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A vector dark matter candidate, also known as dark photon, would induce an oscillating electric field
through kinetic mixing. One detection strategy uses a spherical reflector to focus the induced emission at
its center of curvature. First, we investigate the effects of diffraction in this type of experiment from an
analytical standpoint, making use of the Kirchhoff integral theorem in the low-curvature dish limit. Next,
we estimate the impact of mode matching, in the case of detection by a pyramidal horn antenna. We show
that the expected signal intensity can be significantly reduced compared to usual estimates. Our method is
applied to the reinterpretation of the SHUKET experiment data, the results of which are shown to be
degraded by a factor of ∼50 due to both diffraction and mode matching. The analytical method allows
optimizing some experimental parameters to gain sensitivity in future runs. Our results can be applied to
any dish antenna experiment using a low-curvature reflector.
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I. INTRODUCTION

While required to explain several astrophysical and
cosmological observations, the microscopic nature of dark
matter (DM) is still to this day one of the biggest mysteries
in physics [1]. Among many other classes of DM, ultralight
dark matter (ULDM) models have recently gained a lot of
attention in the scientific community, due to the absence of
signals from historically dominant models, such as weakly
interacting massive particles (WIMPs). These models are
characterized by particles with low mass, from 10−22 eV to
0.1 eV, meaning that their detection in particle colliders is
complicated. Thus, other kind of experiments have to be
considered for their detection.
One particularly well-motivated model of ULDM is

called the dark photon (DP), a massive spin-1 field (of
massm) which appears in many beyond the standard model
theories. The DP field is initially frozen after inflation
and starts to oscillate at its Compton frequency when
mc2=ℏ ≫ H (where c is the speed of light, ℏ the reduced
Planck constant andH the Hubble parameter), and it can be
shown that these oscillations scale as a−3ðtÞ (where a is the

cosmological scale factor), at late cosmological times,
behaving as cold dark matter (CDM). The production of
CDM in this case is done through nonthermal processes,
such as the so-called misalignment mechanism [2,3]. This
additional Uð1Þ field is also well-motivated on the particle
physics side, as the DP model is a particular case of the so-
calledU boson, which makes the minimal gauged Standard
Model extension, through its coupling with the B-L current
of the Standard Model [4].
For all these reasons, the DP is an interesting light dark

matter candidate, and experiments hunting for it are arising
more and more. In the following, we are interested in the
coupling of the DP field with the electromagnetic (EM)
field. The strength of this coupling is parametrized by the
dimensionless parameter χ. This coupling induces the
appearance of an electric field filling the whole space, with
amplitude directly proportional to χ [3,5]. Numerous experi-
ments, e.g., [6–14], use a parabolic or spherical mirror to
focus this small electric field in order to enhance it inside a
detector located at the curvature center of the mirror. In the
initial proposal of such kind of experiments, [5] made the
assumption that the power generated by the dish is entirely
focused on the center of curvature, as long as diffraction
effects are negligible, i.e., when the Compton wavelength of
the DP field λ ¼ 2πℏ=mc is much larger than the radius of
the mirror r. In many of the experiments using such setups,
numerical simulations were performed to estimate the loss
through diffraction effects. However, no analytical derivation
of such losses has been done in our knowledge.
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In this paper, we derive an analytical expression of the
EM power measured by the antenna detector as a function
of the DP Compton frequency and of the experimental
parameters. This calculation is performed in two steps:
(i) we compute the electric field at the location of the
antenna; (ii) we determine how much of this electric power
is measured by the antenna. Regarding the first point, we
provide an analytical derivation for the electric field by
propagating the electric field generated by the dish using
Kirchhoff integral theorem. This analytical expression is
obtained by using some assumptions on the setup, in
particular considering small curvature, i.e., the typical size
of the mirror being much smaller than the curvature radius
(see Fig. 1 for the definition of the dish radius and of its
curvature radius). In particular, we show that diffraction
effects can significantly impact the electric field at the
location of the detector. Second, we turn to the detection
of the electric field and focus on horn antenna detectors.
We demonstrate how to derive analytically the EM power
measured by the detector using overlap integral and
show that it can impact significantly the measurements.
Considering both effects, we derive an efficiency coeffi-
cient, i.e., the ratio between the power measured by the
horn antenna and the power emitted by the dish.
As a practical illustration, we consider a setup used in the

SHUKET experiment [6], to show how both diffraction of

the field and overlap integral of modes affect the sensitivity
of the experiment. We show that the efficiency coefficient
in such case is very small, of the order of 10−4, leading to a
loss of sensitivity of SHUKET to the coupling χ by a factor
∼50. We show that diffraction effects and overlap integral
of modes contribute almost equally to this small efficiency
coefficient, implying that both effects must be taken into
account very carefully. Finally, we show that using the
analytical expressions derived in the paper, one can care-
fully optimize the experimental parameters of the experi-
ment in order to maximize the signal amplitude. In the case
of SHUKET, we show that modifying the dish-antenna
detector distance and DP frequency of interest would
lead to a reduced loss on the power received by a factor
∼9 compared to the initial set of parameters. This work
could also be used in the readjustment of the sensitivity of
other already existing experiments using similar setups,
e.g., [11,13,14]. In addition, it could be useful for the
modeling of future experiments aiming at detecting EM
waves of comparable frequencies using parabolic or
spherical antennas as EM emitter.
The paper is organized as follows. We first recall

respectively the form of the electric field induced by the
photon-DP coupling and the total power emitted by a
spherical dish immersed in this field in Sec. II and Sec. III.
Then, in Sec. IV, we derive an analytical expression of the
field propagating from the dish emitter. In Sec. V, we turn to
the detection of the field using a horn antenna and we
derive an analytical expression of the ratio between the
received power by the antenna and the emitted power from
the dish, using overlap integral of modes on one hand and
antenna factor on the other hand. Finally, in Sec. VI, we use
all the previous results to derive the expected power
received by the horn antenna with the parameters of the
SHUKET experiment [6] and we propose another set of
parameters, involving e.g., the DP frequency of interest,
which would minimize the loss of sensitivity of the
experiment through Kirchhoff integral and overlap integral
of modes.

II. DARK PHOTON FIELD INDUCED
ELECTROMAGNETIC FIELD

The Lagrangian describing the interaction between the
EM field 4-potential Aμ and a DP field 4-potential ϕμ of
mass m is given by [5]1

L ¼ −
1

4μ0
FμνFμν þ jμAμ −

1

4μ0
ΦμνΦμν

−
m2c2

2μ0ℏ2
ϕμϕμ −

χ

2μ0
FμνΦμν; ð1Þ

FIG. 1. The oscillating standing DP electric field E⃗DM is shown
with red arrows. The dish emitter in black, with curvature center
shown in purple, acts as reflector and emits a classic propagating
electric field E⃗D in green. The Kirchhoff integral boundary
surfaces A considered for the computation of the electric field
Eq. (11) are shown in blue (in addition to the dish, surface A1). It
consists of the junction of a semisphere centered on the curvature
center of the dish with infinite radius (surface A3), one additional
vertical infinite plane surface to close the boundary surface
(surface A2). This closed surface is chosen such that the
contributions from surface A2 and A3 are zero at the curvature
center of the dish.

