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Center vortex geometry at finite temperature
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The geometry of center vortices is studied in SU(3) gauge theory at finite temperature to capture the key
structural changes that occur through the deconfinement phase transition. Visualizations of the vortex
structure in temporal and spatial slices of the lattice reveal a preference for the vortex sheet to align with the
temporal dimension above the critical temperature. This is quantified through a correlation measure. A
collection of vortex statistics, including vortex and branching point densities, and vortex path lengths
between branching points, are analyzed to highlight internal shifts in vortex behavior arising from the loss
of confinement. We find the zero-temperature inclination of branching points to cluster at short distances
vanishes at high temperatures, embodying a rearrangement of branching points within the vortex structure.
These findings establish the many aspects of center vortex geometry that characterize the phase transition in

pure gauge theory.
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I. INTRODUCTION

The center vortex picture [1-4] is well established as a
prime candidate for underpinning many of the emergent
phenomena in quantum chromodynamics (QCD), includ-
ing dynamical chiral symmetry breaking [5—11] and con-
finement [5,9,12-28]. Center vortices naturally give rise to
an area-law falloff for large Wilson loops [29,30],

(W(C)) ~exp (—0A(C)), (1)

with such behavior signifying confinement for static heavy
quarks [4,31-33]. Due to string breaking at large separa-
tions [34], in the presence of light quarks one can turn to the
gluon propagator, where, if there is no Killen-Lehmann
representation, the corresponding physical states are con-
fined. This is often inferred by studying the Schwinger
function of the gluon propagator, for which negative values
at large Euclidean times signal positivity violation in the
spectral density function [35,36].

In SU(2) Yang-Mills theory, center vortices have been
demonstrated to account for 100% of the string tension
o [12,15], though full recovery in pure SU(3) theory has
proven more challenging. Despite vortex removal resulting
in a vanishing string tension, static quark potential calcu-
lations on vortex-only fields has shown to recover only ~
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62% of the string tension in SU(3) [25]. Remarkably,
recent work considering the impact of dynamical fermions
on center vortices for the first time showed that the string
tension can be entirely recreated from center vortices in full
QCD [27]. In addition, the vortex-removed fields display
no signs of positivity violation with dynamical fermions,
another advantage compared to the pure gauge theory
which still exhibited a remnant effect at long distances
[28]. These findings reaffirm center vortices as fundamental
to the nonperturbative nature of confinement, though the
inconsistencies in the pure gauge regime remain an open
problem.

Following a phase transition at some critical temperature
T., the SU(N) vacuum is understood to exist in a
deconfined state. This motivates exploring center vortices
at arange of temperatures through the deconfinement phase
transition in SU(3) to identify the principal structural
changes that can be attributed to confinement. We utilize
previously developed visualization techniques [37] to
qualitatively study the changes in vortex geometry. This
is followed by a focused analysis into several vortex
statistics as a function of temperature, such as vortex
and branching point densities. Given they do not occur
in SU(2), branching points provide a particularly interest-
ing avenue of research, and vortex branching is known to
experience substantial bulk changes at 7, [26,38]. We
subsequently take this further by studying the distances
between successive branching points and the accompany-
ing branching probabilities, in turn searching for any
internal rearrangement of branching points at high tempera-
tures. In this regard, the pure gauge theory provides fertile
ground for drawing out the salient features of vortex
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geometry at finite temperature that can guide future work
with the inclusion of dynamical fermions in QCD.

This paper is structured as follows. In Sec. II, the center
vortex model is briefly reviewed along with the procedure
for identifying vortices on the lattice. Section III
contains visualizations of the vortex structure at a range
of temperatures either side of 7. and the accompanying
discussion. Our detailed analysis on the evolution of
intrinsic vortex statistics with temperature is presented
throughout Secs. IV and V. Finally, we summarize our
main findings in Sec. VI. Supplemental Material providing
embedded animations of center vortex structures is located
at Ref. [39]. Instructions on interacting with these anima-
tions is given therein, and the figures are referenced in the
main text as Fig. S-x.

II. CENTER VORTICES

Center vortices, originally introduced in Ref. [1], are
regions of the gauge field that carry magnetic flux quan-
tized according to the center of SU(3),

i
Z; = {exp (Tmn)]l

Physical vortices in the QCD ground-state fields have
a finite thickness and so permeate all four spacetime
dimensions. In contrast, on the lattice “thin” center vortices
are extracted through a well-known gauge-fixing procedure
that seeks to bring each link variable U,(x) as close
as possible to an element of Zz, known as maximal
center gauge. These thin vortices form closed surfaces in
four-dimensional Euclidean spacetime, and thus one-
dimensional structures in a three-dimensional slice of the
four-dimensional spacetime.

Fixing to maximal center gauge is typically performed
by finding the gauge transformation Q(x) to maximize the
functional [40]

n——l,O,l}. (2)

1
T O TR ()P,

R = 5
VN gimN.

Coxp

V=N3xN, (3)

The links are subsequently projected onto the center,

U,(x) — Z,(x) = exp <?nﬂ(x)>]lez3, (4)

with n,(x) €{-1,0,1} identified as the center phase
nearest to arg TrU,,(x) for each link. Finally, the locations
of vortices are identified by nontrivial plaquettes in the
center-projected field,

Pu =Tz =ew ()t

with m = £1. The value of m is referred to as the center
charge of the vortex, and we say the plaquette is pierced by
a vortex.

Due to a Bianchi identity satisfied by the projected
vortex fields [26,38], the center charge is conserved such
that the vortex topology manifests as closed sheets in four
dimensions, or as closed lines in three-dimensional slices of
the lattice. Although gauge-dependent, numerical evidence
strongly suggests the projected vortices’ locations are
correlated with the physical “thick” vortices of the original
fields [15,22,25,40,41]. This allows one to investigate the
significance of center vortices through the projected
links Z,(x).

The connection between center vortices and confinement
is apparent through space-time Wilson loops of size R x T,
which asymptotically give access to the static quark-
antiquark potential V(r),
(W(R,T)) ~exp(=V(r)aT), r=Ra, Tlarge. (6)
The percolation of center vortices through spacetime
implies an area law for the Wilson loop, Eq. (1) [19-21,29],
which allows one to extract a potential V(r) that linearly
rises with the separation r. In the confined phase, this has
been seen in numerical simulations for both SU(2) [12,15]
and SU(3) [22,25].

