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We construct the primitive gate set for the digital quantum simulation of the 108-element Σð36 × 3Þ
group. This is the first time a non-Abelian crystal-like subgroup of SUð3Þ has been constructed for quantum
simulation. The gauge link registers and necessary primitives—the inversion gate, the group multiplication
gate, the trace gate, and the Σð36 × 3Þ Fourier transform—are presented for both an eight-qubit encoding
and a heterogeneous three-qutrit plus two-qubit register. For the latter, a specialized compiler was
developed for decomposing arbitrary unitaries onto this architecture.
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I. INTRODUCTION

Classical computers face significant challenges in sim-
ulating lattice gauge theories due to inherent exponentially
large Hilbert spaces with the lattice volume. Monte Carlo
simulations in Euclidean time are generally used to circum-
vent this problem. However, this approach also fails when
we are interested in the real time dynamics of the system or
in the properties of matter at finite density due to the sign
problem [1–8].
Quantum computers provide a natural way of simulating

lattice gauge theories. Yet, they are currently limited to a
small number of qubits and circuit depths. Gauge theories
contain bosonic degrees of freedom and have a continuous
symmetry, e.g. quantum chromodynamics (QCD) with
SUð3Þ local symmetry. Storing a faithful matrix represen-
tation of SUð3Þ to double precision would require Oð103Þ

qubits per link—far beyond accessibility to near-term
quantum computers. Moreover, these qubits being noisy
significantly limits the circuit depths that can be reliably
performed on these devices. Therefore, studying lattice
gauge theories with current and near-future quantum
computers requires efficient digitization methods of gauge
fields as well as optimized computational subroutines.
Finally, it is important to note that a choice of digitization
method affects the computation cost.
To this end, several digitization methods have been

proposed in the past decade to render the bosonic
Hilbert space finite. Traditionally, most approaches have
considered only qubit devices. However, due to recent
demonstrations of qudit gates, there has been an increasing
interest in qudit-based digitization methods [9–16]. One
digitization method utilizes the representation (electric
field) basis, and imposes a cutoff on the maximal repre-
sentation [13,17–35]. Another recent proposal [16,36], the
q-deformed formulation renders a finite dimension by
replacing the continuous gauge group with a so-called
quantum group [37]. Moreover, the loop-string-hadron
formulation explicitly enforces gauge invariance on the
Hilbert space [38–42] before truncation. Each of the above
methods is extendable to the full gauge group, i.e. it has an
infinite-dimensional limit. Other methods that begin with
different formulations or perform different approximations
exist such as light-front quantization [43–45], conformal
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truncation [46], strong-coupling and large-Nc expansions
[47,48].
Another approach is to try and formulate a finite-

dimensional Hilbert space theory with continuous local
gauge symmetry which is in the same universality class as
the original theory. For example, the author of Ref. [49]
constructed an SUð2Þ gauge theory where each link Hilbert
space is five-dimensional. A generalization to SUðNÞ,
however, was not obtained due to a spurious Uð1Þ
symmetry. Later, different finite-dimensional formulations
were found for SUð2Þ gauge theories [50], the smallest of
which being four-dimensional. Recently, a method inspired
from noncommutative geometry was used to construct an
SUð2Þ gauge theory in 16-dimensional Hilbert space
on each link as well as a generalization to UðNÞ gauge
theory [51]. Another finite-dimensional digitization known
as quantum link models uses an ancillary dimension to
store a quantum state [52]. This method can be extended to
an arbitrary SUðNÞ, and has been further investigated in
Refs. [52–62]. Although this approach may greatly sim-
plify the cost of digitization, establishing the universality
class is nontrivial [50,51,63].
Another promising approach to digitization is the dis-

