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We study the continuous phase transition and thermodynamic observables in the three-dimensional
Euclidean SUð2Þ principal chiral field model with the triad tensor renormalization group and the
anisotropic tensor renormalization group methods. Using these methods, we find results that are consistent
with previous Monte Carlo estimates and the predicted renormalization group scaling of the magnetization
close to criticality. These results bring us one step closer to studying finite-density quantum chromo-
dynamics in four dimensions using tensor network methods.
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I. INTRODUCTION

In recent decades, significant progress has been made in
understanding the nonperturbative physics of quantum
chromodynamics (QCD) through lattice gauge theory
based on Wilson’s insights. However, a major challenge
in the Monte Carlo (MC) simulations arises when attempt-
ing to compute real-time dynamics or simulate at finite-
baryon density (chemical potential) or in the presence of
topological theta term. This obstacle is primarily due to a
signal-to-noise issue called the “sign problem,” where
relevant gauge-invariant quantities are exponentially sup-
pressed relative to their error margins. This hinders a
comprehensive understanding of the QCD phase diagram
at finite baryon density and temperature which is crucial for
a proper understanding of a wide range of rich phenomena.
For a recent comprehensive review, we refer the reader
to Refs. [1,2].
Given the limitations of existing sampling-based numeri-

cal tools, there is a growing interest in exploring alternative
methods ranging from classical tensor networks to quantum
computing. Tensor network techniques, particularly when
integrated into a blocking algorithm known as the “tensor
renormalization group” (TRG) [3], have shown promise in

addressing these limitations. While TRG methods have
been successfully applied to several spin systems and
lattice gauge theories [4–23], efforts to employ them in
studying models in more than two Euclidean dimensions
have still been difficult. This difficulty was addressed by
TRG algorithms which scale better in a larger number of
dimensions [24–27] compared to the higher-order TRG
(HOTRG), a variant of the TRG method, which scales like
OðD4d−1Þ in d-dimensional Euclidean systems with bond
dimension D [28].
Two prominent approaches are the triad TRG (tTRG)

[26], and the anisotropic TRG (ATRG) [24], which are the
main focus of this work. Both these algorithms have
improved scaling in computational time and memory
relative to the HOTRG algorithm, with the computational
time in the tTRG scaling like OðDdþ3Þ, and the ATRG
scaling like OðD2dþ1Þ. These two TRG algorithms have
been applied for various higher-dimensional lattice theo-
ries [18,19,21,29–34]. However, even with the improved
time complexity, the two methods make additional approx-
imations in different ways leading to them potentially
discarding different physics during coarse-graining.
Because of these differences, it is important to quantify
their respective efficacies to understand which approxima-
tions are superior, if at all.
A further difficulty is the computational cost associated

with tensor formulations of actions possessing non-Abelian
symmetries [35–37]. These non-Abelian symmetries
prompt the existence of additional quantum numbers,
giving rise to more complicated constraints between
degrees of freedom. The transition from Abelian sym-
metries, where simple conservation-law constraints appear,
to non-Abelian symmetries where milder constraints
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manifest, e.g., triangle inequalities, drastically increases
the memory cost of tensor networks. Because of this, the
algorithmic improvements provided by the tTRG and the
ATRG are encouraging, but it is still unclear how these
algorithms handle these constraints under blocking.
To understand the potential of these algorithms as a

means to eventually probe QCD, it is often useful to
consider simpler models with similar properties. Notably, it
has been suggested that the chiral phase transition in the
two massless flavors approximation of QCD shares critical
exponents with the three-dimensional SUð2Þ principal
chiral model (Oð4Þ nonlinear sigma model) [38–42].
Leveraging this connection, investigations have been con-
ducted using MC and other numerical approaches to shed
light on this model [43–49].
In this study, we focus on exploring the three-

