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The 4D compact U(1) gauge theory has a well-established phase transition between a confining and a
Coulomb phase. In this paper, we revisit this model using state-of-the-art Monte Carlo simulations on
anisotropic lattices. We map out the coupling-temperature phase diagram, and determine the location of the
tricritical point, T=K0 ≃ 0.19, below which the first-order transition is observed. We find the critical
exponents of the high-temperature second-order transition to be compatible with those of the 3-dimensional
Oð2Þ model. Our results at higher temperatures can be compared with literature results and are consistent
with them. Surprisingly, below T=K0 ≃ 0.05 we find strong indications of a second tricritical point where
the first-order transition becomes continuous. These results suggest an unexpected second-order phase
transition extending down to zero temperature, contrary to the prevailing consensus. If confirmed, these
findings reopen the question of the detailed characterization of the transition including a suitable field
theory description.
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I. INTRODUCTION

Gauge theories formulated on the lattice [1] are central to
our understanding of various nonperturbative phenomena
such as confinement of color charges in quantum chromo-
dynamics. They are also important in condensed matter
physics as emergent low energy theories of interacting
spins or electrons in crystalline solids or in quantum
simulators. Pure U(1) gauge theory has a long history as
a relatively simple example of a theory exhibiting charge
confinement at least at strong coupling [2–10]. In three
dimensions, Polyakov observed that the theory is confining
at all couplings as a consequence of monopole condensa-
tion where the existence of monopole charges is a conse-
quence of the compactness of the gauge group [11,12]. In
4D, the analogous excitations can be interpreted as monop-
ole world lines. Polyakov [12] conjectured and Alan Guth

proved [13] that there is a phase transition between a strong
coupling confined phase and a weak coupling Coulomb
phase with propagating photon excitations.
Evidence for this phase transition was found already

in Monte Carlo simulations of the lattice action from
the 1980s [13–21] and corroborated by later studies
[8–10,22–25]. One perspective on this phase transition
was as a condensation transition of monopole loops [11,12].
In fact, numerical studies have shown that there is no phase
transition if monopole excitations are suppressed [26,27]. An
early controversy over the nature of the phase transition at
zero temperature was eventually settled in favor of a weak
first-order transition [5,9,10,17–25,28–34].
Monte Carlo results are extracted from finite size scaling

of simulations performed on lattices of fixed temporal size
Nt and spatial extent Ns. Finite temperatures in this theory
have been partially explored by simulating lattices with fixed
Nt while varying Ns [23–25]. For Nt ¼ 1, the 4D U(1)
lattice gauge theory (LGT) is decoupled into a 3D U(1) LGT
and a 3D XY model. While the 3D U(1) LGT is known to
remain in the confining phase throughout the parameter
space, the 3D XY model has a second-order phase transition
at a finite value of the coupling. As such, one expects a phase
boundary connecting the second-order transition at Nt ¼ 1
to the first-order transition at Nt → ∞, along which there
must be a tricritical point where the order of the phase transi-
tion changes. Evidence for this feature of the phase boundary
at finite temperature has been seen numerically [25].

*Contact author: rafaelcjtorres@tecnico.ulisboa.pt
†Contact author: nuno.cardoso@tecnico.ulisboa.pt
‡Contact author: bicudo@tecnico.ulisboa.pt
§Contact author: ribeiro.pedro@tecnico.ulisboa.pt
∥Contact author: paul.mcclarty@cea.fr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 034518 (2024)

2470-0010=2024=110(3)=034518(12) 034518-1 Published by the American Physical Society

https://orcid.org/0000-0002-5967-0741
https://orcid.org/0000-0003-0777-663X
https://orcid.org/0000-0003-1556-0580
https://orcid.org/0000-0001-7630-2054
https://ror.org/01c27hj86
https://ror.org/04tavf782
https://ror.org/029rmm934
https://ror.org/029rmm934
https://ror.org/03xjwb503
https://ror.org/03xjwb503
https://ror.org/03n15ch10
https://ror.org/01bf9rw71
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.034518&domain=pdf&date_stamp=2024-08-30
https://doi.org/10.1103/PhysRevD.110.034518
https://doi.org/10.1103/PhysRevD.110.034518
https://doi.org/10.1103/PhysRevD.110.034518
https://doi.org/10.1103/PhysRevD.110.034518
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Further studies considered corrections to the action in
the form of the leading higher harmonic of the plaquette
term [30,31,35]. These corrections make it possible to shift
the position of this tricritical point [30,31]. By tuning the
ratio of couplings it is possible to shift the tricritical point to
T ¼ 0, recovering a second-order transition down to zero
temperature [35].
In this paper, we revisit both the nature of the low-

