ECoulomb

ZðZ − 1Þ
A1=3 :

ð21Þ

In Appendix C, we review how each of these contribution
depends on the mass of the pions and, therefore, using
Eq. (19) on the axion field, to derive the nonuniversal
axionic mass charge of an atom due to the binding energy,
which reads

½Qatom
M �a ≈ −0.070þ 10−3 ×

 
3.98

A1=3

þ 2.22
ðA − 2ZÞ2

A2
þ 0.015

ZðZ − 1Þ
A4=3

!
: ð22Þ

2. Axionic frequency charge

In this section, we derive the axionic frequency charge
[see Eq. (1b)] for various transitions frequencies. We will
consider two different types of atomic transitions, which do
not depend on the same physical parameters: (i) the
hyperfine transitions and (ii) the optical ones.
Similarly to the previous section, we define the axionic

frequency charge of the atom as

½Qatom
ω �a ≡ ∂ lnωatom

∂ðθÞ2 ; ð23Þ

and derive the full expression of the frequency of the
atom A as

ωatomðtÞ≡ω0
atom

�
1þ ℏc3ρDM½Qatom

ω �a
f2aω2

a
cosð2ωatþ 2ϕaÞ

�
:

ð24Þ

Again, one can notice that this time dependency can be
parametrized using Eq. (1b) by the changes of variables
ω → 2ωa and QA

ω → ℏc3ρDM½Qatom
ω �a=f2aω2

a.
We will first consider hyperfine atomic transitions

(ωH
atom) that are impacted by the axion-gluon coupling

from Eq. (14) as [11]

∂ lnωH
atom

∂ðθÞ2 ¼
�

∂ ln g
∂ lnm2

π
−
∂ lnmp

∂ lnm2
π

�
∂ lnm2

π

∂ðθÞ2 ; ð25Þ

where g is the nucleon g factor whose dependence on pion
mass is given by [11]

∂ ln g
∂ lnm2

π
¼ Kn

∂ ln gn
∂ lnm2

π
þ Kp

∂ ln gp
∂ lnm2

π
− 0.17Kb; ð26aÞ

with

∂ ln gn
∂ lnm2

π
≈ −0.25; ð26bÞ

∂ ln gp
∂ lnm2

π
≈ −0.17; ð26cÞ

where gn (gp), respectively, are the neutron (proton)
gyromagnetic factors, and Kn, Kp, and Kb are coefficients
computed from chiral perturbation theory (nuclear shell
model). These coefficients are not measurable, but they are
related to observable parameters, namely, the sensitivity
coefficient of the nuclear magnetic moment to light quarks
masses κq, to strange quarks masses κs and to light quarks
masses over QCD energy scale κ through [34]

κq ¼ −0.118Kn − 0.087Kp; ð27aÞ

κs ¼ 0.0013Kn − 0.013Kp; ð27bÞ

κ ¼ −0.12Kn − 0.10Kp − 0.11Kb: ð27cÞ

Using Eqs. (19) and (25)–(27), we define the dimensionless
axionic frequency charge of the atom as

½Qatom
ω �a≈ ð−16.8κ−5.69κqþ25.1κsþ0.65Þ×10−2: ð28Þ

In particular, Eq. (28) is relevant for 87Rb hyperfine
transition, whose associated κ parameters are κ¼−0.016;
κq¼−0.046; κs¼−0.010 [34].

5The pairing energy is subdominant for all atoms compared to
the other interactions [9], therefore we neglect it.
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Let us now consider optical transitions whose frequency
does depend neither on the nucleon g factor nor on the
proton mass at lowest order. This implies that the axionic
frequency charge at lowest order is 0. Higher order
contributions would lead to nonzero axionic frequency
charge, in particular if one considers its dependence on the
fine structure constant α that arises at loop level [35,36] or
to the nuclear charge radius [37] and are therefore highly
suppressed. We now compute the axionic optical frequency
charge of an atom A, considering both of these effects for
some atomic optical transition. Using the dependence of
optical transition on the fine structure constant α, the gluon-
photon coupling at loop level leads to a charge

½QA
ω�a ¼ cF2

ð2þ ϵÞα
4π2

; ð29aÞ

where cF2
is the parameter encoding the explicit symmetry-

breaking, generating the one-loop coupling. While for QCD
axion, this parameter is Oð1Þ, it is expected to be at most
10−2 in the ALP case [35]. Therefore, the corresponding
axionic charge is, e.g., for 171Yb,

½QYb
ω �a ∼ 1.2 × 10−8: ð29bÞ

The second contribution, arising from the coupling of the
ALP to the nuclear charge radius has the form [37]

½QA
ω�a ¼

∂ lnωA

∂ lnhr2Ni
∂ lnhr2Ni
∂ lnm2

π

∂ lnm2
π

∂ðθÞ2 ¼ βFhr2Ni
ωA

∂ lnm2
π

∂ðθÞ2 ; ð29cÞ

where hr2Ni is the mean squared charge nuclear radius, F is
the difference in field shift factor between excited and
ground state, and β ¼ ∂ lnhr2Ni=∂ lnm2

π ≡ −0.2 [37]. For
171Yb optical transition, F ¼ −2π × 10.955 GHz=fm2 [38],
rN ¼ 5.2906 fm [39], which leads to

½QYb
ω �a ∼ −1.21 × 10−5: ð29dÞ

To compute the nuclear charge radius contributions of other
optical transitions, we use the fact that the field shift Fhr2Ni
scales approximately as Z2=A1=3 [40]. Note that, as
expected, those two contributions are at least two orders
of magnitude, smaller than the axionic charges of hyperfine
transitions (see Table II).

B. Dilaton scalar field

Another example of scalar dark matter candidate is
the dilaton [41–44]. In the most general case, this field
is nonuniversally coupled to matter, which makes some
“constants” of nature to evolve with the field [4,9,41–46].

In this paper, we will only consider linear coupling6

between the dimensionless dilatonic field ϕ and several
SM fields, namely the matter fermions, the gluon, and the
photon fields through the following Lagrangian [9]

Lint ¼ ϕ

�
de
4μ0

FμνFμν −
dgβ3
2gs

GμνGμν

−
X

i¼e;u;d

ðdmi
þ γmi

dgÞmiΨ̄iΨi

�
; ð30Þ

where μ0 is the magnetic permeability, Fμν the electro-
magnetic strength tensor, β3 the running coupling function
of the QCD gauge coupling and Ψi the different fermionic
fields. All the di are dimensionless couplings between the
dilaton and the SM fields which will, amongst others,
modify the mass of atoms through the variation of several
“constants” of nature, namely the fine structure constant α,
the electron mass me, the quark masses and the QCD
energy scale ΛQCD [9]. More generally, a “constant” X is
modified by Eq. (30) as [9]

X → Xð1þ dXϕÞ: ð31Þ

At cosmological scales, the dilaton behaves as a classical
oscillating field

ϕ ¼ ϕ0 cosðωϕtþΦÞ; ð32Þ

whose amplitude ϕ0 is directly related to the DM energy
density, i.e., [41,42,46]

ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρDM

p
ωϕc

; ð33Þ

where G is the Newton’s gravitational constant.

1. Dilatonic mass charges

The dependency of the constants X on the scalar field ϕ,
see Eq. (31), induces variations of the rest mass of an atom
that is characterized by [9]

½Qatom
M �ϕ ¼ ∂ lnmatom

∂ϕ
: ð34Þ

In [9], it has been shown that the ½Qatom
M �ϕ coupling function

depends on the dilatonic charges QM;X and on the dilaton/
matter coupling coefficients dX as7

6Quadratic coupling has also been widely studied, e.g.,
in [42,44,46].

7Note that following [9], we neglect the contribution of
the QED trace anomaly that would add another small
contribution [47].
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½Qatom
M �ϕ ¼ ðQatom

M;me
ðdme

− dgÞ þQatom
M;e de

þQatom
M;m̂ðdm̂ − dgÞ þQatom

M;δmðdδm − dgÞÞ; ð35Þ

with the expressions of the dilatonic charges given by

QM;m̂ ¼ 0.093 −
0.036

A1=3 − 0.02
ðA − 2ZÞ2

A2

− 1.4 × 10−4
ZðZ − 1Þ
A4=3 ; ð36aÞ

QM;δm ¼ 0.0017
A − 2Z

A
; ð36bÞ

QM;me
¼ 5.5 × 10−4

Z
A
; ð36cÞ

QM;e ¼
�
−1.4þ 8.2

Z
A
þ 7.7

ZðZ − 1Þ
A4=3

�
× 10−4; ð36dÞ

where A and Z represent, respectively, the mass and atomic
numbers of the atom, m̂ is the mean of the up and down
quark masses and δm their difference.

2. Dilatonic frequency charges

In a similar way, the dilatonic frequency charge is
defined as

½Qatom
ω �ϕ ¼ ∂ lnωatom

∂ϕ
: ð37Þ

Similarly to the mass charge, the frequency charge depends
on dilatonic charges Qω;X and on the dilaton/matter
coupling coefficients dX (see, e.g., [46])

½Qatom
ω �ϕ ¼ ðQatom

ω;me
ðdme

− dgÞ þQatom
ω;e de

þQatom
ω;m̂ ðdm̂ − dgÞ þQatom

ω;δmðdδm − dgÞÞ: ð38Þ

In case of hyperfine transitions, we have fhypatom ∝
αkαðme=mpÞðmq=ΛQCDÞkq [34], where kα, kq represent,
respectively, the sensitivity coefficients of the hyperfine
transition to the fine structure constant and to the ratio of
the light quark masses mq to the QCD mass scale ΛQCD

ratio. Subsequently, the corresponding dilatonic frequency
charges are

Qhyp
ω;me ¼ 1; ð39aÞ

Qhyp
ω;e ¼ kα; ð39bÞ

Qhyp
ω;m̂ ¼ −0.048þ kq; ð39cÞ

Qhyp
ω;δm ¼ 0.0017þ kq; ð39dÞ

where we used the dependency of the proton mass to the
light quark masses ∂ lnmp=∂ ln m̂ ¼ 0.048, ∂ lnmp=
∂ ln δm ¼ −0.0017 [9].
The frequencies of optical transition depend mainly on

the electron mass and on the fine structure constant foptatom ∝
ðmemNÞα2þϵatom=ðme þmNÞ [11,48] (where mN is the total
nucleus mass and ϵatom accounts for the relativistic correc-
tion of the dependence of fatom to α). Therefore, the
frequency dilatonic charges write

Qopt
ω;me ¼ 1; ð40aÞ

Qopt
ω;e ¼ 2þ ϵatom; ð40bÞ

Qopt
ω;m̂ ≈

2.6 × 10−5

A
; ð40cÞ

Qopt
ω;δm ≈ 9.0 × 10−7

A − 2Z
A2

; ð40dÞ

where for the third charge Qopt
ω;m̂, we assumed mn ¼ mp. In

conclusion, similarly to Sec. III A, the oscillating mass and
transition frequency of the atom A in the dilatonic
framework can be written as

matomðtÞ≡m0
atom

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρDM

p ½Qatom
M �ϕ

ωϕc
cosðωϕtþΦÞ

�
;

ð41aÞ

ωatomðtÞ≡ ω0
atom

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρDM

p ½Qatom
ω �ϕ

ωϕc
cosðωϕtþΦÞ

�
;

ð41bÞ

where we have used Eqs. (32)–(34) and (37) and where
both mass and frequency charges are, respectively, given by
Eqs. (35) and (38). These time dependencies can easily be
mapped into the parametrization from Eq. (1) used in
Sec. II by the simple changes of variables ω → ωϕ and QA

M

(respectively, QA
ω) → ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πGρDM
p

=ωϕcÞ½QA
M�ϕ (respec-

tively, ½QA
ω�ϕ).