crete subgroup approximation [14,38,64–78]. This method
was explored early on in Euclidean lattice field theory to
reduce computational resources in Monte Carlo simulations
of gauge theories. Replacing Uð1Þ by ZN was considered
in [79,80]. Extensions to the crystal-like subgroups of
SUðNÞ were made in Refs. [65,66,68,81–86], including
with fermions [87,88]. Theoretical studies revealed that the
discrete subgroup approximation corresponds to continu-
ous groups broken by a Higgs mechanism [89–93]. We
additionally provide properties of certain SUð3Þ discrete
groups in Table I. On the lattice, this causes the discrete
subgroup to poorly approximate the continuous group
below a freeze-out lattice spacing af (or beyond a coupling
βf); see Fig. 1.
The discrete group approximation has several significant

advantages over many other methods discussed above. It is
a finite mapping of group elements to integers that
preserves a group structure; therefore it avoids any need
for expensive fixed- or floating-point quantum arithmetic.

The inherent discrete gauge structure further allows for
coupling the gauge redundancy to quantum error correction
[76,94]. Additionally, while other methods in principle
need to increase both circuit depth and qubit count to
improve the accuracy of the Hilbert space truncation, the
discrete group approximation only needs to include addi-
tional terms in the Hamiltonian [85,95].
In this work, we consider the smallest crystal-like

subgroup of a SUð3Þ with a Z3 center—Σð36 × 3Þ which
has 108 elements. These elements can be naturally encoded
into a register consider of eight qubits or three qutrits and
two qubits. A number of smaller non-Abelian subgroups of
SUð2Þ have been considered previously: the 2N-element
dihedral groups DN [64,96–98], the eight-element Q8 [14],
the crystal-like 24-element BT [99], and the crystal-like
48-element BO [100]. From Fig. 1, we observe that freeze-
out occurs far before the scaling regime. This implies that
the Kogut-Susskind Hamiltonian (which can be derived
from the Wilson action) is insufficient for Σð36 × 3Þ to
approximate SUð3Þ, but classical calculations suggest with
modified or improved Hamiltonians HI may prove suffi-
cient for some groups [66,68,84,85].
This paper is organized as follows. In Sec. II, the group

theory needed for Σð36 × 3Þ is summarized and the
digitization scheme is presented. Section IV demonstrates
the quantum circuits for the four primitive gates required
for implementing the group operations: the inversion gate,

FIG. 1. Euclidean calculations of lattice energy density hE0i of
Σð36 × 3Þ as measured by the expectation value of the plaquette
as a function of Wilson coupling β on 8d lattices for (top) (2þ 1)
dimensions and (bottom) (3þ 1) dimensions. The shaded region
indicates β ≥ βf.

TABLE I. Parameters of crystal-like subgroups of SUð3Þ. ΔS is
the gap between 1 and the nearest neighbors to it. N is the
number of group elements that neighbor the 1.

G ΔS N β2þ1d
f β3þ1d

f

Σð36 × 3Þ 2
3

18 3.78(2) 2.52(3)
Σð72 × 3Þ 2

3
54 � � � 3.2(1)a

Σð216 × 3Þ 1 − 1
3
ðcos π

9
þ cos 2π

9
Þ 24 � � � 3.43(2)a

Σð360 × 3Þ 5−
ffiffi
5

p
6

72 � � � 3.935(5)b

aFrom [81].
bFrom [66].
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the multiplication gate, the trace gate, and the Fourier
transform gate. Using these gates, Sec. V presents resource
estimates for simulating 3þ 1d SUð3Þ. We conclude and
discuss future work in Sec. VI.

II. PROPERTIES OF Σð36 × 3Þ
Σð36 × 3Þ is a discrete subgroup of SU(3) with 108

elements. The group elements, g, of Σð36 × 3Þ can be
written in the following ordered product or otherwise
known as a strong generating set. That is, all the group
elements, g, can be enumerated as a product of left or right
transversals such that