In contrast, center vortices in the deconfined phase
amount to a vanishing quark-antiquark potential [18],
signaled by a trivial expectation value for space-time
Wilson loops. This is a natural consequence of vortices
no longer percolating all four dimensions, indicating an
inherent change to the bulk vortex structure as the critical
temperature 7. is crossed. This alludes to the phase
transition being geometric in nature, as also realized by
a construction of center-electric fluxes [42]. In SU(2), it is
understood the vortex sheet shifts to principally align with
the temporal dimension, though the structure still perco-
lates in the spatial dimensions [18-21]. This results
specifically in an absence of vortices piercing space-time
Wilson loops, and a trivial expectation value in Eq. (6)
follows. The same overarching change is expected in
SU(3), and initial numerical results support this conclusion
[26,38]. We will elucidate this property by visualizing the
center vortex structure below and above 7. and quantifying
the observations with new statistical measures, thereby
affirming the geometric nature of the deconfinement phase
transition in QCD.

In this work, we utilize five pure-gauge ensembles of 100
configurations, two below T, and three above T, each with
a spatial volume of 323 and fixed isotropic lattice spacing
a = 0.1 fm. The ensembles are generated using Hybrid
Monte Carlo [43,44] with an Iwasaki renormalization-
group improved action [45,46]. The temporal extents
and corresponding temperatures are summarized in
Table I, where we take 7. = 270 MeV [47].
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TABLE I. The number of sites N, in the temporal dimension
and corresponding temperatures, both in MeV and in terms of the
critical temperature 7, = 270 MeV, for each ensemble.

N, T (MeV) T/T,
12 164.4 0.609
8 246.6 0.913
6 328.8 1218
5 394.6 1.461
4 4933 1.827

III. VISUALIZATIONS

We now move to qualitatively analyze the center vortex
structure at finite temperature, drawing on visualization
techniques previously established in Ref. [37]. The basic
construction is reiterated briefly here. Vortices exist on the
dual lattice. This allows the plaquette in the center-
projected field to be written as [26,38]

Putd) =exp (S euuma@ ). )

where X =x +2(4+0—k—1) and my(¥)€{-1,0,1}
defines the oriented center charge of the plaquette, such
that m,d()_c) = —mﬂk()_f).

To construct a 3D visualization we slice over a given
dimension, which corresponds to fixing the value of 1 in
Eq. (7). This leaves one orthogonal direction & in the three-
dimensional slice that can be used to identify the plaquette.
For each nontrivial plaquette, the vortex is accordingly
rendered as a jet pointing in the m,;(X)k direction and
piercing the plaquette. Due to the presence of the Levi-Civita
symbol in Eq. (7), this effectively corresponds to imple-
menting a right-hand rule for the orientation of the jet.
As such, the visualizations exclusively show the flow of
m = +1 center charge. This convention is demonstrated
in Fig. 1.

Utilizing the SU(3) cluster identification algorithm
developed in Ref. [48], we present typical vortex structures

I/ |

FIG. 1. The visualization convention for center vortices. An
m = +1 vortex (left) is represented by a jet in the available
orthogonal dimension, with the direction given by the right-hand
rule. An m = —1 vortex (right) is rendered by a jet in the opposite
direction.

in three-dimensional slices at increasing temperature in
Figs. 2-6. We separately show the structure in temporal
slices (A =4) and spatial slices (1 =1, 2, 3), which is
important to reveal the primary features of the phase
transition. The structure in the spatial slices is insensitive
to the choice of spatial dimension sliced over, and thus we
present visualizations for the x dimension (4 = 1).

In the confined phase (Figs. 2 and 3), the visualizations
reveal a single large percolating cluster (colored in blue)
that dominates the vortex structure in both temporal and
spatial slices. A handful of smaller secondary clusters are
scattered throughout the lattice. This is consistent with
previous observations on near-zero temperature pure gauge
configurations [37,48], indicating the external features of
the vortex structure remain unchanged as we approach the
critical temperature from below.

Moving above the critical temperature (Figs. 4-6) results
in a shift in the behavior of vortex matter. Clearly, the
temporal and spatial structures diverge. The temporal slices
are still dominated by a single large connected cluster,
indicating the vortex structure remains percolating in the
spatial dimensions. In contrast, the spatial slices instead
reveal an abundance of small vortex clusters mostly parallel
to the short temporal dimension, which are closed under
periodic boundary conditions. This establishes that the
vortex sheet in the deconfined phase principally aligns with
the temporal dimension, matching the observation in SU(2).
As a timelike surface, the vortex sheet rarely cuts through
space-time plaquettes above T.. This underlies the strong
preference for vortices to pierce space-space plaquettes in
spatial slices, which are oriented with the temporal axis.

Nonetheless, not all clusters wind around the temporal
dimension, and there are still remnant fluctuations where a
vortex line “twists” to temporarily propagate in a spatial
dimension. This latter effect could be in part due to
ambiguity in the precise location of projected vortices
within the physical “thick™ center vortices [15]. Still, the
most significant feature of the spatial slices above the
critical temperature is an absence of vortex lines that span
the spatial extent and pierce opposite space-time faces,
demonstrating a collapse in vortex geometry that results in
the loss of percolation.

To elaborate on this, we provide animations over the
temporal and spatial slices for each temperature throughout
Figs. S-1-S-5 in the Supplemental Material [39]. This aids
in understanding the four-dimensional nature of the center
vortex sheet. Below T, the vortex structure changes
considerably on a per-slice basis in both temporal and
spatial slices, with the vortex lines moving erratically
around the lattice. This simply indicates the vortex sheet
is not aligned with any particular dimension, implying the
observed three-dimensional structure depends on where
one slices. The animations above T'. are more intriguing. In
temporal slices, the vortex structure is effectively “frozen,”
only experiencing a slight shimmer or oscillation from slice
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FIG. 2. Center vortex structure in temporal slices (left) and spatial slices (right) below the critical temperature at 7 = 0.6097 ... In this
and the following four illustrations, the shorter dimension in the right-hand visualization is the temporal direction.

FIG. 3.

to slice. This is yet another manifestation that the vortex
sheet is oriented with the temporal dimension, as this
signifies the spatial structure is predominantly unchanged
regardless of where along the Euclidean time dimension
one slices. On the other hand, animating over the spatial
slices above T shows there is still substantial change in the
position of the short vortex lines. This is a consequence of
the fact that the center vortex sheet still percolates in the
spatial dimensions.

For an analogy to the deconfined phase, one can imagine
a three-dimensional cylinder aligned with the z axis. If
slicing along said z dimension, one would find an identical
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Center vortex structure in temporal slices (left) and spatial slices (right) below the critical temperature at 7 = 0.9137,..

circle regardless of where the slice is taken, which is the
equivalent scenario to slicing the center vortex structure
through the temporal dimension. By contrast, slicing along
the x or y dimensions would result in two disconnected
lines parallel to the z axis. Importantly, the position of and
distance between these lines varies depending on the slice
coordinate. This matches the arrangement of vortices in
spatial slices, with many disconnected clusters winding
around the temporal dimension but still moving over the
lattice through each slice.