1The unit of the DP 4-potential field ϕμ is V:s:m−1, as the usual
EM 4-potential Aμ.
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where Fμν ¼ ∂μAν − ∂νAμ is the usual electromagnetic field
strength tensor, Φμν ¼ ∂μϕν − ∂νϕμ is the DP field strength
tensor, χ is the kinetic mixing coupling parameter which
characterizes the coupling between the DP and the EM
field, jμ is the usual matter electromagnetic 4-current and
μ0 is the vacuum permeability.
Solving the field equation of the DP field in vacuum, one

finds the solution,

ϕα ¼ Yαeikμx
μ
; ð2aÞ

with

kμkμ ¼ −
ω2

c2
þ jk⃗j2 ¼ −

�
mc
ℏ

�
2

: ð2bÞ

Then, one can show that the DP-EM coupling induces an
ordinary electromagnetic field in vacuum (see e.g., [5,15]
for more details)

Aβ ¼ −χϕβ ¼ −χYβeikμx
μ
: ð3Þ

The amplitude of oscillation of the DP field, jY⃗j, depends
directly on the local DM energy density ρDM as

ρDM ¼ ω2jY⃗j2
2μ0c2

; ð4Þ

for k⃗ ¼ 0. Using recent data, its experimental value is
estimated to be ρDM ¼ ð0.55� 0.17Þ GeV=cm3 [16].
Considering an EM emitter of size r ∼OðmÞ (see

Sec. VI) and DM frequency f ∼OðGHzÞ, one can approxi-
mate the DM field as a standing wave, i.e., with a negligible
propagating component. Indeed, the wave vector of the
massive DP field is k⃗ ≈ ωv⃗=c and therefore k⃗ · x⃗ ≤ jk⃗jr ¼
2πfrvDM=c2 ≪ 1, where vDM ∼ 10−3c is the typical galac-
tic velocity in the DM halo. Then, the induced electro-
magnetic field consists only of an oscillating electric
field [5]

Ej
DM ¼ −

∂Aj

∂t
¼ R½−iχωYje−iωt�: ð5aÞ

The amplitude of this oscillating electric field is therefore
directly related to the local DM density through

jE⃗DMj ¼ χc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0ρDM

p
: ð5bÞ

The idea of several experiments searching for DP is to
focus this possible small electromagnetic field present
everywhere in space and to enhance it by using reflec-
ting materials in order to hopefully make it detectable,
e.g., [6–8,15,17].

III. EMISSION OF ELECTRIC FIELD
AT THE DISH’S SURFACE

We consider a dish of radius r and curvature radius R, as
depicted in Fig. 1. We use a spherical coordinate system
whose origin is at the curvature center of the dish such that
a point on the dish is identified by ðθ;φÞ. The value of the
vector Y⃗ on the dish is denoted by Y⃗Dðθ;φÞ. The dish is
surrounded by a standing electric field induced by the DP
as described by Eq. (5). The dish will act as an EM reflector
and as a response to the DP electric field, it will emit a
standard electric field whose frequency is identical to the
one from the DP field and that will propagate perpendicu-
larly to the dish’s surface. More precisely, boundary condi-
tions E⃗tot;k ¼ 0 at the dish’s surface requires that the EM
field emitted by the dish can be written as

E⃗Dðθ;φ; tÞ ¼ R
�
iχωY⃗k;Dðθ;φÞe−iωt

�
; ð6Þ

on the dish’s surface. In this expression, Y⃗k;Dðθ;φÞ is the
projection of Y⃗Dðθ;φÞ on the dish’s surface such that
the total electric field parallel to the dish vanishes at the
mirror’s surface.
The time averaged total electromagnetic power generated

by the dish as a reaction to the DP can be computed as [5]

Pdish ¼ α2Adish χ
2ρDMc; ð7Þ

where α is related to the polarization of the DP field and in
particular α ¼ ffiffiffiffiffiffiffiffi

2=3
p

for a DP field whose polarization is
randomly distributed [5]. In the following two sections, we
wish to know what power is received by an electromagnetic
antenna located at the curvature center of the dish.

IV. PROPAGATION OF THE FIELD FROM THE
DISH TO THE ANTENNA

In this section, we derive the expression of the total
electric field induced by the reflection of the DP field by the
dish at a given location. In Sec. IVA, we will give a brief
overview of the Kirchhoff method and shows that it cannot
be directly used to get an analytical expression of the
electric field for the geometry considered in Fig. 1. For this
reason, we will decompose the problem into 2 subpro-
blems. First, we will propagate the field from the dish to the
plane closing the dish (displayed in orange in Fig. 2) using
an approximation of the Kirchhoff method valid for thin
optical element as presented in Sec. IV B. Subsequently, in
Sec. IV C, we will propagate the electric field from the
plane to the position of the detector using the Kirchhoff
method.
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A. Kirchhoff integral

The Kirchhoff’s theorem allows one to compute a field
quantity at a given position x⃗ by computing an integral over
a closed surface around x⃗ [18].
In this formalism, the temporal dependence of the field

is separated from its spatial dependence. Therefore, we
decompose the emitted electric field at the dish’s surface as

E⃗Dðx⃗0; tÞ ¼ R
�
U⃗Dðx⃗0Þe−iωt

�
; ð8Þ

where the complex function U⃗Dðx⃗0Þ denotes the spatial part
of the field and x⃗0 is a point on the dish’s surface. We now
consider a closed surface, denoted A, which encloses the
point x⃗ where the value of the field is calculated.
From Kirchhoff integral’s theorem, the general expres-

sion of U⃗D at this point x⃗ is [18]

U⃗Dðx⃗Þ ¼
Z
A
dS0ðU⃗Dðx⃗0Þðn̂0 · ∇!Gðx⃗; x⃗0ÞÞ

− Gðx⃗; x⃗0Þðn̂0 · ∇!ÞU⃗Dðx⃗0ÞÞ; ð9Þ

where n̂0 is a unit vector normal to the surface A directed
inwardly, the derivatives are with respect to the emission
coordinates x0 and G is a Green function, appropriately
defined for the situation.
In the situation depicted in the previous section, from

Eq. (6), we know exactly the components of the electric
field at the surface of the emitting dish. Therefore, an

appropriate Green function is the Dirichlet Green function
GD [18], defined as

GDðx⃗; x⃗0Þ ¼ 0; ∀ x⃗0 ∈A: ð10Þ

Then, Eq. (9) becomes

U⃗ðx⃗Þ ¼
Z
A
dS0

�
U⃗ðx⃗0Þð∇!GDðx⃗; x⃗0Þ · n̂0Þ

�
: ð11Þ

In the following of the paper, unless otherwise specified,
whenever we mention electric fields, we refer to U⃗, i.e., its
spatial part, following Eq. (11).
In the present situation, the closed surface A is appro-

priately defined by the junction of the dish (A1), a surface
with radius R → ∞ (A3) and one additional plane surface
along ðx; yÞ plane to close the surface (A2), as described by
the blue lines in Fig. 1. This surface has the property that
the only nonvanishing term in the Kirchhoff integral from
Eq. (11) is the one related to the surface A1, i.e., only the
field emitted by the dish will contribute.
Our system is therefore composed of a spherical dish and

Eq. (11) requires the derivation of a Dirichlet Green function
for a portion of sphere. However, no analytical expression
has been derived (yet) in the literature for such geometry,
which makes it impossible to find an exact analytical
solution for our problem. Instead, we will decompose the
problem into two subproblems; using an approximation, we
will propagate the electric field from the dish to the plane
closing the dish (see Fig. 2) and then, using the Kirchhoff
integral, from the plane up to the detector.

