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We argue that the higher weak isospin SUð3ÞL manifestly unifies dark matter and normal matter in
its isomultiplets for which dark matter carries a conserved dark charge while normal matter does not. The
resultant gauge symmetry is given by SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞG, where the first factor is
the color group, while the rest defines a scotoelectroweak theory in which X and G determine electric

chargeQ ¼ T3 − 1=
ffiffiffi
3

p
T8 þ X and dark chargeD ¼ −2=

ffiffiffi
3

p
T8 þG. This setup provides both appropriate

scotogenic neutrino masses and dark matter stability as preserved by a residual dark parity PD ¼ ð−1ÞD.
Interpretation of the dark charge is further discussed, given that SUð3ÞL is broken at very high energy scale.
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I. INTRODUCTION

Neutrino mass [1,2] and dark matter [3,4] are the
important questions in science which require the new
physics beyond the standard model. Additionally, the
standard model cannot address the quantization of electric
charge and the existence of just three fermion families, as
observed in nature.
Among attempts to solve these issues, the model based

on SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX (called 3-3-1) gauge sym-
metry is well motivated as it predicts the family number to
be that of colors by anomaly cancellation [5–9]. Further, the
charge quantization naturally arises in the 3-3-1 model for
typical fermion contents [10–14]. The 3-3-1 model may
supply small neutrino masses by implementing radiative
and/or seesaw mechanisms [15–27] and dark matter sta-
bility by interpreting global/discrete symmetries [28–39].
Recently, the 3-3-1 model may give a suitable solution to
the W-mass anomaly [40].
In the 3-3-1 model, the baryon minus lepton number

B − L generically neither commutes nor closes algebrai-
cally with SUð3ÞL. This enlarges the 3-3-1 group to a
complete gauge symmetry SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗
Uð1ÞN (called 3-3-1-1) in which the last factor N relates to
B − L via a SUð3ÞL charge and this setup reveals matter
parity as a residual gauge symmetry [41,42]. This matter
parity stabilizes various dark matter candidates besides

related phenomena as studied in [43–46]. The 3-3-1-1
model typically supplies neutrino masses via canonical
seesaw, as suppressed by heavy right-handed neutrinos that
both exist due to anomaly cancellation and gain large
Majorana masses from N-charge breaking. However, it
may alternatively generate neutrino masses via scotogenic
mechanism due to the existence of matter parity [47–51].
The cosmological inflation, asymmetric matter production,
new Abelian N-charge breaking, and effect of kinetic
mixing between two Uð1Þ groups are extensively inves-
tigated in [52–57], too.
The 3-3-1 symmetry has a property that unifies dark

matter and normal matter in SUð3ÞL multiplets and
normally couples dark matter in pairs in interactions
[41]. Above, B − L is realized in such a way that dark
matter carries a wrong B − L number opposite to that
defined in the standard model for normal matter. Hence,
dark matter is odd, governed by the matter parity. Since
both dark matter and normal matter have B − L charge, this
setup implies a strict couple between the two kinds of
matter through B − L gauge portal. This work does not
further examine such interacting effects of dark matter,
especially under experimental detection [43–46]. Instead,
we propose a dark charge for dark matter, while normal
matter has no dark charge, which has a nature completely
different from B − L and relaxes such interaction. This
interpretation of dark charge supplies naturally scotogenic
neutrino mass and dark matter [58], because the mentioned
canonical seesaw including its right-handed neutrinos
manifestly disappears.
A global version for dark charge under consideration was

first discussed in [32] in attempt to find a mechanism
for dark matter stability in the 3-3-1 model and further
promoted in [41]. As electric charge Q is unified with
weak isospin Ti (i ¼ 1; 2; 3) in electroweak theory
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SUð2ÞL ⊗ Uð1ÞY for which Q ¼ T3 þ Y, the present
proposal combines both electric charge Q and dark charge
D in a higher weak isospin Tn ðn ¼ 1; 2; 3;…; 8Þ yielding
SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞG for which Q ¼ T3 þ βT8 þ X
and D ¼ β0T8 þ G. Here the coefficients β; β0 determine
the electric charge and dark charge of dark fields, respec-
tively. This theory indeed unifies dark force and electro-
weak force in the same manner the electroweak theory does
so for electromagnetic force and weak force, thus it is called
scotoelectroweak, where “scoto” means darkness.
The rest of this work is organized as follows. In Sec. II,

we propose the scotoelectroweak model. In Sec. III, we
examine scalar and gauge-boson mass spectra. In Sec. IV,
we obtain the scheme of neutrino mass generation. In
Sec. V, we investigate dark matter observables. In Sec. VI,
we constrain the model and deliver a numerical inves-
tigation. In Sec. VII, we give a realization of dark charge to
which the model refers. Finally, we summarize our results
and conclude this work in Sec. VIII.

II. SCOTOELECTROWEAK SETUP

In the standard model, the weak isospin SUð2ÞL arranges
left-handed fermions in isodoublets ðνaL; eaLÞ ∼ 2 and
ðuaL; daLÞ ∼ 2, while putting relevant right-handed fer-
mions in isosinglets eaR ∼ 1, uaR ∼ 1, and daR ∼ 1, where
a ¼ 1; 2; 3 is a family index.
The standard model cannot explain nonzero neutrino

masses and flavor mixing required by oscillation experi-
ments. Additionally, it cannot explain the existence of dark
matter which makes up most of the mass of galaxies and
galaxy clusters.
We argue that both of these questions may be solved by

existence of dark fields, a new kind of particle, which are
assumed, possessing a conserved dark charge (D), normal-
ized to unity for brevity, i.e., D ¼ �1. The content of dark
fields and relevant dark symmetry are determined by
enlarging the weak isospin SUð2ÞL to a higher symmetry,
SUð3ÞL.
The fundamental representations of SUð3ÞL are decom-

posed as 3 ¼ 2 ⊕ 1 and 3� ¼ 2� ⊕ 1 under SUð2ÞL.
Hence, enlarging known fermion isodoublets (2=2�)
implies dark fermion isosinglets (1’s) lying at the bottom
of 3=3�, such as

ψaL ¼

0
B@

νaL

eaL
NaL

1
CA ∼ 3; QαL ¼

0
B@

dαL
−uαL
DαL

1
CA ∼ 3�;

Q3L ¼

0
B@

u3L
d3L
U3L

�
∼ 3; ð1Þ

where α ¼ 1; 2 is a family index as a ¼ 1; 2; 3 is.
Furthermore, the relevant right-handed partners transform

as SUð3ÞL singlets,

eaR ∼ 1; NaR ∼ 1; uaR ∼ 1;

daR ∼ 1; DαR ∼ 1; U3R ∼ 1: ð2Þ
Above, the ½SUð3ÞL�3 anomaly cancellation requires the

third quark family (as well as those of leptons) transforming
differently from the first two quark families [59–62]. This
condition demands that the number of fermion families
matches that of color. As stated, Na and U3 have a dark
charge D ¼ 1, while Dα possesses a dark charge D ¼ −1,
as all collected in Table I. It is noted that all normal fields
carry no dark charge, i.e., D ¼ 0.1 We further assume Na,
Dα, andU3 possessing an electric chargeQ ¼ 0, −1=3, and
2=3, respectively, like those of the 3-3-1 model with right-
handed neutrinos.2

It is clear that Q ¼ diagð0;−1; 0Þ and D ¼ diagð0; 0; 1Þ
for lepton triplet ψL which both neither commute nor close
algebraically with SUð3ÞL charges. By symmetry princi-
ples, we obtain two new Abelian charges X and G which
complete the gauge symmetry

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞG; ð3Þ

called 3-3-1-1, where SUð3ÞC is the color group, and
SUð3ÞL is previously given, while X, G determine electric
and dark charges, respectively,

Q ¼ T3 −
1ffiffiffi
3

p T8 þ X; D ¼ −
2ffiffiffi
3

p T8 þG; ð4Þ

where Tn (n ¼ 1; 2; 3;…; 8) is the SUð3ÞL charge.
The fermion representation content under the 3-3-1-1

symmetry is given by

ψaL ∼ ð1; 3;−1=3; 1=3Þ; QαL ∼ ð3; 3�; 0;−1=3Þ;
Q3L ∼ ð3; 3; 1=3; 1=3Þ; ð5Þ

eaR ∼ ð1; 1;−1; 0Þ; NaR ∼ ð1; 1; 0; 1Þ;
uaR ∼ ð3; 1; 2=3; 0Þ; ð6Þ

daR ∼ ð3; 1;−1=3; 0Þ; DαR ∼ ð3; 1;−1=3;−1Þ;
U3R ∼ ð3; 1; 2=3; 1Þ: ð7Þ

All the anomalies vanish. Indeed, since the 3-3-1 model is
well established, it is sufficient to verify those associated

1As the standard model, the hypothetical right-handed neu-
trinos νaR are a gauge singlet having neither electric charge nor
dark charge and are thus not imposed; whereas, the other right-
handed fermions must be present, as already included.

2Additionally, these dark leptons and quarks have the same B,
L numbers as usual leptons and quarks, hence B and L are global
charges commuting with SUð3ÞL like those in the standard
model, opposite to the original 3-3-1-1 model.
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with Uð1ÞG,

½SUð3ÞC�2Uð1ÞG
∼
X
quarks

ðGqL −GqRÞ

¼ 2 ⋅ 3 ⋅ ð−1=3Þ þ 3 ⋅ ð1=3Þ − 2 ⋅ ð−1Þ − 1 ¼ 0; ð8Þ
½SUð3ÞL�2Uð1ÞG
∼

X
ðantiÞtriplets

GFL

¼ 3 ⋅ ð1=3Þ þ 2 ⋅ 3 ⋅ ð−1=3Þ þ 3 ⋅ ð1=3Þ ¼ 0; ð9Þ

½Gravity�2Uð1ÞG
∼
X

fermions

ðGfL −GfRÞ

¼ 3 ⋅ 3 ⋅ ð1=3Þ þ 2 ⋅ 3 ⋅ 3 ⋅ ð−1=3Þ þ 3 ⋅ 3 ⋅ ð1=3Þ
− 3 ⋅ 1 − 2 ⋅ 3 ⋅ ð−1Þ − 3 ⋅ 1 ¼ 0; ð10Þ

½Uð1ÞX�2Uð1ÞG
¼
X

fermions

ðX2
fL
GfL − X2

fR
GfRÞ

¼ 3 ⋅ 3 ⋅ ð−1=3Þ2 ⋅ ð1=3Þ þ 3 ⋅ 3 ⋅ ð1=3Þ2ð1=3Þ
− 2 ⋅ 3 ⋅ ð−1=3Þ2 ⋅ ð−1Þ − 3 ⋅ ð2=3Þ2 ⋅ ð1Þ ¼ 0; ð11Þ

Uð1ÞX½Uð1ÞG�2
¼
X

fermions

ðXfLG
2
fL

− XfRG
2
fR
Þ

¼ 3 ⋅ 3 ⋅ ð−1=3Þ ⋅ ð1=3Þ2 þ 3 ⋅ 3 ⋅ ð1=3Þð1=3Þ2
− 2 ⋅ 3 ⋅ ð−1=3Þ ⋅ ð−1Þ2 − 3 ⋅ ð2=3Þ ⋅ ð1Þ2 ¼ 0; ð12Þ

