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We demonstrate that gauge-equivariant pooling and unpooling layers can perform as well as traditional
restriction and prolongation layers in multigrid preconditioner models for lattice QCD. These layers
introduce a gauge degree of freedom on the coarse grid, allowing for the use of explicitly gauge-equivariant
layers on the coarse grid. We investigate the construction of coarse-grid gauge fields and study their
efficiency in the preconditioner model. We show that a combined multigrid neural network using a Galerkin
construction for the coarse-grid gauge field eliminates critical slowing down.
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I. INTRODUCTION

Numerical simulations of quantum field theories such as
Quantum Chromodynamics (QCD) continue to be our best
systematically improvable method to obtain information on
the nonperturbative features of the theory. These simula-
tions are done on a finite space-time lattice on large super-
computers. In most cases, the run time of the simulations is
dominated by the solution of the Dirac equation for a fixed
gauge field. This is usually done by iterative algorithms
whose iteration count is determined by the condition
number of the matrix representing the linear system, in
our case the Dirac operator. As we approach the interesting
regions of parameter space, i.e., physical quark mass and
continuum limit, the condition number of the Dirac matrix
becomes very large, leading to critical slowing down. To
deal with this problem, very sophisticated algorithms
have been developed over the years. In particular, suitably
constructed multigrid preconditioners have been shown to
reduce or even eliminate critical slowing down [1–11].
Multigrid algorithms use restriction and prolongation
operators to transfer fields from a fine to a coarse grid
and back. In a recent paper [12] we discussed the con-
struction of such multigrid preconditioners in the language
of gauge-equivariant neural networks and showed that the
multigrid paradigm can be learned efficiently by such
networks. However, in Ref. [12] the restriction and pro-
longation layers were not learned but computed by hand.
The aim of the present paper is to demonstrate that these
two layers can also be learned by gauge-equivariant neural

networks and perform as well as the traditional construc-
tion. We show that both the model of Ref. [12] as well as
the new models discussed in the current work eliminate
critical slowing down.
The construction of multigrid algorithms for lattice field

theory has a long history, addressing both the Markov chain
Monte Carlo sampling of fields and the computation of
propagators. In the late 1980s and early 1990s a number of
groups devised several multigrid schemes aimed at elimi-
nating critical slowing down for different lattice field theo-
ries, gauge groups, and fermion discretizations [13–39].
There was even an early attempt to use neural networks in
this context [40]. These works used gauge-equivariant
constructions of restriction and prolongation operators to
address high-frequency noise from the gauge degrees of
freedom. Note that in these papers gauge equivariance is
referred to as gauge covariance, as is common in quantum
field theory. Another important guiding principle is the
approximate preservation of the space spanned by the low
eigenmodes of the Dirac operator on the coarse grid. The
observation of “local coherence” of the low modes [2]
implies that this space can be approximated locally by a
relatively small number of suitable vectors. State-of-the-art
multigrid algorithms make use of this observation in the
construction of the restriction and prolongation operators.
Our explicit construction of these operators in [12] was also
based on this observation. Here, we replace this construc-
tion by gauge-equivariant pooling and unpooling layers but
are still guided by the same objectives. These layers are
parametrized by gauge-invariant spin matrices which are
learned in the present work. In future work, we will
construct models that, for a given gauge configuration,
provide these matrices as output features.
There is a growing body of related work. Several authors

have constructed multigrid algorithms, or elements thereof,
using neural networks [41–46], but gauge equivariance
did not play a role in these papers. Gauge equivariance of
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neural networks was first discussed in [47,48]. In short,
gauge symmetry can be built into the model by requiring
that the map implemented by the neural network commutes
with local gauge transformations. As a result, the neural
network does not need to learn this symmetry and can
achieve the same expressivity with fewer weights. Gauge-
equivariant neural networks were constructed to generate
gauge-field ensembles in several lattice field theories
in [49–52]. Neural networks that do not explicitly preserve
gauge equivariance were used as preconditioners in a
two-dimensional U(1) lattice gauge theory in [53].
Reference [54] demonstrated that gauge-equivariant neural
networks can approximate any gauge-equivariant function
on the lattice. In Ref. [55] the equivariance of neural
networks was extended to global lattice symmetries, and
group-equivariant pooling layers were discussed.
This paper is structured as follows. In Sec. II we describe

our coarsening approach using gauge-equivariant pooling
and unpooling layers. In Sec. III we provide details of the
Wilson-clover Dirac spectrum on a gauge configuration
with nonzero topological charge. In Sec. IV we discuss the
training strategy for the (un)pooling layers, and in Sec. V
we show that the models resolve critical slowing down. In
Sec. VI we summarize our results and provide an outlook
on our future research program.