dimensional SUð2Þ principal chiral model using tensor
network methods. We construct the tensor network repre-
sentation for the path integral based on the character
expansion, which allows us to preserve the original
SUð2Þ symmetry even after the finite truncation of the
irreducible representations. Since the symmetry is pre-
served, it is naturally expected that we can obtain the
correct scaling behavior of the Oð4Þ model. We note that
this kind of truncation effect has been recently investigated
in the two-dimensional Oð2Þ model with tensor network
methods [50] and our work is the first tensorial attempt
in three dimensions extending the preliminary work by
authors in Ref. [51]. By employing the ATRG and tTRG
algorithms, the goal is to compute canonical quantities such
as internal energy, magnetization, and the critical coupling
associated with the continuous phase transition. We also
comment on the critical exponents and the fixed-point
behavior of the algorithms used in this paper.

II. THE MODEL

The SUð2Þ principal chiral model in three dimensions
has a continuum action given by

S ¼ J
4

Z
d3xTr

"X3
ν¼1

∂νUðxÞ†∂νUðxÞ
#
; ð2:1Þ

where J is the coupling constant and UðxÞ are elements of
SUð2Þ. The action in (2.1) is invariant under an SUð2ÞL ⊗
SUð2ÞR global symmetry which acts on U and U† as
UðxÞ → GLU0ðxÞG†

R and U†ðxÞ → GRU0†ðxÞG†
L where G

is an element of the SUð2Þ. This model is equivalent to the
Oð4Þ nonlinear sigma model because of the well-known
homomorphism i.e., SUð2Þ ⊗ SUð2Þ≡ SOð4Þ and was
first considered by Polyakov as a toy model to understand
the chiral symmetry breaking in QCD [52]. The Euclidean
lattice action is:

S ¼ −
J
2

X
n;ν

Tr½UðnÞUðnþ ν̂Þ†�; ð2:2Þ

where the SUð2Þ group elements live on the sites, n, of
the lattice, and the ν-sum is over the three orthogonal
directions of the cubic lattice. The path integral on the
lattice is given by

Z ¼
Z Y

n

dUðnÞe−S; ð2:3Þ

and the group integration is the typical Haar integral. We
assume periodic boundary conditions for all directions.
The average internal energy density can be defined

by a derivative of the thermodynamic potential
fðJÞ≡ − logZðJÞ,

hei ¼ 1

V
∂

∂J
fðJÞ: ð2:4Þ

One can explicitly break the global symmetry by including
an external field term in the action,

SH ¼ −H
X
n

Tr½UðnÞ�: ð2:5Þ

The average value of this on-site interaction term can also
be defined using a derivative of fðJ;HÞ,

hmi≡ 1

V

�X
n

Tr½UðnÞ�
�

¼ −
1

V
∂

∂H
fðJ;HÞ: ð2:6Þ

In the following section we will provide tensor network
descriptions of the path integral and these expectation
values, along with one more useful quantity.

A. Tensor network construction

Tensor network constructions for this model without SH
have been considered before in Refs. [35,36,49]. Here we
briefly review the construction using the character expan-
sion method, as well as provide a construction in the case of
an external field.

1. Basic construction

Our goal is to represent Eq. (2.3) as a tensor network
such that

Z ¼ tTr

�Y
n

Tn

�
; ð2:7Þ

where tTr is the tensor trace over all indices, and Tn is a
tensor at site n whose indices are suppressed. Using the
character expansion [53,54], we have
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exp

�
J
2
Tr½UðnÞUðnþ ν̂Þ†�

�

¼
X
r

FrðJÞχr
�
UðnÞUðnþ ν̂Þ†�; ð2:8Þ

with the coefficients written in terms of the modified Bessel
function of the first kind as:

FrðJÞ ¼
2ð2rþ 1Þ

J
I2rþ1ðJÞ: ð2:9Þ

Since the character χrðUÞ is the trace of the matrix
representation of the group element U in the irreducible

representation of r, we have,

χrðUðnÞUðnþ ν̂Þ†Þ ¼
X
m;k

DðrÞ
mkðUðnÞÞ

×DðrÞ�
mk ðUðnþ ν̂ÞÞ: ð2:10Þ

This allows each group element to be integrated individu-
ally, generating constraints associated with the sites of
the lattice involving Clebsch-Gordan coefficients. After
completing all the integrals, a local tensor at a site n is
given by