B. Propagation of the electric field from the dish
to the plane

This situation is depicted in Fig. 2, where the distance
between the fictional plane (orange on the figure) and the
dish at coordinates x ¼ y ¼ 0 is noted a.
As mentioned above, it is not possible to find an

analytical solution to Eq. (11) for this particular geometry.
Instead, we use the thin optical element approximation
presented in detail in Sec. 2.2.7 from [19] which allows
one to find an analytical expression for the field U⃗ðx⃗Þ of
Eq. (11) on this fictional plane. This approximation is valid
if the two following conditions are fulfilled:

(i) The transverse propagation modes p, q need to be
much smaller than the longitudinal one k. In our
case, the transverse modes are determined by the
spatial extent of the dish antenna in the x − y plane
Δx;Δy, with p ∼ q ∼ 1=Δx ∼ 1 m−1 ≪ ω=c ∼ k.
In addition, the galactic velocity distribution in the
DM halo induces a transverse contribution [20], of
the order of ωvDM=c2 ∼ 3 × 10−3 m−1 ≪ ω=c ∼ k.
Therefore, this condition is fulfilled.

(ii) The dish needs to have a low curvature, or in other
words, the radius is much smaller than the curvature

FIG. 2. To compute the electric field induced by the dish at a
location P at cylindrical coordinates ðρ;ϕ; zÞ, we first propagate
the electric field emitted by the spherical dish (in light gray)
into the fictional plane (in orange) following Eq. (12). Then, we
propagate this electric field to the receiver using the Kirchhoff
integral. This procedure is valid only for a spherical dish with low
curvature, i.e., whose radius r is much smaller than its curvature
radius R.
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radius r ≪ R. Therefore, in the following, we will
restrict ourselves to low curvature dish emitter.

Under these conditions, the Kirchhoff integral Eq. (11)
simply reduces to [19]

U⃗Pðx; y; zplaneÞ ¼ −eikfðx;yÞU⃗D

�
x; y; zdishðx; yÞ

�
; ð12Þ

where U⃗D is the electric field emitted by the dish and U⃗P is
the electric field at the location of the closing plane.
Furthermore, the function fðx; yÞ ¼ zdishðx; yÞ − zplane is
the surface equation of the dish. In other words, within the
approximation of thin optical element, the curvature of the
dish translates into simple phase factors determined by
the distance between the closing plane and the dish [19].
We now introduce a cylindrical coordinate system

(ρ;ϕ; z), see Fig. 2. Because of the cylindrical symmetry,
the surface equation written

fðx; yÞ ¼ fðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ρ2

q
− Rþ a ≈

r2 − ρ2

2R
; ð13Þ

depends only on the cylindrical coordinate ρ, where we
used a ≈ r2=2R, since the dish is a portion of sphere, with
small curvature.
Inserting the spatial part of the field on the dish from

Eq. (6) into Eq. (12), we can now estimate the expression of
the field in this fictional plane as

U⃗Pðρ;ϕ; zplaneÞ ¼ −iχωeikfðρÞY⃗k;D
�
ρ;ϕ; zplane þ fðρÞ�;

ð14Þ

where ρ ≤ r and zplane ¼ R − a is the z-coordinate of the
plane. This expression is only valid in the thin optical
element approximation, whose conditions are detailed at
the beginning of this section.

C. Propagation of the electric field from the plane
to the receiver

We can now focus on the propagation from an emitting
plane, a subject that has been vastly treated in the literature,
e.g., in [18,19]. The idea is to propagate the field U⃗P from
the fictional plane z ¼ zplane to any point at z < zplane using
the Kirchhoff integral from Eq. (11) by using the appro-
priate Dirichlet Green function that vanishes on the plane.
In the case of a plane emitter, such a Dirichlet Green
function is given by

GDðx⃗; x⃗0Þ ¼
eikL

0

4πL0 −
eikL

00

4πL00 ; ð15Þ

where L0 ¼ jx⃗ − x⃗0j and L00 ¼ jx⃗ − x⃗00j where x00 is the point
symmetrical to x0 with respect to the plane [18,19]. One can
easily show that this property leads to L0 ¼ L00 on the plane

and therefore the required condition GDðx⃗; x⃗planeÞ ¼ 0 is
satisfied.
One can plug the expression of the Dirichlet Green

function from Eq. (15) with z0 ¼ zplane and of the electric
field on the fictional plane from Eq. (14) in the Kirchhoff
integral from Eq. (11) to find (the derivation is provided in
Appendix A),

U⃗dishðρ;ϕ; zÞ ≈ −
iχωΔz
2π

Z
r

0

dρ0ρ0eikfðρ0Þ
Z

2π

0

dϕ0 ikL − 1

L3

× eikLY⃗k;Dðρ0;ϕ0; fðρ0Þ þ R − aÞ; ð16Þ

with ðρ;ϕ; zÞ the cylindrical coordinate of the reception
point, fðρ0Þ provided by Eq. (13),

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ρ02 − 2ρρ0 cosðϕ − ϕ0Þ þ ðΔzÞ2

q
; ð17aÞ

and

Δz ¼ z − Rþ a ð17bÞ

the difference of z-coordinates between the plane emitter
and the receiving point (both z and Δz < 0, see Fig. 2).
This result provides the expression of the electric field
induced by the DP field reflected by the dish anywhere
in space under the approximation that the dish is a thin
optical element. In particular, this formula includes dif-
fraction effects that were implicitly neglected in previous
studies [5]. This integral is generally not solvable analyti-
cally and some approximations like the far field approx-
imations (FFA), or small curvature approximations might
be made to simplify it (see Sec. VI for an example).

V. DETECTION OF THE ELECTRIC FIELD
WITH A HORN ANTENNA

While the previous section was devoted to the emission
and propagation of the electric field induced by the dark
photon and enhanced by the dish, we will now focus on the
detection of this electric field. In this paper, we consider the
detection system to be a horn antenna of long side A and
small side B. At the output of the antenna is located a
resistance R0 such that when an oscillating electric field is
applied to the horn antenna, it is translated into a meas-
urable voltage.
We will compare two different approaches to estimate

this measurement: the first one is based on an analytical
calculation which computes the overlap integral between
the electric field at the location of the antenna and the
antenna mode; the second one consists in using the antenna
gain factor provided by the antenna’s manufacturer.
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A. Computation using the modes overlap

Let us first consider an antenna of internal resistance R0

as an emitter by applying an oscillating voltage VðtÞ ¼
V0 cosðωtÞ to its terminals. The reciprocity theorem
ensures that this will be equivalent to considering the
antenna as a receiver. As a result, the antenna will emit an
electric field predominantly in the TE10 mode, i.e., polar-
ized parallel to the small side of the rectangular horn, which
is the most widely used fundamental mode for pyramidal
horn antennas [21]. Therefore, in a coordinate system with
the z-axis perpendicular to the surface aperture of the
antenna, as shown in Fig. 3. The electric field generated by
the antenna can be written as

E⃗antðt; x; y; zÞ ¼ R
�
VantM⃗antðx; yÞeiðkz−ωtþϕÞ�; ð18aÞ

where ϕ is the phase of the electric field and Vant character-
izes the amplitude of this field. In general, horn antennas
make an axial detection of the field, i.e., only on one single
axis, the small axis of the rectangular horn, the ŷ-axis. The
real antenna mode can be written as

M⃗antðx; yÞ ¼ mTE10
ŷ cos

�
πx
Aeff

�
; ð18bÞ

where Aeff is the effective width andmTE10
(dimension L−1)

is a normalization factor that ensures the mode is normal-
ized

R
dSeff jM⃗antðx; yÞj2 ¼ 1 on the effective aperture of the

antenna, i.e.,

mTE10
¼

ffiffiffiffiffiffiffi
2

Seff

s
: ð19Þ

The effective aperture of the antenna Seff depends on the
frequency f ¼ ω=2π of the field and in general differs from

the physical aperture of the antenna. Indeed, the effective
area of the horn, which can be expressed as the product
of an effective width Aeff with an effective height Beff ,
depends on the frequency as [21]