At this point, an essential consideration is whether the
alignment of the vortex sheet is a genuine dynamical effect,
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FIG. 5.

or a byproduct of algorithmic issues. For instance, it could
indicate the presence of nonergodicity in the Markov chain
of lattice QCD, with the persistent alignment observed
throughout the ensemble due to topological locking.
Another possibility is that the alignment arises specifically
from the low number of temporal lattice sites required at
high temperatures on coarser lattices. These concerns are
especially prescient with the context that vortices are stiff
[21,26], such that configurations in the deconfined phase
wherein the vortex sheet is not primarily aligned with the
short temporal dimension are suppressed. We investigate
these possibilities with greater detail in Sec. IV B. Using a
novel measure to quantify the alignment through the

Center vortex structure in temporal slices (left) and spatial slices (right) above the critical temperature at 7 = 1.461T ...

freezing of the vortex structure in temporal slices, we
conclude the vortex sheet alignment with the temporal
dimension is a genuine dynamical effect.

The fact temporal slices comprise a percolating cluster in
both phases raises the question of whether any more subtle
underlying changes occur to the vortex structure.
Comparing Figs. 2-6, it is visually clear the primary cluster
in the temporal slices experiences a significant reduction in
density of vortex matter as the critical temperature is
crossed. Subsequently, this low density appears to gradu-
ally increase as the temperature climbs away from 7., with
the cluster at our highest temperature nearly matching that
found in the confined phase. There is also a plausible drop
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FIG. 6. Center vortex structure in temporal slices (left) and spatial slices (right) above the critical temperature at 7 = 1.827T ..

in the number of secondary clusters found in the temporal
slices above T,., though it is unclear whether this is
representative of the entire ensemble or a consequence
of the specific slices displayed. These statistics, along with
several others, will be investigated quantitatively in the
following section.

IV. VORTEX STATISTICS

Next, we investigate a number of statistical quantities
related to center vortices to bring to light any additional
structural changes not immediately apparent through visu-
alization. Several such properties, such as vortex and
branching point densities, have previously been investi-
gated across the phase transition in SU(3) in Ref. [38],
though here we extend this to a broader range of temper-
atures. We further analyze the secondary clusters present
throughout the volume and compute a correlation of the
vortex structure between various slices of the lattice. We
defer our branching point analysis to Sec. V where we
perform a thorough investigation into the geometry of
branching points as a function of temperature.

In this section, we display an extra point at 7/T, =
0.114 on our plots using data from Ref. [48], obtained from
a 323 x 64 ensemble of 200 configurations, but with
otherwise identical properties to our finite-temperature
ensembles. Statistical errors are calculated through the
standard deviation of 100 bootstrap ensembles.

A. Vortex structure correlation

The key feature of the phase transition relevant to center
vortices is the alignment of the vortex sheet with the
temporal dimension. This manifests in time slices of the
lattice as a vortex cluster that undergoes minimal changes
between successive slices. For this reason, we seek to

calculate a correlation of the vortex structure between
temporal slices as a means to quantify this change and
investigate the extent to which it continues to evolve
above T..

This is achieved by first defining the indicator function,

L omy(x,t)my(x,t+7) >0

pxin ={ " ®)

0, otherwise

which takes the value 1 if a nontrivial plaquette at spatial
position x in time slice ¢ is also pierced by a vortex in some
later time slice ¢ 4 = with the same center charge. As we are
looking in temporal slices, here i, j = 1, 2, 3. We can then
define the correlation measure,

() = N ]NIZ)(U‘(XJ;T)a 9)

ij

where N, is the average number of vortices per temporal
slice. This normalization factor enforces the maximum
value of C(z) to 1, corresponding to the case the vortex
structure is completely unchanging along the temporal
dimension. Due to periodic boundary conditions, 7 is
restricted to 7 < |N,/2]. Consequently, we compare
=1, 2 across all our ensembles. This evolution is
presented in Fig. 7.

Below T, the correlation is found to be constant with
C(1) slightly above 0.2, whilst C(2) unsurprisingly attains
a substantially smaller value. It is natural to inquire as to
whether one can infer any significance to these values. To
do so, consider a slowly varying field such that a vortex
sheet passes through two consecutive (three-dimensional)
time slices with spatial positions in the neighborhood of
each other. Then, it is reasonable to assume that a pierced
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FIG.7. The correlation C(z) defined in Eq. (9) fort = 1,2 as a
function of temperature. It is constant below T, though it
experiences a sudden jump at the phase transition where the
vortices shift to principally align with the temporal dimension.
Subsequently, it continues to increase above T .

plaquette could either remain invariant or move to an
adjacent plaquette. In the case that an equal probability is
applied to each, there is a 1/5 chance that a vortex line
piercing a given space-space plaquette proceeds to pierce
the same plaquette one time step later, thus producing a
contribution to Eq. (9). More generally, it is possible for the
vortex sheet to pass through the three-dimensional slice at a
sufficiently sharp angle that results in a jet on one slice
moving a distance greater than the adjacent plaquette [37].
For example, it could additionally move to one of the
neighboring diagonal plaquettes. Accounting for this pos-
sibility entails a probability smaller than 1/5 for the vortex
to remain invariant. This idea is illustrated in Fig. 8.

However, we nonetheless find C(1) > 1/5, which can be
attributed to a degree of “smoothness” arising from the
physical interpretation of the system. As the lattice spacing
a is decreased, C(z) should increase (for fixed 7) in
accordance with the smaller physical distance between
consecutive temporal slices. It is therefore fascinating our
value of C(1) lies slightly above 1/5, indicating that a
pierced plaquette typically tends to remain invariant or
pierce one of the four adjacent plaquettes in consecutive
slices. This physical smoothness in the vortex sheet can be
seen in the supplementary animations (Figs. S-1-S-5) [39],
where the movement of the vortex lines can to an extent be
“tracked” between successive slices.

As the phase transition is crossed, Fig. 7 shows C(z)
undergo a jump as the vortex structure predominantly aligns
with the temporal dimension. The correlation continues to
grow as the temperature increases above 7., signaling the
alignment becomes stronger at higher 7. It is as yet unclear
whether C(7) would eventually reach a value of 1 or instead
plateau at some value < 1. Exploring the extent of the

—

-1

FIG. 8. An illustration of the mechanism underlying vortex
correlations. Initially, the center plaquette is pierced by a vortex
on some time slice. Provided there is some “smoothness” to the
vortex structure, on the subsequent time slice it can either remain
invariant or move to one of the surrounding plaquettes. In the
simplest case, the vortex remains invariant or moves to one of the
four directly adjacent plaquettes (dark arrows), corresponding to
a probability of 1/5 that the center plaquette remains pierced on
consecutive time slices. However, depending on the angle at
which the vortex sheet passes through the time slice, the jet can
also move to one of the four “diagonal” plaquettes (gray arrows).
This implies a probability for the vortex to remain invariant of
less than 1/5.

alignment at even higher temperatures 7 > 27 . could be the
subject of future work. Furthermore, the separation between
C(1) and C(2) lessens as the temperature rises. This is
expected since C(7) necessarily becomes constant with 7
(and equal to 1) if the vortex structure were completely
frozen in the temporal dimension.