½Uð1ÞG�3¼
X

fermions

ðG3
fL
−G3

fR
Þ

¼ 3 ⋅ 3 ⋅ ð1=3Þ3þ2 ⋅ 3 ⋅ 3 ⋅ ð−1=3Þ3þ3 ⋅ 3 ⋅ ð1=3Þ3
−3 ⋅ ð1Þ3−2 ⋅ 3 ⋅ ð−1Þ3−3 ⋅ ð1Þ3¼ 0: ð13Þ

The 3-3-1-1 symmetry breaking and mass generation are
appropriately induced by

η ¼

0
B@

η01
η−2
η03

1
CA ∼ ð1; 3;−1=3; 1=3Þ; ð14Þ

ρ ¼

0
B@

ρþ1
ρ02
ρþ3

1
CA ∼ ð1; 3; 2=3; 1=3Þ; ð15Þ

χ ¼

0
B@

χ01
χ−2
χ03

1
CA ∼ ð1; 3;−1=3;−2=3Þ; ð16Þ

ϕ ∼ ð1; 1; 0;−2Þ; ξ ∼ ð1; 1; 0; 1Þ: ð17Þ

Here ϕ couples to NRNR, breaks Uð1ÞG, and defines a
dark parity. The fields η, ρ, and χ couple a fermion (anti)
triplet to right-handed partners of the first, second, and
third components, respectively, and break the 3-3-1
symmetry. The scalar ξ analogous to a field in [50]
couples to η†χ and ϕ inducing neutrino mass. Dark
charge for scalars is included in Table I, too. Note that
dark scalars include η3, ρ3, χ1;2, ξ, and ϕ, which have
D ≠ 0, whereas the rest fields, η1;2, ρ1;2, and χ3, are
normal scalars possessing D ¼ 0.
Scalar fields develop vacuum expectation values

(VEVs), such as

hηi ¼

0
B@

uffiffi
2

p

0

0

1
CA; hρi ¼

0
B@

0

vffiffi
2

p

0

1
CA; hχi ¼

0
B@

0

0

wffiffi
2

p

1
CA;

hϕi ¼ Λffiffiffi
2

p ; hξi ¼ 0: ð18Þ

The scheme of symmetry breaking is given by

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞG
↓Λ; w

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ PD

↓u; v

SUð3ÞC ⊗ Uð1ÞQ ⊗ PD:

Here we assume Λ; w ≫ u; v for consistency with the
standard model. In addition to the residual electric and
color charges, the model conserves a residual dark parity,

PD ¼ ð−1ÞD ¼ ð−1Þ− 2ffiffi
3

p T8þG: ð19Þ

TABLE I. Dark charge (D) and dark parity (PD) of the model particles.

Particle νa ea Na ua da Dα U3 η1;2 ρ1;2 χ3 η3 ρ3 χ1;2 ξ ϕ Gluon γ Z Z0 Z00 W X0 Y−

D 0 0 1 0 0 −1 1 0 0 0 1 1 −1 1 −2 0 0 0 0 0 0 −1 −1
PD þ þ − þ þ − − þ þ þ − − − − þ þ þ þ þ þ þ − −
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Indeed, a residual charge resulting from SUð3ÞL ⊗
Uð1ÞX ⊗ Uð1ÞG breaking must take the form R ¼
xnTn þ yX þ zG. R must annihilate the vacua hη; ρ; χi,
i.e., Rhη; ρ; χi ¼ 0, leading to x1 ¼ x2 ¼ x4 ¼ x5 ¼ x6 ¼
x7 ¼ 0, x3 ¼ y, and x8 ¼ − 1ffiffi

3
p ðyþ 2zÞ. Substituting these

x’s we get R ¼ yQþ zD, where Q, D are given as in (4).
Obviously, Q and D commute, i.e., ½Q;D� ¼ 0, implying
that they are separated as two Abelian subgroups.
Additionally, Q annihilates the vacuum hϕi, i.e.,
Qhϕi ¼ 0, implying that Q is a final residual charge,
conserved after breaking. For the remainder, D is broken
by hϕi, since Dhϕi ¼ −2Λ=

ffiffiffi
2

p
≠ 0. However, a residual

symmetry of it, i.e., PD ¼ eiωD, may be survived, i.e.,
PDhϕi ¼ hϕi, or eiωð−2Þ ¼ 1, where ω is a transformation
parameter. It leads to ω ¼ kπ, for the k integer. Hence,
PD ¼ eikπD ¼ ð−1ÞkD ¼ f1; ð−1ÞDg ≅ Z2, for which we
redefine PD ¼ ð−1ÞD to be dark parity as in (19). The dark
parity (odd/even) of particles are collected in Table I, too. It
is stressed that η03, χ

0
1, and ξ do not have a nonzero VEV due

to dark parity conservation.
We now write the total Lagrangian of the model,

L ¼ Lkin þ LYuk − V: ð20Þ

The kinetic part takes the form

Lkin ¼
X
F

F̄ iγμDμF þ
X
S

ðDμSÞ†ðDμSÞ −
1

4

X
A

AμνAμν;

ð21Þ

where F, S, and A denote fermion, scalar, and gauge-boson
multiplets, respectively. The covariant derivative Dμ and

field strength tensors Aμν are explicitly given by

Dμ ¼ ∂μ þ igstnGnμ þ igTnAnμ þ igXXBμ þ igGGCμ;

ð22Þ

Gnμν ¼ ∂μGnν − ∂νGnμ − gsfnmpGmμGpν; ð23Þ

Anμν ¼ ∂μAnν − ∂νAnμ − gfnmpAmμApν; ð24Þ

Bμν ¼ ∂μBν − ∂νBμ; Cμν ¼ ∂μCν − ∂νCμ; ð25Þ

where (gs; g; gX; gG), (Gnμ; Anμ; Bμ; Cμ), and (tn; Tn; X;G)
indicate coupling constants, gauge bosons, and charges
according to 3-3-1-1 subgroups, respectively. Notice that
all gauge bosons have D ¼ 0 behaving as normal fields,
except for X0; Y− coupled to T4;5;6;7 having D ¼ −1 and
acting as dark vectors, which are all listed to Table I, too.
The Yukawa Lagrangian is easily obtained,

LYuk ¼ heabψ̄aLρebR þ hNabψ̄aLχNbR þ 1

2
h0NabN̄

c
aRNbRϕ

þ hdαaQ̄αLη
�daR þ huαaQ̄αLρ

�uaR þ hDαβQ̄αLχ
�DβR

þ hu3aQ̄3LηuaR þ hd3aQ̄3LρdaR þ hU33Q̄3LχU3R

þ H:c: ð26Þ

The scalar potential can be decomposed,

V ¼ Vðρ; χ; η;ϕÞ þ VðξÞ; ð27Þ

where the first part relates to a potential that induces
breaking,

Vðρ; χ; η;ϕÞ ¼ μ21ρ
†ρþ μ22χ

†χ þ μ23η
†ηþ λ1ðρ†ρÞ2 þ λ2ðχ†χÞ2 þ λ3ðη†ηÞ2

þ λ4ðρ†ρÞðχ†χÞ þ λ5ðρ†ρÞðη†ηÞ þ λ6ðχ†χÞðη†ηÞ
þ λ7ðρ†χÞðχ†ρÞ þ λ8ðρ†ηÞðη†ρÞ þ λ9ðχ†ηÞðη†χÞ þ ðfϵijkηiρjχk þ H:c:Þ
þ μ2ϕ†ϕþ λðϕ†ϕÞ2 þ λ10ðϕ†ϕÞðρ†ρÞ þ λ11ðϕ†ϕÞðχ†χÞ þ λ12ðϕ†ϕÞðη†ηÞ; ð28Þ

while the last part relates to a dark sector that induces neutrino mass,

VðξÞ ¼ μ2ξξ
†ξþ λξðξ†ξÞ2 þ λ13ðξ†ξÞðρ†ρÞ þ λ14ðξ†ξÞðχ†χÞ þ λ15ðξ†ξÞðη†ηÞ

þ λ16ðξ†ξÞðϕ†ϕÞ þ ðf1ϕξξþ f2ξη†χ þ λ17ϕ
�ξ�η†χ þ H:c:Þ: ð29Þ

Above, h’s and λ’s are dimensionless, while μ’s and f’s
have a mass dimension. We can consider the parameters f,
f1;2, and λ17 to be real by absorbing their phases (if any)
into appropriate scalar fields η, ρ, χ, ϕ, and ξ. That said, the
potential conserves CP. We also suppose that CP is not

broken by vacua, i.e., the VEVs u, v, w, and Λ are all real,
too. It is further noted that there is neither mixing between
a scalar (CP even) and a pseudoscalar (CP odd) due to
CP conservation nor mixing between a PD-even field and a
PD-odd field due to dark parity conservation.
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III. SCALAR AND GAUGE-BOSON MASSES

A. Scalar mass spectrum

The potential Vðρ; χ; η;ϕÞ has been explicitly examined
in [43]. Let us summarize its result. First, expand the scalar
fields around their VEVs,

η ¼

0
B@

uffiffi
2

p

0

0

1
CAþ

0
BB@

S1þiA1ffiffi
2

p

η−2
S0
3
þiA0

3ffiffi
2

p

1
CCA; ρ ¼

0
B@

0

vffiffi
2

p

0

1
CAþ

0
BB@

ρþ1
S2þiA2ffiffi

2
p

ρþ3

1
CCA;

ð30Þ

χ ¼

0
B@

0

0
wffiffi
2

p

1
CAþ

0
BB@

S0
1
þiA0

1ffiffi
2

p

χ−2
S3þiA3ffiffi

2
p

1
CCA; ϕ ¼ Λffiffiffi

2
p þ S4 þ iA4ffiffiffi

2
p ; ð31Þ

and notice that the following approximations “≃” are
given up to ðu; vÞ=ð−f; w;ΛÞ order. The usual Higgs
field (H) and three new neutral scalars (H1;2;3) are
obtained by

H ≃
uS1 þ vS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p ; H1 ≃
−vS1 þ uS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p ; ð32Þ

H2 ≃ cφS3 − sφS4; H3 ≃ sφS3 þ cφS4; ð33Þ

with mixing angle t2φ ¼ λ11wΛ
λΛ2−λ2w2. The usual Higgs mass is

appropriately achieved at the weak scalemH ∼ ðu; vÞ, while
the new scalar masses are

m2
H1

≃ −
fwffiffiffi
2

p
�
u
v
þ v
u

�
; ð34Þ

m2
H2;3

≃ λ2w2 þ λΛ2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2w2 − λΛ2Þ2 þ λ211w