temperature transition and the location of tricritical points
by providing a unified phase diagram as a function of
coupling and temperature for the original Wilson action. It
is natural to approach this problem from the perspective of
a Hamiltonian formulation of the theory. However, it is the
lattice action that can be simulated efficiently using
quantum Monte Carlo. Furthermore, the standard lattice
action for attainable system sizes provides access only to a
very coarse-grained set of temperatures. We provide a
systematic Monte Carlo study of the 4D pure U(1) gauge
theory addressing both of these issues.
The problem of sweeping in temperature is solved by

introducing a continuous anisotropy parameter between the
spatial and temporal directions on the lattice. Technically the
parallel between the action and the Hamiltonian formulation
can be drawn by making use of a Villain approximation at
the expense of introducing a renormalization of couplings.
To fix this issue, we express all Hamiltonian quantities in
terms of the critical coupling at zero temperature. In this
way, we are able to systematically relate various anisotropic
lattice sizes and couplings of the simulated action to the
Hamiltonian couplings and temperature. Using these tech-
nical innovations in tandem, we were able to access the finite
temperature phase diagram over a wider region of parameter
space than hitherto explored. We find direct evidence for a
second-order transition at higher temperatures with criticality
consistent with the expected 3D XY universality class.
As the temperature is lowered and the transition moves to
stronger coupling, we pinpoint the location of the tricritical
point hinted at in previous studies. At lower temperatures
still the first-order transition becomes weaker and in the
zero temperature limit our results are compatible both with
a continuous and a very weakly first-order transition.
Although our results are not precise enough, they suggest
a scenario where the zero-temperature transition is continu-
ous concomitant with the existence of an additional tricritical
point at low temperature.
The paper is organised as follows. In Sec. II A, we

introduce the model and observables, the simulation
procedure and lattice anisotropy parameter and the con-
nection to temperature. Then, in Sec. II C, we outline how
we identify the phase transition and present the complete
finite temperature phase diagram of the 4D U(1) LGT. In
Sec. III B, we describe how to determine the order of the
transition and present our results revealing a tricritical
point. We discuss critical exponents in Sec. III C and
summarize all our findings in Sec. IV.

II. U(1) LATTICE GAUGE THEORY

A. Gauge action

We consider a hypercubic lattice with spacetime coor-
dinates labeled as n ¼ ðτ; rÞ, where r labels points on the
spatial lattice, and τ the time slice. Directions are labeled as
μ; ν ¼ ð0; 1; 2; 3Þ with μ ¼ 0 for the temporal direction.
The canonical U(1) lattice gauge theory action may be
written in terms of angles ϕνðnÞ∈ ½0; 2πÞ, parametrizing
U(1) group elements UνðnÞ ¼ eiϕνðnÞ on links of the lattice.
The lattice action is

S½ϕ� ¼ −β
X
n;μ<ν

cosΘμνðnÞ; ð1Þ

where ΘμνðnÞ ¼ ϕμðnÞ þ ϕνðnþ μ̂Þ − ϕμðnþ ν̂Þ − ϕνðnÞ
are terms living on plaquettes. The corresponding quantum
theory is defined through the generating function Z ¼R
Dϕe−S½ϕ�. The theory has a U(1) gauge invariance under

UνðnÞ → ηðnÞUνðnÞη†ðnþ νÞ where ηðnÞ are local phases.
We define the theory on a lattice with Ns sites along each

of the three spatial dimensions, and Nt sites along the tem-
poral direction. Periodic boundary conditions are imposed
in all directions.
In the following, it will be convenient to generalize the

action in Eq. (9) to anisotropic lattices with different spatial
as, and temporal, at lattice constants. Defining the aniso-
tropy parameter ξ ¼ as=at, spatial and temporal lattice
directions have to be treated differently at the level of the
action, yielding [36]

S½ϕ� ¼ −
β

ξ

X
n;l<l0

cosΘll0 ðnÞ − βξ
X
n;l

cosΘl0ðnÞ; ð2Þ

with l; l0 ¼ 1, 2, 3 denoting the spatial directions.