II. GAUGE-EQUIVARIANT COARSENING

In the following, we build on notation defined in
Ref. [12] but introduce an explicitly gauge-equivariant
coarsening procedure using gauge-equivariant pooling and
unpooling layers that are combined with subsampling
layers.

A. Review of notation and coarse-grid vector space

We consider a d-dimensional space-time lattice, the fine
grid, and denote the set of its sites by S. We define a field
φ∶ S → VI , x ↦ φðxÞ on the fine grid with internal vector
space

VI ¼ VG ⊗ VḠ; ð1Þ

where VG is a gauge vector space and VḠ is a nongauge
vector space, respectively. The set of such fields is denoted
by Fφ. Under a gauge transformation Ω∶ S → EndðVGÞ,
x ↦ ΩðxÞ, the fields transform as φðxÞ → ΩðxÞφðxÞ.
Furthermore, we consider gauge fields Uμ∶ S → EndðVGÞ,
x ↦ UμðxÞ, where μ∈ f1;…; dg. In the case of QCD,
UμðxÞ∈SUð3Þ ⊂ EndðVGÞ. We will use U as a short-hand
notation for the tuple ðU1;…; UdÞ.
We also consider a d-dimensional coarse grid with set of

sites S̃. We define fields on the coarse grid φ̃∶ S̃ → ṼI ,
y ↦ φ̃ðyÞ with internal vector space ṼI . The set of such
coarse fields is denoted by F ϕ̃. In contrast to Ref. [12],
where the internal vector space on the course grid had no

explicit gauge degrees of freedom, in the current work
we have

ṼI ¼ VG ⊗ ṼḠ; ð2Þ

i.e., the local gauge space on the coarse grid is the same as
on the fine grid.
As in Ref. [12], we define a block map B∶ S̃ → PðSÞ,

where P denotes the power set. We also define a map

Br∶ S̃ → S; y ↦ BrðyÞ ð3Þ

that selects for each site y on the coarse grid a reference site
BrðyÞ on the fine grid. In the following, we only consider
maps Br for which BrðyÞ∈BðyÞ. The coarse fields shall
transform as

φ̃ðyÞ → Ω̃ðyÞφ̃ðyÞ ð4Þ

with

Ω̃ðyÞ ¼ ΩðBrðyÞÞ ð5Þ

under gauge transformations Ω. For a related discussion of
gauge-equivariant blocking schemes, see, e.g., Ref. [25].

B. Restriction and prolongation layers

The restriction layer (RL) can be written as the compo-
sition of a pooling layer (Pool) and a subsampling layer
(SubSample),

RL ¼ SubSample ∘ Pool: ð6Þ

The pooling layer Pool∶ Fφ → Fφ, φ ↦ Poolφ is given
by

PoolφðxÞ ¼
X

q∈Q

WqðxÞTqφðxÞ; ð7Þ

where TqφðxÞ means that the field Tqφ is evaluated at x. In
the following we describe the elements of Eq. (7) in detail.
The sum is over couples (i.e., two-tuples) q ¼ ðp; ŪÞ that
consist of a path p and a gauge field Ū. A path p is defined
as a sequence of hops without reference to a starting or end
point. A set of paths P shall be called “complete” if it
connects every site in BðyÞ to BrðyÞ exactly once. A
complete set of paths therefore always has jBðyÞj elements,
where jXj denotes the cardinality of a set X. In the current
work, we only consider couples with jQj ¼ njBðyÞj and
n∈Nþ such that n prescriptions to construct the gauge field
are combined with n prescriptions to construct a complete
set of paths.
The pooling layer is parametrized by weights WqðxÞ∈