2Λ2

q
: ð35Þ

A massive pseudoscalar with corresponding mass is
identified as

A ¼ vwA1 þ uwA2 þ uvA3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2v2 þ v2w2 þ u2w2

p ;

m2
A ¼ −

fffiffiffi
2

p
�
vw
u

þ uw
v

þ uv
w

�
: ð36Þ

Two charged scalars are given by

H�
4 ¼ vχ�2 þ wρ�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ w2
p ; H�

5 ¼ vη�2 þ uρ�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p ; ð37Þ

with respective masses,

m2
H4

¼
�
λ7
2
−

fuffiffiffi
2

p
vw

�
ðv2 þ w2Þ;

m2
H5

¼
�
λ8
2
−

fwffiffiffi
2

p
vu

�
ðv2 þ u2Þ: ð38Þ

A neutral complex scalar with corresponding mass is

H00 ≡ S0 þ iA0ffiffiffi
2

p ¼ uχ0�1 þ wη03ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p ;

m2
H0 ¼

�
λ9
2
−

fvffiffiffi
2

p
uw

�
ðu2 þ w2Þ; ð39Þ

where the real S0 ¼ ðwS03 þ uS01Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p
and imaginary

A0 ¼ ðwA0
3 − uA0

1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p
parts of H0 are degenerate

with the same H0 mass.
Except for the usual Higgs mass, all new scalar masses

are given at ðw;Λ;−fÞ scale. For the remaining fields, the
massless Goldstone bosons of neutral gauge fields Z, Z0,
and Z00 are identified as

GZ ¼ uA1 − vA2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p ;

GZ0 ¼ wðu2 þ v2ÞA3 − uvðvA1 þ uA2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ v2Þðu2v2 þ v2w2 þ u2w2Þ

p ;

GZ00 ¼ A4; ð40Þ

while those of charged/complex gauge fields W�, Y�, and
X0 take the form

G�
W ¼ uη�2 − vρ�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p ; G�

Y ¼ wχ�2 − vρ�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ w2

p ;

G0
X ¼ wχ01 − uη0�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ w2
p : ð41Þ

Because hξi ¼ 0, the potential VðξÞ does not affect the
minimum conditions derived from Vðρ; χ; η;ϕÞ as in [43].
In other words, u, v, w,Λ are uniquely given, assuming that
μ2 < 0, μ21;2;3 < 0, λ > 0, λ1;2;3 > 0, and necessary con-
ditions for λ4;5;…;12. Additionally, conservations of dark
parity and electric charge imply that the presence of ξ, i.e.,
VðξÞ, modifies only the mass spectrum of H0 and GX, or
exactly S0 and A0, which includes
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V ⊃
1

2
ð S0 S05 Þ

0
B@ m2

H0

�
f2ffiffi
2

p þ λ17Λ
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p
�

f2ffiffi
2

p þ λ17Λ
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p
m2

ξ þ
ffiffiffi
2

p
f1Λ

1
CA� S0

S05

�

þ 1

2
ðA0 A0

5 Þ

0
B@ m2

H0

�
f2ffiffi
2

p − λ17Λ
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p
�

f2ffiffi
2

p − λ17Λ
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p
m2

ξ −
ffiffiffi
2

p
f1Λ

1
CA� A0

A0
5

�
; ð42Þ

where ξ≡ ðS05 þ iA0
5Þ=

ffiffiffi
2

p
and m2

ξ ≡ μ2ξ þ λ13v2=2þ λ14w2=2þ λ15u2=2þ λ16Λ2=2. Defining two mixing angles

t2θR ¼ ð ffiffiffi
2

p
f2 þ λ17ΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p

m2
ξ þ

ffiffiffi
2

p
f1Λ −m2

H0
; t2θI ¼

ð ffiffiffi
2

p
f2 − λ17ΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p

m2
ξ −

ffiffiffi
2

p
f1Λ −m2

H0
; ð43Þ

we obtain physical fields

R1 ¼ cθRS
0 − sθRS

0
5; R2 ¼ sθRS

0 þ cθRS
0
5; ð44Þ

I1 ¼ cθIA
0 − sθIA

0
5; I2 ¼ sθIA

0 þ cθIA
0
5; ð45Þ

with respective masses

m2
R1;2

¼ 1

2

�
m2

H0 þm2
ξ þ

ffiffiffi
2

p
f1Λ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H0 −m2
ξ −

ffiffiffi
2

p
f1ΛÞ2 þ ð

ffiffiffi
2

p
f2 þ λ17ΛÞ2ðu2 þ w2Þ

q �
; ð46Þ

m2
I1;2

¼ 1

2

�
m2

H0 þm2
ξ −

ffiffiffi
2

p
f1Λ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H0 −m2
ξ þ

ffiffiffi
2

p
f1ΛÞ2 þ ð

ffiffiffi
2

p
f2 − λ17ΛÞ2ðu2 þ w2Þ

q �
: ð47Þ

B. Gauge-boson mass spectrum

The gauge bosons obtain mass from L ⊃P
SðDμhSiÞ†ðDμhSiÞ. Substituting the VEVs, we get

physical non-Hermitian gauge bosons

W�
μ ¼ A1μ ∓ iA2μffiffiffi

2
p ; X0;0� ¼ A4μ ∓ iA5μffiffiffi

2
p ;

Y∓ ¼ A6μ ∓ iA7μffiffiffi
2

p ; ð48Þ

with respective masses

m2
W ¼ g2

4
ðu2 þ v2Þ; m2

X ¼ g2

4
ðu2 þ w2Þ;

m2
Y ¼ g2

4
ðv2 þ w2Þ: ð49Þ

W is identical to that of the standard model and
u2 þ v2 ¼ ð246 GeVÞ2.

Neutral gauge bosons are identified as

Aμ ¼ sWA3μ þ cW

 
−

tWffiffiffi
3

p A8μ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t2W
3

r
Bμ

!
; ð50Þ

Zμ ¼ cWA3μ − sW

 
−
tWffiffiffi
3

p A8μ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t2W
3

r
Bμ

!
; ð51Þ

Z0
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t2W
3

r
A8μ þ

tWffiffiffi
3

p Bμ; ð52Þ

where sW ¼ e=g ¼ ffiffiffi
3

p
tX=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4t2X

p
, with tX ¼ gX=g, is

the sine of the Weinberg angle. The photon Aμ is massless
and decoupled. The Z boson that is identical to that of the
standard model is radically lighter than the Z0 boson of the
3-3-1 model and the C boson of Uð1ÞG. Although Z mixes
with Z0 and C, at ðu; vÞ=ðw;ΛÞ order the field Z is
decoupled as a physical field possessing a mass
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m2
Z ≃

g2

4c2W
ðu2 þ v2Þ: ð53Þ

There remains a mixing between Z0 and C, yielding
physical fields by diagonalization,

Z0 ¼ cθZ0 − sθC; Z00 ¼ sθZ0 þ cθC; ð54Þ

with mixing angle and respective masses,

t2θ ¼
4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ t2X

p
tGw2

4t2Gðw2 þ 9Λ2Þ − ð3þ t2XÞw2
; ð55Þ

m2
Z0;Z00 ¼ g2

18

	
4t2Gðw2þ 9Λ2Þþ ð3þ t2XÞw2

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½4t2Gðw2þ 9Λ2Þ− ð3þ t2XÞw2�2þ 16ð3þ t2XÞt2Gw4

q 

;

ð56Þ

where tG ¼ gG=g.
The above result is similar to that in [43] since the scalar

multiplets have a dark charge value equal to that for B − L.
The difference would be explicitly in the couplings of
Z0; Z00 with matter fields because the normal fermions have
B − L but do not have dark charge. For comparison and
further usage, we compute in Table II the couplings of Z0
with fermions, while those for Z00 can be obtained from Z0
by replacing cθ → sθ and sθ → −cθ.

IV. NEUTRINO MASS

In the 3-3-1-1 model by gauging B − L, the right-handed
neutrinos are required for anomaly cancellation.
Consequently, neutrinos obtain a small mass via canonical
seesaw mechanism, suppressed by large right-handed
neutrino mass scales relating to B − L breaking. In this
kind of model, ordinary lepton doublets may couple to a
scalar and fermions that both are odd under the matter
parity, revealing an interesting possibility for scotogenic
neutrino mass generation alternative to the above canonical
seesaw [47–51]. The issue raised is how to suppress this
canonical seesaw since the B − L breaking scale is not
necessarily large for the latter. Most studies have chosen
B − L charges for right-handed neutrinos to be −4;−4;þ5
which avoids their coupling to usual leptons and Higgs
boson. But one must introduce two scalar singlets coupled
to these right-handed neutrinos in order to make them
appropriately heavy, hence expressing a complicated
Uð1ÞN Higgs sector with two unreasonable pseudo-
Nambu-Goldstone bosons. Additionally, the fermions that
are odd under the matter parity responsible for the
mentioned scotogenic setup are not necessarily present
under the theoretical ground, unlike the unwanted νaR. The
present 3-3-1-1 model by gauging dark charge properly
overcomes such issues. Indeed, νaR are not required by dark
charge anomaly cancellation, thus the canonical seesaw
disappears. Additionally, NaR must be present for dark
charge anomaly cancellation, which are odd under dark
parity and coupled to usual leptons via a scalar triplet. We
introduce only an extra scalar singlet ξ that necessarily
separates the relevant H0 (i.e., S0; A0) mass, yielding a
neutrino mass generation scheme to be more economical
than the previous studies.
First note that charged leptons and every (usual and

exotic) quark gain appropriate masses from the Yukawa
Lagrangian, as usual/similar to the 3-3-1 model. Neutral
fermions obtain a mass matrix of form

LYuk ⊃ −
1

2
ð N̄aL N̄c

aR Þ
 

0 mD
ab

mD
ba mR

ab

!�
Nc

bL

NbR

�
þ H:c:;

ð57Þ

where mD ¼ −hNw=
ffiffiffi
2

p
and mR ¼ −h0NΛ=

ffiffiffi
2

p
are Dirac

and (right-handed) Majorana masses for N, respectively.
We can diagonalize the generic mass matrix, yielding

LYuk ⊃ −
1

2
N̄c

kMkNk; ð58Þ

for k ¼ 1; 2;…; 6, where ðNc
aL; NaRÞ ¼ ðUak; VakÞNk

relates the gauge states to mass eigenstates Nk with mass
eigenvalues Mk.
What is concerning is the neutrino mass generation

Lagrangian that is collected from those in Yukawa

TABLE II. Couplings of Z0 with fermions; additionally, notice
that Z00-fermion couplings derived from this table with replace-
ment cθ → sθ and sθ → −cθ.

f gZ
0

V ðfÞ gZ
0

A ðfÞ
νa

cθc2W
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
sθcWtG

cθc2W
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
sθcWtG

ea cθð1−4s2WÞ
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
sθcWtG

cθ
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
sθcWtG

Na − cθc2Wffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 4
3
sθcWtG − cθc2Wffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2

3
sθcWtG

uα − cθð3−8s2WÞ
6
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sθcWtG − cθ

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sθcWtG

u3 cθð3þ2s2WÞ
6
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
sθcWtG

cθc2W
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
sθcWtG

dα − cθð3−2s2WÞ
6
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sθcWtG − cθc2W

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sθcWtG

d3 cθ
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p
6

− 1
3
sθcWtG

cθ
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
sθcWtG

U − cθð3−7s2WÞ
3
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 4
3
sθcWtG − cθc2Wffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2

3
sθcWtG

Dα cθð3−5s2WÞ
3
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 4
3
sθcWtG

cθc2Wffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 2
3
sθcWtG
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interactions and scalar potential, such as

L ⊃
uhNabVbkffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p ν̄aLðcθRR1 þ sθRR2 − icθI I1 − isθI I2ÞNk

þ whNabVbkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p ν̄aLG0
XNk −

1

2
MkN2

k þ H:c:

−
1

2
m2

R1
R2
1 −

1

2
m2

R2
R2
2 −

1

2
m2

I1
I21 −

1

2
m2

I2
I22; ð59Þ

where we have used χ01 ¼ ðuH00� þwG0
XÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þw2

p
¼

½uðcθRR1þ sθRR2 − icθI I1 − isθI I2Þ=
ffiffiffi
2

p þwG0
X�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þw2

p
and NbR ¼ VbkNk. The neutrino mass generation
Feynman diagram is depicted in Fig. 1 in both flavor basis
(left panel) and mass eigenbasis (right panel). Neutrino
mass is induced in the form of L ⊃ − 1

2
ν̄aLðmνÞabνcbL þ

H:c: in which

ðmνÞab ¼
u2

u2 þ w2

ðhNVÞakðhNVÞbkMk

32π2

0
B@c2θRm

2
R1
ln

M2
k

m2
R1

M2
k −m2

R1

−
c2θIm

2
I1
ln

M2
k

m2
I1

M2
k −m2

I1

þ
s2θRm

2
R2
ln

M2
k

m2
R2

M2
k −m2

R2

−
s2θIm

2
I2
ln

M2
k

m2
I2

M2
k −m2

I2

1
CA: ð60Þ

Remarks are in order:
(1) The divergent one-loop contributions corresponding

to R1;2 and I1;2 are canceled out due to c2θR − c2θIþ
s2θR − s2θI ¼ 0.