IV. DESCRIPTION OF EXISTING AND FUTURE
EXPERIMENTS

The previous sections were dedicated to a theoretical
derivation of the signatures induced by some models of
ULDM on several types of experiments. In this section, we
will present several existing or future experiments, based
either on the classical measurement of differential accel-
eration between macroscopic bodies or on atom interfer-
ometry. The main goal of this section is to present an
overview of the experiments, their main characteristic and
also provide an estimate of their noise level and integration
time. These will be needed in the future section to estimate

JORDAN GUÉ, AURÉLIEN HEES, and PETER WOLF PHYS. REV. D 110, 035005 (2024)

035005-12



the sensitivity of the experiments to the various axionic and
dilatonic couplings.
The experiments considered in this paper are the

following:
(1) The MICROSCOPE space experiment [3,20].
(2) The AI experiment operating at Stanford [49].
(3) The AION-10 experiment [16].
(4) The SPID variation presented in Sec. II B 2 b.

The first two are existing experiments with available data,
while AION-10 is a proposed experimental scheme with
futuristic experimental parameters. We will derive the noise
level of the SPID variation. Since we aim at comparing this
variation with the gradiometer one of AION-10, wewill also
assume the same experimental parameters as AION-10.

A. MICROSCOPE

MICROSCOPE is a space mission that was launched to
test the UFF in space [20]. The payload contains (amongst
other) two concentric test masses, one made of platinum and
the other one made of titanium. By closely monitoring the
relative displacement between the two test masses along the
symmetry axis, one can measure the differential acceleration
between them and estimate the Eötvös η parameter. The
final result of MICROSCOPE is [3]

η ¼ ð−1.5� 2.7Þ × 10−15; ð42aÞ

at a 1σ confidence level.
The full MICROSCOPE dataset used to constrain the

UFF is made of 17 sessions [50]. The noise PSD of the
differential acceleration of the session 404 is given by [51]

SaðfÞ ¼ 2.2 × 10−24f−1 þ 2.3 × 10−17f4ðm=s2Þ2=Hz;
ð42bÞ

for frequencies between 10−5 and 0.3 Hz. The f−1 slope
noise comes from thermal effects of the gold wire con-
necting the test masses to the cage, while the high
frequency noise in f4 is the second derivative of the
position measurement white noise [20].
The UFF signal is modulated by spinning the satellite at

a frequency chosen to minimize the noise, fEP ∼ 3 mHz.
Note that fEP is in reality a linear combination of the spin
frequency fspin and orbital frequency forb, with fspin ≫
forb ∼ 1.5 × 10−4 Hz [20] for session 404. Three different
spin frequencies exist depending on the session [52], such
that one should take both contributions into account for the
determination of fEP for other sessions.
The bucket frequency of this acceleration noise corre-

sponds approximately to fbucket ∼ 30 mHz [20,51].
To take into account the contribution of the full experi-

ment, i.e., the 17 different sessions, we make the hypothesis
that all of them have the same level of acceleration noise
Eq. (42b) while we consider the orbital period to be

constant Tsingle orbit ≈ 5946 s [50]. This hypothesis is suffi-
cient for the rough sensitivity analysis we do here, but will
have to be revisited when doing a complete MICROSCOPE
data analysis in search for DM candidates.
Using the total number of orbits of the experiment, i.e.,

Norbits ¼ 1362 [50], we find that the total integration time
is T int ¼ Tsingle orbit × Norbits ≡ 8.1 × 106 s.
As an experiment measuring the differential acceleration

between two test masses, the corresponding theoretical
signal is given by Eq. (5).

B. Atom interferometry in the Stanford Tower

The most stringent constrain on the Eötvös parameter η
obtained from atom interferometry experiment is achieved
using a Bragg atom interferometry experiment in the
Stanford Tower. In this experiment, the relative acceleration
of freely falling clouds of two isotopes of Rubidium (85Rb
and 87Rb) is measured [49]. The differential interferometric
phase measurement between these two interferometers
leads to a constraint on η given by [49]

η ¼ ð1.6� 5.2Þ × 10−12: ð43aÞ

Both atoms are launched upwards inside the Stanford
Tower for an interferometric sequence of total duration
2T ¼ 1.91 s, corresponding to the total time for the atoms
to fall back [49].
Double diffraction interferometry is performed using two

lasers both resonant with the j52S1=2i → j52P3=2i87Rb
transition, i.e., their wave vectors are k1 ≈ k2 ≈ 2π=λ, with
λ ¼ 780 nm. Three different momentum splittings have
been used: f4ℏk; 8ℏk; 12ℏkg. All are in agreement with no
EP violation [49]. In the following, we will consider the
highest momentum transfer since this will enhance the
signal searched for, which corresponds to using an effective
wave vector keff ¼ 24π=λ in Eq. (7a).
The resolution per shot on the differential acceleration is

σΔa ¼ 1.4 × 10−11 g [49], with g ¼ 9.81 m=s2 the Earth
gravitational acceleration on ground. We assume white
noise (see below) with a corresponding acceleration noise
PSD

SΔa ¼
2σ2Δa
fs

≈ ð7.7 × 10−11 gÞ2 Hz−1; ð43bÞ

with fs the sampling frequency of the experiment, defined
as fs ¼ 1=Tcycle where Tcycle ¼ 15 s is the duration of one
interferometric sequence, including atom preparation,
launch, and free fall [49]. The raw measurement in this
experiment is actually a differential phase shift ΔΦ that is
related to the differential acceleration between the atoms
Δa through ΔΦ ¼ keffT2Δa [22]. Therefore, we can infer
the PSD of the phase shift using
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ffiffiffiffiffiffi
SΦ

p
¼ keffT2

ffiffiffiffiffiffiffiffi
SΔa

p
: ð43cÞ

The final uncertainty of this differential acceleration
measurement is mostly limited by electromagnetic effects,
coming from the Bragg lasers and non homogeneous
magnetic field [49]. Knowing the final uncertainty of
the differential measurement (43a) we derive the total
“effective” experiment time T int under our white noise
assumption, i.e., assuming that individual experimental
cycles are uncorrelated. Then, the number of cycles N can
be derived as

N ¼ 1

g2

�
σΔa
ση

�
2

≈ 77 ð43dÞ

and

T int ¼ N × Tcycle ≈ 1148 s: ð43eÞ

C. AION-10

The AION is an experimental program to search for
ULDM and gravitational waves in the 10−1 − 10 Hz range
using atom interferometry [16]. AION-10 is a 10 meter-
long single-photon atom gradiometer instrument which will
use 87Sr atoms and that will be built in Oxford [17].
Contrary to the other experiments previously introduced,
AION-10 will operate in a distant future, assuming a
much better control on noise than current experiments.
Following [17], we will use the following experimental
parameters ultimately envisaged for AION-10:

T int ¼ 108 s; ð44aÞ

T ¼ 0.74 s; ð44bÞ

SΦðfÞ ¼ 10−8 rad2=Hz; ð44cÞ

n ¼ 1000; ð44dÞ

ωSr ¼ 2.697 × 1015 rad=s; ð44eÞ

Δr ¼ 4.86 m; ð44fÞ

L ¼ 10 m; ð44gÞ

respectively, the interrogation time, the free evolution time,
the gradiometer phase noise PSD, the number of LMT
kicks, the optical transition frequency used, the gradiometer
separation, and the total size.

D. SPID

The SPID experiment described in Sec. II B 2 b consists
of two colocated interferometers with an interferometric

sequence similar to the one used in gradiometers, as AION-
10 but using two different isotopes.
We consider this setup variation for two different reasons.

First, MAGIS-100 [19] will operate a similar mode for the
search of ULDM and we want to derive the expected
sensitivity of such a large scale experiment to axion and
dilaton signals. More specifically, MAGIS-100 will run a
Bragg interferometer (i.e., with two photons transitions
instead of single-photon transition, as in SPID). However, as
mentioned in the text after Eq. (11), the leading order signal
of both setup is the same. The main difference between the
two setup is that for SPID, the wave packets spend some
time in their excited state (which they do not in Bragg
configuration), but, as shown in Eq. (11), the additional
phase shift is next-to-leading order and thus negligible. In
addition, we argue that phase noise levels will be equivalent
in both setups (see next paragraphs). Therefore, the optimal
choice between the two setup is a matter of practicality (see
end of this subsection for a small discussion). The second
reason for the SPID consideration is that we would like to
compare it with the gradiometer for the same experimental
parameters to assess which one is the best to search for
axion and dilaton DM.
For this reason, we consider first the experimental

parameters from one running mode of MAGIS 100.
They are listed in [19], see their Fig. 3. Their noise levels
are much lower than current experiments, similar to AION-
10. MAGIS-100 will use two isotopes of strontium (87Sr
and 88Sr) in a 100-meter baseline. The transition under
consideration in [19] is j51S0i → j53P1i with frequency
ωSr ¼ 2.73 × 1015 rad=s. In terms of acceleration noise
level and order of LMT, we consider the upgraded
parameters, i.e.,

ffiffiffiffiffi
Sa

p
ðfÞ ¼ 6 × 10−17 g=

ffiffiffiffiffiffi
Hz

p
; ð45aÞ

n ¼ 1000: ð45bÞ

In addition, for a L ¼ 100 m high tower, the free-fall time
of atoms is given by 2T ¼ ffiffiffiffiffiffiffiffiffiffiffi