EndðVḠÞ. In the context of the current paper the WqðxÞ are
spin matrices.
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Finally, the operator Tq for q ¼ ðp; ŪÞ is the parallel-
transport operator Tp∶ Fφ → Fφ, φ ↦ Tpφ defined in
Ref. [12] with gauge fields U replaced by Ū.1 The gauge
fields Ū entering Tp do not have to be the original fine-grid
gauge links U as long as they transform in the usual
way, i.e., as

ŪμðxÞ → ΩðxÞŪμðxÞΩ†ðxþ μ̂Þ ð8Þ

under gauge transformations Ω. We will make use of this
freedom in this work.
The subsampling layer SubSample∶ Fφ → F φ̃, φ ↦

SubSampleφ is defined by

SubSampleφðyÞ ¼ φðBrðyÞÞ ð9Þ

for a given choice of reference-point map Br defined in
Eq. (3). This construction therefore satisfies Eq. (4) with
φ̃ ¼ RLφ for a given φ∈Fφ. For a discussion of a general
group-equivariant pooling layer, see Ref. [55].
The prolongation layer (PL) is simply defined as

PL ¼ Pool† ∘ SubSample†; ð10Þ

where the dagger of an operator O is defined in the usual
way by requiring φ†

1Oφ2 ¼ ðφ†
2O

†φ1Þ� for arbitrary φ1 and
φ2. Note that the couples and weights of a restriction and
prolongation layer can in principle be chosen independ-
ently. The models studied in this work, however, use
the same couples and weights for both RL and PL so that
PL ¼ RL†.2

A graphical representation of the restriction and pro-
longation layers is given in Fig. 1. The pooling layer is a
generalization of the local parallel-transport convolution

(LPTC) layer introduced in Ref. [12], adding the possibility
to select a different gauge field per path. Note that one
would typically implement the combined RL directly to
avoid unnecessary computation of feature elements that
will be discarded by the subsequent subsampling layer.
This can be done efficiently by precomputing, for each
complete set of paths, a field S → EndðVGÞ that is used in
combination with a reduction operation within each block.
We provide such implementations of both RL and PL in the
GRID PYTHON TOOLKIT [57].
We note that the construction of similar restriction

and prolongation operations has a long history, see,
e.g., [20,25,35].

C. Coarsening of the gauge fields

In the current work, we preserve the general model
structure introduced in Ref. [12]. However, we replace the
restriction and prolongation layers with ones based on
gauge-equivariant pooling and unpooling layers; see Fig. 2.
This replacement introduces an explicit gauge degree of
freedom on the coarse grid so that the coarse-grid layer can
be constructed in an explicitly gauge-equivariant manner.
For this layer we need coarse gauge fields Ũ.
The gauge transformation property of coarse fields given

in Eq. (4) is consistent with gauge fields on the coarse grid
that perform a parallel transport between reference sites
BrðyÞ and Brðy0Þ on the fine grid, where y and y0 are
neighboring sites on the coarse grid. Such gauge fields
must transform as

ŨμðyÞ → Ω̃ðyÞŨμðyÞΩ̃†ðyþ μ̂Þ ð11Þ

under gauge transformations. We investigate two choices
for the Ũμ in this work.
The first choice is to connect BrðyÞ and Brðy0Þ using the

shortest path on the fine grid connecting both points. In this
work, we use a block map B such that BðyÞ is given by a
Cartesian product of neighboring sites in each dimension,
and a fixed reference site Br within each block so that the
shortest path is unique and aligns with a coordinate axis.
We then always have

Brðy0Þ − BrðyÞ ¼ bμ̂ ð12Þ

with unit vector μ̂ in direction μ and b∈Nþ. The coarse-
grid gauge field ŨμðyÞ corresponding to this pair of
reference points is then simply

ŨμðyÞ ¼ UμðBrðyÞÞ � � �UμðBrðyÞ þ ðb − 1Þμ̂Þ ð13Þ

with fine-grid gauge links Uμ. We will refer to this choice
as the “plain coarse-link model.”
The second choice is based on the Galerkin coarse-grid

operator

FIG. 1. Graphical representation of restriction layer (left) and
prolongation layer (right) for a single feature. The input and
output features are represented by the planes, and the layers are
represented by the paths drawn and the arrow mapping the input
to the output feature. The reference site is drawn in black.