Tn;xyzz0y0x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY6
p¼1

FrpðJÞ
vuut Xr1þr2

R¼jr1−r2j

XRþr3

R000¼jR−r3j

Xr4þR0

R00¼jr4−R0j

Xr5þr6

R0¼jr5−r6j

X
M;N

X
M000;N000

X
M00;N00

X
M0;N0

× CRM
r1m1r2m2

CRN
r1n1r2n2C

R000M000
RMr3m3

CR000N000
RNr3n3

CR00M00
r4m4R0M0CR00N00

r4n4R0N0CR0M0
r5m5r6m6

CR0N0
r5n5r6n6

×
1

2R000 þ 1
δR000;R00δM000;M00δN000;N00 ; ð2:11Þ

where Cjm
j1m1j2m2

is the Clebsch-Gordan coefficient and
x≡ ðr1m1n1Þ is the collective index notation used often
going forward. This tensor can be understood in terms
of a sequence of smaller tensor contractions—whose
nonzero elements are given by the Clebsch-Gordan

coefficients—which are illustrated in Fig. 1. The tensor
in Eq. (2.11) can be inserted into Eq. (2.7) for an expression
of the path integral using a tensor network contraction.
The field regularization is achieved by introducing a

cutoff parameter rmax in Eq. (2.8) as

exp

�
J
2
Tr½UðnÞUðnþ ν̂Þ†�

�
≃
Xrmax

r¼0

FrðJÞχrðUðnÞUðnþ ν̂Þ†Þ; ð2:12Þ

which preserves the global symmetry and does not affect the integration. Using identical methods, we can express the
expectation value given in Eq. (2.4) as a ratio of two tensor network contractions.

FIG. 1. Tensor network diagram of Eq. (2.11). Each three-leg tensor denotes the Clebsch-Gordon coefficients and the two-leg tensor at
the center represents Kronecker delta function. Equation (2.20) is also denoted by the same diagram but with Eq. (2.21) as the matrix at
the center. Due to the fusion rule, internal lines have larger bond dimensions than external ones, as shown by their thickness.
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2. Impurity tensor for average action

Using the expressions in Eqs. (2.4) and (2.8), the derivative of fðJÞ affects the character expansion in the following way:

∂

∂J
exp

�
J
2
Tr½UðnÞUðnþ ν̂Þ†�

�
≃
Xrmax

r¼0

∂FrðJÞ
∂J

χr
�
UðnÞUðnþ ν̂Þ†�

¼
Xrmax

r¼0

F̃rðJÞχr
�
UðnÞUðnþ ν̂Þ†�; ð2:13Þ

with

F̃rðJÞ ¼
2ð2rþ 1Þ

J2
	
2rI2rþ1ðJÞ þ JI2rþ2ðJÞ



: ð2:14Þ

This minor modification gives an expression for hei in
terms of a tensor network that includes two adjacent
“impurities,”

hei ¼ −
3

Z
tTr

�
Rnþν̂Sn

Y
n0≠n;nþν̂

Tn0

�
; ð2:15Þ

and is the ratio of two scalars, tensor network contractions.
This is possible because of the translation invariance of our
lattice. The impurities are given by

Rnþν̂;xyzz0y0x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃rν0 ðJÞ
Frν0 ðJÞ

s
Tnþν̂;xyzz0y0x0 ; ð2:16Þ

and

Sn;xyzz0y0x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃rνðJÞ
FrνðJÞ

s
Tn;xyzz0y0x0 : ð2:17Þ

Note that the ν-directional coarse-graining should be
carried out first. We will now discuss the construction of
a tensor network when the model includes an external field
term in the action.