(2) For gauge realization of the dark parity (even the
matter parity instead), the relevant inert scalar
doublet ðχ1; χ2Þ may approximate as a Goldstone
mode of a gauge vector doublet ðX; YÞ, i.e.,
ðχ1; χ2Þ ∼ ðGX;GYÞ. Both GX and X do not con-
tribute to neutrino mass since they possess a degen-
erate mass between particle and antiparticle,
opposite to its global versions [58,63].

(3) Contributing to neutrino mass is a scalar singlet η3
that mixes with χ1, thus suppressed by ðu=wÞ2 ∼
10−3 besides the usual loop factor ð1=32π2Þ ∼ 10−3,
another intermediate scalar singlet ξ that connects
to η3, and the singlet mass splittings Δm2=m2 ∼
f1=Λ ∼ f2λ17=Λ, as well as Majorana masses Mk ∼
Λ for Nk, all governed by dark charge breaking field
hϕi ∼ Λ. It translates to

mν ∼
�

hN

10−2

�
2

×

�
f1; f2λ17
GeV

�
× 0.1 eV; ð61Þ

appropriate for the experiment, given that hN ∼ 10−2,
and the soft coupling f1;2 ∼ 1 GeV is not necessarily
small, in contrast to [50]. This is due to a double
suppression between the weak and new physics
scales, ðu=wÞ2.

V. DARK MATTER

Contributing to the scotogenic neutrino masses are two
kinds of dark field, the dark scalars R1;2; I1;2 and the dark
fermions N1;2;…;6. In contrast to the 3-3-1-1 model by
gauging B − L, the dark scalars in the present model are
now separated in mass mR1

≠ mI1 and mR2
≠ mI2 . This

presents interesting coannihilation phenomena between R1

and I1 as well asR2 and I2 that set the relic density, if each of
them is interpreted to be dark matter. Additionally, the dark
scalar mass splitting would avoid dangerous scattering
processes of R1=I1 or R2=I2 with nuclei in direct detection
experiments due to mediators of Z; Z0; Z00. The phenom-
enology of dark scalar candidates is quite analogous to those
studied in the 3-3-1 model with inert multiplets [34,37,38],
which will be skipped. In what follows we assume the dark
fermions containing dark matter, namely, the dark matter
candidate is assigned as N1 which has a mass smaller than

FIG. 1. Neutrino mass generation in the scotoelectroweak theory, where left and right diagrams are given in flavor and mass
eigenbases, respectively.
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otherN’s, dark scalars, and dark vectors. Therefore, thisN1 is
absolutely stabilized by dark parity conservation.
A distinct feature between the 3-3-1-1 model by gauging

B − L and the 3-3-1-1 model by gauging dark charge is
that N1 in the former has B − L ¼ 0, while N1 in the latter
has D ¼ 1 ≠ 0. Therefore, in the present model N1 ¼
U�

a1N
c
aL þ V�

a1NaR has both (left and right) chiral couplings
to Z0; Z00, such as

L ⊃ −
��

gcWcθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p þ gGsθ
3

�
U�

a1Ua1

− gGsθV�
a1Va1

�
N̄1γ

μN1Z0
μ

−
��

gcWsθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p −
gGcθ
3

�
U�

a1Ua1

þ gGcθV�
a1Va1

�
N̄1γ

μN1Z00
μ; ð62Þ

where the terms Va1 (exactly of NaR) exist only in the
present model, which sets the neutrino mass above.
Specially, we will examine the effect of NaR by assuming
kVa1k ≫ kUa1k, i.e., the dark matter N1 ≃ V�

a1NaR, up to

the small term U�
a1N

c
aL, to be most right-handed. Com-

bined with unitarity condition, we have V�
a1Va1 ¼

1 − U�
a1Ua1 ≃ 1 while U�

a1Ua1 ≃ 0, given at the leading
order kUa1k. Equation (62) becomes

L ⊃ gGsθN̄1γ
μN1Z0

μ − gGcθN̄1γ
μN1Z00

μ: ð63Þ
In the early Universe, N1 annihilates to usual fields via
Z0; Z00 portals as in Fig. 2 which set the relic density. Here
the Z0; Z00 couplings with usual fermions (f ¼ ν; e; u; d)
can be found in Table II. It is stressed that there are no
t-channel annihilations exchanged by X, Y dark vectors, in
contrast to [41]. Additionally, the Higgs portal interactions
of N1 with normal matter are small and suppressed.
The dark matter annihilation cross section is computed as

hσviN1
¼ hv2ig4m2

N1

12πc4W

X
f;x;y

gxAðN1ÞgyAðN1ÞNCðfÞ½gxVðfÞgyVðfÞ þ gxAðfÞgyAðfÞ�
ð4m2

N1
−m2

xÞð4m2
N1

−m2
yÞ

; ð64Þ

where x; y ¼ Z0; Z00, NCðfÞ refers to the color number of f,
and gZ

0
A ðN1Þ ¼ sθcWtG and gZ

00
A ðN1Þ ¼ −cθcWtG are given in

the mass basis ofN, as mentioned. The thermal average over
dark matter relative velocity obeys hv2i ¼ 6=xF for xF ¼
mN1

=TF ≃ 20 at freeze-out temperature. Further, the dark
matter relic density can be approximated as ΩN1

h2 ≃
0.1 pb=hσviN1

≃ 0.12, where the last value is given by
experiment [64].
Because N1 is a Majorana particle, it scatters with

quarks in direct detection experiments only through

spin-dependent (SD) effective interaction exchanged by
Z0; Z00 analogous to the diagram in Fig. 2 for f ¼ q, namely,

Leff ⊃
g2

4c2W

X
q;x

gxAðN1ÞgxAðqÞ
m2

x
ðN̄1γ

μγ5N1Þðq̄γμγ5qÞ; ð65Þ

where gxAðN1Þ and gxAðqÞ for x ¼ Z0; Z00 have been given.
The SD cross section determining scattering of N1 with a
target neutron (n) is given by

σSDN1
¼ 3g4m2

n

4πc4W

X
x;y

gxAðN1ÞgyAðN1Þ½gxAðuÞλnu þ gxAðdÞðλnd þ λns Þ�½gyAðuÞλnu þ gyAðdÞðλnd þ λns Þ�
m2

xm2
y

; ð66Þ

where x; y ¼ Z0; Z00, and the fractional quark-spin coeffi-
cients are λnu ¼ −0.42, λnd ¼ 0.85, and λns ¼ −0.88 for
neutrons [65]. Notice that dark matter scattering with
protons leads to a similar bound, which is not of interest.

VI. CONSTRAINING

Because the neutrino masses are governed by hN and
f1;2; λ17, all independent of the gauge portal, the dark

matter observables can appropriately be constrained to be
independent with those for the neutrino.3 Only the supple-
mental conditions that are relevant to dark matter are the
mass regime for weakly interacting massive particle
(WIMP) stability, the collider limit for Z0; Z00 and X, Y

FIG. 2. Fermion dark matter annihilation to normal matter.

3Note that N1 mass that enters dark matter observables can be
induced by a h0N coupling. The other h0N and hN couplings are
sufficient to recover neutrino data.
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masses, and flavor-changing neutral currents (FCNCs),
which will be studied in order.

A. WIMP stability

It is easy to adjust relevant Yukawa couplings and scalar
potential parameters so that N1 is lighter than other dark
fermions and dark scalars. But for dark vectors, we must
impose

mN1
< mX;Y ≃

g
2
w; ð67Þ

where mN1
¼ M1 is the mass of N1 as mentioned and the

last approximation is given at the leading order u; v ≪ w.

B. Collider bound

In our model, Z0 and Z00 couple to leptons and quarks
quite equally (cf. Table II). Hence, the LEPII and LHC
experiments would make similar bounds on these new
gauge bosons, analogous to a sequential Z0 boson that has
the same couplings as the standard model Z boson (see,
e.g., [66,67]). In addition to Z0; Z00, the 3-3-1-1 symmetry
contains two new non-Hermitian gauge bosons X, Y. In
contrast to a sequential W0 boson that possesses the same
couplings as the usual W boson, the gauge fields X, Y are
odd under dark parity and couple only to a dark fermion
and a normal fermion (similarly for scalars and gauge
bosons by themselves). Because of dark parity conserva-
tion, the dark fields like X, Y must be produced in pairs in
particle colliders, in contrast to Z0; Z00 that may be singly
created. It is necessary to consider the LEPII bound for
dilepton signals and then investigate dark matter, dilepton,
and dijet signals at the LHC.

1. LEPII

The LEPII experiment [66] studied possesses eþe− →
ff̄ for f ¼ μ; τ, exchanged by new neutral gauge bosons as
Z0; Z00. Since the LEPII collision energy

ffiffiffi
s

p ¼ 209 GeV is
much smaller than Z0; Z00 masses, such processes can be
best described by effective interactions, obtained by inte-
grating Z0; Z00 out, to be

Leff ⊃
X
x

g2

c2Wm
2
x
½ēγμðaxLðeÞPL þ axRðeÞPRÞe�

× ½f̄γμðaxLðfÞPL þ axRðfÞPRÞf�; ð68Þ

where we label x ¼ Z0; Z00. The chiral couplings defined by
axL;RðfÞ ¼ 1

2
½gxVðfÞ � gxAðfÞ� can directly be extracted from

Table II.
Since the charged leptons possess universal gauge

couplings, we further write

Leff ⊃
X
x

g2½axLðeÞ�2
c2Wm

2
x

ðēγμPLeÞðf̄γμPLfÞ þ ðLRÞ

þ ðRLÞ þ ðRRÞ; ð69Þ

where the last three terms ð� � �Þ differ from the first term
only in chiral structures, where the concerning couplings
are explicitly supplied by

aZ
0

L ðeÞ ¼
cθc2W

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p −
1

3
sθcWtG;

aZ
00

L ðeÞ ¼ aZ
0

L ðeÞjcθ→sθ ;sθ→−cθ : ð70Þ

The LEPII experiment investigated the chiral interaction
types in (69), making several constraints on the effective
couplings. They typically indicate to [68]

X
x

g2½axLðeÞ�2
c2Wm

2
x

¼ g2

c2W

	½aZ0
L ðeÞ�2
m2

Z0
þ ½aZ00

L ðeÞ�2
m2

Z00



<

1

ð6 TeVÞ2 :

ð71Þ

By the way, let us remind the reader that, since the dark
matter mass in our model is beyond the weak scale, the dark
matter cannot be produced (on shell) by heavy mediators
Z0=Z00 or X=Y at the LEPII, as kinematically forbidden.