1We have Tp ¼ Hpnp
� � �Hp2

Hp1
for a path p given by the

sequence p1;…; pnp with np ∈N and pi ∈ f�1;�2;…;�dg. The
operator Hpi

acts according to Hpi
φðxÞ ¼ U†

piðx − p̂iÞφðx − p̂iÞ
so as to transport information by a single hop in direction p̂i.2In the context of a multigrid solver, Ref. [56] calls this the
variational choice because it follows from a variational principle.
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D̃ ¼ RL ∘D ∘ PL ð14Þ
with gauge-equivariant fine-grid operator D. For the
purpose of the current paper, D is the Wilson-clover
Dirac operator (for the precise definition see Ref. [12]).
We then simply define

ŨμðyÞ ¼ D̃ðy; yþ μ̂Þ; ð15Þ
which transforms as in Eq. (11) since D̃ðy; y0Þ transforms to
Ω̃ðyÞD̃ðy; y0ÞΩ̃†ðy0Þ under gauge transformations Ω. We
refer to this choice as the “Galerkin model.” Note that in
the Galerkin model the coarse gauge links will depend on
the weights in the RL and PL. In the Galerkin model
ŨμðyÞ∈EndðṼIÞ, while ŨμðyÞ∈EndðVGÞ in the plain
coarse-link model. Both are acceptable in the context of
the gauge-equivariant coarse-grid LPTC layer in Fig. 2 as
long as Eq. (11) is satisfied.
We again note that there is a rich history of related work,

see, e.g., Refs. [21,38,58–61]. As in these works, our coarse
gauge fields defined by Eq. (15) are, in general, no longer
elements of the original gauge group. While this is not a
problem of principle, Refs. [21,27] found better perfor-
mance of the multigrid algorithm if the coarse gauge fields
are projected back to the original gauge group. We plan to
investigate this possibility in future work. We also note that
there is an alternative way to define the coarse gauge fields
using the pooling and subsampling layers introduced in
Sec. II B and applying them to the gauge links between the
blocks; see, e.g., Ref. [38]. We did not implement this
alternative because it does not increase the expressivity of
the model compared to Eq. (15).

III. DIRAC SPECTRUM AND TOPOLOGY

As in Ref. [12], we have generated quenched Wilson
gauge configurations with 83 × 16 lattice sites for β ¼ 6

and attempt to precondition the Dirac equation for the
Wilson-clover Dirac operator with csw ¼ 1. In order to
provide an even more challenging setup for the precondi-
tioner models, we select gauge configurations with topo-
logical charge Q ¼ 1 defined via the five-loop enhanced
definition of Ref. [62] after cooling the gauge fields by
applying the Wilson flow [63] with flow time t ¼ 10.3 The
Dirac operator has an eigenvalue with vanishing imaginary

FIG. 2. The two-level multigrid model studied in this work. The model is similar to the one studied in Ref. [12], but explicitly gauge-
equivariant pooling and unpooling layers are used in the current work for the restriction and prolongation layers. The coarse-grid layer is
limited by the blue features. This layer and the last four layers are LPTC layers introduced in Ref. [12], which can be viewed as special
cases of Eq. (7).

FIG. 3. Smallest eigenvalues λ of the Wilson-clover Dirac
operator with mass m ¼ −0.5645 and csw ¼ 1 on a pure-
Wilson-gauge configuration with topological charge Q ¼ 1,
β ¼ 6, and 83 × 16 lattice sites. The mass m is tuned to near
criticality for the experiments in this work.

3The measured value for the configuration used in this work is
Q ¼ 0.998.
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part and real part very close to the lower edge of the
spectrum; see Fig. 3. In this case, we expect critical slowing
down to be clearly visible as the quark mass is tuned to
criticality.