8L=g
p

, which implies
T ∼ 4.5 s. Following Eq. (43c), the phase noise PSD is

SΦðfÞ ¼
�
nωSrT2

c

�
2

SaðfÞ ∼ 10−8 rad2=Hz; ð45cÞ

i.e., a similar phase noise PSD as AION-10. Finally, the
full integration time of the experiment corresponds to
1 year of observation, T int ≈ 3.16 × 107 s.
The second reason why we consider the SPID setup is to

directly compare the expected sensitivity on axion and
dilaton couplings of two experiments with the exact same
experimental parameters but operating a gradiometer on one
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hand and the SPID variation on the other hand. For this
matter, wewill compare the sensitivity of the current version
of AION-10, i.e., a gradiometer, with a SPID setup using the
same noise levels. In this case, in addition to the phase
noise, we also include the EOM noise (which we show to be
negligible in the following), which is used to shift the
frequency of the laser to account for the isotope shift
(∼1 GHz) as discussed in Sec. II B 2 b and depicted in
Fig. 4. An alternative scheme would be to phase-lock two
lasers with a ∼1 GHz frequency offset. In either case, this
setup generates an additional frequency fluctuation σfðtÞ in
the second beam, which comes from the EOM internal noise
and from the phase noise of the GHz reference frequency.
Whilst the raw EOM phase noise PSD can be approximated
as SGHzΦ ðfÞ ≈ 10−13ðf=HzÞ−2 rad2=Hz [53–55], it enters
only differentially in the SPID setup at times separated
typically by L=c. The resulting PSD is altered by a factor
2ð1 − cos ð2πfL=cÞÞ ≈ ð2πfL=cÞ2, since 2πfL=c ≪ 1 for
all frequencies f of interest. Since this noise is uncorrelated
with the gradiometer phase noise, the total phase noise PSD
of the SPID setup is simply

SSPIDΦ ðfÞ ¼ SGHzΦ ðfÞ
�
2πfL
c

�
2

þ SAIONΦ ðfÞ;

≈ SAIONΦ ðfÞ: ð46Þ

For the remaining experimental parameters, such as the total
time of experiment, the flight time of atoms and the number
of LMT kicks, we will assume the same values as AION-10,
see Eq. (44). We will also consider the use of four different
pairs of isotopes of alkaline-Earth neutral atoms commonly
used as optical clocks [56], and we will assess the impact of
the choice of the atoms on the ULDM sensitivity: (i) two
bosonic isotopes of strontium 86Sr − 88Sr based on the
5s21S0 → 5s5p3P1 transition whose frequency is ωSr ¼
2.73 × 1015 rad=s [56,57]; (ii) two bosonic isotopes of
calcium 40Ca − 44Ca using the 4s4s1S0 → 4s4p3P1 transi-
tion with frequency ωCa ¼ 2.87 × 1015 rad=s [58]; (iii) one
mixture of fermionic and bosonic isotope of ytterbium
171Yb − 176Yb using the 6s21S0 → 6s6p3P1 transition of
frequency ωYb ¼ 3.39 × 1015 rad=s [59,60]; and (iv) two
bosonic isotopes of mercury, 196Hg − 202Hg using the
6s21S0 → 6s6p3P1 transition of frequency ωHg ¼ 7.45 ×
1015 rad=s [61]. All these parameters are summarized in
Table I. Note that in these choices of isotopes and
transitions, we ignore the small lifetime of the various
excited states (of hundreds of ns to hundreds of μs), which
could limit the number of atoms detected at the end of the
sequence due to spontaneous emission.8

V. SENSITIVITY OF VARIOUS EXPERIMENTS
TO AXION AND DILATON FIELDS

In this section, we will derive the sensitivity of the
experiments listed in the previous section on the various
axion and dilaton couplings discussed in Sec. III. These
estimates are obtained by comparing the theoretical signal
presented in Sec. II to the published experimental noise
presented in Sec. IV (or predictions regarding AION-10 and
MAGIS-100). The expected sensitivity of MAGIS-100 to
another DM candidate, namely to a Uð1Þ B − L field has
already been demonstrated in [19], but we show that the
expected sensitivity of SPID to axion and dilaton couplings
is also very competitive. We insist that the results obtained
in this section needs to be interpreted as sensitivity analysis
or expected experimental reach, while actual constraints
would require careful statistical searches for the signal, with
a full analysis of statistical and systematic uncertainties.

A. Experimental features impacting the signal

In this section, we will review the various experimental
parameters that impact the theoretical signal presented
in Sec. II.
First, the observable signatures induced by an axion or

dilaton field depend on the properties of the atoms used in
the experiment. More precisely, they depend directly on the
axionic or dilatonic charges that have been introduced in
Sec. III. In Table II, we present all nonuniversal axionic and
dilatonic charges of all atomic species used in the set of
experiments presented in Sec. IV. The axionic charges are
derived from Eqs. (22) and (28) for hyperfine atomic
transitions. The dilatonic charges are derived from
Eqs. (36), (39), and (40). Note that, in the experiments
considered in Sec. IV, 85Rb is only used in a two-photon
transitions Bragg-type interferometer, which is independent
of the frequency charge at leading order, see Eq. (7a) and
comments after. Similarly, 195Pt and 48Ti are only used in a
classical test of the UFF which is also independent of the
frequency charge [at leading order, see Eq. (4)]. For these
reasons, the frequency charges of these atoms are not
provided in Table II.
Second, as can be noticed from Eqs. (5), (7), and (11),

some observables depend on the initial velocity of the
bodies. Note that the method used to perform the calcu-
lations in Sec. II B is only valid for Lagrangians that are at

TABLE I. Various isotope pairs used in the SPID setup, for
direct comparison with AION-10.

Isotopes Transition Frequency (rad=s)

86Sr, 88Sr 5s21S0 → 5s5p3P1 2.73 × 1015

40Ca, 44Ca 4s4s1S0 → 4s4p3P1 2.87 × 1015

171Yb, 176Yb 6s21S0 → 6s6p3P1 3.39 × 1015

196Hg, 202Hg 6s21S0 → 6s6p3P1 7.45 × 1015

8This limitation could be overcome for optical transitions due
to the large Rabi frequency, implying a very short π pulse
duration [62].
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most quadratic in the position and velocity [22]. In the case
of massive axion and dilaton, this is the case only in the
galactocentric frame, which we assume to be the scalar field
rest frame. In any other frame (in particular in a lab-centered
reference frame), the field will behave as cos ðωt − k⃗ · x⃗Þ
leading to a Lagrangian not at most quadratic in the
position. The Sun velocity in the galactic halo points
towards α Cygni, the biggest star of the Cygnus constella-
tion [68], which corresponds to a right ascension αDM ¼
310.36°E and declination δDM ¼ 45.28°N [69].
The observable signatures depend also on the orientation

of the experimental setup with respect to this initial
velocity. Indeed, for classical tests of the universality of
free fall between two macroscopic bodies, one measures
Δa⃗ ∝ v⃗DM [see Eq. (8)] projected onto the sensitive axis of
the instrument. Therefore, the signal depends on the
projection of the velocity of the bodies in the galactocentric
frame with the sensitive axis of the experiment. Similarly,
all the AI experiments depend on the scalar product
between the initial galactocentric velocity of the atomic
clouds with the direction of the velocity kick undergone
in the interferometric schemes, i.e., on êDM · êkick, see
Eqs. (7), (9), and (11).
All the AI-based experiments operate at constant loca-

tion, loc, on Earth with longitude λloc and latitude ϕloc. We
assume the velocity kick to be directed vertically, i.e., in
the Earth’s reference frame êkick ¼ ðcosðλlocÞ cosðϕlocÞ;
sinðλlocÞ cosðϕlocÞ; sinðϕlocÞÞ. As first approximation, we
consider the declination as equivalent to the terrestrial
latitude, i.e., δDM ≈ ϕDM, such that the dot product

êDM · êkick is simply given by cosðϕlocÞ cosðϕDMÞ cosðλloc−
λDMðtÞÞ þ sinðϕlocÞ sinðϕDMÞ. λDMðtÞ is the longitude of α
Cygni at the time t of the experiment. Indeed, while
αDM is fixed, the former follows the Earth rotation
with frequency ωE ∼ 7 × 10−5 Hz and is therefore time
dependent

λDMðtÞ ¼ ωEtþ φ; ð47aÞ

where the phase φ corresponds to the longitude of α Cygni
at the origin of time reference considered. For short
experiments with an experimental time much smaller
than a day (i.e., relevant for Stanford’s experiment, see
Sec. IV B), the dot product is roughly constant and
depends therefore on the exact time of the day when
the experiment was conducted. In order to infer a sensi-
tivity estimate, we will only consider the mean value of the
dot product which is given by sinðϕlocÞ sinðϕDMÞ, i.e.,

êDM · êkick
���
Stanford

≈ 0.43: ð47bÞ

For longer time experiments, like the SPID variation,
the dot product evolves with time, such that the signal
evolves as

sðtÞ ∝ êDM · êkick cosðωDMtþ ϕ0Þ ð47cÞ

¼ ½cosðϕlocÞ cosðϕDMÞ cosðωEtþ φÞ
þ sinðϕlocÞ sinðϕDMÞ� cosðωDMtþ ϕ0Þ; ð47dÞ

TABLE II. Axionic=dilatonic charges for species of atoms of interest (we assume Earth is made of SiO2, composed of 47% Si and
53% O). The transitions are hyperfine for 87Rb and optical for the rest. Axionic charges are derived from Eqs. (22) and (28), while
dilatonic charges are derived from Eqs. (36), (39), and (40). The leading order value of Qω;me

is universal for all atomic transitions, see
Eqs. (39) and (40), so it is not provided. For isotopes, we assume the same Qω;e value (see text).