2. LHC

In contrast to Z0; Z00 that can significantly decay to
normal fields (as well as possible dark fields), the dark
gauge bosons X, Y only decay to a lighter dark field, such
as a dark fermion N,U,D or a dark scalarH4; H0; R1;2; I1;2,
due to dark parity conservation. Since N1 dark matter mass
is limited below the mass of the lightest (labeled V) of X, Y,
we assume V lighter than the remaining dark fermions and
the dark scalars; hence, V decays only to the dark matter.
Since the LHC is indeed energetic, a pair of dark vectors
may be produced as pp → VV�, followed by V; V� decays
to N1 dark matter, such as V → lN1 and V� → lcN1, where
l defines one of usual leptons ðν; eÞ that couples V to N1,
L ⊃ − gffiffi

2
p U�

l1 l̄=VPLNc
1 þ H:c: The LHC searches for dilep-

ton signals llc recoiled against large missing transverse
energy (=ET) carried by a pair of dark matter N1N1. The
dilepton cross section is

σðpp → llc þ =ETÞ ¼ σðpp → VV� → llcN1N1Þ
¼ σðpp → VV�Þ × BrðV → lN1Þ
× BrðV� → lcN1Þ; ð72Þ

with the help of narrow width approximation, where
BrðV → lN1Þ ¼ BrðV� → lcN1Þ ¼ 1, as given. The proc-
ess pp → VV� proceeds through s-channel contributions
by γ; Z; Z0; Z00 and t-channel contributions by U, D,
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which conserves unitarity. However, the cross section
σðpp → VV�Þ is dominantly governed by γ, Z, because
V ¼ ðX0; Y−Þ transforms nontrivially under the electro-
weak symmetry as ð2;−1=2Þ, whereas the new mediators
ðZ0; Z00Þ and ðU;DÞ only remove unphysical contributions
coming from bad behavior of V at high energy and are
subdominant, given that all Z0; Z00; U;D are above 1 TeV
(cf. [69]). Hence, the cross section is given at quark level as

σðqqc → VV�Þ≃ πα2

36E2

�
1−

m2
V

E2

�
3=2

×

�
Q2

qQ2
V þQqQVvqvV

s2Wc
2
W

þ ðv2q þ a2qÞv2V
s4Wc

4
W

�
;

ð73Þ

where the energy of incident quark is E¼ 1
2

ffiffiffi
s

p
>mV ≫mZ.

The Z-quark couplings are vq ¼ T3q − 2s2WQq and
aq ¼ T3q, while the Z-V coupling is vV ¼ T3V − s2WQV .
We denote Qq;V and T3q;V as electric charge and weak
isospin of q, V, respectively. This cross section obeys the
equivalence theorem, σðqqc → VV�Þ ≃ σðqqc → GVG�

VÞ,
where GV is the Goldstone boson associated with V; or, in
other words, V is identical to GV at high energy. This
longitudinal mode GV has the same statistic and gauge
quantum numbers with a hypothetical left-handed slepton
(l̃) in supersymmetry (SUSY), i.e., σðqqc → VV�Þ≃
σðqqc → l̃l̃�Þ. The LHC [70] have studied slepton-pair
production, then decaying to dilepton plus missing energy,
i.e., pp → l̃l̃� → llcχ̃01χ̃

0
1, assuming Brðl̃ → lχ̃01Þ ¼ 1, mak-

ing a bound for charged slepton mass ml̃ > 700 GeV. The
SUSY result applies to our case without change, i.e.,

mV > 700 GeV; or w ¼ 2

g
mV > 2.15 TeV; ð74Þ

for g ¼ 0.652. That said, the equivalence theorem justifies
high energy behavior of V as a well-studied slepton,
predicting its mass bound, as given.
The LHC searches for jet signals recoiled against large

missing energy (=ET) carried by a pair of dark matter,
putting strong constraints on interactions between quarks
and dark matter mediated by a new neutral gauge boson. In
this model, both Z0; Z00 contribute to the process, where
notice that mZ0 < mZ00 . As will be seen, the N1 dark matter
observables are strictly set by one of the Z0; Z00 mass
resonances, either mN1

¼ 1
2
mZ0 or mN1

¼ 1
2
mZ00. For the

latter with Z00 resonance, Z00 decay to dark matter is strongly
suppressed by a phase space factor ð1 − 4m2

N1
=m2

Z00 Þ3=2 ∼
10−3 since Z00 has purely axial-vector coupling to N1, i.e.,
gZ

00
V ðN1Þ ¼ 0. Additionally, Z0 decay to dark matter is
kinematically forbidden, because of mZ0 < 2mN1

. Since
gZ

00
A ðN1Þ ¼ −cθcWtG is similar in size to usual fermion

couplings in Table II, the monojet cross section is propor-
tional to

σðpp → jþ =ETÞ ∼ ½ðgZ00
V ðqÞÞ2 þ ðgZ00

A ðqÞÞ2�
× ð1 − 4m2

N1
=m2

Z00 Þ3=2; ð75Þ

suppressed by 10−3, presenting a negligible signal strength
(cf. [71]). For the former with Z0 resonance, Z0 negligibly
contributes to the monojet cross section, analogous to Z00 in
the latter case. However, Z00 now decays to a pair of dark
matter, because of mZ00 > 2mN1

. In this case, the monojet
cross section is proportional to

σðpp → =ET þ jÞ ∼ ðgZ00
V ðqÞÞ2 þ ðgZ00

A ðqÞÞ2: ð76Þ

Reference [71] used a simplified dark matter model, in
which an axial-vector mediator ZA couples to a Dirac dark
matter χ by gχ ¼ 1 and universally to quarks by gq ¼ 1=4,
making a bound mZA

> 2 (1.5) TeV for mχ just above the
weak scale (600 GeV) and relaxing for mχ > 600 GeV.
Assuming tG ∼ 1 ∼ tθ, this result is possibly applied to the
present model without change, since the Z00 couplings to
quarks and dark matter possess quite the same sizes as
the simplified dark matter model. That said, the monojet
search bounds mZ00 > 1.5–2 TeV for N1 mass beyond
the weak scale but below 600 GeV, while it relaxes for
mN1

> 600 GeV. Since the dark matter observables are
necessarily governed by Z0 resonance demanding mZ00 >
2mN1

≃mZ0 beyond few TeV, the bound corresponding to
the low dark matter mass regime mN1

< 600 GeV does not
apply. Thus, this kind of bound is automatically satisfied by
dark matter physics, which need not be further imposed.
Alternative to the invisible decays to dark matter, Z0; Z00

can effectively decay to standard model particles, giving
rise to promising signals at the LHC, such as dilepton and
dijet, examined in order. Since Z0 and Z00 interact with usual
fermions similar in strength, a search designed at the LHC
that bounds Z0 does so for Z00, because of mZ0 < mZ00 .
Notice that the LHC searches only for a single new neutral
gauge boson. Hence, it is sufficient to study the LHC bound
for Z0, while the Z00 mass is possibly separated from that of
Z0. There are two alternative cases that make Z00 decoupled,
either (i) Λ ≫ w that reduces the 3-3-1-1 model to the
relevant 3-3-1 model whose Z0 bound is well studied, or
(ii) w ≫ Λ that reduces the 3-3-1-1 model to the standard
model plus the D dark charge whose interpretation will be
further investigated in Sec. VII. There remains a generic
case according to w ∼ Λ for which the Z0 − Z00 mixing is
finite and dependent on ðw;ΛÞ. In this case, the Z0 bound
must depend on this mixing, i.e., ðw;ΛÞ, but Z00 always
obeys such bound, since mZ0 < mZ00 .
The cross section that produces a final state of dilepton

(ll̄) or dijet (uū, dd̄) at the LHC via Z0 exchange can be
evaluated by narrow width approximation,
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σðpp → Z0 → ff̄Þ ¼ 1

3

X
q

dLqq̄

dm2
Z0
σ̂ðqq̄ → Z0ÞBrðZ0 → ff̄Þ;

ð77Þ
where we define f ¼ ðl; u; dÞ, and the luminosity
dLqq̄=dm2

Z0 can be obtained from [72] for the LHC withffiffiffi
s

p ¼ 13 TeV or higher energy if relevant. The partonic
peak cross section σ̂ðqq̄ → Z0Þ and the branching decay
ratio BrðZ0 → ff̄Þ ¼ ΓðZ0 → ff̄Þ=Pf0 ΓðZ0 → f0f̄0Þ are
given, respectively, by

σ̂ðqq̄ → Z0Þ ¼ πg2

12c2W

h
ðgZ0

V ðqÞÞ2 þ ðgZ0
A ðqÞÞ2

i
; ð78Þ

ΓðZ0 → f0f0Þ ¼ g2mZ0

48πc2W
NCðf0Þ

h
ðgZ0

V ðf0ÞÞ2 þ ðgZ0
A ðf0ÞÞ2

i
;

ð79Þ
where we denote f0 to be all standard model fermions
ðν; e; u; dÞ, which contain the product f and neutrinos ν. In
the total width, we exclude decays Z0 → N1N1 and other
new particles, which mostly include dark fields heavier
than N1, which either do not significantly modify the signal
strength or are kinematically suppressed. For each value
of Λ as in Table III, w is extracted as a function of mZ0

from (56). Substituting this w to (55), the mixing angle θ is
given as a function of mZ0 . Hence, demanding the dilepton
cross section σðpp → Z0 → ll̄Þ satisfies both the latest
ATLAS [73] and CMS [74] constraints taking width per
resonance mass to be 3% and 0.6%, respectively. We obtain
a Z0 bound according to each Λ, as collected in Table III.
This Z0 bound gives a corresponding w value, as listed in
Table III, too. We have used s2W ¼ 0.231, α ¼ 1=128, and
tG ¼ gG=g ¼ 1. It is clear that whenΛ is as large as 50 TeV,
mZ0 approaches a bound 4.133 TeV close to that of the 3-3-
1 model [75]. Vice versa, when w is as large as 50 TeV,mZ0

tends to a bound 3.39 TeVas the dark gauge boson, detailed
below. Alternatively, demanding the dijet cross section
σðpp → Z0 → qq̄Þ obeys the latest ATLAS bound for σ ×
A × Br taking kinematic acceptance A ≃ 0.4 [76]. Further,
we need only compare the largest dijet cross section with
experiment, which comes from the decay mode with q ¼ b,

i.e., Z0 → bb̄. Hence, we find a Z0 mass limit corresponding
to each value of Λ, which subsequently translates to a
relevant w value, as all collected in Table IV. It is stressed
that when Λ is as large as 50 TeV, the Z0 mass approaches
that limit of the 3-3-1 model, mZ0 ≃ 1.3201 TeV. Vice
versa, when Λ is as small as 3.89 TeV, which is similar to w
size, it slightly modifies this 3-3-1 bound down to
1.2938 TeV, since the quark couplings to Z0 are not very
sensitive to the Z0-Z00 mixing. Below Λ ¼ 3.89 TeV, there
is neither available data nor any bound for Z0 because the
predicted dijet cross section is negligible. Last, but not
least, since the Z0-quark and Z0-lepton couplings have quite
the same magnitude, as well as the fact that the current
bound on dijet signals is less sensitive than that of dilepton
signals, the lower bound for Z0 mass implied by the dijet
search is quite a bit smaller than that arising from the
dilepton search, as given.
The projected high-luminosity and high-energy LHC as

well as the Future Circular Collider will make a stronger
bound for Z0; Z00 masses, if no positive signal for Z0; Z00 is
found. Since such future colliders supply the strongest limit
among the others for Z0; Z00, the dark matter physics
governed by Z0; Z00 interpreted below may be changed.
However, this assumption (for negative Z0; Z00 search and
its implication) is indeed out of the scope of this work, a
task to be published elsewhere. Here, let us attract the
reader’s attention to a detailed study on this matter in the
relevant 3-3-1 model [75].