IV. TRAINING STRATEGY

In the following we describe our training strategy for
the preconditioner model shown in Fig. 2. We perform the
training in two steps.
In the first step, we train only the restriction and

prolongation layers. One may naturally consider training
PL∘RL as an autoencoder with training vectors sampled
from the low-mode space of D. We find that this strategy
by itself is not sufficient to obtain an efficient model.
Instead, we also train PL∘RL to act as a projector onto the
low-mode space, i.e., it should project high modes to
zero. Furthermore, we found that it is beneficial to
approximately preserve the property RL∘PL ¼ 1. We also
found that restricting PL ¼ RL† by using the same couples
q ¼ ðp; ŪÞ and the same weights WqðxÞ for the restriction
and prolongation layers did not reduce the performance of
the model, and therefore we adopt this choice for simplicity.
We implement this strategy by using the cost function

C ¼ jPL ∘ RLvl − vlj2 þ jPL ∘ RLvh − Plvhj2
þ jRL ∘ PLvc − vcj2 ð16Þ

with two fine-grid vectors vl and vh and one coarse-grid
vector vc. For each training step new random vectors vl, vh,
vc are chosen according to the following procedure. For vl
we select a random element of fu1;…; usg of the near-null
space vectors ui defined in Ref. [12] with s∈Nþ. For vh
and vc we take random vectors with elements normally
distributed about zero. The low-mode projector

Pl ¼ W†W ð17Þ

withW defined in Eq. (31) of [12]4 is using the same set of
near-null vectors fu1;…; usg. All vectors vl, vh, and vc are
normalized to unit length before being used in the cost
function. Note that Plvl ¼ vl by construction so that we
can also write the cost function in the more symmetric way,

C ¼ jPL ∘ RLvl − Plvlj2 þ jPL ∘RLvh − Plvhj2
þ jRL ∘ PLvc − vcj2: ð18Þ

This training procedure provides the gauge-invariant
spin matrices WqðxÞ for a given gauge configuration.
While the current training strategy does not reduce the

overall cost compared to the multigrid model studied in
Ref. [12], we will study constructing the gauge-invariant
WqðxÞ directly from a given gauge field U using gauge-
invariant models [54] in future work. The local features of
WqðxÞ may be related to features of the local energy
density, topological charge density, and general Wilson
loops so that no retraining may be needed for a different
gauge configuration of the same ensemble.
In the second step, we use the trained RL and PL in the

modelM of Fig. 2 and train the model with frozen pooling-
layer weights using the same cost function as in Ref. [12],

C ¼ jMbh − uhj2 þ jMbl − ulj2; ð19Þ

with bh ¼ Dv1, uh ¼ v1, bl ¼ v2, and ul ¼ D−1v2. Here,
v1 and v2 are random vectors normalized such that
jbhj ¼ jblj ¼ 1. After this procedure, we can also continue
to train the model without freezing the pooling-layer
weights. However, no benefit was observed from this
refinement.
We conclude this section with some technical details.

Throughout this work we use the Adam optimizer [64] with
parameters β1 ¼ 0.9 and β2 ¼ 0.98. The learning rate is
chosen adaptively. The first training step needed about
4000 iterations of the optimizer, while the second training
step needed between 3000 and 6000 iterations, depending
on the quark mass.

V. MODEL DETAILS AND RESULTS

In this section we demonstrate the performance of the
models we studied with a focus on removing the critical
slowing down in solving the Dirac equation when the mass
parameter m is tuned toward criticality.
For concreteness, we use a coarse grid of size 23 × 4

such that jBðyÞj ¼ 44, and s ¼ 4. Note that in Ref. [12] we
used s ¼ 12. However, for the case at hand s ¼ 4 was
sufficient to obtain a well-performing model.
For the pooling layers, we found that using gauge fields

which are smeared differently depending on the set of paths
works well. Concretely, we use nine different gauge fields
ŪðiÞ with i ¼ 1;…; 9. We construct the ŪðiÞ by applying
iði − 1Þ=2 steps of ρ ¼ 0.1 stout smearing [65] to the
unsmeared gauge fieldsU. For fixed i, we define paths pðijÞ
that connect all elements of BðyÞ, enumerated by
j ¼ 1;…; jBðyÞj, to the reference site BrðyÞ. For different
i we use different prescriptions for the paths pðijÞ, and
then use the couples qij ¼ ðpðijÞ; ŪðiÞÞ in Eq. (7). We define
four different prescriptions p̂1;…; p̂4 in the following and

set pðijÞ ¼ p̂ðjÞ
imod 4.