g ¼ ωpCqErV2sþt; ð1Þ

where 0 ≤ p; q; r ≤ 2 and 0 ≤ s; t ≤ 1. This indicates that
either eight qubits (two each for p, q, and r, and one each
for s and t) or three qutrits (p, q, and r) and two qubits (s
and t) will be required to store the group register. Because
the indices p, q, and r take on values between 0 and 2,
there exists an ambiguity in mapping the three-level states
to a pair of two-level systems. We use the mapping
j0i3 ¼ j00i2, j1i3 ¼ j01i2, and j2i3 ¼ j10i2 with the
j11i2 state being forbidden. Throughout this work, we
use ji3 to denote a three-level state and ji2 to denote a two-
level state when there is the possibility of ambiguity. In this
way, the index p is decomposed in binary as p ¼ p0 þ 2p1

and encoded as the state jpi3 ¼ jp1p0i2. This process is
done similarly for q and r.
The strong generating set shown in Eq. (1) explicitly

builds the presentation of the group from subgroups. In this
way primitive gates for smaller discrete groups can be used
as building blocks to construct efficient primitive gates of
larger groups [99–101]. In the case of Σð36 × 3Þ, the
subgroups of interest are as follows: ωp generates the
subgroup Z3; ωpCq generates the subgroup Z3 × Z3;
ωpCqEr generates the subgroup Δð27Þ; and ωpCqErV2s

generates Δð54Þ. Detailed information regarding these
subgroups can be found in Ref. [102].
As we proceed with constructing primitive gates (see

Sec. IV), the following “reordering” relations are useful:

EC ¼ ωCE; VC ¼ EV; and VE ¼ C2V: ð2Þ

One can extend the relations above to derive the general-
ized reordering relations:

V2sþtCq ¼ Cð1þsÞqð1−tÞEtð1þsÞqV2sþt;

ErCq ¼ ωrqCqEr;

V2sþtEr ¼ Ctðsþ1Þð3−rÞEð1−tÞrð1þsÞV2sþt: ð3Þ

It is useful to have the irreducible representations (irreps)
of Σð36 × 3Þ for deriving a quantum Fourier transformation
(see Sec. IV). This group has 14 irreps. There are four

one-dimensional (1D) irreps, eight three-dimensional (3D)
irreps, and two four-dimensional (4D) irreps. The 1D irreps
are

ρð1Þa ðgÞ ¼ iað2sþtÞ; 0 ≤ a ≤ 3: ð4Þ

The eight 3D irreps can be written as

ρð3Þa;bðgÞ ¼ ð−1Þabtωð1þbÞpCð1þbÞqErðiaVÞ2sþð−1Þbt; ð5Þ

where 0 ≤ a ≤ 3 and 0 ≤ b ≤ 1 and the matrices ω, C, E,
and V are given by

ω¼e2πi=3; C¼Diagð1;ω;ω2Þ;

E¼

0
B@
0 1 0

0 0 1

1 0 0

1
CA; and V¼ 1ffiffiffi

3
p

i

0
B@
1 1 1

1 ω ω2

1 ω2 ω

1
CA: ð6Þ

The irrep ρð3Þ0;0 corresponds to the faithful irrep that
resembles the fundamental irrep of SUð3Þ. The 4D irreps
are given by Eq. (1) with

ρð4Þb ðωÞ ¼ 1; ρð4Þb ðCÞ ¼ Diagðωb;ω;ω2b;ω2Þ;
ρð4Þb ðEÞ ¼ Diagðω;ω2b;ω2;ωbÞ;

ρð4Þb ðVÞ ¼

0
BBB@

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1
CCCA: ð7Þ

In addition for conciseness we provide the character table
from Ref. [102] in Table II, which will be useful in
constructing the trace gate.
The first Hamiltonian we are specifically targeting is the

pure gauge theory Kogut-Susskind Hamiltonian,

HKS ¼
X
□

Trðg1g2g†3g†4Þjg1g2g3g4ihg1g2g3g4j

þ
X
l

X
gl;hl

eβTrðglh
†
l Þjglihhlj; ð8Þ

where
P

□
indicates a sum over all of the plaquettes with

g1;…; g4 elements of the plaquettes. Additionally, the
second term is the kinetic term where the sum over l is
a sum over all links. There is generally a freedom in the
construction of the electric term. In Appendix D, we
provide a straightforward construction based on the pro-
cedure outlined in Ref. [103]. The second Hamiltonian we
consider is the improved Hamiltonian, HI , which was
highlighted in Ref. [95]. This includes terms with the six
link rectangles and an extended electric field operator. The
desire to consider improved Hamiltonians comes from the
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fact that there are both reduced lattice spacing errors, i.e.,
the discretization artifacts are moved to Oða4Þ, and the βf
has a larger value.