C. FCNCs

1. FCNCs coupled to new neutral gauge bosons

Since quark families transform differently under the
gauge symmetry, there must be FCNCs coupled to

TABLE III. LHC dilepton bound for Z0 gauge-boson mass according to each value of Λ, where the relevant w value is supplied with
respect to the Z0 mass limit, where all values are given in TeV.

Λ 3.89 3.9 4 4.3 4.7 5 5.4 6 7 9

mZ0 3.392 3.397 3.390 3.415 3.547 3.659 3.734 3.803 3.872 3.997
w 50.098 47.163 24.442 15.92 14.214 13.774 12.921 12.088 11.37 10.974

Λ 11 13 15 17 19 23 27 31 35 50

mZ0 4.047 4.072 4.091 4.104 4.110 4.116 4.122 4.124 4.126 4.133
w 10.774 10.662 10.605 10.571 10.539 10.495 10.476 10.46 10.45 10.441

TABLE IV. LHC dijet bound for Z0 gauge-boson mass corre-
sponding to each value of Λ, which yields a relevant value for w
too, where all values are defined in TeV.

Λ 3.89 5 10 20 30 40 50

mZ0 1.2938 1.2996 1.3158 1.3196 1.3200 1.3200 1.3201
w 3.406 3.360 3.337 3.331 3.329 3.328 3.328
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Z0; Z00. They arise from the gauge interaction,

L ⊃ −gF̄γμ½T3A3μ þ T8A8μ þ tXðQ − T3 þ T8=
ffiffiffi
3

p
ÞBμ

þ tGðDþ 2T8=
ffiffiffi
3

p
ÞCμ�F; ð80Þ

where we have substituted X, G from (4). It is noted that all
leptons and exotic quarks do not flavor change, while the
couplings of Q, T3, and D always conserve flavors, due to
dark parity conservation. What remains is only usual
quarks coupled to T8,

L ⊃ −gq̄LγμTq8qLðA8μ þ tX=
ffiffiffi
3

p
Bμ þ 2tG=

ffiffiffi
3

p
CμÞ

⊃ q̄0iLγ
μq0jLðV�

qLÞ3iðVqLÞ3jðg0Z0
μ þ g00Z00

μÞ; ð81Þ
which flavor changes for i ≠ j (i, j ¼ 1; 2; 3). Above, q
denotes either u ¼ ðu1; u2; u3Þ or d ¼ ðd1; d2; d3Þwhose T8

value is Tq8¼ 1

2
ffiffi
3

p diagð−1;−1;1Þ. Additionally, q0 defines
mass eigenstates, either u0 ¼ ðu; c; tÞ or d0 ¼ ðd; s; bÞ,
related to gauge states by qL;R ¼ VqL;Rq0L;R which diago-
nalizes relevant quarkmassmatrices. The g0; g00 couplings are

g0 ¼ 2

3
gGsθ −

gcθcWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p ; g00 ¼ g0ðcθ → sθ; sθ → −cθÞ:

ð82Þ
For convenience, we rewrite the couplings in (81) as

L ⊃ ΘZ0
ij q̄

0
iLγ

μq0jLZ
0
μ þ ΘZ00

ij q̄
0
iLγ

μq0jLZ
00
μ; ð83Þ

whereΘZ0
ij ¼g0ðV�

qLÞ3iðVqLÞ3j andΘZ00
ij ¼g00ðV�

qLÞ3iðVqLÞ3j.
Integrating Z0; Z00 out, we obtain an effective Hamiltonian
contributing to the relevant meson mixing,

HG
eff ¼ ðq̄0iLγμq0jLÞ2

�ðΘZ0
ij Þ2

m2
Z0

þ ðΘZ00
ij Þ2

m2
Z00

�
∼

1

m2
Z0;Z00

: ð84Þ

Aligning the quark mixing to down quark sector, i.e.,
VuL ¼ 1, it implies VdL ¼ VCKM. Given that the new
physics effect dominantly arises from the above effective
interaction, the existing data on neutral meson mixings
K0-K̄0 and B0

d;s-B̄
0
d;s give quite the same bounds on the new

physics. Indeed, the mixing systems K0-K̄0, B0
d-B̄

0
d, and

B0
s-B̄0

s constrain

ðΘZ0
12Þ2

m2
Z0

þ ðΘZ00
12Þ2

m2
Z00

<
1

ð104 TeVÞ2 ; ð85Þ

ðΘZ0
13Þ2

m2
Z0

þ ðΘZ00
13Þ2

m2
Z00

<
1

ð500 TeVÞ2 ; ð86Þ

ðΘZ0
23Þ2

m2
Z0

þ ðΘZ00
23Þ2

m2
Z00

<
1

ð100 TeVÞ2 ; ð87Þ

respectively [77]. The Cabibbo-Kobayashi-Maskawa (CKM)
elements are given by ðVdLÞ31¼0.00857, ðVdLÞ32¼0.04110,

and ðVdLÞ33 ¼ 0.999118 [64]. This leads to

g02

m2
Z0
þ g002

m2
Z00

<
1

ð3.52 TeVÞ2 ;
1

ð4.28 TeVÞ2 ;

and
1

ð4.11 TeVÞ2 ; ð88Þ

according to the above meson mixings, respectively. In what
follows, a bound 4 TeV is applied, i.e., ðg0=mZ0 Þ2 þ
ðg00=mZ00 Þ2 < ð1=4 TeVÞ2, without loss of generality.
Remarks are in order. (i) If Λ ≫ w, Z00 is superheavy

with mass mZ00 ≃ 2gGΛ ≃ −3g00Λ, while Z0 obtains a mass
mZ0 ≃ gcWw=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
≃ −g0w at w scale, note that the

mixing angle θ ≃ 0. The FCNC bound is translated to
w > 4 TeV, realizing a 3-3-1 symmetry at this energy, as
usual [where Uð1ÞG is decoupled]. (ii) If w ≫ Λ, Z00 is
superheavy with mass at w scale, Z0 gets a mass at Λ scale.
In this case, the mixing angle approaches tθ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
3þ t2X

p
=

ð2tGÞ¼3cW=ð2tG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4s2W

p
Þ, where sW ¼ ffiffiffi

3
p

tX=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ4t2X

p
is previously given, such that g0 ≃ 0, while g00 ≃
−2gG=ð3cθÞ ≠ 0. That said, ðg0=mZ0 Þ2 þ ðg00=mZ00 Þ2 → 0,
implying that there are neither FCNCs at this limit w ≫ Λ
nor a bound on Λ, realizing a dark symmetry Uð1ÞD with a
potential light dark gauge boson (where the 3-3-1-1
symmetry is decoupled, broken down to the standard
model and the dark charge).
The FCNCs may arise from interactions of fermions with

scalars, potentially modifying the above result. In what
follows, the contribution of scalars to FCNCs is evaluated.

2. FCNCs coupled to neutral scalars and pseudoscalars

According to Table I, the normal scalars, which are PD
even, potentially couple to FCNCs including two doublets
ðη1; η2Þ and ðρ1; ρ2Þ as well as two singlets χ3 and ϕ. Notice
that the dark scalars η3, ρ3, χ1;2 and ξ are PD odd, not
coupled to FCNCs. Further, the contributions of χ3 and ϕ to
FCNCs are suppressed by ðu; vÞ=ðw;ΛÞ as compared to
those by η1;2 and ρ1;2 and are thus negligible. On the other
hand, the interactions of usual leptons with neutral scalars
do not flavor change. Hence, the FCNC significantly comes
from the couplings of usual quarks with the two scalar
doublets, such as

LYuk ⊃ hdαaQ̄αLη
�daRþhd3aQ̄3LρdaRþhuαaQ̄αLρ

�uaR
þhu3aQ̄3LηuaRþH:c:

⊃ hdαad̄αL
uþS1− iA1ffiffiffi

2
p daRþhd3ad̄3L

vþS2þ iA2ffiffiffi
2

p daR

−huαaūαL
vþS2− iA2ffiffiffi

2
p uaRþhu3aū3L

uþS1þ iA1ffiffiffi
2

p uaR

þH:c:

⊃−q̄LmqqRþ q̄LΓH
q qRHþ q̄LΓ

H1
q qRH1þ q̄LiΓA

q qRA

þH:c:; ð89Þ
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where q is either u ¼ ðu1; u2; u3Þ or d ¼ ðd1; d2; d3Þ, while
the physical scalar fields H, H1, and A are related to S1;2
and A1;2, such as�

H

H1

�
≃
�

cβ sβ
−sβ cβ

��
S1
S2

�
;

�
A

GZ

�
≃
�

cβ sβ
−sβ cβ

��
A2

A1

�
; ð90Þ

where tβ ≡ v=u [notice that the approximations are gov-
erned by −f ∼ ðw;ΛÞ ≫ ðu; vÞ, as all supplied in the scalar
sector above].
The mass matrices of down- and up-type quarks are

given by

ðmdÞαa ¼ −hdαau=
ffiffiffi
2

p
; ðmdÞ3a ¼ −hd3av=

ffiffiffi
2

p
; ð91Þ

ðmuÞαa ¼ huαav=
ffiffiffi
2

p
; ðmuÞ3a ¼ −hu3au=

ffiffiffi
2

p
: ð92Þ

Additionally, the couplings Γ’s take the form

ðΓH
d Þαa ¼ hdαacβ=

ffiffiffi
2

p
; ðΓH

d Þ3a ¼ hd3asβ=
ffiffiffi
2

p
; ð93Þ

ðΓH
u Þαa ¼ −huαasβ=

ffiffiffi
2

p
; ðΓH

u Þ3a ¼ hu3acβ=
ffiffiffi
2

p
; ð94Þ

from which the remaining couplings are followed, ΓH1
q ¼

ΓH
q ðcβ → −sβ; sβ → cβÞ, ΓA

d ¼ ΓH
d ðcβ → −sβ; sβ → cβÞ,

and ΓA
u ¼ ΓH

u ðcβ → sβ; sβ → −cβÞ. It is clear that ΓH
q ¼

−mq=vw for q to be either up- or down-type quarks, where

vw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
¼ 246 GeV is the weak scale. Hence,

there is no FCNC associated with the standard model
Higgs field H, in contradiction to [78]. Note that mq is
diagonalized by V†

qLmqVqR ¼ mq0 to be a diagonal matrix
of either up- or down-type quark masses, where VqL;R and
q0 were previously defined. It is straightforward to derive
mq ¼ VqLmq0V