B. Investigation of algorithmic issues

Before proceeding, as promised we will utilize the corre-
lation measure as a means to investigate the possibility that the
vortex sheet alignment is attributed to an algorithmic effect.
For this we consider two avenues. First, to test the ergodicity
of the Markov chain we thermalize 100 independent hot starts
on two T > T, ensembles with N, = 6 and N, = 4. If the
alignment remains a consistent feature throughout these
ensembles, then we can be assured it is not a result of any
nonergodicity given each configuration started from an
independent, completely random gauge field.

To explore a possible dependence on the gauge action, we
perform this analysis using the standard Wilson action [31].
Therefore, to proffer a fair comparison we generate an
additional zero-temperature ensemble on the account that
different actions may produce slight differences in the
precise quantitative behavior of vortex matter. The details

034516-7
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TABLE II. The p value, lattice spacing a, spatial and temporal
extents N,, N, and the corresponding temperature for each
ensemble used to investigate the alignment of the vortex sheet.
The ensemble average of the correlation on consecutive slices
C(r=1) is also given. Simulations are performed with the
Wilson action. The scale is set using Sommer scale data from
Ref. [49], where we take ry ~ 0.5 fm.

B a (fm) N, N, T/T, C(z=1)

5.96 0.10 32 64 0.114 0.1954(2)
6 1.218 0.4027(11)
4 1.827 0.4989(16)

6.42 0.05 64 12 1.218 0.4675(9)
8 1.827 0.5182(4)

for these new ensembles are provided in Table I, along with
the value of the correlation C(z = 1) on each. We note that
the value on the low-temperature ensemble of C(1) ~ 0.195
is slightly less than that from Fig. 7, indicating that the vortex
matter recovered from the Wilson action tends to be
“rougher” compared to the Iwasaki action of Refs. [45,46].
For this reason, we are content to accept smaller values of
C(1) at high temperature when compared against Fig. 7,
though there should still be a consistent significant increase
from zero temperature across the ensemble.

For N, = 6 the correlation (in the ensemble average) has
jumped from C(1) = 0.195 to C(1) ~ 0.403. The smallest
value on any one configuration is &~ 0.370, indicating the
strong alignment is present in each thermalized hot start.
This is also represented by the small statistical uncertainty
seen in Table II. The same pattern is seen with N, = 4, on
which the ensemble average has climbed to C(1) = 0.499.In
this ensemble, there is one particularly interesting case. A
single N, = 4 configuration exhibited a correlation value of
C(1) = 0.373, a clear outlier compared to the next-smallest
value of C(1) = 0.479. Although still displaying a prefer-
ential alignment with the temporal dimension compared to
zero temperature, this configuration also featured two
disconnected vortex lines winding around the long spatial
dimensions. These inevitably pierce many additional space-
time plaquettes. Such a configuration would likely not be
obtained within a continuous Markov chain, highlighting
the importance of thermalizing independent hot starts. That
said, this was the only configuration from the set with such
behavior. From this we conclude that the alignment of the
vortex sheet as represented by the freezing in temporal slices
is a genuine dynamical effect. It is not the upshot of
nonergodicity in the Markov chain in the original set of
ensembles.

The second avenue explored in this regard is the scaling
of the alignment in taking the continuum limit at fixed
temperature,

T = (aN,)~! fixed.  (10)

For this purpose we generate two ensembles, again com-
prising 100 configurations, with half the lattice spacing as
previously (i.e., a = 0.05 fm) but twice the lattice extent in
all four dimensions. These accordingly have N, = 12 and
N, = 8 for a direct comparison. The full details are also
provided in Table II. By increasing the number of lattice
sites in the temporal dimension, there are more chances for
the vortex sheet to curve. We are concerned this could result
in a softening of the alignment in the continuum limit, and
hence it is critical to establish that the alignment persists to
a similar degree after substantially diminishing the lattice
spacing.

In fact, Table II reveals that the correlation has only
increased in reducing a, in line with the discussion in the
previous section regarding the physical “smoothness” of
the vortex sheet. One might still be sceptical that the
increase in value of C(1) is mild compared to the factor of
1/2 reduction in lattice spacing. However, it is important to
bear in mind that since the lattice spacing has been
decreased isotropically, the distance a jet must move to
pierce an adjacent space-space plaquette, in relation to
Fig. 8, is also physically smaller. These are competing
effects which appear to approximately cancel each other
out, resulting in the observed small increase in correlation
between consecutive temporal slices. We therefore believe
this indicates the overall extent of the alignment is
approximately the same across our coarse and fine ensem-
bles examined herein. If one were to instead utilize an
anisotropic lattice, where exclusively the temporal spacing
is decreased, we would expect this to effect a more
substantial increase in the value of C(z = 1).

We believe that this finding, in conjunction with the 100
independent hot starts, establishes the alignment and
accompanying freezing in temporal slices as a physical
effect rather than an algorithmic artefact. As a reference, in
Fig. 9 we provide visualizations of a typical spatial slice
from each of the four additional high-temperature ensem-
bles analyzed in this section. Recall that the alignment
manifests clearly in spatial slices as comprising primarily
vortex lines which wind around the temporal axis. This is
still seen to be true in each case here.

C. Vortex density

We now move to focus on the vortex area density,
defined as the proportion of plaquettes pierced by a vortex.
For a given three-dimensional lattice slice, this can be
represented as

R Number of nontrivial plaquettes in slice

= , 11
Pvortex 3 Vs]ice ( )

where V.. is the number of lattice sites in the slice, and
@) = 3 counts the number of plaquettes at each site. We
can then average over all slices along a given dimension. As
defined in Eq. (11), pyorex 1S @ dimensionless quantity,
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FIG. 9. Center vortex structure in a single spatial slice for each ensemble used to investigate the vortex sheet alignment with the
temporal dimension: = 5.96 (top) and f = 6.42 (bottom), with T/T. = 1.218 (left) and T/T,. = 1.827 (right).

though can be converted to a physical quantity p,grex DY
dividing by a?, which gives proper scaling in the continuum
limit [14,15,25].

The evolution of p,.x With temperature is presented in
Fig. 10, with separate data points for averaging over
temporal and spatial slices due to the vastly different
structures. As expected, we find a sharp decrease in spatial
slices of the lattice as soon as T’ is crossed, coinciding with
the absence of a percolating cluster. The area density in the
temporal slices also undergoes an initial smaller drop at T',..
Both of these subsequently grow in value above T'... This is
particularly notable in the temporal slices for which pex
proceeds to increase back to below T, levels. This agrees
with the qualitative conclusion reached through the
visualizations.