Axionic charges Dilatonic charges

Experiment Species
QM

[×10−3]
Qω

[×10−5]
QM;e

[×10−3]
QM;me

[×10−4]
QM;m̂

[×10−3]
QM;δm

[×10−4] Qω;e

Qω;m̂

[×10−4]
Qω;δm

[×10−2]

μSCOPE
195Pt [63] −69.065 � � � 4.278 2.20 85.25 3.40 � � � � � � � � �
48Ti [63] −68.770 � � � 2.282 2.53 82.58 1.38 � � � � � � � � �

Stanford
87Rb −68.920 930 [34] 2.869 2.34 83.95 2.54 2.34 [64] −670 [64] −1.73 [64]
85Rb −68.924 � � � 2.961 2.39 83.98 2.20 � � � � � � � � �
40Ca −68.715 −0.188 2.409 2.75 82.08 0 2.02 [65] 0.007 0
44Ca −68.738 −0.182 2.116 2.50 82.29 1.55 2.02 0.006 Oð10−7Þ
86Sr −68.933 −0.554 3.074 2.43 84.06 1.98 2.06 0.003 Oð10−7Þ

AION 87Sr −68.932 −0.552 3.027 2.40 84.05 2.15 2.06 [66] 0.003 Oð10−7Þ
MAGIS 88Sr −68.930 −0.550 2.980 2.38 84.03 2.32 2.06 0.003 Oð10−7Þ
SPID 171Yb −69.054 −1.206 4.114 2.25 85.14 3.08 2.31 [67] 0.002 Oð10−7Þ

176Yb −69.043 −1.194 3.957 2.19 85.05 3.48 2.31 0.002 Oð10−7Þ
196Hg −69.077 −0.684 4.469 2.24 85.35 3.12 2.81 [65] 0.001 Oð10−7Þ
202Hg −69.066 −0.677 4.291 2.18 85.25 3.53 2.81 0.001 Oð10−7Þ

All AI SiO2 −68.442 � � � 1.607 2.75 79.62 0.03 � � � � � � � � �
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i.e., the Earth rotation modulates the signal at frequency
fe ¼ ωE=2π. We will make two approximations for our
estimates. For all the DM frequencies of interest ωDM, the
Earth rotation is a slowly varying function, because
ωE < ωDM. Therefore, we will assume that the signal will
manifest itself by a single peak at frequency fDM ¼
ωDM=2π in Fourier space. In addition, we will be interested
only by the maximum value of the dot product, which is
only a function of the different latitudes:

êDM · êkick ¼ Maxðj cosðϕloc � ϕDMÞjÞ: ð47eÞ

For the various locations under consideration in this paper,
we have

êDM · êkick
���
Oxford

≈ 0.99; ð47fÞ

êDM · êkick
���
Fermilab

≈ 1.00; ð47gÞ

where we assume the SPID variation operates at the same
location as AION-10, i.e., Oxford [16] for consistent
comparison.
For MICROSCOPE, the axis of measurement is along-

side the test masses cylinders’ longitudinal symmetry
axis [20]. The orbital motion of the satellite around
Earth is Sun synchronous, which means that the orientation
of the orbital plane evolves with timewith an annual period.
As it was mentioned in Sec. IV, the measurements are
distributed on 17 different sessions, each of them lasting
T int=17 ∼ 5 days on average. For such durations, we can
assume the orbital plane to be fixed during each session. In
addition, the satellite spins around an axis that is orthogonal
to the axis of measurement with angular frequency ωspin. In
total, this means the dot product can be written as

êDM · êmeasðtÞ
���
μSCOPE

¼ AðtÞ cosðωspintþ ψÞ; ð47hÞ

where AðtÞ depends on the orientation of the orbital
plane, i.e., is fixed for one session but changes from
one session to another, and with ψ an irrelevant phase.
Using MICROSCOPE’s publicly available data, we esti-
mated numerically the coefficient AðtÞ for every session
and we find that its value oscillates between 0.71 and 1.
For our estimates, we will consider its mean value, i.e.,
jêDM · êmeasj ≈ 0.85. In conclusion, the signal presented in
Eq. (5) is modulated by the factor

êDM · êmeasðtÞ
���
μSCOPE

≈ 0.85 cosðωspintþ ψÞ: ð47iÞ

Thus, the observable signal in the MICROSCOPE experi-
ment is oscillating at the combination of the DM frequency
and the spin frequency, i.e., has harmonics at the two
frequencies ωDM � ωspin. Therefore, for DM frequencies in
Eq. (5) such that ωDM ≪ ωspin, we will consider that the

signal in MICROSCOPE oscillates at ωspin, whereas if
ωDM ≫ ωspin, we will make our estimate with the signal
oscillating at ωDM. As explained in Sec. IV, ωspin depends
on the measurement session since three different spinning
frequencies have been used during the full mission. They
differ by a factor of 5 roughly [52]. For our rough sensitivity
estimates, we use the data from session 404 as a basis,
therefore we will assume a constant ωspin ∼ 18.4 mrad=s.
In addition, the DM has a velocity distribution in the

Galaxy, which implies that the scalar field oscillation will
have a coherence time τðωÞ given by [70]

τðωÞ ≈ 2πc2

σ2vω
≈
2π × 4 × 106

ω
; ð48Þ

where σv ≈ 5 × 10−4c is the DM galactic velocity
dispersion [71]. As we shall see in the next paragraphs,
the coherence time will affect the sensitivity of the
experiment.
We will now present the general principle used to derive

the sensitivity curves. The sensitivity of a given experiment
to a general DM-SM coupling χ at a given DM Compton
frequency ωDM depends on (i) the time of integration of the
experiment, (ii) possibly the coherence time of the DM
field, (iii) the PSD of the noise at ωDM, and (iv) on the
expected amplitude of the theoretical signal produced by
the DM candidate. In the following, we will assume a
constant threshold SNR value of 1 for all experiments
under consideration. Let us write very generically the signal
searched for sðtÞ as

sðtÞ ¼ χ½Xs� cos ðωDMtþ φÞ; ð49Þ

where we factorize the coupling from the rest of the signal.
If the time of integration is much shorter than the coherence
time, i.e., T int ≪ τðωDMÞ, this equation is fully valid and
the experiment sensitivity on the coupling is

χ ¼
ffiffiffiffiffiffiffiffiffiffi
SNR

p

½Xs�

ffiffiffiffiffiffiffi
Ss
T int

s
: ð50aÞ

Note that in this regime, where T int ≪ τðωDMÞ, a correction
factor to the sensitivity arises due to the stochastic nature of
the amplitude of the field [72]. In our case where we
consider a 68% detection threshold (i.e., SNR ¼ 1), this
correction factor induces a loss in signal of ∼1.5.
On the other hand, when the integration time is much

longer than the coherence time of the field, i.e.,
T int ≫ τðωDMÞ, this means that the signal searched for
and parametrized by Eq. (49) is no longer coherent; i.e., it
should in principle be modeled as a sum of several
stochastic harmonics, see [73]. Another method to analyze
the data is to cut the dataset in fragments with duration
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smaller than τðωDMÞ and search for a coherent signal
in each of these blocks of data. In such a case, the
experimental sensitivity to the coupling is reduced and
becomes [74]

χ ¼
ffiffiffiffiffiffiffiffiffiffi
SNR

p

½Xs�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ssffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T intτðωDMÞ
p

s
: ð50bÞ

Finally, we will assume the local DM energy density to
be ρDM ¼ 0.4 GeV=cm3 [75].

B. Sensitivity of the experiments
to the axion-gluon coupling

First of all, let us remind that all signals considered in
this paper are quadratic in the coupling 1=fa.
Several laboratory experiments [76–79] already con-

strain the fa coupling of the axion, which are all shown
by the red-brown full lines in Fig. 5.

1. MICROSCOPE

Using Eqs. (5) and (17c), we can express the amplitude
of the differential acceleration between two test masses A
and B as

jΔa⃗ðtÞj ¼ 2ℏc3ρDMvDM
f2aωa

���ð½QA
M�a − ½QB

M�aÞêDM · êmeasðtÞ
���
μSCOPE

���≡ 1

f2a
½Xa�: ð51Þ

In Fig. 5, the expected sensitivity of MICROSCOPE is
shown by the orange full line. As a reminder, all the
experimental parameters we used to obtain this curve are
explicated in Secs. IV and VA. This curve presents two
breaking point frequencies. The first one f ∼ 1 mHz
corresponds to half of fspin ∼ 3 mHz. As we discussed
in the previous section, we consider two different frequency
regimes, depending on whether the signal frequency is
higher or lower than fspin. In the axion case, the signal
Eq. (51) oscillates at twice the axion field frequency,

therefore the breaking point is fspin=2. The second breaking
point arising at f ∼ 15 mHz corresponds to half of the
bucket frequency of the acceleration noise PSD, for the
same reason as above. Note that there is no breaking point
frequency associated with the coherence time of the field
because it would arise at a frequency larger than the
bandwidth of the noise PSD, at around 500 mHz. As it
can be seen from this curve, a complete reanalysis of
MICROSCOPE’s data would enable to constrain a new
region of the parameter space, over approximately two

FIG. 5. Current lab constraints on 1=fa axion coupling from [80] (the constraint from [78] has been rescaled for consistent value of
local DM energy density), including new sensitivity estimate resulting from this work, i.e., from Stanford, AION-10, and MAGIS-100
atom interferometry experiments and EP classical test from MICROSCOPE. The expected sensitivity of the AION-10-SPID-like
experiment is shown in four different colors, each using four different pairs of isotopes, denoted “AION-10-SPID” (see text).
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orders of magnitude in mass, compared to existing labo-
ratory experiments.

2. Atom interferometry

For the atom interferometry experiments, i.e., Stanford
Tower, AION-10, MAGIS-100, and the SPID variation, we
use Eqs. (9)–(11) to express, respectively, the amplitude of

the phase shift between atomic species A and B in differ-
ential two-photon transition AI (Stanford experiment),
gradiometers (AION-10), and SPID with both AION-10
and MAGIS-100 experimental parameters. The Stanford
experiment is a Bragg-transition differential AI involving
two isotopes, we will therefore assume kAeff ¼ kBeff ≡ kABeff .
Then, the phase shifts read

ΔΦStanford
AB ≈

2ℏc3ρDMvDMkABeff
ω3
af2a

���ð½QA
M�a − ½QB

M�aÞêDM · êkick
���
Stanford

���sin2ðωaTÞ≡ 1

f2a
½XΦ�Stanford; ð52aÞ

ΔΦAION-10
A ≈

4nω0
AΔrℏc2ρDM½QA

ω�a
ω2
af2a

sin2ðωaTÞ≡ 1

f2a
½XΦ�AION-10; ð52bÞ

ΔΦMAGIS-100
AB ≈

2nω0ℏc2ρDMvDM
ω3
af2a

���ð½QA
M�a − ½QB

M�aÞêDM · êkick
���
Fermilab

��� sin2ðωaTÞ≡ 1

f2a
½XΦ�MAGIS-100; ð52cÞ

ΔΦAION-10-SPID
AB ≈

2nω0ℏc2ρDMvDM
ω3
af2a

���ð½QA
M�a − ½QB

M�aÞêDM · êkick
���
Oxford

��� sin2ðωaTÞ≡ 1

f2a
½XΦ�AION-10-SPID; ð52dÞ

at first order in the axionic charges and where we again
factorized the axion-gluon coupling from the rest.
In Fig. 5, we present the sensitivity of the Stanford

Tower [49], AION-10 experiment [16], MAGIS-100
experiment [19], and the SPID AI setup with AION-10
experimental parameters, denoted “AION-10-SPID.”
One can notice that MICROSCOPE is approximately

two to three orders of magnitude more sensitive than
Stanford. This is consistent considering that the signal is
quadratic in 1=fa, that MICROSCOPE constrains the
Eötvös parameter η three orders of magnitude better than
the Stanford experiment and that the difference in axionic
mass charges of species used in the experiments is two
orders of magnitude larger for MICROSCOPE.
Contrary to the gradiometer setup of AION-10 which is

almost insensitive to the axion-gluon coupling (at leading
order, the sensitivity is proportional to the axionic frequency
charge of the optical transition of Sr, which is 0), the SPID
variation or AION-10 would have the largest sensitivity to

this coupling compared to existing laboratory experiments.
Such an experiments would improve the current lab con-
straint [76] by two orders of magnitude over a mass range of
4 orders of magnitude (10−17–10−13 eV). In this mass range,
the MAGIS-100 experiment, which uses the same setup has
also a very interesting sensitivity on the coupling, which is
comparable to the one of AION-10 in the SPID setup.