†
qR, thus

hdαa ¼ −
ffiffiffi
2

p

u
ðVdLmd0V

†
dRÞαa; hd3a ¼ −

ffiffiffi
2

p

v
ðVdLmd0V

†
dRÞ3a;
ð95Þ

huαa ¼
ffiffiffi
2

p

v
ðVuLmu0V

†
uRÞαa; hu3a ¼ −

ffiffiffi
2

p

u
ðVuLmu0V

†
uRÞ3a;
ð96Þ

used for determining ΓH1
q and ΓA

q as a function of (VqR,tβ)
since VqL is related to the CKM matrix as previously
supposed.
The FCNC is coupled/governed only by H1;A, such as

LYuk ⊃ ΘH1

ij q̄
0
iLq

0
jRH1 þ iΘA

ij q̄
0
iLq

0
jRAþ H:c:; ð97Þ

where ΘS
ij ¼ ðV†

qLΓS
qVqRÞij for S ¼ H1;A (notice i ≠ j).

With the aid of unitarity conditions for VqL and VqR as well
as relations (95) and (96) for Yukawa couplings, we derive

ΘH1

ij ¼ ΘA
ij ¼ −

vwmd0j

uv
ðV�

dLÞ3iðVdLÞ3j; ð98Þ

for down quarks, while

−ΘH1

ij ¼ ΘA
ij ¼ −

vwmu0j

uv
ðV�

uLÞ3iðVuLÞ3j ð99Þ

for up quarks, which all are independent of VqR, as
expected. Integrating the heavy fields H1 and A out we
obtain an effective Hamiltonian,

HS
eff ¼ −ðq̄0iLq0jRÞ2

"
ðΘH1

ij Þ2
m2

H1

−
ðΘA

ijÞ2
m2

A

#

− ðq̄0iRq0jLÞ2
"
ðΘH1�

ji Þ2
m2

H1

−
ðΘA�

ji Þ2
m2

A

#

− 2ðq̄0iLq0jRÞðq̄0iRq0jLÞ
"
ΘH1

ij Θ
H1�
ji

m2
H1

−
ΘA

ijΘA�
ji

m2
A

#

∼
1

m2
H1

−
1

m2
A

; ð100Þ

where the coefficient “2” arises from two equal contributions,
ðLRÞðRLÞ and ðRLÞðLRÞ. Because of ðu; vÞ ≪ ð−f; w;ΛÞ,
the H1 and A mass splitting is small, given at weak scale
(cf. the scalar section above). That said, the scalar contribu-
tion 1=m2

H1
− 1=m2

A ∼ ðu; vÞ2=f2w2 is at order ðu; vÞ2=w2 ∼
10−2 − 10−3 small compared to that of the gauge contribu-
tion (84).
To see explicitly the strong suppression of scalar con-

tribution, we consider the new physics contributions to
neutral meson mixings K0-K̄0 and B0

d;s-B̄
0
d;s generically

coming from the new neutral gauge (84) and the new
neutral scalar (100), such as

Heff ¼ HG
eff þHS

eff

¼ ½ðVqLÞ3iðVqLÞ3j�2
	�

g02

m2
Z0
þ g002

m2
Z00

�
ðq̄0iLγμq0jLÞ2 −

v2w
u2v2

�
1

m2
H1

−
1

m2
A

�

×

�
m2

q0j
ðq̄0iLq0jRÞ2 þm2

q0i
ðq̄0iRq0jLÞ2 þ 2mq0i

mq0j
ðq̄0iLq0jRÞðq̄0iRq0jLÞ

�

; ð101Þ
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assuming the effective couplings to be real, without loss of generality. This yields the mass difference for K0-K̄0 mixing
systems as

ΔmK ¼ 2ℜhK0jHeff jK̄0i; ð102Þ

where ðq0i; q0jÞ ¼ ðd; sÞ. With the aid of the hadronic matrix elements [79], i.e.,

hK0jðd̄LγμsLÞ2jK̄0i ¼ 1

3
mKf2K; ð103Þ

hK0jðd̄LsRÞ2jK̄0i ¼ hK0jðd̄RsLÞ2jK̄0i ¼ −
5

24

�
mK

ms þmd

�
2

mKf2K; ð104Þ

hK0jðd̄LsRÞðd̄RsLÞjK̄0i ¼
�
1

24
þ 1

4

�
mK

ms þmd

�
2
�
mKf2K; ð105Þ

we obtain

ΔmK ≃mKf2K½ðVdLÞ31ðVdLÞ32�2
�
2

3

�
g02

m2
Z0
þ g002

m2
Z00

�
þ v2wm2

K

12u2v2

�
5 − 22

md

ms

��
1

m2
H1

−
1

m2
A

��
: ð106Þ

Concerning the B0
d;s-B̄

0
d;s mixing systems, we achieve

similar expressions for ΔmBd
and ΔmBs

by replacing
ðq0i; q0jÞ ¼ ðd; bÞ and ðs; bÞ, respectively. Since u ∼ v, the
coefficient of 1=m2

H1
− 1=m2

A is significantly below that (i.e.,
2=3) of Z0; Z00. Even taking one of u, v as small as
mK;Bd;s

∼ 1 GeV, such coefficient is less thanOð1Þ, because
of v2wm2

K;Bd;s
=12u2v2 ∼ 0.1 and the associated factor

5 − 22mq0i
=mq0j

∼ 5. The scalar contribution is strongly sup-

pressed due to the H1;A mass degeneracy, as ascertained
above.

3. Remarks on natural flavor conservation principle

The 3-3-1-1 gauge symmetry by itself allows the soft
term fϵijkηiρjχk in the scalar potential. That said, the soft
coupling f naturally picks up a value to be the largest scale
in the theory, −f ∼ ðw;ΛÞ, since it is not suppressed by the
symmetry. In thisway, there is no tree-level FCNCcoupled to
the standard model Higgs boson. Additionally, although
there exist tree-level FCNCs coupled to the new Higgs
H1;A, their contributions to neutral meson mixing ampli-
tude are canceled out as strongly suppressed by ðu; vÞ2=
ðw;ΛÞ2, in similarity to the contributions of H2;3 contained
in χ3;ϕ.
That said, there is no flavor-changing t-quark decay,

such as t → cH and t → uH, present in the model. Such
processes also do not occur by emitting a new Higgs boson
instead of H, since all the new Higgs fields have a mass at
w,Λ scale beyond tmass, given that the potential parameter
−f ∼ ðw;ΛÞ as used throughout the text.
The 3-3-1-1 gauge principle as presented for suppressing

dangerous FCNCs associated with scalars is indeed a

realization/extension of a natural flavor conservation prin-
ciple hypothesized long ago in [80]. The completion of the
proof for FCNC suppression in the gauge sector can be
found in our recent work [81].
Last, but not least, requiring a tree-level FCNC coupled

to the Higgs boson, as well as relevant flavor-changing
top-quark decay phenomenology, necessarily violates the
3-3-1-1 suppression principle. The first work of Ref. [78]
would fine-tune the soft parameter f to be low, somewhat
as f ∼ ðu; vÞ2=w ∼ 1–10 GeV, at scale of the triplet scalar
VEV in the type II seesaw mechanism. The second work of
Ref. [78] introduced a Peccei-Quinn symmetry to suppress
the coupling fηρχ but allow it to be generated by a very
large scalar, i.e., f ¼ λΦhΦi, where Φ carries a Peccei-
Quinn charge broken by hΦi ∼ 1010 GeV. But it is hard to
understand an uncharacteristically small value λΦ ∼ 10−9 −
10−10 (which obeys f ¼ 1–10 GeV), imposed in the
mentioned work.

D. Numerical estimation

As before, we take s2W ¼ 0.231, α ¼ 1=128, and tG ¼ 1,
hence tX ¼ ffiffiffi

3
p

sW=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3− 4s2W

p
≃ 0.577 and gG ¼ g¼ 0.652.

It is clear from (55) and (56) that the Z0 − C mixing
angle θ and the Z0; Z00 masses mZ0;Z00 depend only on the
two new physics scales, w, Λ. Hence, the constraints (71)
and (88) each directly yield a bound on ðw;ΛÞ, as
depicted in Fig. 3. Such a bound depends infinitesimally
on tG, i.e., the strength of the dark coupling gG, if it
varies. This is due to the fact that ordinary leptons and
quarks have zero dark charge and the effects come only
from small mixings. As already evaluated, when Λ is
large, the FCNC is governed by w; conversely, when Λ is
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small, it does not contribute to FCNC, since g0 → 0. It
follows that the FCNC bound is set by w almost as the
vertical line in the parameter space regime of interest,
opposite to the LEPII that has a lower bound on Λ. We
also include in this figure (Fig. 3) the relevant bounds
coming from LHC llc þ =ET , LHC dilepton, and LHC
dijet searches, as previously obtained. It is stressed that
the LHC dilepton makes the strongest constraint on
ðw;ΛÞ, even larger than the FCNC bound for w and
than the LEPII bound for Λ, which is necessarily taken
into account for neutrino mass and dark matter.
To proceed further, the FCNC and collider constraints

under consideration yield three distinct new physics
regimes, such as the following:
(1) 3-3-1 regime—the topmost regime in Fig. 3: In

the limit Λ → ∞ (or Λ ≫ w), we obtain a bound
w ¼ 10.422 TeV by the LHC dilepton (radically
bigger than the relevant FCNC bound w ¼ 4 TeV,
as mentioned). In this case, Z00 is superheavy and
decoupled from the 3-3-1 particle spectrum,
while the Z0 mass is correspondingly limited by
mZ0 ¼ 4.135 TeV. The 3-3-1 non-Hermitian gauge
bosons X, Y take a corresponding mass bound
mX;Y ≃ ðg=2Þw ≃ 3.397 TeV comparable to Z0, but
larger than the LHC llc þ =ET bound. All these
Z0; X; Y bounds that are implied by the LHC for
the relevant 3-3-1 model have been well established
in the literature (see, e.g., [75]).

(2) Dark physics regime—the rightmost regime in
Fig. 3: In the limit w → ∞ (or w ≫ Λ), we achieve
a bound Λ ¼ 3.854 TeV by the LHC dilepton
(significantly larger than the relevant LEPII bound
Λ ¼ 0.3 TeV). In this case, Z00 and most of new
particles are superheavy and decoupled from the
standard model particle spectrum, except for the
residual Uð1ÞD symmetry and its relevant physics,
whose Z0 dark gauge-boson mass is correspondingly

limited by mZ0 ¼ 3.388 TeV. All these ingredients
will be examined in detail in Sec. VII.