III. BASIC GATES

In this work, we consider gate sets for both qubit and
hybrid qubit-qutrit systems. Our qubit decompositions use
the well-known fault tolerant Cliffordþ T gate set [104].
This choice is informed by the expectation that quantum
simulations for lattice gauge theories will ultimately
require fault tolerance to achieve quantum advantage
[22,99,100,105,106]. Throughout, we adopt the notation
⊕m to mean addition mod m.
For conciseness, we use a larger than necessary gate set

which we will later decompose in terms of T gate to obtain
resource costs. The single qubit gates used are the Pauli
rotations, RαðθÞ ¼ eiθα=2, where α ¼ X, Y, Z. We also
consider four entangling operations: SWAP, CNOT, multi-
controlled CnNOT, and the controlled SWAP (CSWAP).
The two-qubit operations can be written as

SWAP jaijbi ¼ jbijai; ð9Þ

CNOT jaijbi ¼ jaijb ⊕2 ai; ð10Þ

while the multicontrolled generalizations are

CnNOT

�Y
n

jani
�
jbi ¼

�Y
n

jani
�����b ⊕2

Y
n

an

�
; ð11Þ

CSWAPjaijbijci ¼ jaijbð1 ⊕2 aÞ ⊕2 aci
× jcð1 ⊕2 aÞ ⊕2 bai: ð12Þ

The hybrid encoding uses a more novel set of single,
double, and triple qudit gates. The single-qudit two-level
rotations we consider are denoted by Rα

b;cðθÞ, where α ¼
fX; Y; Zg and indicate a Pauli-style rotation between levels
b and c. The subscripts will be omitted to indicate that the
operation is performed on a qubit rather than a qutrit state.
Additionally, we account for the primitive two-qudit gate,

Ca
bX

c
d;e; ð13Þ

which corresponds to the CNOT operation controlled on
state b of qubit a, and targets qubit c with an X operation
between the levels d and e. We also for conciseness
consider the CSUM gate,

CSUMa;bjiiajjib ¼ jiiaji ⊕3 jib; ð14Þ

which is a controlled operation on qubit or qutrit a and
targets qutrit b. It can be verified that that the CSUM (see
e.g. Refs. [10,107]) gate is related to the Ca

bX
c
d;e gates by

CSUMa;b ¼ ðCa
1X

b
0;1C

a
1X

b
1;2ÞðCa

2X
b
1;2C

a
2X

b
0;1Þ: ð15Þ

Finally, we consider multicontrolled versions of both of
these gates. The gate Ca

bC
c
dX

e
f;g corresponds to a multi-

controlled generalization of Eq. (13). The second multi-
qudit gate is the CCSUM which acts as follows:

CCSUMa;b;cjiiajjibjkic ¼ jiiajjibjk ⊕3 ijic: ð16Þ

TABLE II. Character table of Σð36 × 3Þ with ω ¼ e2πi=3 [102]. Size indicates the number of elements in the group while Ord. (order)
indicates the number of times the operator can be multiplied before yielding the identity.