Another curious occurrence is the slight increase in
vortex density as 7', is approached from below, as seen with
the data points at 7/7T. = 0.913 in Fig. 10. These sit clearly
above the other points below 7., and is especially pro-
nounced in spatial slices. Greater insight into this behavior
can be obtained by decomposing the vortex density in
spatial slices to consider the proportion of space-space and
space-time plaquettes pierced separately. The space-space
density calculated in this manner is equivalent to the vortex
density in temporal slices from Fig. 10, which comprise
entirely space-space plaquettes. After averaging over all
slices of the lattice, every space-space plaquette has been
accounted for in both quantities. Accordingly, there must
be interesting behavior in the space-time plaquettes that
induces the larger density in spatial slices. These
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FIG. 10. The vortex area density in temporal and spatial slices
of the lattice for each finite-temperature ensemble. The spatial
slices experience a significant drop in vortex density at the phase
transition, matching the absence of a percolating cluster. There is
also an initial drop in the temporal slices, after which it
subsequently increases with temperature.

decomposed densities are shown in Fig. 11, with the “full”
spatial density from Fig. 10 overlaid for reference.

It is reassuring that the proportion of space-space pla-
quettes pierced coincides with the temporal density, as
required. Fig. 11 then explicitly reveals a divergence in
the density of space-space and space-time plaquettes pierced
approaching the phase transition from below, with a larger
density of vortices piercing space-time planes. This asym-
metry has previously been seen in SU(2) near 7' [19], and
accounts for the greater vortex density in spatial slices over
temporal slices. In addition, the density in space-time
plaquettes remains approximately constant above 7., which
explains why the increase in the “full” density in spatial
slices is mild in comparison to that found in temporal slices.

It is now clear why the vortex density in spatial slices
exceeds that in temporal slices as the phase transition is
approached from below. We understand that deconfinement
is associated with an alignment of the vortex sheet with the
temporal axis, whereas at low temperatures there is no
preferred orientation. Thus, before the deconfinement tran-
sition can take place, a rearrangement of the vortex sheet is
required, and Fig. 11 reveals this manifests as a preference to
pierce space-time plaquettes as it prepares to align with the
temporal axis. These will be features to look for in the
branching point statistics to ascertain whether they are
recurring characteristics across various vortex attributes.

D. Nonpercolating clusters

Next, we investigate the nonpercolating aspects of the
center vortex structure. These encompass any cluster seen
in Figs. 2—6 that does not spread through the slice volume,
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~ o5 ¢ Ful | _
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FIG. 11. The physical density of space-space and space-time

plaquettes pierced in spatial slices of the lattice. There is a greater
density in space-time plaquettes approaching the critical temper-
ature from below. Above T, the space-time density is approx-
imately constant whilst the space-space value increases.
Combined, this results in the mild increase in the full density.

and can be broken down into two distinct categories. First,
there are the small structures in temporal slices that contrast
the “primary” percolating cluster at all temperatures; these
we specifically refer to as “secondary” clusters. The second
category concerns spatial slices above T'. where percolation
is absent; this grouping therefore covers all clusters
observed in these slices.

To start, the number of secondary clusters Necondary 18
presented for the temporal slices in Fig. 12. We note that the
notion of “secondary” clusters also applies to spatial slices

N secondary

w
T

U RIS RS S R
0.0 0.5 1.0 1.5

T/T.

o
=)

FIG. 12. The temperature-dependence of the average number of
secondary vortex clusters Ngecondary in temporal slices of the
lattice. There is a marked drop at the critical temperature, after
which there is a continuing decrease.
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FIG. 13. The average number of vortex clusters per spatial slice
above T'... There is a steady upward trend in the amount of vortex
lines as the temperature continues to increase away from 7. This
can be directly attributed to the growing vortex density in
temporal slices in this regime.

for T < T,., though our primary focus is directed to
temporal slices, which comprise a percolating cluster for
all temperatures. This allows an unambiguous exploration
on the presence of secondary clusters in the deconfined
phase. Figure 12 reveals a pronounced drop in the number
of secondary clusters as the critical temperature is crossed.
This was suspected from the visualizations. It then con-
tinues to decline above 7. to an average of only one
secondary cluster per slice at our two highest temperatures.
The extent to which Necondary falls off crossing 7. suggests
this is another aspect of vortex geometry that characterizes
the deconfinement phase transition in the pure-gauge
theory. The decrease above T, may be partly associated
with the increase in vortex density illustrated in Fig. 10. As
the volume fills with vortices, there is less space for
secondary clusters. That being said, it is currently unclear
why high temperatures result in the initial suppression of
secondary clusters for 7 > T,.

Second, we inquire into the number of clusters N jysers
per spatial slice above T.. This is shown in Fig. 13. These
are small, mutually disconnected clusters which primarily
wind around the temporal dimension, and serve as a basic
reflection of the spatial structure seen in time slices.
Figure 13 reveals a gradual increase in the number of these
clusters with temperature, which was not immediately
apparent from the visualizations. This increase is inher-
ently connected to the growing vortex density in temporal
slices for 7> T,.. It follows that when subsequently
slicing along a spatial dimension, there are more jets
within a given slice. This naturally leads to a greater
abundance of vortex lines aligned with the temporal axis
in spatial slices.

V. BRANCHING POINT GEOMETRY

Due to the existence of two distinct nontrivial center
phases, SU(3) vortices experience vortex branching where
an m = =1 vortex splits into two m = F 1 vortices. This is
allowed due to the conservation of center charge modulo N.
Branching does not occur in SU(2) where there is only a
single nontrivial phase. Therefore, branching points offer a
unique avenue of investigation into center vortices in SU(3)
compared to SU(2).

Since reversing the orientation of a jet indicates the flow
of the opposite center charge, branching points can equiv-
alently be interpreted as the monopoles illustrated in
Figs. 2-6. Here, three vortices of the same center charge
emerge from, or converge to, a single point. A schematic of
this equivalence between branching and monopole points is
given in Fig. 14. Recalling our visualizations show the flow
of m = +1 center charge, branching points exclusively
appear as monopoles in our visualizations.

A. Branching point density

The first quantity of interest is the branching point
density, defined for a given three-dimensional slice as
the proportion of elementary cubes that contain a branching
point,

A

Poranch =

Number of branching points in slice

12
Vslice ( )
As a volume density, the appropriate physical quantity is
Poranch = Pbranch/@>» Which is known to scale correctly as
a — 0 [25,38]. Its evolution with temperature is presented
in Fig. 15. We find identical patterns to those identified for
the vortex area density in both temporal and spatial slices.
This includes the peculiar increase near 7', which is again
stronger in spatial slices. That being said, the drop in ppanch
in spatial slices across T, is even larger than for p,gex-

+1 +1

FIG. 14. Schematic of a monopole vertex (left) versus a
branching point (right). The monopole vertex follows our con-
vention to illustrate the directed flow of m = +1 center charge.
Reversal of the left-hand arrow in the diagram shows the flow of
charge m = —1, as seen on the right. Due to periodicity in the
center charge, m = —1 is equivalent to m = +2. Thus, the right-
hand diagram depicts branching of center charge.