3. Pure and Impure tensors for magnetization

Consider the action now with an external field term,

S ¼ −
J
2

X
n;ν

Tr½UðnÞUðnþ ν̂Þ†� −H
X
n

Tr½UðnÞ�: ð2:18Þ

In this case, we need to modify the pure tensor, because we
have to deal with the finite magnetic field, H, which gives
us a new exponential factor. This factor can be expanded as
before, giving

eHTr½UðnÞ� ¼
X
rH

FrHð2HÞχrHðUðnÞÞ ¼
X
rH

FrHð2HÞ
XrH

mH¼−rH

DðrHÞ
mHmHðUðnÞÞ; ð2:19Þ

where FrH is defined as in Eq. (2.9). We can use the character expansion to isolate the individual group elements and
perform the Haar integration over each one. The integrals from before, in the absence of an external field, are modified but
straightforward. The resulting local tensor at site n is given by,

Tn;xyzz0y0x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY6
p¼1

FrpðJÞ
vuut Xr1þr2

R¼jr1−r2j

XRþr3

R000¼jR−r3j

Xr4þR0

R00¼jr4−R0j

Xr5þr6

R0¼jr5−r6j

X
M;N

X
M000;N000

X
M00;N00

X
M0;N0

× CRM
r1m1r2m2

CRN
r1n1r2n2C

R000M000
RMr3m3

CR000N000
RNr3n3

CR00M00
r4m4R0M0CR00N00

r4n4R0N0CR0M0
r5m5r6m6

CR0N0
r5n5r6n6

×
1

2R00 þ 1

X
rH

FrHð2HÞ
XrH

mH¼−rH

CR00M00
R000M000rHmH

CR00N00
R000N000rHmH

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY6
p¼1

FrpðJÞ
vuut Xr1þr2

R¼jr1−r2j

XRþr3

R000¼jR−r3j

Xr4þR0

R00¼jr4−R0j

Xr5þr6

R0¼jr5−r6j

X
M;N

X
M000;N000

X
M00;N00

X
M0;N0

× CRM
r1m1r2m2

CRN
r1n1r2n2C

R000M000
RMr3m3

CR000N000
RNr3n3

CR00M00
r4m4R0M0CR00N00

r4n4R0N0CR0M0
r5m5r6m6

CR0N0
r5n5r6n6

×
1

2R00 þ 1

XR000þR00

rH¼jR000−R00j
FrHð2HÞCR00M00

R000M000rHðM00−M000ÞC
R00N00
R000N000rHðM00−M000Þ: ð2:20Þ
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Note with an external field there is an intermediate tensor of the form

HR000R00 ðHÞ ¼ 1

2R00 þ 1

XR000þR00

rH¼jR000−R00j
FrHð2HÞCR00M00

R000M000rHðM00−M000ÞC
R00N00
R000N000rHðM00−M000Þ ð2:21Þ

which replaces the Kronecker deltas found in Eq. (2.11).
Now, with Eq. (2.14), we can write down the necessary impure tensor for the calculation of the magnetization density