(3) 3-3-1-1 regime—the rectangle regime in Fig. 3, as
enlarged for clarity: In the case ofw ∼ Λ, both Z0 and
Z00 effectively govern the new physics. We fix
benchmark values to be ðw;ΛÞ ¼ ð12.088; 6Þ or
(15.92,4.3), which translate to ðmZ0 ; mZ00 Þ ¼
ð3.803; 9.866Þ or (3.415,10.37), respectively, where
all values are given in TeV, following Table III.
This case belongs to the main interest of the work,
which is subsequently studied in the rest of this
section.

Using the parameter values and the last case, as
given above, we plot the dark matter relic density
(cf. Sec. V) as a function of the dark matter mass as in
Fig. 4 (solid curves). It is stressed that the Z0; Z00 mass
resonances (left, right funnels in each panel, respectively)
are necessary to set the correct relic density, ΩN1

h2 ≤ 0.12
(dashed lines). For the case ðw;ΛÞ ¼ ð12.088; 6Þ TeV,
the Z0 resonance mN1

¼ mZ0=2 plays the role, yielding
mN1

¼ 1.86–1.95 TeV for the correct abundance, whereas
the Z00 resonance is excluded by the WIMP unstable
regime (shaded), namely, mN1

< 3.94 TeV. However, for
the case ðw;ΛÞ ¼ ð15.92; 4.3Þ TeV, both the resonances

FIG. 3. New physics scales ðw;ΛÞ bounded by LEPII, LHC
llc þ =ET , LHC dijet, FCNC, and LHC dilepton (corresponding
curves arranged from left to right).

FIG. 4. Dark matter relic density plotted as function of its mass
according to two cases: w ¼ 12.088 and Λ ¼ 6 TeV (upper);
w ¼ 15.92 and Λ ¼ 4.3 TeV (lower).
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mN1
¼ mZ0=2 by Z0 and mN1

¼ mZ00=2 by Z00 take
place. They indicate to mN1

¼ 1.66–1.75 and mN1
¼

4.93–5.19 TeV, for the correct abundance. Here note that
the relic density is only satisfied for a part of the second
resonance by Z00, since mN1

< 5.19 TeV ensuring WIMP
stability, as limited below the shaded regime.
With the aid of the limits obtained above for the new

physics scales, i.e., w > 10.422 and Λ > 3.854 TeV
(cf. Fig. 3), as well as using the parameter values
previously input for sW; α; gX; gG, we make a contour
of the SD cross section of dark matter with nuclei in the
direct detection experiment (cf. Sec. V) as a function of
ðw;ΛÞ as given in Fig. 5. It is clear that the SD cross
section is more sensitive to Λ than w. Additionally, for
viable regime w ≥ 10.422 and Λ ≥ 3.854 TeV, this
model predicts the dark matter signal strength in direct
detection to be σSDN1

< 10−46 cm2, much below the current
bound of 10−42 cm2 order for a typical WIMP with mass
beyond 1 GeV [82].

VII. REALIZATION OF THE DARK CHARGE

In this section, we consider an alternative scenario that
reveals the main role of the dark charge by assuming the
scalar triplet χ to be superheavy, possessing a VEV w ≫ Λ,
and of course Λ ≫ u, v.4 Hence, the scheme of symmetry
breaking is now

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞG
↓w

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞD
↓Λ

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ PD

↓u; v

SUð3ÞC ⊗ Uð1ÞQ ⊗ PD:

Indeed, when χ develops a VEV, hχi ¼ ð0; 0; w= ffiffiffi
2

p Þ, it
breaks all new charges T4;5;6;7;8, X, and G but conserves
T1;2;3, Y ¼ −1=

ffiffiffi
3

p
T8 þ X, and D ¼ −2=

ffiffiffi
3

p
T8 þG,

besides the color, which match the standard model sym-
metry and Uð1ÞD, as expected. This breaking by χ decom-
poses every SUð3ÞL multiplet into a normal isomultiplet
with D ¼ 0 and a dark isomultiplet with D ≠ 0—known as
a dark isopartner of the normal isomultiplet—which all are
possibly seen in Table I. Given that the scale w is very high,
i.e., w ≫ Λ ∼ TeV, the new physics related to it, such as
dark vectors X, Y coupled to broken T4;5;6;7, Z00 coupled
to broken combination of T8; X; G, relevant Goldstone
bosons GX, GY , and GZ00 eaten by X, Y, and Z00, res-
pectively, and its Higgs fields, is all decoupled/integrated
out. What imprinted at scale Λ ∼ TeV is a novel theory
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞD, explicitly recog-
nizing the dark charge D, directly affecting the stan-
dard model.
Notice that for w ≫ Λ, the Z0; Z00 masses are

m2
Z0 ≃

4g2Gð3þ t2XÞ
4t2G þ 3þ t2X

Λ2; m2
Z00 ≃

g2

9
ð4t2G þ 3þ t2XÞw2;

ð107Þ

and the Z0 − C mixing angle is

tθ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ t2X

p
2tG

: ð108Þ

As mentioned, Z00 is decoupled, while Z0 associated with
the dark charge now governs the collider signals, bounded
bymZ0 > 3.388 TeV for our choice of tG ¼ 1 (see below in
detail); additionally, the FCNC is suppressed as a result. In
this case, tθ ≃ 0.91, i.e., θ ≃ 42.4°, which determines the Z0
coupling with fermions, such as

L ⊃ gGsθ
X
f

f̄ γμ
�
−
2

3
t2WY þD

�
fZ0

μ; ð109Þ

where f runs over usual lepton and quark isomultiplets as
well as their dark isopartners. The presence of the Y term
like that from a kinetic mixing effect results from 3-3-1-1
breaking. That said, if the standard model fields have no

FIG. 5. SD cross section of N1 contoured as a function of new
physics scales ðw;ΛÞ for w ≥ 10.422 and Λ ≥ 3.854 TeV.

4This case presents two new phases of the new physics similar
to a matter discussed in [83].
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dark charge D ¼ 0, they may interact with the dark boson
Z0 through scotoelectroweak unification governed by the
hypercharge Y. This effect is smaller than the dark force by
one order, say 2

3
t2W ∼ 0.1.

Although χ is superheavy, it can induce appropriate
neutrino masses by the same mechanism and the result
discussed above. But, the contribution of new physics
in (60) must be reordered, ðu=wÞ2 ¼ ðu=ΛÞ2 × ðΛ=wÞ2 ∼
10−3 × 10−3 ¼ 10−6, the loop factor ð1=32π2Þ ∼ 10−3 as
retained, the N mass matrix being pseudo-Dirac such
that ðhNVÞ2M ∼ ðhNΛ=wÞ2 × w ¼ 10−3ðhNÞ2w, the scalar
mass splitting as Δm2=m2 ∼ ðf1; f2λ17ÞΛ=w2. Hence, the
neutrino masses are of order of eV,

mν ∼ ðhNÞ2 ×
�
f1; f2λ17

w

�
×

�
Λ

TeV

�
× eV; ð110Þ

given that hN ∼ 1, Λ ∼ TeV, and f1;2 ∼ w, where the soft
term (f1;2) would mount to the scale of the 3-3-1-1
breaking.
After the new physics is decoupled by the large scale w,

the intermediate TeV phase with Uð1ÞD symmetry can
contain some dark fields survived, such as N1, ξ, and ϕ by
choosing appropriate Yukawa couplings and scalar poten-
tial parameters. The dark matter phenomenology is similar
to the above model, but it is now governed by only the Z0
boson, coupled to normal matter via (109). For the dark
fermion, the Z0 mass resonance sets its relic density.
Alternatively, for the dark scalar, the new Higgs ϕ portal
takes place annihilating to the standard model Higgs fields,
since the dark scalar mass splitting in this case is large.
Complementary to the LHC constraint, it is appropriate

to verify the Z0 bound when the field Z00 is decoupled, i.e.,
w ≫ Λ, as above mentioned. Although this decoupling is
taken, the result may apply for the case w to be sufficiently
separated from Λ, i.e., relaxing w raises beyond 50 TeV
according to the third case in the previous section for the
3-3-1-1 model, such that Z00 negligibly contributes as
compared to Z0 in the relevant LHC process. The cross
section σðpp → Z0 → ll̄Þ producing a dilepton final state ll̄
at the LHC via Z0 exchange is already given by (77) for
f ¼ l in narrow width approximation, in which the partonic
peak cross section σ̂ðqq̄ → Z0Þ and the branching decay
ratio BrðZ0 → ll̄Þ are given in (78) and (79), respectively,
too. Notice that the decay Z0 → N1N1 insignificantly
reduces the signal strength. We plot the dilepton production
cross section for l ¼ e, μ, τ—which have the same
couplings, thus production rate—as in Fig. 6 at the LHCffiffiffi
s

p ¼ 13 TeV, corresponding to an integrated luminosity
of 139 fb−1 (ATLAS) [73] and up to 140 fb−1 (CMS) [74].
Both the ATLAS and CMS searches reveal a negative result
for a new dilepton event, hence making a bound for Z0 dark
boson mass, such as mZ0 > 3.388 TeV, which is signifi-
cantly bigger than the LEPII limit at a few hundred GeV, as

aforementioned. This translates to a limit for dark charge
breaking scale, Λ ¼ 3.854 TeV, as expected.

VIII. CONCLUSION

The idea of a dark photon associated with a conserved,
dark (Abelian) charge is interesting as it provides potential
solutions to a number of the current issues [84]. As electric
charge is a result of electroweak breaking, this work has
probed that a dark charge may result from a more
fundamental theory, called the scotoelectroweak theory.
Moreover, the content of dark fields and the way they
interact with normal matter are completely determined by
the 3-3-1-1 symmetry of the theory.
We have examined the pattern of the 3-3-1-1 symmetry

breaking, obtaining a residual dark parity that both stabil-
izes dark matter candidates and governs scotogenic neu-
trino mass generation. The small neutrino masses are
suppressed by loop induced and ratio between electroweak
to new physics scales, not requiring the soft terms to be too
small. The fermion dark matter abundance is generically
set by Z0; Z00 mass resonances. Even in a scenario where the
3-3-1-1 breaking scale is very high, the light boson Z0
associated with the dark charge still plays the role due to a
coupling to normal matter via the hypercharge.
We have investigated the model under constraints

from LEPII, LHC, and FCNCs. However, given a
stronger bound it is easily evaded by enhancing w, Λ
as the parameter space supplied in the figures. In all
cases, the signal for fermion dark matter in direct
detection is very small. Embedding 3-3-1-1 symmetry
in a grand unified theory may be worth exploring as dark
charge and its field contents may contribute to gauge
coupling unification successfully.

FIG. 6. Dilepton production cross section plotted as a function
of Z0 dark boson mass at pp collider for

ffiffiffi
s

p ¼ 13 TeV (red
curve), where observed limits are extracted at dilepton invariant-
mass resonance corresponding to the ATLAS-2019 result for
width Γ=m ¼ 3% (black curve) [73] and CMS-2021 result for
width Γ=m ¼ 0.6% (gray curve) [74].
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