034516-11



MICKLEY, KAMLEH, and LEINWEBER

PHYS. REV. D 110, 034516 (2024)

3.0 g .
i i
K3

-3
Phranch (le )
— o !
ot o
T B B

Iy "
o
L B

¢ Temporal Slices
L Spatial Slices

0.0 L
0.0 0.5 1.0 1.

T/T.

0.5F

2.0

ot

FIG. 15. The density of vortex branching points in temporal and
spatial slices of the lattice for each finite-temperature ensemble.
The trends in both temporal and spatial slices match those
identified for the vortex area density.

This is to be expected—with the vortices principally
aligned along the short temporal dimension, there are very
few opportunities for the vortex line to branch, resulting in
a substantial suppression of pynen in spatial slices.

In temporal slices, the increase in pyne, above T, is
connected to the corresponding behavior of p, ey, Where
an increase in vortex density naturally allows for more
branching chances within the same spatial volume. In this
scenario a more interesting quantity might be the linear
branching point density,

Number of branching points in slice

. (13)

;lb h — P . .
ranc Number of vortices in slice

i.e., the proportion of vortices that undergo branching. The
corresponding physical quantity iS Apanen = ﬁbmnch /a. As
defined in Eq. (13), ;lbranch can also be interpreted as an
estimate of the average probability per unit length for a
vortex to branch. We will see in Sec. VB that this
probability is in fact distance dependent.

Following from our definition of A, one finds the
below simple relation summarizing how various vortex
properties intertwine,

Phbranch = 3:0 vortex/lbranch . ( 14)

This is derived by a straightforward substitution of
Egs. (11)—(13), and noting that the number of vortices in
a slice [from the denominator of Eq. (13)] is by definition
equal to the number of nontrivial plaquettes [from the
numerator of Eq. (11)]. Thus, a constant Ay, ,,., would give
a clear-cut relationship between the vortex and volume
branching point densities. In contrast, if Ay, 1S also
subject to nontrivial evolution with temperature the
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FIG. 16. The linear density of vortex branching points in
temporal and spatial slices of the lattice for each finite-
temperature ensemble, and a “full” value from averaging over
all four slice dimensions. The trends in temporal and spatial slices
coincide with those identified for vortex and branching point
densities, though are less pronounced. The full dimensionally
averaged value is notably constant above 7.

dependency becomes more complicated. We plot the linear
branching point density in temporal and spatial slices as a
function of temperature in Fig. 16. This is overlaid by a
“full” density Ayunen Obtained by averaging Apnen over all
four slice dimensions,

- 1
/lbranch = Z Z’Ibranch (:u) ’ ( 15 )
u

where Apanen () is the linear branching density for slice
dimension p. This is relevant to the following discussion.

The same general trends are found in Ay pen s fOr Pyoriex
and ppanch but visibly subdued, with a smaller drop at T,
for both temporal and spatial slices. Importantly, the fact
Abranch 1NCrEases in temporal slices above 7. implies the
corresponding increase in ppnen 1S not solely due to the
growing vortex density. It is additionally caused in part by
an increase in the inherent fraction of vortices that undergo
branching, as per Eq. (14).

We also find that the “full” dimensionally averaged value
Abranch, forgoing the small increase near T, remains
approximately constant either side of the phase transition
(over our temperature range). This value changes when
crossing T, with the reduced value in the high-temperature
phase signifying a corresponding change in the vortex
geometry. This can be understood by noting that the shift in
vortex geometry to principally align with the temporal axis
implies there is generally one less dimension available for a
vortex to branch into, explaining why Ap., decreases
through the phase transition. For a simple heuristic
argument, the collapse in vortex geometry from four- to
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three-dimensional implies the number of available dimen-
sions for a vortex line within the sheet to branch into
decreases from three to two. It follows that at leading order,
one might expect the value of Ay, to drop by a factor of
2/3 at T.. Figure 16 shows reasonable consistency with this
proposal, for which taking a ratio between the average
values in the two phases yields ~ 0.60.

The fact Ay, Subsequently remains constant above 7,
despite the significant differences in spatial and temporal
structures, provides a baseline that underlies many of our
prior findings at high temperature. The vortex correlation
measure (Fig. 8) indicated that the alignment of the vortex
sheet with the temporal dimension becomes stronger as the
temperature increases above T',. With Ay, constant, this
implies that proportionally more of the branching points
must occur in temporal slices over spatial slices.

To understand this, recall the alignment manifests in
spatial slices as short vortex lines orthogonal to space-space
plaquettes, and therefore parallel to the temporal dimen-
sion. The occurrence of a branching point would neces-
sitate the piercing of space-time plaquettes, which is
suppressed as the alignment becomes stronger. Hence,
above T, the linear branching density decreases in spatial
slices, counterbalanced by an increase in temporal slices
such that the full density remains constant (as seen in
Fig. 16). This evolution naturally effects an increase in the
vortex density in temporal slices, where more plaquettes are
pierced from the greater proportion of branching vertices.
From Eq. (14), there is consequently a compounding effect
that results in a substantial increase in the volume density of
branching points.

In summary, the constant value of Ay, above T,
provides an underlying explanation for why the vortex
and branching point densities grow in temporal slices of the
lattice in the deconfined phase, in spite of the initial drop
they experience across the phase transition. Furthermore,
the fact that 4, remains constant whilst the asymmetry
between the temporal and spatial extents of the lattice
increases with temperature highlights the significance of
the vortex geometry in the context of all four dimensions.
The geometric nature of the phase transition is understood
as a reduction in the dimensionality of vortex percolation
from the full four-dimensional lattice to within a three-
dimensional submanifold. The primary effect of increasing
the temperature in the deconfined phase is an evaporation
of branching points from spatial slices as the vortex
geometry aligns with the temporal axis, with a commen-
surate condensation of branching points on temporal slices
in exchange such that the average linear branching prob-
ability remains constant.

B. Branching point separations

In Sec. V A the bulk properties of branching points were
investigated, which we presently extend to a detailed
analysis of the intrinsic distribution of branching points

throughout the vortex structure. A model for vortex
branching proposes that a vortex line has a fixed probability
of branching as it propagates through space-time [38]. It
follows that the path lengths between consecutive branch-
ing points on the lattice would be described by the geo-
metric distribution,

Pr(k) = p(1 = p)*1, (16)

for branching probability p and number of trials k.