B. Observables

In a pure U(1) LGT all observables, i.e. gauge-invariant
quantities, can be constructed as the trace of the product of
link variables across closed loops [37]. Of particular
interest for this work is the Polyakov loop at the site r,

PðrÞ ¼
YNt−1

j¼0

U0ðr; jÞ; ð3Þ

obtained as the product of temporal link variables along the
full extent of the temporal lattice. It corresponds to a closed
loop for the considered periodic boundary conditions. The
average Polyakov loop,

P ¼ 1

N3
s

X
r

PðrÞ; ð4Þ
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can be interpreted as the probability of observing a single
static charge [37] over the probability that no charge is
observed.
Therefore, this observable distinguishes confined and

deconfined phases. At large values of the coupling constant
(small β) we expect the theory to be confined, so that no
free charges are observed, i.e. P ¼ 0 at the thermodynamic
limit. At small values of the coupling constant (large β), we
expect the theory to be deconfined, so that free static
charges can be observed, i.e. P ≠ 0. Therefore, the average
Polyakov loop can be taken as the order parameter for the
confined/deconfined transition. In the following, we use P
to determine the critical value βc at which the phase
transition occurs.
For a finite size lattice this translates to the behavior

illustrated in the upper panel of Fig. 1. For large values of β
we observe loghPi ∝ −Nt whereas for small β the asymp-
totic value reaches an Nt independent constant.
In order to better identify the phase transition, we study

the susceptibility of the Polyakov loop, defined as

χP ¼ NtN3
sðhP2i − hPi2Þ; ð5Þ

which peaks at the critical value of β for which the phase
transition occurs, as shown in the lower panel of Fig. 1.

C. Simulating the U(1) LGT

To determine the average value of the Polyakov loop
and its susceptibility, we carried out Graphics Processing
Unit (GPU) accelerated Metropolis-Hastings Monte Carlo
[38–43]. We generatedNiter ¼ 105 Markov Chain iterations
and dropped the first 5000, in order to consider only itera-
tions generated after the thermalization of the system. We
further calculated the autocorrelation time, τ, between the
configurations for several observables, and kept only con-
figurations separated by 3τ. In order to decrease the auto-
correlation between two sequential configurations, three
over-relaxation steps were implemented [44]. Autocorre-
lation times for the absolute value of the Polyakov loop
between τ ¼ 1.4 and τ ¼ 15 Monte Carlo sweeps were
obtained in different regions of the parameter space, resulting
in a final number of configurations between Nconfig¼
22.6 ×104 andNconfig¼2.1×103. The variance of the obser-
vables was calculated with the Jackknife method [45,46].
From these simulations taken for different values of Nt

and ξ, we obtain the critical value of βðNt; ξÞ for which
the confinement/deconfinement phase transition occurs by
performing a Lorentzian fit to the Polyakov loop suscep-
tibility. We have checked that results do not change
significantly with Ns for Ns sufficiently large.

D. Effective Hamiltonian

To link the coupling constants of the lattice gauge theory
defined in the previous section to physical parameters we
shall assume that there is a Hamiltonian for the gauge
theory with couplings U and K that are to be determined
from the lattice action results [47],

H ¼ U
2

X
r;l

ðnlðrÞÞ2 − K
X
r;l<l0

cos ½Θll0 ðrÞ�; ð6Þ

where nlðrÞ an integer-valued operator conjugated to ϕlðrÞ.

E. Parameter matching

Starting from the Hamiltonian of Eq. (6), the standard
derivation of the partition function Z ¼ Tr½e−H=T � by
Trotter slicing, that we sketch in Appendix A for com-
pleteness, relies on the Villain approximation to integrate
the conjugated variables, nμðrÞ. A naive identification of
the resulting action, valid for large values of TNt=U,
and that of Eq. (2) yields

K
TNt

¼ β

ξ
; ð7Þ

TNt

U
¼ βξ: ð8Þ

FIG. 1. Logarithm of the average value of the Polyakov loop
(top) and Polyakov loop susceptibility (bottom) as a function of β
for Nt ¼ 6, 8, 10, 12 and Ns ¼ 24, for an anisotropic lattice with
ξ ¼ 1.5. The average Polyakov loop is P ¼ 0 in the confining
phase, and changes to a nonzero value in the Coulomb phase. The
peak in the susceptibility identifies the location of the phase
transition.
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However, at small Nt, there are important corrections at low
temperatures. A first refinement to Eqs. (7) and (8) can be
obtained using a perturbative expansion [48], which we
provide in Appendix B. As we show in Appendix B, despite
clear improvements over the naive parametrization Eqs. (7)
and (8), this approach is still not sufficient to determine the
phase diagram given the system sizes available to us.
Nevertheless, an action of the form of Eq. (2) is expected

to capture the physics of H, especially in the vicinity of the
phase transition where irrelevant terms can be neglected.
With this motivation, we renormalize the parameters in

the action, replacing the coefficient multiplying the space-
time part with a scaling function of TNt=U to be deter-
mined, i.e.,