SeffðωÞ ¼ AeffðωÞBeffðωÞ ¼
erπGðωÞc2

ω2
; ð20Þ

where er is the realistic efficiency of the antenna, which
represents all the losses inside the antenna, including e.g.,
reflections inside the antenna, and where GðωÞ is the
frequency dependent gain of the antenna [21]. The time-
averaged electromagnetic power generated by the antenna
is given by

Pout ¼
1

2Z0

Z
dSeff jE⃗antj2 ¼

V2
ant

2Z0

; ð21Þ

where Z0 ¼ 376.7 Ω is the impedance of vacuum.2

We will now invert this reasoning and consider the
antenna as a receiver that will output a voltage in response
to an electric field,

E⃗ðt; x; y; zÞ ¼ ℜ½U⃗ðx; y; zÞe−iωt�≡ jU⃗jêU cosðωtþ φÞ;
ð22Þ

where φ is an irrelevant phase, êU is the unit polarization
vector of U⃗, jU⃗j ¼ ðU⃗ · U⃗†Þ1=2 denotes the complex modu-
lus. The antenna will measure electric fields that are
propagating into the ẑ direction and matching its mode
M⃗antðx; yÞ. More precisely, by taking the dot product of
Eq. (18a) with M⃗ant, one gets Vant cos ðωt − kz − ϕÞ ¼R
dSeffM⃗antðx; yÞ · E⃗antðt; x; y; zÞ. Using the reciprocity pro-

perties of electromagnetism, one can replace E⃗antðt; x; y; zÞ
by the electric field we are trying to measure as defined in
Eq. (22). This reasoning shows that the antenna will output
a voltage proportional to

VantðzÞ cosðωtþ ϕ0ðzÞÞ

¼ cosðωtþ φÞ
Z

dSeffðωÞjU⃗ðx; y; zÞjêU · M⃗antðx; yÞ;

ð23Þ
where ϕ0ðzÞ ¼ −kz − ϕ and the 2D integral is carried out in
the x-y plane at the z-coordinate of the antenna.
Let us factorize the electric field generated by the dish at

the location of the antenna provided by Eq. (16) in a voltage
factor Vdish, a real mode factor M⃗dish, and a plane wave
factor, such that it takes the following form in the antenna

FIG. 3. Rectangular horn antenna and definition of its physical
surface aperture. 2Energy conservation implies that V2

0=2R0 ¼ V2
ant=2Z0.
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aperture plane ðx; yÞ:

E⃗dishðt; x; y; zÞ ¼ VdishM⃗dishðx; y; zÞ cosðωtþ ϕ0ðzÞÞ
≡ jU⃗dishðx; y; zÞjêU cosðωtþ φÞ; ð24Þ

where M⃗dishðx; y; zÞ is normalized over the infinite surface
of the antenna plane S∞ at z ¼ zant i.e.,Z

dS∞jM⃗dishðx; y; zantÞj2 ¼ 1: ð25Þ

The constant amplitude Vdish in Eq. (24) can be computed
through energy conservation: the total energy generated by
the dish should equal the energy received on the infinite
antenna plane S∞. Then, using Eqs. (7) and (25), we have

Pdish ¼
Z

dS∞
jU⃗dishj2
2Z0

¼ V2
dish

2Z0

; ð26aÞ

⇒ Vdish ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z0AdishρDMc

3

r
χ: ð26bÞ

Then, in our experimental scheme, the time averaged
power generated by the horn antenna is obtained by
combining Eqs. (21), (23), and (24) and is provided by

Precðzant;ωÞ ¼
V2
dish

2Z0

�Z
dSeffðωÞM⃗dish · M⃗ant

�
2

; ð27Þ

where M⃗dish depends explicitly on zant and where the
integral is performed at every position ðx; yÞ on the effec-
tive surface of the horn antenna.
Then, the ratio between the time averaged power

measured by the horn antenna and the total power emitted
by the dish is simply given by

γðzant;ωÞOv: ¼
�Z

dSeffðωÞM⃗dish · M⃗ant

�
2

; ð28Þ

where M⃗dish directly depends on the Kirchhoff inte-
gral Eq. (16).

B. Computation using the antenna factor

Another approach to estimate the output of the horn
antenna is to consider the antenna factor (AF), a character-
istic of the antenna provided by the manufacturer.
The AF is defined by considering an incident plane

wave, or in other words, an incoming electromagnetic field
whose mode is constant over the aperture of the antenna. It
is defined by (see e.g., [22])

AFðωÞ ¼ jU⃗dishðωÞj
V0

¼ VdishMdish

V0

; ð29Þ

where V0 is the generated tension, U⃗dish the amplitude of
the incoming electric field, M⃗dish ¼ MdishêU from Eq. (24),
with Mdish the value of the constant mode of the electric
field on the effective antenna area. The AF depends on the
frequency of the incident field. It is measured experimen-
tally and therefore takes into account any loss inside the
antenna, represented by the er parameter.
Using energy conservation, we immediately get the

expression of time-averaged generated power of the
antenna,

Precðzant;ωÞ ¼
V2
0

2R0

¼ V2
dishM

2
dishðzant;ωÞ

2R0AFðωÞ2
: ð30Þ

However, the definition of the antenna factor assumes
perfectly aligned polarization modes [22], which is not
necessarily true in our case. Indeed, we assume a antenna
polarization mode along the ŷ axis while the electric
field emitted by the dish has its polarization lying in the
ðx; yÞ plane.
If we assume the DP polarization to be isotropically

distributed, the polarization of the electric field emitted by
the dish has a cylindrical symmetry and a linearly polarized
antenna will be sensitive only to half of the power from the
electric field. Taking into account this additional factor, the
ratio γ becomes

γðzant;ωÞAF ¼
Z0M2

dishðzant;ωÞ
2R0AFðωÞ2

: ð31Þ

VI. A PRACTICAL EXAMPLE: THE CASE
OF THE SHUKET EXPERIMENT

We now focus on a practical example to illustrate how
the Kirchhoff integral theorem and the overlap of modes
affect the expected power received by an antenna from a
spherical dish emitter.
We consider the setup of the SHUKET experiment [6],

which has been used to search for a DP in the frequency
range 5–6.8 GHz using a spherical dish and a horn antenna
for the detection. In the analysis of this experiment,
following [5], it has been assumed that all the power
emitted by the dish is received by the antenna. Following
the method derived in the previous section, we estimate the
power received by the antenna and estimate the power lost
compared to this ideal situation, for the mean DP fre-
quency, i.e., f ¼ 6 GHz.