This has previously been tested at zero temperature in
Ref. [48] by devising an algorithm to determine the
separations between branching points and producing a
histogram of the results. The conjecture was supported
for separations > 3 where it was found the distribution is
approximately exponential. This is spoiled at short dis-
tances due to a tendency for branching points to cluster near

each other. It is for this reason ﬁbranch defined in Eq. (13)
fails to provide a reliable estimate of the branching
probability.

To determine the probability p, a linear function

k) = a—pi (17)

is fit to the log of the distribution for separations k > 3,
which by comparing to the logarithm of Eq. (16) allows one
to extract the corresponding long-range branching proba-
bility from the slope parameter f as

p=1-e¢" (18)

We utilize the algorithm of Ref. [48] to explore how, if at
all, this geometry of branching points and the associated
branching probability depends on temperature.

These distributions are shown independently for tempo-
ral slices in Fig. 17 and spatial slices in Fig. 18. In the
confined phase, the distributions for both temporal and
spatial slices are all extremely similar, each featuring the
aforementioned clustering at branching point separations
< 3 before a steep falloff in probability leads into a smooth
long-range exponential trend.

Above T, the branching point geometry for temporal
and spatial slices diverges, with opposing trends to be
found. In spatial slices, the probability of small separations
only becomes more pronounced, as is apparent by the
height of the respective histogram bins in Fig. 18. However,
this is presumably an artificial change that arises from the
absence of percolation in the deconfined phase, and the
alignment of the vortex sheet with the temporal dimension.
As seen in the visualizations (Figs. 4-0), the spatial slices
therefore consist of many short vortex lines parallel to the
temporal axis.

Consequently, large branching point separations are
suppressed, with path lengths 2 N, becoming increasingly
rare. Owing to the very low statistics at large separations,
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FIG. 17. The distribution of branching point separations, k, in temporal slices of the lattice for each finite-temperature ensemble. The
histograms are normalized to unit probability. Below T, the distributions are similar, exhibiting a clear clustering at separations k < 3
with a smooth exponential falloff. Above T the clustering is visibly softened, and there is also a reduction in probability at separations

k=4 and 5.
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and the sporadic distribution at short distances, performing
the aforementioned fits to our spatial slices data above T . is
infeasible. As a result, we refrain from estimating the
branching probability in spatial slices. We propose that a
possible method to overcome this limitation is to introduce
anisotropy into the lattice along the temporal dimension. At
high temperatures, this would allow for more branching
chances in spatial slices and permit greater distances (in
lattice units) between successive branching points. The fits
might then successfully be performed over an adequate
range of separations.

In contrast, the clustering in temporal slices is dimin-
ished in the deconfined phase and continues to subside as
the temperature grows. Moreover, this decline in proba-
bility at small distances extends to separations k = 4 and 5,
where above 7. we have Pr(4) < Pr(5) < Pr(6). The
familiar exponential decay then takes effect for k > 6,
which is evident from Fig. 17. This time the lack of a
constant branching probability at short distances is no
longer due to a clustering, but instead due to a dilution of
branching points at short- to mid-range scales. Given the
temporal center vortex structure comprises a percolating
cluster in both phases, we can be confident this is a genuine
shift in the intrinsic arrangement of branching points, rather
than arising from an external change in vortex geometry.
For instance, the branching point densities in temporal
slices are extremely similar at our highest temperature
T/T. = 1.827 compared to below T. (Figs. 15 and 16),
though the inherent distribution of these branching points is
plainly very different.

In Ref. [48], it was questioned whether the clustering
radius at low temperatures is a physical effect, or a
discretization artefact of a nonzero lattice spacing. Based
on the above discussion, we propose it is a physical effect
that vanishes at high temperatures (in temporal slices).

Having carefully analyzed these distributions, we now
proceed to determine the branching probability as a
function of temperature. To avoid uncertainty asymmetry
induced by taking the log of the data, we utilize a slightly
different method to Ref. [48] and instead perform a direct
exponential fit,

flk) = e, (19)

to the raw counts, where { is a normalization parameter.
The connection between the exponential and geometric
distributions (see Appendix) allows us to estimate the
branching probability for our discrete data as

Pbranch = 1 - e—/l’ (20)

cf. Eq. (18). To be precise in our methods, we initially
perform the linear fit to the logarithm of the counts. The
output of this fit is then used to provide accurate initial
guesses to the nonlinear exponential fit, { = e* and A = f.

We find the exponential fit converges to a marginally (but
visibly) different optimal solution. This is taken as our best
estimate of the model.

To account for the T > T, behavior discussed above,
we perform the fit at all temperatures only for separations
k > 5 and exclusively in temporal slices. This procedure is
carried out on 100 bootstrap ensembles, allowing an
uncertainty to be placed on the final probability. For each
bootstrap sample, Poisson square-root errors are placed on
the histogram bin counts for incorporation into the least-
squares fit. The fits for each ensemble are shown on a
logarithmic scale in Fig. 19, and the resulting evolution of
the branching probability is presented in Fig. 20.

The fits of Fig. 19 are observed to describe the data
well. The suppression of short-distance clustering at high
temperatures is abundantly clear. The lower statistics at
large distances is especially pronounced for the higher-
temperature ensembles, which have less statistics by
default. For completeness, we reperform the fits exclusively
including up to a maximum separation of k,,, = 50, which
is additionally shown in Fig. 20. Incorporating this cutoff is
seen to have a visible but ultimately insignificant effect,
justifying the original fits.

It is expected that the branching probability scales with
the lattice spacing [38]. This can be intuitively understood
by the fact vortex and branching point densities are known
to exhibit scale invariance as a — 0. Thus if one were to
decrease a, the position of vortices would be resolved to
greater precision, but the physical distance between branch-
ing points would be unchanged. In other words, the
probability of branching in a given elementary cube would
decrease proportionally to the lattice spacing. For this
reason, Fig. 20 shows a physical “probability per unit
length” by dividing the value obtained through the fits by
our lattice spacing of a = 0.1 fm.

The branching probability displays the same general
trends as the previous vortex quantities investigated,
including the mild increase approaching 7. from below,
the drop through the phase transition and the steady climb
in value as the temperature rises above 7. That being said,
the cut in probability at the critical temperature is much less
pronounced here, and its value is then amplified to notably
exceed below T'. levels at our highest temperature.

It is prescient to compare this behavior to the linear
branching point density (Fig. 16), where if a constant
branching probability held over all separations these
measures would be expected to coincide. Instead, the
probability obtained through the fits is found to consis-
tently sit above the linear density at all temperatures,
consistent with the previous finding at zero tempera-
ture [48].

This is a consequence of incorporating the short-distance
physics into the naive linear branching density, incompat-
ible with the constant probability picture at large separa-
tions. Of utmost interest is the high-temperature behavior,

034516-16



CENTER VORTEX GEOMETRY AT FINITE TEMPERATURE

PHYS. REV. D 110, 034516 (2024)

Probability

H
9

B 7/T, = 0.114
— Fit

10 20 30 40 50 60
Branching Point Separation

70

107!