S½ϕ� ¼ −
K
TNt

X
n;μ<ν

cosΘμν − f

�
TNt

U

�X
n;μ

cosΘμ0: ð9Þ

Identifying the terms with those in Eq. (2) and solving in
order to K=U and T=U we find

K
U

¼ β

ξ
f−1ðβξÞ; ð10Þ

T
U

¼ 1

Nt
f−1ðβξÞ: ð11Þ

To determine fðzÞ numerically we first approximate the
quantity β0ðξÞ ¼ limNt→∞βðNt; ξÞ by βðNt; ξÞ computed
with the largest available value of Nt and confirm that
appropriate convergence with Nt was achieved.
The critical value of K ¼ K0 at T ¼ 0 is thus given by

Eq. (10) evaluated at β0ðξÞ

K0

U
¼ β0ðξÞ

ξ
f−1½β0ðξÞξ�: ð12Þ

Since the left-hand side of this equality is independent of ξ
and since β0ðξÞ was obtained previously, this relation can
be used to determine f−1ðzÞ up to a multiplicative constant,
i.e. function f̃−1ðzÞ ¼ Uf−1ðzÞ=K0. The quantities β0ðξÞ
and f̃−1ðzÞ are shown in Figs. 2 and 3, respectively.
Given f̃, the mapping between the action and the

Hamiltonian is completely determined by

K
K0

¼ β

ξ
f̃−1ðβξÞ; ð13Þ

T
K0

¼ 1

Nt
f̃−1ðβξÞ: ð14Þ

A drawback of this procedure is that it only determines
the mapping between Hamiltonian and action coupling
constant up to a constant, K0, that has to be determined
independently.

III. RESULTS

A. Phase diagram

Figure 4 shows the phase diagram of the U(1) gauge
Hamiltonian (6), obtained via the approach outlined in the
previous section. Using our parameter matching procedure,
the critical values of βðNt; ξÞ, obtained by simulating the
lattice action for many different ðNt; ξÞ couplings, collapse
into a single curve.
The quality of the data collapse is remarkable. As

expected, we find that for large T the transition is second
order and passes to first order at a tricritical point, TP, as T
decreases. Interestingly, for even lower temperature, we
find that the discontinuity becomes weaker. In fact, our data
are compatible with a second-order transition for T ¼ 0.
These findings are substantiated in the next section.

B. Order of the phase transition

We now turn to the discussion of the order of the phase
transition along the entire phase boundary. To identify the
order of the transition, we examine the histograms of the

FIG. 2. Values of β0ðξÞ ¼ limNt→∞ βðNt; ξÞ for each value of ξ
approximated using the largest value of Nt available.

FIG. 3. Function f̃−1ðzÞ obtained by fitting a curve to z ¼
ξβ0ðξÞ and f̃−1 ¼ ξ=β0ðξÞ, according to Eq. (12) and using the
values of β0 determined for each value of ξ, as shown in Fig. 2.
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absolute value of the Polyakov loop on both sides of the
transition. The first-order nature of the transition is deter-
mined from phase coexistence signaled by a double peak
structure in the histogram [49].
Histograms are obtained using the field configurations of

Niter ¼ 200000 consecutive Markov Chain iterations and
discarding the first 5000 in order to remove the pretherm-
alization regime. Simulations were carried out with spatial
extents Ns ¼ 24, and Ns ¼ 36.
Figure 5 illustrates the two-peak structure clearly

observed at the phase transition for T=K0 ¼ 0.12.
Figure 6 shows how the Polyakov loop histogram evolves
across the phase transition from the confined to the
deconfined phases, for fixed T=K0 and various K=K0.

In the confined phase the histogram is single peaked. The
two-peak structure appears around the phase transition and
vanishes again deeper inside the deconfined phase.
We identify a two-peak structure for temperatures 0.05 <

T=K0 ≤ 0.175 consistent with a discontinuous change of
the Polyakov loop as the system transitions from the
confined to the Coulomb phase. Accordingly we label
transitions in this region as first order.
Figure 7 shows the evolution of the histogram across

the phase transition for a temperature T=K0 ≥ 0.19. Here,
only one peak can be identified in the histogram that is
progressively centered at higher values of the Polyakov

FIG. 4. Phase diagram using the parameters in Eqs. (13)
and (14). Different markers represent different extents of the
temporal lattice, Nt. The error bars were computed and are
smaller than the markers. The calculated values of T=K0 and
K=K0 for each value of ξ and Nt are presented in Appendix C, in
Table I. TP indicates the tricritical point at which the transition
changes between first and second order. TP’ instead refers to the
point below which the transition is consistent with second order.