A. Propagation of the electric field from the dish
to the antenna

The spherical dish used in [6] has a curvature radius of
R ¼ 32 m and an area of Adish ¼ 1.2m2, implying a radius
of r ≈ 0.618 m (see Fig. 1). Then, R ≫ r (or equivalently
the dish-fictional plane distance a ∼ 6 × 10−3 m in the case
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of SHUKET is way smaller than r, i.e., a ≪ r) which
ensures that the low curvature approximation is valid.
The expression of the electric field emitted by the dish at

its surface is given by Eq. (6) where Y⃗k;D has the form,

Y⃗k;Dðθ;ϕÞ ¼ Y⃗ − ðY⃗ · êrÞêr ≈

0
B@

Yx

Yy

0

1
CAþOðθÞ; ð32Þ

with θ;ϕ corresponding to a spherical coordinate system
centered in dish’s curvature center and where we have used
the notation Y⃗ ¼ ðYx; Yy; YzÞ in the Cartesian coordinate
system depicted in Fig. 1 and where we used the low-
curvature approximation at the last step.3 This means that at
leading order in θ, the polarization of the emitted electric
field does not depend on the dish coordinate, and is only
polarized in the x-y plane.
For this configuration, the power emitted by the dish is

independent of the mass of the DP and is given by Eq. (7),4

PSHUKET
dish ¼ 1.73 × 10−20

�
χ

10−12

�
2

W; ð33Þ

where we considered a DM local energy density ρDM ¼
0.45 GeV=cm3.
The calculation presented in Sec. IV is based on the thin

optical element approximation, which is valid only for low
curvature dish R ≫ r, see the discussion in Sec. IV B.
In Appendix B, we show that this approximation is valid
in the SHUKET setup and we quantify numerically the
relative error on the electric field to be of order 10−4

of such approximation. Additionally, the calculation in
Appendix. B shows that the small curvature approximation
and Eq. (32) are valid in our regime.
The electric field induced by the dish at the location of

the antenna is provided by Eq. (16), which is not solvable
analytically. In order to simplify it and get an analytical
expression, we will make different approximations:

(i) The distance between the fictional plane and the
antenna needs to be much larger than the typical size
of the dish, i.e., jΔzj ≫ ρ0 ≤ r;

(ii) The distance between the fictional plane and the
antenna needs to be much larger than the typical size
of the antenna, i.e., jΔzj ≫ ρ;

(iii) The last approximation is known as the far field
approximation (FFA). For the DM Compton fre-
quency under consideration, i.e., f ¼ 6 GHz, kL ∼
kjΔzj ≫ 1 and we can safely neglect the factor -1
in Eq. (16).

The first two approximations simplify the distance L
from Eq. (17a) between any point on the fictional plane
ðρ0;ϕ0; R − aÞ and any point on the antenna (whose center
is located at the origin of our coordinate system) ðρ;ϕ; 0Þ to

L ≈ jΔzj þ ρ2 þ ρ02 − 2ρρ0 cosðϕ − ϕ0Þ
2jΔzj : ð34Þ

Using this expression of L as well as the FFA, we can
express Eq. (16) as

U⃗SHUKET
dish ðρ;ΔzÞ ≈ ω2χeiΦðρ;ΔzÞ

Δzc

0
B@

Yx

Yy

0

1
CA

×
Z

r

0

dρ0ρ0e−iφðρ0;ΔzÞJ0

�
kρρ0

jΔzj
�
; ð35aÞ

where J0 is the Bessel function of the first kind of order 0
and where the integral is performed over the radius of the
fictional plane which closes the dish, where the dependence
on the angle ϕ disappeared by spherical symmetry and with

φðρ0;ΔzÞ ¼ kρ02

2

�
1

R
þ 1

Δz

�
ð35bÞ

Φðρ;ΔzÞ ¼ k

�
r2

2R
− Δz −

ρ2

2Δz

�
: ð35cÞ

One can find an analytical solution for the last integral in
the case where zant ¼ 0 (see Appendix C)

U⃗SHUKET
dish ðρÞ ≈ rωχ

ρ

0
B@

Yx

Yy

0

1
CAJ1

�
kρr
R − a

�
eiΦðρ;a−RÞ; ð36Þ

with J1 the Bessel function of the first kind of order 1.
At the center of the curvature radius of the dish is located

a polarized horn-antenna of physical surface Sphys ¼
0.25 × 0.142 m2. Numerical integration of the power from
the electric field from Eq. (36) over the physical antenna
surface leads to

Pint ¼
Z

dSphys

		U⃗SHUKET
dish ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ		2

2Z0

≈ 2.85 × 10−22
�

χ

10−12

�
2

W; ð37Þ

where we assumed an emission from a plane surface in the
random polarization scenario, as in Eq. (7). The ratio of
the power emitted by the dish that crosses physically the
antenna and the total power emitted by the dish in the
SHUKET experiment is

3The relative error induced by the neglect of OðθÞ is ∼1%.
4Note there is a factor 2 discrepancy with what [6] indicated,

due to a calculation error.
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Q ¼ Pint

PSHUKET
dish

≈
2.85 × 10−22

1.73 × 10−20
≈ 1.6%: ð38Þ

Note that, in the geometrical optics approximation, i.e.,
where diffraction effects are neglected, one would obtain
Q ¼ 100%. It is interesting to note that the ratio of the
physical antenna’s surface to the dish’s surface is ∼3%,
meaning that there is actually no focus of the field
generated by the dish on the antenna.
This result means that, considering simply the propaga-

tion of the field from the dish to the antenna using
Kirchhoff integral, the majority of the electromagnetic
power is lost through diffraction, and the antenna is only
able to detect a small amount of energy emitted by the dish.
One can note that the usual criteria for diffraction effects

to be negligible ddish ¼ 2r ≫ λ is not fulfilled in this
system, as the proportionality factor between the two para-
meters is ∼25, which explains this lack of focus.
As a cross-check of our calculations, integrating Eq. (37)

over the infinite antenna plane gives

Pint;full ¼
Z

dS∞

		U⃗SHUKET
dish ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ		2

2Z0

≈ 1.73 × 10−20
�

χ

10−12

�
2

W; ð39Þ

which corresponds to the full power emitted PSHUKET
dish from

Eq. (33). This validates our whole set of approximations,
made throughout the derivation.

B. Detection of the field using a horn antenna

In the previous section, we showed that most of the
power emitted by the dish is already lost through propa-
gation of the field from the dish to the antenna. As
described in Sec. V, there is still a second step to consider
before predicting the exact amount of energy generated
by the antenna; overlap integral between incident and
antenna modes. In the SHUKET experiment, this detection
is made by the Schwarzbeck BBHA-9120-D antenna,
which is sensitive to electric field frequencies from
0.8 GHz to 18 GHz. The datasheet [23] contains several
pieces of information that will be necessary for our
calculations on the expected amount of power received
by the antenna wires, namely the gain and the antenna
factor of the antenna as function of those various field
frequencies. These quantities have been measured exper-
imentally by the manufacturer.

1. Computation using the modes overlap

As mentioned in Sec. V, to predict the energy generated
by the horn antenna, i.e., the overlap of modes, we need to
consider the effective surface of the antenna Seff at the
frequency we are interested in (f ¼ 6 GHz). Furthermore,

we also need to find an analytical expression for the mode
of the field emitted by the dish M⃗dishðx; yÞ, such that it is
possible to perform the mode overlap integral Eq. (27).
The antenna consists in a rectangular surface of area

Sphys ¼ 0.25 × 0.142m2, with A ¼ 0.25 m the long length
and B ¼ 0.142 m the small length. This implies that for
the fundamental mode of the antenna at frequency ωc, the
effective size of the antenna corresponds to its physical
size [in other words AeffðωcÞ ¼ A and BeffðωcÞ ¼ B]
and therefore the ratio between the long and small sides of
the antenna is RABðωcÞ ¼ A=B ≈ 1.76. We will make the
assumption that the ratio RAB is independent of the frequency,
i.e., RABðωcÞ≡RAB ¼ AeffðωÞ=BeffðωÞ, for any frequency
ω > ωc, such that the effective surface of the antenna
at frequency ω is simply SeffðωÞ ¼ AeffðωÞBeffðωÞ ¼
A2
effðωÞ=RAB. Then, using Eq. (20), the effective long and

small lengths of the antenna at the frequency ω are simply
given by

A2
effðωÞ
RAB

¼ erπGðωÞc2
ω2

; ð40aÞ

BeffðωÞ ¼
AeffðωÞ
RAB

: ð40bÞ

These two dimensions defined the effective surface area
over which we need to integrate Eq. (27) to estimate the
output of the antenna.
To be able to compute the integral overlap of modes, we

need an analytic expression of the field at coordinate ðρ; zÞ,
which is provided by Eq. (36). Then, from Eqs. (24)
and (36), we can separate the mode of the dish M⃗dish from
the constant amplitude Vdish expressed in Eq. (26b), such
that the mode of the dish at coordinates ðx; y; 0Þ is