For all prescriptions we select the reference site to be the
origin of each block. For the first block the reference site
corresponds to coordinate (1, 1, 1, 1). The starting site
for path p is denoted by ðx1 þ 1; x2 þ 1; x3 þ 1; x4 þ 1Þ.
Then the first prescription to construct the paths is to use

4The linear map W∶ S̃ × S → HomðVI; ṼIÞ is defined via
Wðy; xÞ† ¼ P

s
i¼1 ū

y
i ðxÞê†i , where y∈ S̃, x∈BðyÞ, the ūyi are

vectors on BðyÞ obtained by blocking and then orthonormalizing
the ui, and the êi form the standard basis of ṼI .
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Tp ¼ Hx4
−4H

x3
−3H

x2
−2H

x1
−1 with hopping operator H�μ defined

in Ref. [12]; see Footnote 1. The second prescription is
Tp ¼ Hx1

−1H
x2
−2H

x3
−3H

x4
−4. The third and fourth prescrip-

tions modify the first and second prescription, respectively,
by permuting the hops in a way that, to the degree
possible, at most one hop in one direction is performed
at a time. A concrete example for x1 ¼ 2, x2 ¼ 2, x3 ¼ 1,
x4 ¼ 1 is Tp ¼ H−2H−1H−4H−3H−2H−1 for the third
prescription and Tp ¼ H−1H−2H−1H−2H−3H−4 for the
fourth prescription.
We investigated many additional choices for reference

sites, paths, and gauge fields to be used in the pooling-layer
construction. However, the setup just described proved to
perform well while still being relatively simple.
We then solve the Dirac equation with and without

preconditioning and study the iteration count of the outer
GMRES [66] solver to 10−8 precision as a function of the
quark mass m. In Fig. 4 we compare the outer iteration
count of the unpreconditioned solver with the smoother-
only model of Ref. [12] and the new gauge-equivariant
Galerkin model. We find that in the smoother-only model
critical slowing down is still visible, while it is completely
absent in the gauge-equivariant Galerkin model. In Fig. 5
we compare the original multigrid model of Ref. [12] with
the gauge-equivariant Galerkin model and with the gauge-
equivariant plain coarse-link model. We find that the
original model and the gauge-equivariant Galerkin model
perform best, while the plain coarse-link model indicates a
small remaining signature of critical slowing down. Note

that there is some randomness in the training procedure that
explains the performance fluctuations between neighboring
mass points for a given model.

VI. SUMMARY AND OUTLOOK

The current work is part of a larger research program
based on gauge-equivariant multigrid neural networks. In
our first paper [12] we demonstrated that a state-of-the-art
multigrid preconditioner can be learned efficiently by
gauge-equivariant neural networks. The restriction and
prolongation layers of Ref. [12] were, however, manually
constructed by traditional methods to find near-null-space
vectors.
In the current work, we replaced this construction by

gauge-equivariant pooling and unpooling layers that are
learned for a given gauge configuration. We demonstrated
that such models can eliminate critical slowing down and
perform as well as traditional multigrid models. The
pooling and unpooling layers are parametrized by gauge-
invariant spin matrices, which in turn can be learned by
models such as those discussed in Ref. [54]. The con-
struction of such models, including a detailed study of
transfer learning, is left for future work. If successful, such
models promise to drastically reduce the setup cost in
multigrid preconditioners and may therefore play an
important role in improving the performance of gauge-
generation algorithms such as HMC [67] or flow-based
models [49–51,68,69].

FIG. 4. Outer iteration count of unpreconditioned and precon-
ditioned solvers as a function of the quark mass. The gauge-
equivariant Galerkin model completely removes the critical
slowing down as the mass is tuned to criticality.

FIG. 5. Comparison of multigrid models studied in this work
and the original multigrid model of Ref. [12]. The gauge-
equivariant Galerkin model performs very well even for masses
near criticality. The plain coarse-link model shows a mild
increase in outer iteration count near criticality.
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Another important topic left for future studies is the
construction of multigrid models for operators with a more
challenging spectrum, such as domain-wall fermions.
Finally, gauge-equivariant multigrid models should also

be able to learn to directly approximate complex hadronic
correlation functions without constructing them from inter-
mediate approximations of propagators. Such direct approx-
imations can then be used to reduce statistical noise without

introducing bias [70]. We will explore this application of
gauge-equivariant multigrid models in future work as well.
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