FIG. 5. Histogram of the Polyakov loop at the phase transition
for T=K0 ¼ 0.12. The two peaks identify phase coexistence at a
first-order transition.

FIG. 6. Histograms of the Polyakov loop for T=K0 ¼ 0.12 and
varying K=K0. Close to the phase transition, we can identify two
peaks in the histogram.

FIG. 7. Histograms of the Polyakov loop at T=K0 ¼ 0.32 and
varying K=K0.
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loop. This continuous change of the average values of the
Polyakov loop is compatible with a second-order phase
transition.
From the analysis of the histogram across the transition,

our data is consistent with the existence of a temperature
point between T=K0 ¼ 0.175 and T=K0 ¼ 0.19 at which
the transition changes from first to second order. This high-
temperature change in the order of the phase transition had
already been explored using isotropic lattices as we now
briefly summarize.
In [23], the authors analyzed time histories of the

plaquette mean values and found signs of metastability
on isotropic lattices with Nt ¼ 6 and Nt ¼ 8, indicating
that the transition is of first order for lattices with these
extents in the temporal direction. For a smaller lattice
(higher temperature) their results seem to indicate that the
transition could be second order for Nt ¼ 4. More recently,
in [25], the authors conclude that the transition is first
order for lattices with Nt ≥ 6 and second order for lattices
with Nt ≤ 5 by studying the scaling of the plaquette and
Polyakov loop susceptibilities with Ns, using isotropic
lattices with fixed values of Nt.
The results we report above are in accordance with these

previous studies. Moreover, by considering the anisotropic
lattice regularization, we are able to explore a wider
parameter region, and obtain a comprehensive coupling-
temperature phase diagram that reveals the tricritical point
connecting the highest temperature regime (T=K0 > TTP)
to intermediate temperatures (0.05 < T=K0 < TTP). Our
numerical analysis of the double-peak structure places
the tricritical temperature, TTP, within the interval 0.175 <
TTP < 0.19. In addition, our method is also able to access
the previously unexplored lower temperature regime that
we discuss below.
Figure 8 shows the position of the peaks in the Polyakov

loop histogram versus temperature for various values of
T=K0. The distance between peaks is plotted in Fig. 9.
As expected, from moderate to high temperatures, the
peak-to-peak distance vanishes (up to error bars) concomi-
tantly with transition change from first to second order.
Surprisingly, for low temperatures, the distance between
the peaks also vanishes as the temperature decreases.
Indeed, for T=K0 ≤ 0.05, the peak-to-peak distances vanish
within error bars. Although it is impossible to exclude a
very weak first-order transition, these results strongly
indicate the existence of a low-temperature tricritical point,
TP0, where the transition apparently becomes second order
from TTP0=K0 ≃ 0.05 down to T ¼ 0.
As previously mentioned, there has been some debate

about the order of the phase transition of the U(1) LGT
in the zero temperature limit. This question has been
addressed using isotropic lattices [6,10,19,21,22] with an
apparent consensus that the transition is first order in
the limit of zero temperature. However, isotropic lattice

regularization is constrained to specific values of temper-
ature, whereas anisotropic lattices allow one to explore a
much wider range of temperatures. In particular, the lattice
sizes used in these previous studies [6,10,19,21,22] corre-
spond to temperatures greater than T=K0 ¼ 0.05, for which
our method also predicts a first-order transition. It is only for
values of the temperature below those considered in previous
studies that we find the possibility that the two peaks in
the Polyakov loop histogram merge implying a continuous
transition below TP0 and down to zero temperature.
In Fig. 4, we present the complete phase diagram with

the order of the transition indicated.

FIG. 8. Position of the peaks in the Polyakov loop histogram for
the values of T=K0 considered. For the cases where two peaks
were identified, both peak positions are plotted in blue and red.
For the cases where only one peak was identified, the position of
the peak at the phase transition is plotted in purple.

FIG. 9. Distance between the peaks in the Polyakov loop
histogram. In the cases where only one peak was identified,
the peak distance is plotted at zero and the error bars correspond
to the error in the peak position.
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C. Critical exponents

In order to examine the nature of the phase transition in
the regions T=K0 ≥ 0.19 and T=K0 ≤ 0.05, we investi-
gated the critical exponents for points in each of these
regions.
We calculated the Binder cumulant,

B ¼ 1 −
hP4i
3hP2i2 ð15Þ

and the Polyakov loop susceptibility, χP, for fixed values of
T=K0 and varying K=K0, for several values of the spatial
volume, while keeping the temporal size, Nt, fixed. Near
the phase transition, these quantities scale as