in Eq. (2.6),

Qn;xyzz0y0x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY6
p¼1

FrpðJÞ
vuut Xr1þr2

R¼jr1−r2j

XRþr3

R000¼jR−r3j

Xr4þR0

R00¼jr4−R0j

Xr5þr6

R0¼jr5−r6j

X
M;N

X
M000;N000

X
M00;N00

X
M0;N0

× CRM
r1m1r2m2

CRN
r1n1r2n2C

R000M000
RMr3m3

CR000N000
RNr3n3

CR00M00
r4m4R0M0CR00N00

r4n4R0N0CR0M0
r5m5r6m6

CR0N0
r5n5r6n6

×
1

2R00 þ 1

XR000þR00

rH¼jR000−R00j
F̃rHð2HÞCR00M00

R000M000rHðM00−M000ÞC
R00N00
R000N000rHðM00−M000Þ: ð2:22Þ

4. Fixed-point tensor analysis

To understand the behavior of the Oð4Þ fixed-point
structure in this model and to check the reliability of our
coarse-graining procedure, we use the observable intro-
duced in Ref. [55], X. This quantity has the property that
when computed using fixed-point tensors Tijklmn—which
are invariant under scaling symmetry: T → ΓT—it is
unchanged. In this subsection, we use X to determine
the location of Jc i.e., the critical coupling, and to poten-
tially point out the relevant symmetry breaking responsible
for the phase transition. This is possible because the fixed-
point structure of the tensor after a large number of
iterations can be used to identify the ground state degen-
eracy of the model. In three dimensions, X is defined as:

X ≡ ðTabccbaÞ2
TabccbdTdeffea

; ð2:23Þ

with the tensor indices arranged as Txyzz0y0x0 and summation
over repeated indices implied. This quantity has the
property that when the tensor is a direct sum of n
dimension-one tensors, X ¼ n, and when it is a simple
dimension-one tensor, X ¼ 1 (in the disordered phase at
high temperatures or small J). We can use this property to
identify when the model undergoes a change in its ground
state degeneracy corresponding to a phase transition.

B. Definition of initial tensors for tensor
renormalization groups

The tensor network contraction formally given in
Eq. (2.7) cannot be carried out exactly, except in the most
simple of cases. Instead, we use the tTRG and ATRG
methods to approximate it. To use these methods, the

primary tensor, T, must be decomposed into an appropriate
form for each specific algorithm.
The philosophy of the tTRG is to rewrite the initial tensor

into a contraction of four smaller tensors (in three dimen-
sions). For a generic six-indexed tensor in three dimen-
sions, this takes the form,

Txyzz0y0x0 ¼
X
a;b;c

AxyaBazbCbz0cDcy0x0 : ð2:24Þ

The principal chiral model naturally takes the form of a
triad decomposition. The right-hand side of Eq. (2.24) is in
the same form as Eq. (2.11), with an identification of
x ¼ ðr1m1n1Þ, x0 ¼ ðr6m6n6Þ etc. which gives for the triad
tensors,

Axya ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr1ðJÞFr2ðJÞ

q
CRM
r1m1r2m2

CRN
r1n1r2n2 ð2:25Þ

Bazb ¼
1ffiffiffiffiffiffiffi
dR00

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr3ðJÞ

q
CR00M00
RMr3m3

CR00N00
RNr3n3

ð2:26Þ

Cbz0c ¼
1ffiffiffiffiffiffiffi
dR00

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr4ðJÞ

q
CR00M00
r4m4R0M0CR00N00

r4n4R0N0 ð2:27Þ

Dcy0x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr5ðJÞFr6ðJÞ

q
CR0M0
r5m5r6m6

CR0N0
r5n5r6n6 ; ð2:28Þ

where the index structure makes it clear when we are
referring to the Clebsch-Gordan coefficients, and when we
are referring to the C tensor. This triad formulation is
shown in Fig. 2, with the A, B, C, and D tensors appearing
from right to left.
The impure tensors from Eqs. (2.16) and (2.17) can be

immediately used in the triad formulation as well. They
modify the, say, B and C tensors on two adjacent sites, say,
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n and nþ ẑ, respectively,

B̃azbðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃r3ðJÞ
Fr3ðJÞ

s
BazbðnÞ

¼ 1ffiffiffiffiffiffiffi
dR00

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃r3ðJÞ

q
CR00M00
RMr3m3

CR00N00
RNr3n3

ð2:29Þ

C̃bz0cðnþ ẑÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃r4ðJÞ
Fr4ðJÞ

s
Cbz0cðnþ ẑÞ

¼ 1ffiffiffiffiffiffiffi
dR00

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃r4ðJÞ

q
CR00M00
r4m4R0M0CR00N00

r4n4R0N0 : ð2:30Þ

For the case of an external field, the H matrix in Eq. (2.21)
naturally fits between the B and C tensors.
For the ATRG, we convert T into the canonical form to

evaluate Eq. (2.7). This decomposition can be seen in
Fig. 3. The canonical form we need is

Txyzz0y0x0 ¼
X
γ

UxyzγσγV�
z0y0x0γ; ð2:31Þ

which is nothing but the SVD of T. This canonical form can
be constructed without using the full six-indexed tensor by
using the natural triad structure of the tensor described

above. In the practical computation, we introduce the low-
rank approximation in Eq. (2.31) to decimate the smaller
singular values up to the bond dimension.