Size 1 1 1 12 12 9 9 9 9 9 9 9 9 9
Ord. 1 3 3 3 3 2 6 6 4 12 12 4 12 12
1ð0Þ 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1ð1Þ 1 1 1 1 1 −1 −1 −1 i i i −i −i −i
1ð2Þ 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1ð3Þ 1 1 1 1 1 −1 −1 −1 −i −i −i i i i
3ð0Þ 3 3ω 3ω2 0 0 −1 −ω −ω2 1 ω ω2 1 ω ω2

3ð1Þ 3 3ω 3ω2 0 0 1 ω ω2 i iω iω2 −i −iω −iω2

3ð2Þ 3 3ω 3ω2 0 0 −1 −ω −ω2 −1 −ω −ω2 −1 −ω −ω2

3ð3Þ 3 3ω 3ω2 0 0 1 ω ω2 −i −iω −iω2 i iω iω2

3ð0Þ� 3 3ω2 3ω 0 0 −1 −ω2 −ω 1 ω2 ω 1 ω2 ω

3ð1Þ� 3 3ω2 3ω 0 0 1 ω2 ω −i −iω2 −iω i iω2 iω

3ð2Þ� 3 3ω2 3ω 0 0 −1 −ω2 −ω −1 −ω2 −ω −1 −ω2 −ω
3ð3Þ� 3 3ω2 3ω 0 0 1 ω2 ω i iω2 iω −i −iω2 −iω
4 4 4 4 1 −2 0 0 0 0 0 0 0 0 0
40 4 4 4 −2 1 0 0 0 0 0 0 0 0 0
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A unique artifact of this choice of quantum gates is that
one can decompose multicontrolled gates using the tradi-
tional Toffoli staircase decomposition [104,108,109].

IV. PRIMITIVE GATES

We present the primitive gates for a pure gauge theory in
the following subsections using the methods developed in
previous papers on the binary tetrahedral, BT , and binary
octahedral, BO groups [96,97,99]. Using this formulation
confers at least two benefits: first, it is possible to design
algorithms in a theory- and hardware-agnostic way; second,
the circuit optimization is split into smaller, more manage-
able pieces. This construction begins with defining for a
finite group G a G-register by identifying each group
element with a computational basis state jgi. Then,
Ref. [96] showed that Hamiltonian time evolution can be
performed using a set of primitive gates. These primitive
gates are inversion U−1, multiplication U×, trace UTr, and
Fourier transform UF [96].
The inversion gate, U−1, is a single register gate that

takes a group element to its inverse:

U−1jgi ¼ jg−1i: ð17Þ

The group multiplication gate acts on two G-registers. It
takes the target G-register and changes the state to the left-
product with the control G-register:

U×jgijhi ¼ jgijghi: ð18Þ

Left multiplication is sufficient for a minimal set as right
multiplication can be implemented using two applications
of U−1 and U×, albeit optimal algorithms may take
advantage of an explicit construction [95].
The trace of products of group elements appears in lattice

Hamiltonians. We can implement these terms by combining
U× with a single-register trace gate:

UTrðθÞjgi ¼ eiθReTrgjgi: ð19Þ

The next gate required is the group Fourier transform
UF. The Fourier transform of a finite G is defined as

f̂ðρÞ ¼
ffiffiffiffiffiffiffi
dρ
jGj

s X
g∈G

fðgÞρðgÞ; ð20Þ

where jGj is the size of the group, dρ is the dimensionality
of the representation ρ, and f is a function over G. The
gate that performs this acts on a single G-register with
some amplitudes fðgÞ which rotate it into the Fourier
basis:

UF

X
g∈G

fðgÞjgi ¼
X
ρ∈ Ĝ

f̂ðρÞijjρ; i; ji: ð21Þ

The second sum is taken over ρ, the irreducible represen-
tations of G; f̂ denotes the Fourier transform of f. After
performing the Fourier transform, the register is denoted as
a Ĝ-register to indicate the change of basis. A schematic
example of this gate is show in Fig. 2. A related final gate is
UPh which induces the phases corresponding to the
eigenvalues of the kinetic term of the Hamiltonian.
While it is possible to pass the matrix constructed

in Fig. 2 into a transpiler, more efficient methods for
constructing these operators exist [101,110–114]. While
the methods vary in their actualization, the underlying spirit
is the same as for the discrete quantum Fourier trans-
formation. The principle method involves building the
quantum Fourier transformation up through a series of
subgroups. In [114], it was shown that instead of the
exponential Oð4nÞ scaling for traditional transpilation, the
quantum Fourier transform scales like Oðpolylogðj2njÞÞ,
where polylog indicates a polynomial of logarithms.
In the rest of this paper, we construct each of these

primitive gates, and evaluate the overall cost. For each gate,
we start with a pure qubit system. Then, we consider a
register with three qutrits and two qubits as suggested by
the group presentation in Eq. (1).