χP ∼ Ns
γ
νf
�
ΔK · Ns

1
ν

�
B ∼ f

�
ΔK · Ns

1
ν

�
; ð16Þ

where ΔK ¼ ðK − KjcritÞ=K0, with ðK=K0Þcrit the critical
value ofK=K0 at infinite spatial volume, and γ and ν are the
critical exponents.
Figure 10 shows the Polyakov loop susceptibility and the

Binder cumulant obtained at T=K0 ¼ 0.25. We estimated

the critical value ðK=K0Þcrit from the crossing of B for
different system sizes. Figure 11 depicts the same data
scaled with the critical exponents for the 3D XY univer-
sality class, ν ¼ 0.67171 and γ ¼ 0.13178 [25]. The data
collapse indicates that the high temperature phase transition
of the U(1) lattice gauge theory is of the 3D XYuniversality
class as one would expect as the model maps to the 3D XY
model in the K=K0 ¼ 0 limit.
Motivated by the fact that the peak distance in the

Polyakov loop histogram goes to zero, we examine the
Binder cumulant in order to address the possibility of a
second-order transition at low temperatures (T=K0 < 0.05).
The transition is harder to probe at low temperatures as the
onset of the Binder cumulant is more shallow. Figure 12
shows the Binder cumulant as a function of ΔK for several
temperatures. The inset shows that the discontinuity in the
Binder cumulant, ΔB, decreases with decreasing temper-
ature. Below, we studied T=K0 ¼ 0.03 where the disconti-
nuity in the Binder cumulant is negligible and where the
histogram reveals a single peak. Taking large values of the
spatial lattice extent (Ns ¼ 40, 46, 50), and with Niter ¼
1.6 × 107 we obtain Fig. 13 that shows the Binder cumulant
varying smoothly across the phase transition which is
consistent with a second-order phase transition.

FIG. 10. Binder cumulant (top) and Polyakov loop susceptibil-
ity (bottom) at T=K0 ¼ 0.25 and varying K=K0, for Nt ¼ 8 and
several values of Ns. The curves of the Binder cumulant for
different Ns cross at ðK=K0Þcrit ¼ 0.9715� 0.0005, indicating
the critical value of K=K0 at infinite spatial volume.

FIG. 11. Data collapse of the Binder cumulant (top) and the
Polyakov loop susceptibility (bottom) at T=K0 ¼ 0.25 for
different spatial sizes obtained for ν ¼ 0.67171 and with
ðK=K0Þcrit ¼ 0.9715.
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The collapse of the Binder cumulant data strongly
depends on the value of ðK=K0Þcrit found. With the data
shown in Fig. 13, it is difficult to specify precisely the point
at which the curves for different spatial system sizes cross,
and values of ðK=K0Þcrit ∈ ½0.96; 1� are compatible with the
data obtained. Motivated by the values of ðK=K0Þcrit
obtained for higher temperatures, we take ðK=K0Þcrit ¼
0.97 for T=K0 ¼ 0.03, and explore the values of the critical
exponent ν that allow for the data to be collapsed.
To illustrate this, let us suppose that the transition is in

the XY universality class. In four dimensions, the XY
model is at its upper critical dimension so, for this scenario,
we would expect mean field exponents with logarithmic
corrections. Figure 14 shows an instance of a collapse
for mean field exponent ν ¼ 1=2. Similar such plots are
obtained for ν in the range 0.3–0.7 illustrating that the
Monte Carlo data are consistent with a continuous tran-
sition below a temperature of T=K0 ¼ 0.05 with ν in the
range 0.3–0.7 that includes the mean field exponent.

IV. CONCLUSION

In this paper we have revisited the phase diagram of the
4D U(1) LGT using GPU accelerated Monte Carlo sim-
ulations on anisotropic lattices. Previous simulations had
hinted at the presence of a tricritical point along the phase
boundary separating the confined and deconfined phases.
We explored a range of lattice anisotropies with a

rescaling of the couplings in the action to obtain phase
diagram parametrized by the Hamiltonian couplings. This
allows one to explore the phase diagram as a function of
coupling β and temperature with considerable resolution
in both couplings. We determined that there is a first-order
region at 0.05 < T=K0 ≤ 0.175, and a second-order region
for T=K0 ≥ 0.19 with critical exponents consistent with
those of the 3D XY universality class. These simulations
clearly identify a tricritical point at intermediate temper-
atures between T=K0 ¼ 0.175 and T=K0 ¼ 0.19. For the
region T=K0 ≤ 0.05 we find that the transition becomes
more and more weakly first order as the temperature is
lowered. Our simulations are compatible both with a
continuous transition and a very weakly first-order tran-
sition in the zero temperature limit.
This paper reveals rich structure of the phase diagram in