C. Sensitivity of the experiments to the dilaton couplings

The calculations are similar to the ones from the previous
section with one difference: the signal induced by a dilaton
DM candidate is linear to the dilaton coupling coefficient
di, while it was quadratic in the coupling for the axion.

1. MICROSCOPE

Using Eqs. (5) and (41a), we can express the amplitude
of the acceleration difference between two test masses A
and B as

jΔa⃗ðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρDM

p
vDM

c

���ð½QA
M�ϕ − ½QB

M�ϕÞêDM · êmeasðtÞ
���
μSCOPE

���≡ X
i¼e;me;m̂;δm

d�i ½Xi
a�; ð53Þ

where d�i ¼ di − dg for i ¼ me; m̂; δm or d�i ¼ de [following Eq. (35)], are the couplings we factorized from the rest of the
signal and where each function Xi

a has units of acceleration and contains the partial dilatonic mass charge QM;i defined
in Eq. (35).
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As it has already been discussed in [46], the sensiti-
vity of MICROSCOPE from the oscillatory behavior of
the field, described by (53) is not competitive compared
to the Yukawa-type fifth-force generated by the Earth
on the two test masses of MICROSCOPE (shown
in Fig. 6).

2. Atom interferometry

Regarding atom interferometry experiments, we use (10)
and (11) and we express, respectively, the amplitude of the
phase shift between atomic species A and B in differential
two-photon transition AI, gradiometers, and the SPID setup,
with, respectively, AION-10 and MAGIS-100 experimental
parameters. Then the different phase shifts read

ΔΦStanford
AB ≈

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρDM

p
vDMkABeff

ω2
ϕc

���ð½QA
M�ϕ − ½QB

M�ϕÞêDM · êkick
���
Stanford

��� sin2�ωϕT

2

�
≡ d�i ½Xi

Φ�Stanford; ð54aÞ

ΔΦAION-10
A ≈

4nω0
AΔr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρDM

p ½QA
ω�ϕ

ωϕc
sin2
�
ωϕT

2

�
≡ d�i ½Xi

Φ�AION-10; ð54bÞ

ΔΦMAGIS-100
AB ≈

4nω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρDM

p
vDM

ω2
ϕc

2

���ð½QA
M�ϕ − ½QB

M�ϕÞêDM · êkick
���
Fermilab

��� sin2�ωϕT

2

�
≡ d�i ½Xi

Φ�MAGIS-100; ð54cÞ

ΔΦAION-10-SPID
AB ≈

4nω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρDM

p
vDM

ω2
ϕc

2

���ð½QA
M�ϕ − ½QB

M�ϕÞêDM · êkick
���
Oxford

��� sin2�ωϕT

2

�
≡ d�i ½Xi

Φ�AION-10-SPID; ð54dÞ

where we sum over the various coupling constants, i.e., i ¼ fe;me; m̂; δmg and where we again factorized the couplings
from the rest of the signal containing partial dilatonic mass and/or frequency charges defined in Eqs. (35) and (38) depending
on the experiment.

On the dilatonic side, laboratory constraints such as Torsion balances [2], MICROSCOPE9 [3], or hyperfine and optical
clocks [81,82] are currently the most stringent constraints on the different dilatonic couplings.

FIG. 6. Current constraints on all the dilatonic couplings of interest in this paper: de (top left), dme
− dg (top right), dm̂ − dg (bottom

left), dδm − dg (bottom right) from [2,3,81,82], with 95% confidence level (shown in light orange background). The expected sensitivity
of AION-10 is shown in dark blue dashed line while the expected sensitivities of AION-10 using the SPID variation, noted “AION-10-
SPID” are, respectively, shown in green, light blue, purple, and magenta dashed lines, depending on the isotope pair used. Finally, the
expected sensitivity of MAGIS-100 is shown in dark green.

9As discussed earlier, the best MICROSCOPE sensitivity comes from the static term of the field, i.e., when considering a fifth force
generated by Earth on the two test masses, while we only focused on the oscillatory term in this paper.
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In Fig. 6, we do not present the sensitivity of the Stanford
Tower experiment, as it is not competitive compared to the
best existing constraints. As it was discussed in [17],
AION-10 would improve the current constraint on the
dme

− dg coupling, over a mass range approximately
between 7 × 10−16 and 4 × 10−15 eV.
With the same experimental parameters as AION-10,

operating the SPID setup would improve the current con-
straints on various dilatonic couplings. By, respectively,
using Ca and Hg isotopes pairs, the constraint on de would
be improved by a factor ∼2 and 3, respectively, over a mass
range covering four orders of magnitude (approximately
from 10−19 to 10−15 eV), compared to MICROSCOPE, the
current best constraint in this mass range. Regarding the
dme

− dg coupling, the use of Ca and Hg isotopes,
respectively, would improve the best constraints, by a
factor of 2.5 and 1.5, respectively, over the same mass
range. Finally, all pairs of isotopes presented would
improve the current best constraint on dδm − dg by one
order of magnitude, depending on the isotope pair used,
over a mass range covering more than four orders of
magnitude (from 10−19 to 3 × 10−15 eV).
One can notice also that operating both gradiometers and

SPID at AION-10 would give complementary sensitivities
for the search of the dme

− dg coupling of the dilaton.
Indeed, while the gradiometer would improve the current
constrain in the ∼7 × 10−16 − 3 × 10−15 eV=c2 mass
range, the SPID setup’s sensitivity at lower mass is better,
as described in the last paragraph. In addition, SPID would
be more sensitive than AION-10 to the de; dm̂ − dg and
dδm − dg couplings in the full range of masses of interest
(i.e., lower than 10−14 eV=c2).
Regarding the sensitivity of MAGIS-100 operating the

SPID setup, one can notice that it would overall give the
best constraint at low masses. One can notice that MAGIS-
100 would reach better sensitivity on most couplings,
compared to the AION-10-SPID variation. The reason is
that for low masses, such that ωϕT ≪ 1, the signal is
quadratic in the free fall time T, and MAGIS-100 using a
much longer baseline than AION-10 (100 m vs 10 m), the
free fall time is roughly three times longer for MAGIS-100
resulting in increased signal. Note that compared to the
sensitivity curves on dilaton couplings presented in [19],
but using the gradiometer setup of MAGIS-100, the curve
presented in this paper would constrain a larger DM mass
range. Indeed, while the former has a peak sensitivity
around a mass 10−15 eV and quickly loses sensitivity for
lower masses, the SPID-like setup of MAGIS-100 would
have a constant sensitivity of the same order of magnitude
for three orders of magnitude of mass (10−19–10−16 eV).

VI. CONCLUSION AND OUTLOOK

In this paper, we derive the complete form of the
expected signals in experiments involving differential

acceleration between two test masses and in various AI
setups in the general framework of atoms with time
oscillating mass and transition frequency. We show that
if the mass and frequency charges, which characterize,
respectively, the amplitude of oscillation of the rest mass
and transition frequency of the atom, are not universal
among atoms, nonzero signals in such experiments can be
expected. If observed, such signals would constitute a
violation of the equivalence principle. We study two
particular models that lead to time varying mass and
transition frequencies: ALPs and dilatons.
We demonstrated a new way of constraining ALP dark

matter coupling to gluons. In particular, we showed that
the MICROSCOPE experiment has sufficient sensitivity
to constrain this coupling at an unprecedented level,
compared to already existing laboratory experiments.
This, in our opinion, warrants a corresponding detailed
analysis of MICROSCOPE data to search for a potential
ALP signal.
We also show the sensitivity to dilaton and ALP

couplings of various AI setups. In particular, we derive
the sensitivity of MAGIS-100-like setups [19], denoted as
SPID in this paper, to dilaton and axion couplings. Using
AION-10 experimental parameters, we show that the SPID
variation would be able to constrain both ALP coupling to
gluons and dilaton couplings to photons, electrons and
quarks de; dme

− dg; dδm − dg to remarkable levels com-
pared to existing laboratory experiments and future experi-
ments, including AION-10. Indeed, while AION-10 would
not be sensitive to the axion-gluon at first order, the SPID
experiment would improve the best laboratory constraints
by roughly two orders of magnitude over four orders of
magnitude mass range. Regarding the dilatonic couplings,
the SPID experiment would largely surpass the expected
sensitivity of AION-10 on de; dm̂ − dg; dδm − dg couplings
over the full mass range, while being more sensitive than
AION-10 on the dme

− dg coupling at masses mϕ ≤
10−15 eV=c2. We also show that the MAGIS-100 sensi-
tivity to all of these couplings is very competitive for DM
masses in the 10−19–10−16 eV range due to its larger
baseline.
Despite being extremely sensitive to various DM can-

didates-SM fields couplings, the SPID setup would also test
the universality of free fall, with unprecedented level.
Assuming MAGIS-100 experimental set of parameters
described in Sec. IV D, the free fall acceleration on ground
g ¼ 9.81 m=s2, a total cycle time Tcycle ¼ 20 s, to account
for the atom preparation, free fall and measurement, the
corresponding constraint on the Eötvös parameter would
reach