M⃗dishðx; yÞ ¼
ffiffiffiffiffiffi
3

2π

r
1

ρjY⃗j J1
�

rkρ
R − a

�0B@
Yx

Yy

0

1
CA; ð41Þ

with ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Then, using Eqs. (18b), (28), and (41)

and assuming the polarization of the DP to be randomly
distributed, the ratio of receiving to emitted powers is
simply

γOv: ¼
�Z

dSeffM⃗ant · M⃗dish

�
2

≈ 5.8 × 10−4er; ð42Þ

with mTE10
≈ 25.6m−1 has been estimated from Eqs. (19)

and (20) using the antenna gain GðfÞ ¼ 11.86 dBi at
f ¼ 6 GHz [23]. For this numerical value of ratio, we
assumed an axial detection, with Yx ¼ Yy in Eq. (41).
Assuming er ¼ 1, i.e., no loss inside the antenna, this result
means that only 0.06% of the emitted power is actually
transmitted to the antenna wires, and therefore detectable.
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2. Computation using the antenna factor

As explained in Sec. V B, if the electric field emitted by
the dish is seen as a plane wave by the antenna or equi-
valently if the mode of this electric field is approximately
constant over the effective surface of the antenna, we can use
another method to derive output of the experiment.
From Eq. (41), it can be shown that the dish polarization

mode is approximately constant over the effective long
length of the antenna (∼7 cm) (with a deviation of ∼0.3%),
with a value of My

dishðx; y ¼ 0Þ ≈ 0.48 m−1.
For a horn antenna with internal R0 ¼ 50 Ω resistance

(which is typically the case for the Schwarzbeck BBHA-
9120-D antenna), the antenna factor at frequency ω is
given by [22]

AFðfÞ ¼ 9.73f

c
ffiffiffiffiffiffiffiffiffiffi
GðfÞp ¼ 49.7 m−1; ð43Þ

which is consistent with the value given in the antenna
datasheet [23].5 Then, using Eq. (31), one can compute the
ratio of received to emitted powers as

γAF ≈ 3.6 × 10−4: ð44Þ

Considering that er ¼ 1, Eqs. (42) and (44) disagree by a
factor of approximately 1.5. This means that our assump-
tion of no loss inside the antenna is most likely wrong,
and we can artificially consider er ∼ 0.62 such that both

methods coincide. Therefore, the second result, obtained
using the antenna factor, Eq. (31) is probably more realistic,
as the different parameters have been experimentally
measured.

C. Updated results for the SHUKET experiment

Combining the results from the previous two subsec-
tions, we can now reevaluate the constraints on χ obtained
in the SHUKET experiment [6].
In Fig. 4, we show how both effects (diffraction and

mode overlap) affect the sensitivity of the SHUKET
experiment. In green is the original sensitivity curve
presented in [6]. Since the power received by the antenna
wires is quadratic in χ coupling, the ratio Eq. (44) leads
to a loss in χ of an approximate factor 53. Making the
assumption that this loss factor is roughly the same over all
DM frequencies to which SHUKET is sensitive, this leads
to an updated sensitivity curve, shown in red in Fig. 4.

D. Optimization of the experimental parameters
to enhance the output signal

Following the full derivation described above, it is
possible to find some optimized experimental configuration
such that the power received by the antenna is maximized.
The experimental parameters that can easily be modified
are the emitter-detector distance L and the optimized DM
frequency f to search for with this setup.6

FIG. 4. Current constraints on DP kinetic mixing coupling χ with photons in the ∼2.5–20 GHz range, considering only cosmological
indirect bound in blue, and SHUKET [6] original constraint in green, from [24]. In red is shown the updated constraint using the same
experimental parameters and data but considering a realistic modeling of the experiment in the analysis, following Eq. (44). The
projected sensitivity curve with optimized experimental parameters is shown in hashed orange, following Eq. (46). The white dashed
line sets the upper limit for which DP is a viable DM candidate [3].

5Since AFðdBÞ ¼ 20log10ðAFÞ [21]. 6This requires an antenna appropriate for this frequency.
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1. Optimal frequency and distance

The frequency of the background DM field has several
impacts on the power received by the antenna. First,
following Eq. (16), the electric field amplitude received
at coordinates ðρ;ΔzÞ (obtained using the Kirchhoff inte-
gral) depends highly on the frequency of the field. It can
be shown numerically from Eq. (35b) that the focusing
of the electric field improves with the DM frequency,
which is a consequence of diffraction effects that become
non-negligible for low frequency, i.e., when fddish=c ¼
2fr=c =≫1. In particular, as already discussed in Sec. VI,
for the size of dish and the frequency bandwidth of the horn
antenna used in SHUKET, diffraction effects are always
non-negligible (i.e., fddish=c =≫1). As a consequence, the
optimal location for the horn antenna is not the center of
curvature of the dish and this location becomes frequency
dependent. In addition, the antenna factor (or equivalently
the antenna gain) is also highly dependent on the frequency
of the measured electric field. As it was shown in the
previous section, the overlap integral of polarization modes
contribute almost equally to the total power loss than the
one from the propagation of the field. Therefore, the
optimal distance L between the dish emitter and the horn
antenna detector where the maximum field power is
transmitted is nontrivial and depends on the frequency.
The goal of this section is to explore the parameter space

to find the optimal frequency f and distance L such that the
efficiency coefficient γAF from Eq. (31) is maximized. To
do so, we use Eq. (35b) with unknown parameter Δz7 and
Eq. (26b) to find the mode of the field emitted by the dish.
We first consider only the value of the mode at ρ ¼ 0,

and then we show that for the optimized parameters, the
mode is indeed constant over the effective size of the
antenna, such that the method can be used. Additionally, we
interpolated the antenna datasheet [23] to infer the value of
the antenna factor as function of the frequency AFðfÞ.
Then, Eq. (31) is used to estimate the efficiency coefficient

γðf;ΔzÞAF ¼
Z0M2

dishðρ ¼ 0;Δz; fÞ
2R0AFðfÞ2

; ð45Þ

which is estimated numerically. The behavior of this
efficiency coefficient as a function of the DP frequency
and of the distance between the dish and the receiver is
shown in Fig. 5. One can notice the increase of γ for small
frequencies and short distances, which is mainly driven by
the behavior of the antenna factor. Indeed, even though the
loss through diffraction effects is larger at lower frequencies,
the γ parameter also takes into account the mode matching of
the antenna, which is larger at those frequencies.
We choose a frequency band of the same size as the initial

constraint from SHUKET, i.e., 1.8 GHz. In addition, we

restrict ourselves to frequencies larger than 10 GHz, because
there is still large unexplored of the parameter space in this
region, see e.g., [24,25]. From Fig. 5, one can see that the
optimized region for large efficiency coefficient is in the
approximate range f∈ ½15.5; 17.3� GHz. For the set of
optimized frequencies fset ¼ f15.5; 16.5; 17.3g, we com-
pute the corresponding optimized distance ΔzO. For each of
these configurations, we take the exact value of the antenna
factor from the datasheet [23] and we check that the mode of
the dish is constant over the effective aperture of the antenna
(with a deviation from a straight line of the order of 1%).