the pure gauge theory in four dimensions. If one switches
on a coupling to scalar matter in the fundamental repre-
sentation [3] the deconfined phase extends to finite matter
coupling terminating in a tricritical point at the intersection
of a first-order line, the Higgs transition and the confine-
ment/deconfinement transition. It is of interest to explore
the evolution of this phase diagram as a function of
temperature in the light of the finite temperature tricriti-
cality demonstrated in this work.
In this work we have chosen one approach to match

parameters between the action and Hamiltonian formula-
tions. To further confirm our findings it would be interest-
ing, instead, to perform the calculation of the renormalized
anisotropy through a matching of the helicity modulus
[23,50] on both sides of the phase boundary.

FIG. 12. Binder cumulant for several values of T=K0 calculated
at the highest value of NS considered for each temperature. The
discontinuity decreases with decreasing temperature, indicating
that the transition becomes weakly first order.

FIG. 13. Binder cumulant at T=K0 ¼ 0.03 for different spatial
sizes. No discontinuity is observed at the phase transition, which
is consistent with a second-order transition.

FIG. 14. Collapse of the Binder cumulant data at T=K0 ¼ 0.03
obtained for ν ¼ 0.5 and ðK=K0Þcrit ¼ 0.97.
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APPENDIX A: DERIVATION OF THE ACTION

In this appendix we derive the action for the Uð1Þ lattice
gauge theory, from the Hamiltonian, given by

H ¼ U
2

X
r;μ

ðnμðrÞÞ2 − K
X
r;μ<ν

cos ½ΘμνðrÞ�: ðA1Þ

The Hilbert space is spanned by the states jϕi ¼⊗r;μ

jϕμðrÞi or jni ¼⊗r;μ jnμðrÞi such that eiϕ̂μðrÞjϕi ¼
eiϕμðrÞjϕi and n̂μðrÞjni ¼ nμðrÞjni.
As the operator n̂μðrÞ corresponds to the lattice version

of the electric field flux through the link rþ μ̂, the

counterpart of the Gauss law on the lattice is that the
charge, q, on a lattice site r is given by the sum of the
electric flux through the links connected to site r, given by
the n̂μðrÞ operators as

Q̂r ¼
X
μ

½n̂μðrÞ þ n̂μðr − μ̂Þ� ¼ q: ðA2Þ

We are interested in studying the U(1) LGT without
charges, so we consider the projector to this subspace of the
Hilbert space, written as

P ¼
Y
r

δQ̂r;0
¼

Z Y
r

dθðrÞ
2π

ei
P

r
Q̂rθðrÞ; ðA3Þ

which has the properties P2 ¼ P and ½P;H� ¼ 0. Thus, the
partition function is given by Z ¼ tr½e−βHP�.
In order to numerically simulate this theory, we perform

a Trotter decomposition, by separating the partition func-
tion Z into N time intervals, with a temporal extent
Δτ ¼ β=N, thus obtaining a partition function of the form
Z ¼ R

DϕDθ
P

n e
−S½ϕ;θ;n� with

S½ϕ; θ; n� ¼ −ΔτK
X

τ;r;μ<ν

cos
�
ϕμðτ; rÞ − ϕνðτ; rþ μ̂Þ þ ϕμðτ; rþ ν̂Þ − ϕνðτ; rÞ

�

− i
X
τ;r;μ

�
ϕμðτ; rÞ − ϕμðτ þ 1; rÞ þ θðτ; rÞ þ θðτ; rþ μ̂Þ�nμðτ; rÞ þ Δτ

U
2

X
τ;r;μ

�
nμðτ; rÞ

�
2: ðA4Þ

In order to identify this action with a theory on a
ð3þ 1ÞD lattice, we identify θ̂ðτ; rÞ with the phase of a
link variable in the temporal direction, ϕ0ðτ; rÞ, so that the
second term in Eq. (A4) corresponds to the phase of a
space-time plaquette.
We can then approximate the sum over n in the partition

function in Eq. (A4) for ΔτU ≫ 1 using the Villain
approximation [51], given by

ez cosðΦÞ ¼
X
n

InðzÞeinΦ ≃
X
n

e−
1
2zn

2þiΦn; ðA5Þ

which is valid for z ≫ 1. Then, we obtain the approximated
partition function, given by Z ¼ R

Dϕe−S½ϕ� with the action
S½ϕ� given in Eq. (9), where we relabelled the spacetime
coordinates as n ¼ ðτ; rÞ with directions μ; ν ¼ ð0; 1; 2; 3Þ
with μ ¼ 0 for the temporal direction.