η ¼ 1

gkeffT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SMAGIS-100
Φ
2Tcycle

s
≈ 9 × 10−18; ð55Þ

VIOLATION OF THE EQUIVALENCE PRINCIPLE INDUCED BY … PHYS. REV. D 110, 035005 (2024)

035005-21



which would improve the current bound from
MICROSCOPE [3] by more than two orders of magnitude.
However, this estimate is certainly overoptimistic as it does
not take into account additional non-oscillating effects on
the isotopes, such as gravity gradients, temperature gra-
dients (blackbody radiation), wave front aberrations, mag-
netic field gradients, etc.
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APPENDIX A: FULL CALCULATION
OF THE TWO PHOTON TRANSITION

AI PHASE SHIFT

We consider an atom A whose nominal rest mass
and transition frequency m0

A;ω
0
A are perturbed such

that they oscillate in phase as in Eq. (1), i.e., m0
Að1þ

QA
M cosðωtþ ϕ0ÞÞ;ω0

Að1þQA
ω cosðωtþ ϕ0ÞÞ, where the

charges QA
M;Q

A
ω represent the respective amplitude of

oscillation of the rest mass and transition frequency. We
show how this perturbation produces a phase at the end of a
two-photon transition atom interferometer, namely we
derive the results found in Eq. (7). We will make the
calculations assuming a Raman interferometer, i.e., when
the transition frequency of the atom is relevant, but note
that the leading order phase of the Bragg interferometer can
be recovered by setting ω0

A ¼ 0, as we will show it through
the appendix. We also make all calculations at first order in
the perturbations QM, Qω.
We describe the quantum state of the different atom wave

packets by a wave function Ψ, which we break down into
two different wave functions ΨI and ΨII, where I, II,
respectively, the up/down paths in Fig. 1, depending on the
classical path the atom followed. Considering free particles
at the input of the interferometer, the atomic plane waves
have the form [22]

Ψinitðt0; x⃗0Þ ¼ Ψ0eiΦðt0;x⃗0Þ; ðA1Þ

with the amplitude of the wave function Ψ0, Φðt0; x⃗0Þ ¼
k⃗ · x⃗0 − ωt0 − φ with ω; k⃗;φ, respectively, its angular
frequency, wave vector and constant phase. At the output
of the interferometer, at a time Tf ≥ 2T, considering all the
different phase contributions listed previously, the atomic
plane wave along the trajectory j read

ΨjðTf; x⃗fÞ ¼ ΨinitðTf; x⃗fÞ × eiΦj ; ðA2Þ

where Φj ¼ Φsj þΦlj þΦuj represents the trajectory de-
pendent phase factor. Then, at some detection time
Td ≥ Tf , a detector measures by fluorescence the number
of atoms on each quantum state, which is essentially the
measurement of the probability that the two wave packets
are in the same quantum state, i.e.,

Z
jΨIðTd; x⃗dÞ þ ΨIIðTd; x⃗dÞj2dS; ðA3Þ

where the integral is taken over the detector area S.
Plugging Eq. (A2) into Eq. (A3) and neglecting loss of
contrast due to decoherence, we find that the measurement
result is proportional to (1þ cosΔΦ) where ΔΦ ¼ ΦI −
ΦII is the phase difference between the two wave functions
at Td. For simplicity, we consider Td ≡ 2T.
We first derive the perturbed equations of motion of the

atom following by the perturbation to the acceleration
Eq. (4), to get the motion followed by the different wave
packets along the trajectories presented in Fig. 1. They read

v⃗Aðt; t0Þ ≈ v⃗0ð1 −QA
Mðcosðωtþ ϕ0Þ − cosðωt0 þ ϕ0ÞÞÞ;

ðA4aÞ

x⃗Aðt; t0Þ ≈ x⃗0 þ v⃗0ðt − t0Þ −QA
M
v⃗0
ω
ðsinðωtþ ϕ0Þ

− sinðωt0 þ ϕ0Þ − ωðt − t0Þ cosðωt0 þ ϕ0ÞÞ;
ðA4bÞ

at first order in the perturbation QA
M, where we discarded

the frequency term from the acceleration, as it is negligible,
and with x⃗0 ¼ x⃗ðt0Þ; v⃗0 ¼ v⃗ðt0Þ, respectively, the initial
position and velocity of the atom when entering the
interferometer.
We start by the calculation of the position and velocity of

the atom at the end of the trajectory portion 1 in Fig. 1.
From Eq. (A4), the atom does not undergo any kick
velocities from the laser pulses, hence after a time T, its
equations of motion read

x⃗ð1ÞA ðTÞ ¼ v⃗0

�
T −

QA
M

ω
ðsinðωT þ ϕ0Þ

− sinðϕ0Þ − ωT cosðϕ0ÞÞ
�
; ðA5aÞ

v⃗ð1ÞA ðTÞ ¼ v⃗0ð1 −QA
MðcosðωT þ ϕ0Þ − cosðϕ0ÞÞÞ: ðA5bÞ

On the other hand, the wave packet on portion 2 in
Fig. 1 has undergone a kick velocity with amplitude
vkick;0 þ δvkickðt ¼ 0Þ, following Eq. (6), with

δv⃗kickðt ¼ 0Þ ¼ v⃗kick;0ðQL
ω −QA

MÞ cosðϕ0Þ; ðA6Þ
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with v⃗kick;0 along an arbitrary direction x̂, hence

x⃗ð2ÞA ðTÞ ¼ ðv⃗0 þ v⃗kick;0ÞT −QA
M
sinðωT þϕ0Þ− sinðϕ0Þ

ω

× ðv⃗0 þ v⃗kick;0Þ þ TðQA
Mv⃗0 −QL

ωv⃗kick;0Þ cosðϕ0Þ;
ðA7aÞ

v⃗ð2ÞA ðTÞ ¼ v⃗0 þ v⃗kick;0 −QA
M cosðωT þ ϕ0Þðv⃗0 þ v⃗kick;0Þ

þ ðQA
Mv⃗0 þQL

ωv⃗kick;0Þ cosðϕ0Þ: ðA7bÞ

At time T, both wave packets undergo a kick velocity with
opposite direction, such that their momenta states are
exchanged. Following Eq. (6), this means that at the end
of portion 1, the atom undergoes a kick velocity of
amplitude vkick;0 þ δvkickðt ¼ TÞ, with

δv⃗kickðt ¼ TÞ ¼ v⃗kick;0ðQL
ω −QA

MÞ cosðωT þ ϕ0Þ; ðA8Þ

with same direction x̂; hence, at the end of the portion 3, its
coordinates read

x⃗ð3ÞA ð2TÞ ¼ ð2v⃗0 þ v⃗kick;0ÞT þQA
M

ω
ðv⃗kick;0 sinðωT þ ϕ0Þ

þ v⃗0 sinðϕ0Þ þ 2v⃗0ωT cosðϕ0Þ
− ðv⃗0 þ v⃗kick;0Þ sinð2ωT þ ϕ0ÞÞ
þQL

ωv⃗kick;0T cosðωT þ ϕ0Þ; ðA9aÞ

v⃗ð3ÞA ð2TÞ ¼ v⃗0þ v⃗kick;0−QA
Mððv⃗0þ v⃗kick;0Þcosð2ωTþϕ0Þ

− v⃗0 cosðϕ0ÞÞþQL
ωv⃗kick;0 cosðωTþϕ0Þ: ðA9bÞ

The atom at the end of the portion 2 undergoes a kick
velocity in the other direction, i.e., of amplitude vkick;0 þ
δvkickðt ¼ TÞ, but with opposite direction (-x̂), compared to
the previous laser kicks, hence

x⃗ð4ÞA ð2TÞ ¼ ð2v⃗0 þ v⃗kick;0ÞT −
QA

M

ω
ðv⃗kick;0 sinðωT þ ϕ0Þ

þ v⃗0 sinð2ωT þ ϕ0Þ − ðv⃗0 þ v⃗kick;0Þ sinðϕ0Þ
− 2v⃗0ωT cosðϕ0ÞÞ −QL

ωv⃗kick;0TðcosðωT þ ϕ0Þ
− 2 cosðϕ0ÞÞ; ðA10aÞ

v⃗ð4ÞA ð2TÞ ¼ v⃗0ð1−QA
Mðcosð2ωT þϕ0Þ− cosðϕ0ÞÞÞ

−QL
ωv⃗kick;0ðcosðωT þϕ0Þ− cosðϕ0ÞÞ; ðA10bÞ

at the end of portion 4.

1. Propagation phase contribution

The first component of phase shift is the one coming
from the phase accumulated by atoms throughout the whole
interferometric paths taking into account modified equa-
tions of motion and perturbed kicks. In the special case of
quadratic Lagrangian in the position and velocity of the
atom at maximum, this phase is by the principle of least
action the integral of the Lagrangian over the path from
initial point i to final point f ðti; xiÞ → ðtf; xfÞ

Φs ¼
1

ℏ

Z
tf

ti

Lðx; ẋÞdt; ðA11Þ

where the Lagrangian is defined in Eq. (3). The internal
energy term of the Lagrangian being associated with the
oscillation of the transition energy, it only contributes when
the atom is on the excited state, i.e., on paths 2 and 3 in
Fig. 1. Then, the phase accumulated by the atoms on the
path I of the interferometer is

ΦsI ¼−ω0
A

Z
T

0

dtð1þQA
ω cosðωtþϕ0ÞÞ

�
1−

jv⃗ð2ÞA ðtÞj2
2c2

�

−
m0

Ac
2

ℏ

�Z
T

0

dtð1þQA
M cosðωtþϕ0ÞÞ

�
1−

jv⃗ð2ÞA ðtÞj2
2c2

�

þ
Z

2T

T
dtð1þQA

M cosðωtþϕ0ÞÞ
�
1−

jv⃗ð4ÞA ðtÞj2
2c2

��
;

ðA12Þ

while the atom wave packet on the path II accumulates a
phase

ΦsII ¼−ω0
A

Z
2T

T
dtð1þQA

ω cosðωtþϕ0ÞÞ
�
1−

jv⃗ð3ÞA ðtÞj2
2c2

�

−
m0

Ac
2

ℏ

�Z
T

0

dtð1þQA
M cosðωtþϕ0ÞÞ

�
1−

jv⃗ð1ÞA ðtÞj2
2c2

�

þ
Z

2T

T
dtð1þQA

M cosðωtþϕ0ÞÞ
�
1−

jv⃗ð3ÞA ðtÞj2
2c2

��
;

ðA13Þ

where vð1Þ; vð2Þ; vð3Þ; vð4Þ are, respectively, the atom veloc-
ities along portions 1, 2, 3, and 4 in Fig. 1, which can all be
calculated explicitly using the first part of this appendix.
Then, the propagation phase shift between the two

perturbed trajectories is simply
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Φs ¼ ΦsI −ΦsII ¼ −
4

ω

�
keff

�
v0êv · êkick þ

ℏkeff
2m0

A

�
QA

M þ ω0
AQ

A
ω

�
sin2
�
ωT
2

�
sinðωT þ ϕ0Þ

þ 4keffTQL
ω

�
v0êv · êkick þ

ℏkeff
2m0

A

�
sin

�
ωT
2

�
sin

�
ωT
2

þ ϕ0

�
þO

��
v0
c

�
2
�
; ðA14Þ

where we used m0
Avkick ¼ ℏkeff at zeroth order in the

perturbation, following Eq. (6) and where we defined v⃗0 ¼
v0êv and v⃗kick ¼ vkickêkick. Note that the Bragg propagation
phase is obtained by setting ω0

A ¼ 0. The terms ∝ ðv20=c2Þ
arise from the small contribution of the atoms velocity to
the internal state kinetic energy.