2. Sensitivity analysis in the case of optimized
experimental parameters

The expected output signal from the SHUKET experi-
ment using the optimized experimental parameters derived
in the last section can be computed using the same
procedure and approximations as the ones presented in
Sec. VI A and VI B at the exception of one approximation
that is no longer valid. Indeed, Eq. (36) is obtained by
assuming that z ≪ R which is no longer the case for the
optimized distances, as it is shown in Fig. 5.
In Appendix D, we compute the power measured by the

antenna in these optimized cases, starting from Eq. (35b).
For example, assuming the frequency fO ¼ 16.5 GHz, and
the corresponding optimized distance ΔzO ∼ −15 m and
antenna factor AF(fO) ∼76.6m−1, we obtain the value of
the ratio between the measured power by the antenna and
the total power emitted by the dish given by

γAF ≈ 3.2 × 10−3: ð46Þ

FIG. 5. Efficiency coefficient γðf;ΔzÞAF as function of the
frequency f and Δz, in the frequency range f∈ ½6; 18� GHz, of
the horn antenna [23] and for distances jΔzj ≫ r. The efficiency
coefficient increases for low frequencies and short distances and
presents a local maximum around ðf ∼ 16.5 GHz;Δz∼−15 mÞ.

7Note that in order to use this equation, we must restrict
ourselves to dish-horn distance jΔzj ≫ r.
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Note that this order of magnitude agrees with the one
reached at the local maximum in Fig. 5. The efficiency
coefficient obtained for this optimized experimental setup
is one order of magnitude larger than the one obtained using
the initial set of parameters, Eq. (44). Compared to the
original 53 loss factor in χ, this optimization leads to a loss of
∼17 on the coupling χ compared to the initial approximation
of Prec ¼ Pdish. For each frequency of the set fset, we use the
same procedure to obtain a curve of efficiency coefficient as
function of the frequency. Then, we apply this frequency-
dependent efficiency coefficient to the original constrain on
the mixing parameter χ set by SHUKET [6], in order to
obtain an estimate of the sensitivity of a new SHUKET-like
experiment using these optimized frequencies and distances.
However, as can be seen in [6], the SHUKET constraint on χ
depends on the frequency, even though the assumed signal is
frequency independent. As explained in [6], this is due to the
frequency dependent gain of the power amplifier connecting
the horn antenna to the spectrum analyzer. Since we can
conservatively assume that a new run of SHUKET would
operate another amplifier with higher gain, we will consider
the highest constraint of the original experiment as a basis for
our new estimate.
Such projection is shown by the orange hashed curve in

Fig. 4. One can notice that over the 15.5–17.3 GHz DM
frequency range, this new run with optimized parameters
would improve the current constraint on the kinetic mixing
parameter χ, compared to CMB, shown in blue.

VII. DISCUSSION AND OUTLOOK

In this paper, we presented an improved modeling of
experiments using a dish antenna to search for a DP. We
have shown that two effects can possibly impact signifi-
cantly the expected signal: (i) diffraction effects discussed
in Sec. IV; (ii) the matching of the mode of the focused
electric field with the detector antenna, see Sec. V.
As it was shown in the previous section, the power loss

through propagation and detection is highly dependent on
the DP frequency one is searching for. For low frequencies
experiments, i.e., in the GHz range, such as [6], the
expected sensitivity on the χ coupling is reduced by a
non-negligible factor. Indeed, we have shown in Sec. VI
that the loss factor which can be estimated using Eq. (44)
implies an overestimation of the constraint on the kinetic
mixing parameter χ by a factor ∼53.
Using the calculations performed in this paper, it is

possible to optimize the experimental parameters for this
experiment. One consequence of this optimization is to
search for DP at higher frequencies. The optimized exper-
imental parameter leads to an approximate gain of one
order of magnitude on the power, as shown in Eq. (46), for
an optimized frequency fO ¼ 16.5 GHz. The power
received in that case is still lower than initially expected
in [6], but the factor loss in sensitivity is now of order 17.
As it is shown in Fig. 4, one can repeat this procedure for

different frequencies, leading to interesting constraints on χ
on a new frequency band.
Therefore, the detailed optimization scheme could be

interesting to use for future experimental runs, in order to
be able to constrain this coupling-mass region of the para-
meter space. Nevertheless, note that the size of the dish
antenna used in SHUKET experiment is not optimal for
searches at this frequency because diffraction effects can
still be significant.
Additional experiments searching for DP at comparable

frequencies e.g., [11,13,14] might also see their constraints
revised, due to either diffraction effects or overlap integral
of modes. Some further calculations following this paper
might be interesting to do to check for such corrections.
Other experiments, such as [7,9,10,26], considered much

higher DP masses, which correspond closely to the optical
regime. The loss due to the diffraction in such cases is
insignificant such that we believe that the results from these
experiments will not be impacted.
Note that other papers such as [20] aim at deriving

analytical expressions for electric fields in comparable
situations to the present paper. [20] are mostly interested
in experiments using large curvature dish antennas and
derive field expressions for any curvature radius, while we
focused on low curvature antennas. Nevertheless, one can
show that using low curvature approximations on Eq. (S66)
of the Supplementary Material of [20], the detectable power
at the curvature center of a dish antenna (ρ ¼ 0) is the same
as what one would find using Eq. (16) of the present paper,
as expected. Therefore, both methods work and can be
complementary.
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APPENDIX A: DERIVATION OF FIELD
EMITTED BY THE DISH

We start by the Dirichlet Green function Eq. (15). To
compute Eq. (11), we use the directional derivative since
n̂0 ¼ ẑ0

∇!GDðx⃗; x⃗0Þ · n̂0 ¼
∂GD

∂z0
ðA1aÞ

¼ −
ðikL0 − 1ÞðR − aþ Δz − z0ÞeikL0

4πL03

þ ðikL00 − 1ÞðR − a − Δz − z0ÞeikL00

4πL003 ;

ðA1bÞ
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where

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ρ02 − 2ρρ0 cosðϕ − ϕ0Þ þ ðR − aþ Δz − z0Þ2

q
ðA2aÞ

L00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ρ02 − 2ρρ0 cosðϕ − ϕ0Þ þ ðR − a − Δz − z0Þ2

q
:

ðA2bÞ

Now, plugging the z0 coordinate of the plane and consid-
ering reception at x⃗ ¼ ðρ;ϕ; zÞ, we get

∂GD

∂z0

				
z0 ∈ plane

¼ −
ðikL − 1ÞΔz

2πL3
eikL; ðA3Þ

with L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ρ02 − 2ρρ0 cosðϕ − ϕ0Þ þ ðΔzÞ2

p
.