III. RESULTS

With the tensor constructions defined in Sec. II B, we can
compute quantities using both the tTRG, and the ATRG,
and compare. For this comparison, we consider hei, X, and
hmi, and we make the comparison at fixed bond dimension.
The computation of the internal energy can be seen in

Fig. 4. This is done using the impure tensor. Here we not
only compare the tTRG and the ATRG but also include MC
results to provide a cross-check. The relative error,

ϵrel ¼
heiTRG − heiMC

heiMC
; ð3:1Þ

between the tensor calculations and the MC are shown in the
inset plot. We find in the “strong-coupling/high-temperature”
regime that the tensor results agree well with the MC results.
In the “weak-coupling/low-temperature” regime we find
poorer accuracy, however, as rmax is increased, the tensor
results move toward the MC data.
In Fig. 5 we see the comparison between the tTRG and

the ATRG in computing X. Previous studies [34,55–58]

FIG. 3. Initial tensors for the ATRG in Eq. (2.31). Four-leg tensors denote unitary matrices and the two-leg tensor shows the singular
value. In the practical computation, the size of the internal line is truncated by the bond dimension D in the ATRG.

FIG. 2. Initial tensors for the tTRG.

AKIYAMA, JHA, and UNMUTH-YOCKEY PHYS. REV. D 110, 034519 (2024)

034519-6



focused on computing X in the presence of a discrete global
symmetry. Its use as a tool to identify phase transitions for
continuous global symmetries is untested. Both tensor
methods see a “jump” in X around some Jc, indicating a
potential phase transition. We use this jump to identify Jc
for various rmax values, which we use in later computations
of the magnetization. The location of the jumps as a
function of rmax does not completely agree between the
two methods, although they are roughly consistent.
However, the tTRG value for Jc with rmax ¼ 1 and rmax ¼
3=2 are the same at this resolution, unlike the ATRG which
has two different values for these two rmax cutoffs. The
tTRG result for rmax ¼ 2 actually worsens, in contrast to
the ATRG.
The values of Jc extracted using this method can be seen

plotted against D in Fig. 6. The result obtained using MC

methods shows Jc ¼ 0.936ð1Þ [43] which is closest to the
ATRG result with the highest truncation. It seems that with
these results, ATRG does slightly better than tTRG in
obtaining a better approximation. It is worth noting that the
jump from X ¼ 1 to X ¼ 2 is reminiscent of a similar jump
associated with the Ising universality class. However, as
found in MC, as well as in this study, the critical exponents
found for the phase transition in this model are not
consistent with the Ising type as we will see below.
The final quantity we consider is the magnetization. This

quantity is calculated in the presence of an external field
using an impure tensor. The results of this calculation can
be seen in Fig. 7 for H ¼ 0.01. We see somewhat similar
results between the tTRG and ATRG, however, at larger J
values, the tTRG possesses noise which can be radical for
some values of J. We find this effect is both rmax and

FIG. 4. The average internal energy plotted alongside the MC computation using the tTRG (left) and ATRG (right). In both tensor
computations D ¼ 50 for the three lowest irreps., and D ¼ 70 for rmax ¼ 2, and L ¼ 16.

FIG. 5. The X quantity using the tTRG (top) and ATRG
(bottom). Both methods usedD ¼ 50, and L ¼ 1024. The vertical
dashed lines indicate the estimated values for the various Jc. The
correct MC value is Jc ¼ 0.936ð1Þ.