2. Laser phase contribution

We now consider the phase from light-matter interac-
tion between the laser and the atoms. In both Bragg
and Raman schemes, we assume that the atoms are
freely falling inside a “vacuum tower” where the laser
are on the ground, located on a mount at initial position
xGð0Þ ¼ 0, while a retroreflective mirror at initial position
xMð0Þ ¼ L is used to reflect the beams in order to create
the counter-propagating scheme. In the Bragg case, only
one laser beam is used and retroreflected, while for the
Raman case, two beams L1, L2 with respective frequen-
cies ωL1

;ωL2
(such that ωL1

− ωL2
¼ ω0

A) are retrore-
flected and the atomic wave packets interact only with
L1 going up and L2 going down. Considering that the
whole tower on Earth is freely falling during the entire
interferometric process, its own mass composition is
affected by the oscillating mass behavior Eq. (1), i.e.,
mM ¼ m0

Mð1þQM
M cosðωtþ ϕ0ÞÞ, with m0

M;Q
M
M, respec-

tively, its unperturbed mass and mass charge, implying it
follows the same perturbed equations of motion as the
atom Eq. (A4). Therefore, both retroreflective mirror and
mount on which laser rest upon are oscillating together. At
each spacetime points of light-matter interaction is asso-
ciated a phase, which contributes to the laser phase shift.
These points are denoted A;B;C;D2 in Fig. 1, since we
assume the measurement of the interference pattern
between the two wave packets ending up on the internal
ground state jgi.
Keeping in mind the wave function expansion form

ΦLðt; x⃗Þ ¼ k⃗L · x⃗ − ωLt − φ, with ωL; k⃗L the light angular
frequency and wave vector, respectively, and that k⃗L · x⃗ −
ωLt ¼ 0 along a photon geodesic in a flat spacetime (which
is the case at the surface of the Earth, see [17]), the total
light phase felt by the atom along a path X is given by

ΦlX ¼ −
Xn
j¼0

φjðtiÞ; ðA15aÞ

¼ −
Xn
j¼0

sjðφjðtdowni Þ − φjðtupi ÞÞ; ðA15bÞ

where we sum on the total number of points interaction of
path X (occurring at times f0; T; 2Tg), and where ti
corresponds, respectively, to the time of laser at emission
of the photon (the superscripts up and down refer to a
photon coming from the up or down laser). At the second
line, we took into account the fact that we have two-photon
interactions, where the atom takes a photon from one of the
laser and emit in the second one, and the sj ¼ �1

parameter depends on the transition of the wave packet
at interaction j (it isþ1 for a jgi → jei transition and−1 for
a jgi → jei transition). Therefore, only the initial phase of
the laser at the time of photon emission is needed. Since the
laser frequency is locked on an atom ensemble whose
frequency oscillates through Eq. (1), the phase, as the
integral of the frequency, is also time dependent, i.e.,

φjðtÞ ¼
Z

t

0

dt0ωLðt0Þ≡
Z

t

0

dt0ω0
Lð1þQL

ω cosðωt0 þ ϕ0ÞÞ:

ðA16Þ

To compute the laser phase, we need to know the different
times ti of emission of photons. For a given interaction time
tint, they are given by (see Fig. 7).

FIG. 7. Simple scheme on the computation of the time of
emission of photons from both laser.
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tu¼ tint−
2xMðtint− t0uÞ−xAtðtintÞ−xGðt0u− tuÞ

c
; ðA17aÞ

td ¼ tint −
xAtðtintÞ − xGðtint − tdÞ

c
; ðA17bÞ

respectively, for the beam retroreflected (up) and not
retroreflected (down), where xM is the mirror coordinate,
xG is the mount coordinate, and xAt is the perturbed vertex
of the atomic path. In order to solve Eq. (A17), the various
tu; t0u; td on the right side are treated as unperturbed times.
Then, for Raman AI, the total laser phase is simply

Φl ¼ ΦlI −ΦlII ¼
4

ω

�
keffv0ðQA

M −QM
MÞêv · êkick þ

ℏk2eff
m0

A

QA
M þ ω0

AQ
L
ω

�
sin2
�
ωT
2

�
sinðωT þ ϕ0Þ

þ 2QL
ω

�
2L
�
keff −

ω0
A

c

�
sin2
�
ωT
2

�
cosðωT þ ϕ0Þ −

ℏk2effT
m0

A

sin
�
ωT
2

�
sin
�
ωT
2

þ ϕ0

��
: ðA18Þ

The Bragg laser phase is obtained by setting ω0
A ¼ 0.

3. Separation phase contribution

Following Eq. (A3) and considering that, at the end of
the classical paths at t ¼ Td, the wave packet of the path
i ¼ fI; IIg can be expressed as [25]

Ψi ¼ Ψ0eiðΦsiþΦliþp⃗i
ℏ ðx⃗−x⃗iÞÞ; ðA19Þ

where Φs;Φl are, respectively, the propagation and laser
phase contributions and where pi, xi are, respectively, the
momentum and position of the wave packet just after the
last π=2 pulse at t ¼ Td. Then, it can be shown easily that
for small difference in momentum between the two wave
packets Δp⃗ ¼ p⃗I − p⃗II (which we show in the following),
the separation phase shift can be expressed as

Φu ¼
Δp⃗ · x⃗det;COMð2TÞ

ℏ
−
Δðp⃗ · x⃗Þ

ℏ
; ðA20Þ

where we compute the different of momenta p⃗ ¼ ℏk⃗ and
position x⃗ between D1 and D2 in Fig. 1, the two wave
packets in the same energy state, i.e., jgi in our calculation.
x⃗det;COM represents the detector center of mass position
at time t ¼ Td ¼ 2T, i.e., in our case it is simply
x⃗det;COMð2TÞ ¼ 2v⃗0T (its own oscillation would induce a
second order effect).
Since at the end of portion 3, the wave packet is in the

excited state, we must take into account an additional kick at
time t ¼ 2T of amplitude vkick;0 þ δvkickðt ¼ 2TÞ and
direction -x̂ to this wave packet, in order to put it back
to the ground state, such that it state corresponds to the point
D2 in Fig. 1. Since, we assume the detection to be
immediately after the kick, the position of the wave packet

will not be impacted by it. The final velocity of this wave
packet read

v⃗ðD2Þ
A ð2TÞ ¼ v⃗0ðð1−QA

Mðcosð2ωT þϕ0Þ− cosðϕ0ÞÞÞ
−QL

ωv⃗kick;0ðcosð2ωT þϕ0Þ− cosðωT þϕ0ÞÞ;
ðA21Þ

resulting in a different velocity compared to the other wave

packet (v⃗ð4ÞA ð2TÞ). Then, the separation phase is a function
of both differences of position and velocities at the end of
the two paths

Δx⃗ð2TÞ ¼ x⃗ð4ÞA ð2TÞ − x⃗ð3ÞA ð2TÞ ðA22aÞ

¼ 4v⃗kick

�
QL

ωT −
QA

M

ω
sin

�
ωT
2

��
sin

�
ωT
2

�
sinðωT þ ϕ0Þ;

ðA22bÞ

Δv⃗ð2TÞ ¼ v⃗ð4ÞA ð2TÞ − v⃗ðD2Þ
A ð2TÞ ðA22cÞ

¼ −4v⃗kickQL
ω sin2

�
ωT
2

�
cosðωT þ ϕ0Þ; ðA22dÞ

implying that the difference in velocities is small (of order
QL

ω), justifying the form of the separation phase Eq. (A20).
Then, the separation phase shift is
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Φu ¼
m0

A

ℏ
ðΔv⃗ð2TÞ · x⃗det;COMð2TÞ − Δv⃗ð2TÞ · x⃗ð2TÞ − v⃗ð2TÞ · Δx⃗ð2TÞÞ;

¼ 4keff
ω

�
v0êv · êkick

�
QA

M sin

�
ωT
2

�
sinðωT þ ϕ0Þ − ωTQL

ω sin

�
ωT
2

þ ϕ0

��

þ ℏkeffωT
m0

A

QL
ω sin

�
ωT
2

�
cosðωT þ ϕ0Þ

�
sin

�
ωT
2

�
; ðA23Þ

where v⃗ð2TÞ; x⃗ð2TÞ, respectively, correspond to the unper-
turbed velocity and position of the wave packets.

4. Total phase shift

Adding all contributions of phase shift Eqs. (A14),
(A18), and (A23), one recovers Eq. (7) for Raman and
Bragg AI phases.