,_.
b
no

Probability

1073

107!

H
<
V)

Probability

—
i
w

I T/T, = 0.913
—— Fit

10 20 30 40 50 60
Branching Point Separation

70

0 7/T, = 1.461
— Fit

10 20 30 40 50 60
Branching Point Separation

70

Probability

H
9

107!

,_.
<
no

Probability

1073

1071

H
<
V)

Probability

—
i
w

= 7/, = 0.600
— Fit

10 20 30 40 50 60 70
Branching Point Separation

I T/T, = 1.218
—— Fit

10 20 30 40 50 60 70
Branching Point Separation

B 7/T, = 1.827
— Fit

10 20 30 40 50 60 70
Branching Point Separation

FIG. 19. The distribution of branching point separations, k, on a logarithmic scale in temporal slices of the lattice for each finite-
temperature ensemble. The exponential fits are overlaid on the histograms, and evidently match the data well barring at very high
separations where there is insufficient statistics. The reduction in density at short distances above T, is visually clear in these plots, with
most of the probabilities for separations k < 5 sitting below the fits.
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FIG. 20. The long-range (k > 6) branching probability of a
vortex line as a function of temperature, estimated by performing
an exponential fit to the distribution of branching point separa-
tions. There is a mild drop in the branching probability across the
phase transition, which subsequently increases to a value mark-
edly exceeding the below 7', values. Including a cutoff k < 50 to
account for low statistics at large distances is seen to have
minimal effect on the results.

where although the linear density never exceeds the below
T. values over our temperature range, the branching
probability does by a considerable margin. That is to
say, the long-distance probability of a vortex undergoing
branching is greater at very high temperatures compared to
low temperatures. This conclusion was obscured in the
linear density, which highlights the importance of separat-
ing out the short-distance behavior in providing a com-
prehensive assessment of branching point geometry.

VI. CONCLUSION

In this paper we have explored the evolution of pure-
gauge SU(3) center vortex structures with temperature.
Initially, a qualitative discussion was presented by visual-
izing the vortex structure in temporal and spatial slices of
the lattice. This established a shift in the center vortex sheet
to principally align with the short temporal dimension in
the deconfined phase. As a consequence, the vortex cluster
is observed to be primarily frozen between temporal slices
of the lattice. By aligning with the temporal axis, the vortex
sheet rarely cuts through space-time plaquettes above T'.
This is reflected in spatial slices, where the majority of
vortices pierce space-space plaquettes and are therefore
oriented in the temporal dimension. In other words, this
manifests as many short vortex lines chiefly parallel to the
temporal axis.

An array of vortex statistics was calculated to investigate
additional intrinsic changes to the vortex structure. These
statistics include the vortex density, and volume and linear
branching point densities. All of these measures exhibit the

same overarching trend. Crossing the phase transition, each
quantity experiences a cut in value in both temporal and
spatial slices, though this was less pronounced in temporal
slices. These values in the temporal slices subsequently
increase as the temperature continues to rise above T,
returning to below 7. levels by the highest temperature
considered T/T,. ~ 1.827.

Decomposing the density in spatial slices to consider
space-space and space-time plaquettes independently
revealed a slight preference of the vortex sheet to pierce
space-time plaquettes as the temperature nears 7,.. We
propose this is a necessity as the vortex sheet prepares to
align with the temporal dimension. Other peculiar findings,
such as an increase in each of the aforementioned statistics
whilst approaching the phase transition from below, and a
major suppression of secondary clusters above 7., warrant
further investigation into their cause. This could be
achieved by focusing on a narrower range of temperatures
near T,., or utilizing finer lattices to study the scaling
behavior of these trends.

Calculating a linear branching density averaged over
spatial and temporal slices revealed constant (but distinct)
values on both sides of the phase transition. This is in spite of
the strong asymmetry between the space and time slices
above T ... This embodies a degree of “locking” in the vortex
structure, in which continued changes in spatial slices of the
lattice must be counteracted by an opposite trend in temporal
slices. This opens the possibility of an underlying symmetry
connected with the vortex topology which results in the
average linear branching probability becoming an effective
constant. In future work, it will be interesting to investigate
this quantity over an extended temperature range, both
nearer to and farther from 7., to ascertain the extent to
which this locking persists in the deconfined phase.

Finally, we explored changes to the inherent distribution of
branching points throughout the vortex clusters with temper-
ature. Here, we find a tendency of branching points to cluster at
short separations at low temperatures is lost as we move
through the phase transition. At large separations, their
distribution can nonetheless be described by a constant
branching probability. This long-distance probability is decid-
edly greater at very high temperatures compared to low
temperatures. Thus, branching is enhanced at very high
temperatures.

By analyzing other topological aspects of the gauge
fields, it was proposed in Ref. [50] that full QCD
experiences a second phase transition at a higher temper-
ature T = 2T,.. This was based on the behavior of the
Polyakov loop in different nontrivial representations of
SU(3) and the topological index of gauge field configura-
tions. Although our results on center vortex structure do not
evince any evidence for such a second transition, this could
be due to the limited temperature range considered or the
nature of pure gauge theory compared to full QCD. There is
the possibility for further investigation in this regard by
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utilizing the finer resolution provided by an anisotropic
lattice to consider a greater range of temperatures.

Future work will extend this analysis to include the effect
of dynamical fermions on center vortices at finite temper-
ature. This has previously been conducted at zero temper-
ature [48], where many quantities of interest, such as the
number of secondary clusters, vortex, and branching point
densities, and the degree of clustering at short separations
are observed to significantly increase. Hence it will be
interesting to see the extent to which the findings on vortex
geometry through the phase transition presented herein are
impacted (or otherwise) by the inclusion of dynamical
fermions.
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APPENDIX: EXPONENTIAL AND GEOMETRIC
DISTRIBUTIONS

In this appendix we derive the connection between the
exponential and geometric distributions used to extract an

estimate of the branching probability from our exponential
fits, Eq. (19). If a continuous random variable Y follows an
exponential distribution, ¥ ~ Exp(4), it has the (normal-
ized) probability density

fx;4) = de™™. (A1)

The discrete random variable X = | Y| + 1, supported on
the set {1,2,3, ...}, then follows a geometric distribution,

Pr(X =k)=Pr(k—1<Y <k),

>~

(A2)

This coincides with the formula for a geometric distribu-
tion, Eq. (16), with probability of success

p=1-—e"* (A3)

This verifies Eq. (20) for the branching probability, where
the random variable X is identified with the branching point
separations. Note that in our fits, we necessarily included
an unconstrained normalization parameter { to accommo-
date the nonexponential behavior at short separations.
However, this has no effect on the above probability, but
rather just carries through to an equivalent normalization
factor in the geometric distribution.
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