FIG. 6. The critical coupling Jc as determined using X plotted
versus 1=D. The result from MC [43] is shown with a dashed line
and an uncertainty that is not visible in the plot.
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D dependent. One can also see that the tTRG result is
systematically slightly lower than the ATRG result, espe-
cially in the large J regime, indicating the tTRG may be
missing a fraction of the true critical behavior.
To address this point, we attempt to collapse the

magnetization data under the assumption of the existence
of a critical point, which was carried out using MC and
nonperturbative renormalization group method for this
model in Refs. [44,47,59]. We define the following
variables,

j≡ Jc − J
Jc

; ð3:2Þ

and

h≡ H
H0

; ð3:3Þ

(a) (b)

(c) (d)

FIG. 8. The magnetization collapse for various truncations. The left panel shows the results using tTRG, and the right panel shows
ATRG. (a)–(c) rmax ¼ 1=2; 1; 3=2 were calculated with D ¼ 50, and (d) rmax ¼ 2 was done with D ¼ 70. The volume is 10243.

FIG. 7. Magnetization with H ¼ 0.01 for tTRG (left) and
ATRG (right). We use D ¼ 50 for the three smallest irreps.
andD ¼ 70 for rmax ¼ 2. The lattice volume is 10243 in all cases.
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which can be used in the following scaling functional form

hmi
h1=δ

¼ fðj=h1=βδÞ ð3:4Þ

that is valid in the regime of critical behavior. Figure 8
shows the resulting collapsed data for four different
truncations. Here H0 is chosen such that fð0Þ ¼ 1, and
β and δ are the usual critical exponents. We use the values
from Ref. [43] of β ¼ 0.3836ð46Þ and δ ¼ 4.851ð22Þ. The
respective values of Jc are determined using the results
from the X calculation, for both the tTRG and ATRG
collapses. We find the TRG results are consistent with the
critical exponents obtained using MC using both methods,
indicating that while the tTRG estimate for Jc is worse than
the ATRG estimate, the underlying critical behavior cap-
tured by it for the magnetic exponents is still consistent
with the literature.1

IV. CONCLUSIONS

We carried out a systematic study of the three-
dimensional SUð2Þ principal chiral model which belongs
to the same universality class as the Oð4Þ nonlinear sigma
model. This model is useful in understanding chiral
symmetry in QCD in a simplified setting. Since our tensor
network formulation is based on character expansion, the
SUð2Þ symmetry is explicitly present even with a finite rmax
truncation. We used different tensor network algorithms
and computed the critical coupling, average action, mag-
netization, and fixed point observables. In addition, we also
compute the RG collapse plots for magnetization which
has previously not been attempted using the higher-
dimensional TRG approach. Our results show the
efficiency of tensor methods even in three Euclidean
dimensions to reproduce the expected critical exponents.
Our results are also the first direct comparison of observ-
ables, calculated using two different methods (ATRG and

tTRG), in a model with a continuous non-Abelian sym-
metry group in three dimensions.
Generally, we find the ATRG is more accurate and less

noisy with respect to the results from the literature;
however, the tTRG does correctly capture the critical
behavior for the exponents calculated here. Moreover,
we note that the tTRG was compared to the ATRG using
the same D in all calculations, but that the tTRG possesses
superior scaling in computational cost which was not taken
advantage of in these calculations. Future studies using the
full strength of the tTRG could demonstrate improved
accuracy. It would be interesting to improve the algorithms
used in this paper such that those computations can be
pursued. We leave this improvement and study of gauge
theories in three dimensions for future work.
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1One can fit α directly from the internal energy using the
following expression [28],

hei ¼ Aþ BjJ − Jcj þ CjJ − Jcj1−α; ð3:5Þ

where A, B, and C are fit parameters. Using this method, both the
tTRG and the ATRG finds α that is consistently negative [51].
However, obtaining a precise value following this way is difficult
and we leave this for future work.
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