APPENDIX B: A DISCUSSION REGARDING
THE VARIOUS REFERENCE FRAMES

In the previous appendix and in the main text, the
observable phase shift is computed in a reference frame
where the perturbation to the rest mass/atomic frequency is
proportional to cos ðωtþ ϕ0Þ. In the case of a massive DM
field, this frame of reference is the field rest frame, which is
usually assumed to be a galactocentric reference frame. A
simple Lorentz transformation can be used to show that the
perturbation to the rest mass or atomic frequency is propor-
tional to cosðωltl − k⃗l · x⃗l þ ϕ0Þ in a lab-centric frame,
moving at velocity v⃗lab with respect to the galactocentric
frame (with vlab ¼ vDM ∼ 300 km=s). The l subscript
denotes quantities expressed in the lab-centric frame. The
reason why we performed the calculations in the galacto-
centric frame relies on the fact that the method presented
in [22] is valid only for Lagrangians at most quadratic in the
position and velocity, which is the case in the galactocentric
case but not in the lab-centric one. For this reason, the
quantities appearing in Eqs. (7) and (9)–(11) are quantities
evaluated in the galactocentric frame. The first goal of this
appendix is to justify why one can safely replace the values
of ω, keff , and L appearing in these equations by their lab-
centric counterpart. The result from Eq. (7) differs from the
one obtained in [14] by the fact that in [14], the velocity v0
is the lab-centric initial velocity of the atoms while in the
main text, it corresponds to its galactic counterpart. To
strengthen our point, we will explicitly derive the classical
equations of motion of the atoms in the lab-centric frame
and show that the galactic velocity is indeed expected to
appear in the phase shift. Finally, we will explain how a
solution can be derived in the lab-centric frame (at first order
in vlab=c) using the formalism from [22] and show that this
is also consistent with Eq. (7).
First, the two reference frames are related to each other

by a Lorentz transformation. This means that the angular

frequency ω and wave vector k⃗ of the laser beam transform
following

ωl ¼ γðω − v⃗lab · k⃗Þ ¼ ω

�
1þO

�
vlab
c

��
; ðB1aÞ

k⃗l ¼ k⃗þ 1

v2lab
ðγ − 1Þðv⃗lab · k⃗Þv⃗lab −

1

c2
γωv⃗lab

¼ k⃗

�
1þO

�
vlab
c

��
; ðB1bÞ

where γ ¼ ð1 − v2lab=c
2Þ−1=2 and vlab=c ¼ vDM=c ∼ 10−3.

For this reason, although Eq. (7) are expressed in gal-
actocentric reference frame, one can safely replace k⃗eff , ω0

A
by their lab-centric counterpart. This would lead to a
correction three orders of magnitude smaller than the
leading order term. A similar argument applies for the
other quantities such as L, T the interrogation time, etc.
This demonstrates that one can safely use lab-centric
quantities in Eq. (7).
Let us now convince ourselves that a derivation directly

performed in the lab-centric frame would also lead to a
phase shift whose main term is also proportional to the lab
velocity with respect to the galactic reference frame, in
agreement with Eq. (7). In a lab-centric frame, the
Lagrangian becomes

L ¼ −m0
Ac

2ð1 −QA
Mðcosðωltl − k⃗l · x⃗l þ ϕ0ÞÞ

×
�
1 −

v2A;l
c2

�
; ðB2Þ

where v⃗A;l is the velocity of the atom in the lab frame
(typically the launch velocity) and

k⃗l ¼ −
ωlv⃗lab
c2

; ðB3Þ

is the de Broglie wave number of the massive DM scalar
field in the lab frame. The classical equations of motion
deriving from this Lagrangian are given by

½a⃗A�lUFF ¼ ðωlv⃗A;l − k⃗lc2ÞQA
M sin ðωltl − k⃗l · x⃗l þ ϕ0Þ;

ðB4Þ
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which can also be obtained by directly transforming
Eq. (4). In the lab frame, the second term in the acceleration
is dominant since vlab ≫ vA;l. In addition, the AI schemes
considered in Eq. (7) act as accelerometers that provide, to
first order, a phase shift ΔΦ ¼ keffaT2, where a is the local
acceleration. For this reason, as an output to the perturba-
tive acceleration form Eq. (B4), one expects that the leading
order term for ΔΦ is ∼keffklc2QA

MT
2 ¼ keffωvlabQA

MT
2,

consistent for ωT ≪ 1 with the first term from Eq. (7). This
reasoning provides an argument showing that the velocity
of the laboratory with respect to the galactocentric refer-
ence frame also appears when reasoning directly in the
lab frame.
Formally, the method from [22] cannot be used

to compute the AI phase shift from the lab frame
Lagrangian provided by Eq. (B2) since it is not at most
quadratic in the position. Nevertheless, it is possible to
perform an approximate calculation in the lab frame in the
case where the de Broglie wavelength of the new field is
much larger than the typical size of the experiment, i.e., if
k⃗l · x⃗l ≪ 1 (which is the case for the experiments con-
sidered in this paper characterized by k⃗l · x⃗l ⪅ 5×
10−8 ≪ 1

10). In such a case, an expansion of the
Lagrangian leads to

L ≈ −m0
Ac

2

�
1 −

v2A;l
c2

�
ð1 −QA

Mðcosðωltl þ ϕ0Þ

þ k⃗l · x⃗l sinðωltl þ ϕ0ÞÞÞ: ðB5Þ

From this Lagrangian, one can derive the UFF violating
acceleration in the laboratory frame, which reads

½a⃗A�lUFF ≈ ðωlv⃗A;l − k⃗lc2ÞQA
M sinðωltl þ ϕ0Þ; ðB6aÞ

¼ ωlðv⃗A;l þ v⃗DMÞQA
M sinðωltl þ ϕ0Þ: ðB6bÞ

This Lagrangian is now linear in the position and can
be used to compute the phase shift using the method
from [22]. Note that there is an important difference
compared to the calculation performed in [14] where
the second term has implicitly been neglected.
The equations of motion deriving from this Lagrangian

consists in the ones from Eq. (B4) where one neglects the
k⃗l · x⃗l within the sine function. The calculation of the
phase shift directly in the lab frame follows exactly the
equations presented in Appendix A. There are mainly two
differences in the derived equations. First, the perturbed
trajectory and velocity of the atom in the lab frame now
read (taking t0 ¼ 0 immediately and tl → t)

v⃗A;lðtÞ≈ v⃗l;0 − ðv⃗l;0 þ v⃗DMÞQA
Mðcosðωtþϕ0Þ− cosðϕ0ÞÞ;

ðB7aÞ

x⃗A;lðtÞ ≈ x⃗l;0 þ v⃗l;0t −
v⃗l;0 þ v⃗DM

ω
QA

Mðsinðωtþ ϕ0Þ
− sinðϕ0Þ − ωt cosðϕ0ÞÞ; ðB7bÞ

where vl;0 is the initial velocity of the atom in the lab
frame, which corresponds to the launch velocity. These
equations replace Eq. (A4). Second, one needs to keep
the k⃗l · x⃗l term in the Lagrangian when computing the
propagation phase using Eq. (A11). The full calculation
following the method from Appendix A leads to a result
that is consistent with Eq. (7) to first order in vlab=c, in
Bragg and Raman AI, respectively, which demonstrates the
equivalence between the two frames.

APPENDIX C: AXIONIC MASS DERIVATION

In this appendix, we aim at deriving the expression of the
axionic mass charge Eq. (22). The four contributions to
the binding energy of the nuclei are the central force, the
symmetry energy, the Coulomb force and the pairing
energy. The dependence of the axion field to these four
energies are as follows.

1. Central force

This interaction comes from the isospin symmetric
central nuclear force, which is the dominant contribution
in the binding of heavy nuclei [9]. The dominant inter-
actions are an attractive scalar ηS and a repulsive vector ηV,
and [9] shows that the former is more sensitive to the pion
mass, implying in our case

∂ECentral

∂ðθ2Þ ≈
∂ECentral

∂ηS

∂ηS
∂ lnm2

π

∂ lnm2
π

∂ðθ2Þ ; ðC1aÞ

with [9,83]

ECentral ≈ −ð120A − 97A2=3ÞηS; ðC1bÞ

∂ηS
∂ lnm2

π
¼ −0.35 MeV: ðC1cÞ

2. Asymmetry energy

The residual energy from the asymmetry between
neutrons and protons inside the nucleus contains two
components: (1) from the Pauli exclusion principle, requir-
ing that when there are more neutrons than protons, the
extra neutrons are in the higher energy states than the
protons; and (2) from the nuclear force, which is more
attractive for a neutron and a proton than with a pair of
neutrons or a pair of protons. The asymmetry energy

10We consider DM frequencies characterized by mc2 ≤
10−13 eV and size of experiments L ≤ 100 m.
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depends mainly on the scalar coupling strength between the
nucleons GS [9] implying

∂EAsym

∂ðθ2Þ ¼ ∂EAsym

∂GS

∂GS

∂ lnm2
π

∂ lnm2
π

∂ðθ2Þ ; ðC2aÞ

with [9,83]

∂EAsym

∂GS

∂GS

∂ lnm2
π
¼ −19 MeV: ðC2bÞ

3. Coulomb force

The Coulomb energy has a dependency on the strong
interaction coupling terms since it depends on how tightly
the nucleons are packed together. It can be shown that this
contribution depends on the same scalar coupling as the
asymmetry energy, hence

∂ECoulomb

∂ðθ2Þ ¼ ∂ECoulomb

∂GS

∂GS

∂ lnm2
π

∂ lnm2
π

∂ðθ2Þ ; ðC3aÞ

with [9,83]

∂ECoulomb

∂GS

∂GS

∂ lnm2
π
¼ −0.13 MeV: ðC3bÞ

4. Pairing energy

The pairing interaction contributes to binding energy and
its numerical value is [83]

EPairing ¼ 12 MeV: ðC4Þ

Reference [9] shows that this contribution is subdominant
for all atoms, due to its dependency to mass number A,
compared to the other interactions; hence we will not
consider the pairing energy in the calculation of the axionic
charges of atoms.

Then, the axionic mass charge is given by

½Qatom
M �a ¼

1

matom

∂matom

∂ðθ2Þ ;

¼ 1

matom

�
∂mrest mass

∂ðθ2Þ þ ∂Ebind

∂ðθ2Þ
�
;

≈ −0.065
mrest mass

matom
þ 1 MeV

matom

�
−4.578Aþ 3.701A2=3 þ 2.071

ðA − 2ZÞ2
A

þ 0.014
ZðZ − 1Þ
A1=3

�
;

≈ −0.065þ FA

�
−4.92þ 3.98

A1=3 þ 2.22
ðA − 2ZÞ2

A2
þ 0.015

ZðZ − 1Þ
A4=3

�
× 10−3;

≈ −0.070þ FA

�
3.98

A1=3 þ 2.22
ðA − 2ZÞ2

A2
þ 0.015

ZðZ − 1Þ
A4=3

�
× 10−3: ðC5Þ

At the last line, we consideredmrest mass=matom ≈ 1þ hEbindi=mamuc2 with hEbindi ∼ 8 MeV, the average binding energy per
nucleon andmamu the atomic mass unit [9]. Also, we factorized FA ¼ Amamu=matom, which is of order unity at first order for
all species of atoms [the relative error is Oð10−3Þ] [9].
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