APPENDIX B

In this appendix, we describe a systematic perturbative
approach to matching the parameters in the action and
Hamiltonian formulations of the lattice gauge theory.

A naive matching of the coefficients multiplying the
spatial and space-time parts of the action in Eq. (2) and
Hamiltonian (6) is as follows. We first note that the interval
Δτ used in the Trotter decomposition coincides with the
lattice spacing in the temporal direction. Then we may
write the temperature as T ¼ 1

NtΔτ
and find the following

relations between the simulation parameters and the
Hamiltonian parameters

K
U

¼ β2;
T
U

¼ βξ

Nt
: ðB1Þ

We determine the critical value of the coupling, βc, for
different values of Nt and for each value of the anisotropy
parameter. Figure 15 shows these points parametrized using
the relations in Eq. (B1).
Evidently the points for different ξ in Fig. 15 do not

collapse to a single phase transition line. This is a conse-
quence of effectively parametrizing the Hamiltonian from
the action at weak coupling (large β). In particular, as
discussed in Appendix A, where we derived the action in
Eq. (A4) from the Hamiltonian, we took z ¼ 1

ΔτU. However,
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this approximation is valid only in the limit of large z [48]. One may systematically improve the correspondence between
the two formulations by revisiting the Villain approximation [Eq. (A5)] used to derive one from the other.
So instead we take

ez cosðΦÞ ¼
X
n

InðzÞeinΦ ≃
X
n

e−
1

2zV
n2þiΦn; ðB2Þ

with zV ¼ − 1

2 logðI1ðzÞI0ðzÞÞ
. In the limit z → ∞, we have zV ≈ z and we recover Eq. (A5). Using now the approximation in

Eq. (B2) in the action in Eq. (A4) with zV ¼ 1
ΔτU we obtain

S½ϕ� ¼ −ΔτK
X
n;μ<ν

cos
�
ϕμðnÞ þ ϕνðnþ μ̂Þ − ϕμðnþ ν̂Þ − ϕνðnÞ

�

− z
X
n;μ

cos
�
ϕμðnÞ þ ϕ0ðnþ μ̂Þ − ϕμðnþ e0Þ − ϕ0ðnÞ

�
; ðB3Þ

with z such that 1
ΔτU ¼ − 1

2 logðI1ðzÞI0ðzÞÞ
. We match the coefficients

multiplying the spatial and space-time parts of the action in
Eq. (B3) with the ones in the simulated action, in Eq. (2).
This leads to

K
U

¼ −
β

ξ

1

2 log
�
I1ðβξÞ
I0ðβξÞ

	 ;
T
U

¼ −
1

Nt

1

2 log
�
I1ðβξÞ
I0ðβξÞ

	 : ðB4Þ

We can now plot the critical points at which the phase
transition occurs for each value of Nt and ξ in terms of the
quantities defined in Eq. (B4) and obtain the phase diagram
shown in Fig. 16.
With this approach, the points for different ξ collapse

reasonably well over much of the phase transition line with
notable lack of collapse only for large K

U. Having under-
stood how to improve the matching conditions directly
from the Villain approximation, in the main text we write a
general Ansatz for the action that achieves a perfect
collapse over the entire phase transition line.

APPENDIX C

FIG. 16. Phase diagram using the relations in Eq. (B4).FIG. 15. Position of the peaks in the Polyakov loop suscep-
tibility in terms of the quantities in Eq. (B1).

TABLE I. Values of the phase diagram parameters T
K0

and K
K0
,

calculated for each value of ξ and Nt, used in the plot of the phase
diagram in Fig. 4.

ξ Nt Ns
K
K0

T
K0

0.75 4 24 0.9956� 0.0001 0.18498� 0.00001
0.75 6 24 0.9996� 0.0001 0.12356� 0.00001
0.75 8 24 1.0002� 0.0002 0.09270� 0.00001
0.75 10 24 1.0000� 0.0002 0.07415� 0.00001
0.75 12 24 1.0001� 0.0003 0.01797� 0.00001

1 4 24 0.9844� 0.0001 0.2454� 0.00001
1 6 24 0.9978� 0.0001 0.16473� 0.00001
1 8 24 0.9999� 0.00012 0.1237� 0.0001
1 10 24 0.9999� 0.0005 0.09895� 0.00004
1 12 24 1.0000� 0.0001 0.08245� 0.00001

1.5 4 24 0.9009� 0.0001 0.3554� 0.0001

(Table continued)
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