APPENDIX B: THIN OPTICAL ELEMENTS
APPROXIMATION FOR SHUKET

In this section, we want to check if Eq. (12) is valid in the
SHUKET setup, in the case of emission from standing DP
electric field. To do so, we propose the following “reverse
engineeringlike” method:

(i) Consider the field on the dish using boundary
conditions Eq. (7), i.e., U⃗Dðx⃗Þ ¼ iχωY⃗k;Dðx⃗Þ;

(ii) Compute the field at each point x⃗0 on the plane
closing the dish U⃗Pðx⃗0Þ from Eq. (12);

(iii) Compute numerically the field on the dish
U⃗test

D ðx⃗Þ from U⃗Pðx⃗0Þ using Kirchhoff integral theo-
rem Eq. (11);

(iv) Compute the relative error between U⃗Dðx⃗Þ and
U⃗test

D ðx⃗Þ.
We consider the plane located at z0 ¼ R − a, then the

field at a point ðρ0;ϕ0; z0Þ on the plane going towards the
dish, located at z ≥ z0, is given by

U⃗P→Dðρ0;ϕ0; z0Þ ¼ iχωe−ikfðρ0ÞY⃗k;Dðρ0;ϕ0; fðρ0Þ þ z0Þ:
ðB1Þ

Notice the change of sign on the wave vector k, compared
to Eq. (12) as we are now considering emission towards the
dish (positive z-axis). In addition, we aim at computing
the field reflected by the dish, while Eq. (12) gives the
incident field. By boundary conditions, we assume that
both incident and reflected are equal, up to a sign, hence the
positive sign in front of Eq. (B1).
Using Eqs. (11), (A3), and (B1), the field in a point on

the receiving surface, i.e., the dish, of coordinates ðρ;ϕ; zÞ
is given by

U⃗test
D ðρ;ϕ; fðρÞ þ R − aÞ ¼ −

iχωfðρÞ
2π

Z
r

0

dρ0ρ0e−ikfðρ0Þ
Z

2π

0

dϕ0 ikL − 1

L3
eikLY⃗k;Dðρ0;ϕ0; fðρ0Þ þ R − aÞ ðB2aÞ

≈ −
iχωfðρÞ

2π

0
B@

Yx

Yy

0

1
CAZ

r

0

dρ0ρ0e−ikfðρ0Þ
Z

2π

0

dϕ0 ikL − 1

L3
eikL; ðB2bÞ

where the difference of z positions Δz between the fictional plane and the dish from Eq. (A3) is now positive and
corresponds exactly to fðρÞ, Δz ¼ fðρÞ ¼ ðr2 − ρ2Þ=2R > 0. Then, the relative error between U⃗test

D and U⃗D ≈
iχωðYx; Yy; 0ÞT from Eq. (32) is

ϵðρ;ϕÞ ≈
				 U⃗test

D − U⃗DM
D

U⃗DM
D

				 ðB3aÞ

≈
				 − fðρÞ

2π

�Z
r

0

dρ0ρ0e−ikfðρ0Þ
Z

2π

0

dϕ0 ikL − 1

L3
eikL

�
− 1

				: ðB3bÞ

Figure 6 shows the numerical computation of this relative
error as function of the position ðρ;ϕÞ on the dish. One can
notice that the error is less than 1%, implying that Eq. (12)
can be safely used for the propagation of the electric field
from the dish in the SHUKET system, with negligible
error. Note that the error ϵðρ;ϕÞ is computed only for

points on the dish with radial coordinates ρ < r, as the
circle of points belonging to the dish with coordinates
ðr;ϕ; zplaneÞ;ϕ∈ ½0; 2π½ belongs to the fictional plane as
well, and Kirchhoff integral is only valid for the compu-
tation of the field at reception points outside the emission
surface.
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APPENDIX C: ANALYTIC EXPRESSION
OF THE FIELD EMITTED BY

SHUKET DISH

We start by the electric field Eq. (35b), which is trivially
obtained from Eq. (16) by assuming kL ≫ 1 and Eq. (34).
We expand the exponential inside the integral of Eq. (35b),
since the parameter is much smaller than 1. Indeed, for
the parameters of SHUKET, we have Δz ¼ −Rþ a (i.e.,
zant ¼ 0) and

kρ02

2

�
1

R
þ 1

Δz

�
≈
kρ02a
2R2

<
kr2a
2R2

¼ 1.4 × 10−4 ðC1Þ

Then, the integrand of Eq. (35b) becomes

ρ0ð1 − iϵρ02ÞJ0
�
kρρ0

jΔzj
�

ðC2Þ

at first order in the small parameter ϵρ02, where
ϵ ¼ ka=2R2. Then, the integral is analytically calculable
and the electric field reads

U⃗SHUKET
dish ðρ;ΔzÞ ≈ AeiΦðρÞ rω

ρ

�
J1

�
rkρ
jΔzj

�

− i
ar

2ρR2

�
2ΔzJ2

�
rkρ
jΔzj

�

− rkρJ3

�
rkρ
jΔzj

���
; ðC3aÞ

where A ¼ χðYx; Yy; 0ÞT . One can verify easily that, with
the set of parameters considered, the second term in
Eq. (C3a) containing the second and third Bessel functions
is smaller by a factor∼106 compared to the other term∝ the
first Bessel function. Therefore, we can simplify the
expression of the field as

U⃗SHUKET
dish ðρ;ΔzÞ ≈ rωχ

ρ
eiΦðρÞ

0
B@

Yx

Yy

0

1
CAJ1

�
rkρ
jΔzj

�
; ðC3bÞ

and we recover Eq. (36).

FIG. 6. Numerical computation of ϵðρ;ϕÞ from Eq. (B3a) for various dish positions ðρ;ϕÞ. Over the full surface, it is of the order
of the ‰.
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APPENDIX D: ANALYTIC EXPRESSION
OF THE FIELD EMITTED BY SHUKET
DISH (OPTIMIZED PARAMETERS)

We derive an analytic expression of the electric field
emitted by the dish in the case of optimized parameters for
SHUKET. We will concentrate on one particular optimized
frequency fO of the set fset, but the same procedure can be
applied to the whole set. We consider the optimized
parameters for DM frequency fO ¼ 16.5 GHz and dish-
antenna distance ΔzO ≈ −14.8 m, the exponent in the
integrand of Eq. (35b) can be comparable to 1, therefore
the same Taylor expansion as in Appendix C is not
possible. Instead, we expand the Bessel function as

J0ðxÞ ¼
X∞
m¼0

ð−1Þmx2m
m!4mΓðmþ 1Þ ðD1Þ

In our case, x ¼ jkOρρ0=ΔzOj, kO ¼ 2πfO=c. The maxi-
mum value of ρ depends on the effective size of the antenna
at frequency ωO ¼ 2πfO following Eq. (20). From the
antenna gain GðωOÞ ¼ 16.87 dBi, the maximum value of x
is xmax ≈ 0.30. In the range ½0; xmax�, one can easily show
that the relative error on J0 by only taking the first two
terms of the sum Eq. (D1) is very small ∼10−4, which
indicates that these two terms are sufficient to describe the
Bessel function in our system. Therefore, the integrand of
Eq. (35b) becomes

ρ0e−iφðρ0;ΔzOÞ
�
1 −

�
kOρρ0

2ΔzO

�
2
�

ðD2aÞ

since

X1
m¼0

ð−1Þmx2m
m!4mΓðmþ 1Þ ¼ 1 −

x2

4
ðD2bÞ

Then, the analytic integration is doable and gives

U⃗Opti
dish ðρ;ΔzOÞ ¼

AωR
4ðΔzOÞ2ðRþ ΔzOÞ2

eik0Δz0
�
2ðeiΦ0 − 1Þ

× ΔzO
�
kOρ2R − 2iΔzOðRþ ΔzOÞ

�
− ir2k2Oρ

2ðRþ ΔzOÞ
�
; ðD3Þ

with A ¼ χðYx; Yy; 0ÞT and Φ0 ¼ kOr2ðRþ ΔzOÞ=2RΔzO.
From this expression, one can show that the mode
associated to this electric field is roughly constant over
the effective size of the antenna (∼1% variation), therefore
both methods presented in the Sec. V can work to compute
the relative power received by the antenna. We find

γOv: ≈ 5.1 × 10−3 ðD4aÞ

γAF ≈ 3.2 × 10−3: ðD4bÞ

Notice that in the same way as for SHUKET parameters,
the two results differ by an approximate factor 1.5 differ-
ence, as expected. Comparing both values with the ones
presented in Sec. VI, one finds an approximate factor 9
improvement in power received.
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