A. Inversion gate

For the construction of U−1, we first write the inverse of
the group element g as

g−1 ¼ ω2pVtþ2tV2sE2rC2q ¼ ωp0
Cq0Er0V2s0þt0 ; ð22Þ

where the permutation rules are found to be

FIG. 2. Construction ofUF from Eq. (20) using column vectors
ρ̃i;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dρ=jGj

p
ρi;j where ρi;j ¼ ρiðgjÞ.
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p0 ¼ 2p ⊕3 qr ⊕3 2qrt;

q0 ¼ 2ðq ⊕3 qs ⊕3 2qt ⊕3 rt ⊕3 2qst ⊕3 rstÞ;
r0 ¼ 2ðr ⊕3 rs ⊕3 2qt ⊕3 2rt ⊕3 2qst ⊕3 2rstÞ;
s0 ¼ s ⊕2 t;

t0 ¼ t: ð23Þ

A detailed derivation of the permutation rules and the
associated U−1 is found in Appendix A along with two
other forms of U−1 which use fewer ancillae. The idealized
qubit circuit is shown in Fig. 3 and requires 119 T gates and
four clean ancillae.1 The qubit-qutrit hybrid encoding U−1
is found in Fig. 4.

B. Multiplication gate

The multiplication gate U× takes two G-registers
storing two group elements g ¼ ωpCqErV2sþt and h ¼
ωp0

Cq0Er0V2s0þt0 and stores into the second register the
group element gh ¼ ωp00

Cq00Er00V2s00þt00 . Using the reorder-
ing relations of Eq. (3) one can derive that

p00 ¼ p ⊕3 p0 ⊕3 q0r ⊕3 q0rs ⊕3 2q0rt ⊕3 2q0r0t

⊕3 2rr0t ⊕3 2q0rst ⊕3 2rr0st;

q00 ¼ qþ q0 þ sq0 ⊕3 2tq0 ⊕3 2stq0 ⊕3 2tr0 ⊕3 2str0;

r00 ¼ r ⊕3 tq0 ⊕3 stq0 ⊕3 r0 ⊕3 sr0 ⊕3 2tr0 ⊕3 2str0;

s00 ¼ ðs ⊕2 s0 ⊕2 tt0Þ;
t00 ¼ ðt ⊕2 t0Þ: ð24Þ

These rules are rather clunky and in order to write a
systematic multiplication gate we decompose U× into the
following product:

U× ¼ U×;ωU×;CU×;EU×;V2U×;V ; ð25Þ

where U×;O indicate multiplying the state of the O
generator register from the g1 register onto the g2 register.
We provide a detailed discussion of the breakdown of the
rules in Appendix B. The breakdown of using this method
and the product rules from Eq. (24) yields the circuits
composed in Figs. 5 and 6 for the two encodings.

C. Trace gate

There are two principle methods one could use to derive
UTr. One method is to define a Hamiltonian of the form

ĤTr ¼
X
g

TrðgÞjgihgj: ð26Þ

Then, the trace operator can be written as UTrðθÞ ¼
exp ð−iθHTrÞ. This operator corresponds to the phasing
of the magnetic plaquette operator when g corresponds to a
closed Wilson loop. To obtain the matrix form of ĤTr, one
may fix a basis fjg1i;…; jgjGjig where jGj ¼ 108 is the
order of the group. In this basis, ĤTr is diagonal, and each
diagonal entry is given by Hi;i ¼ TrðgiÞ.

FIG. 3. T-gate optimized version of U−1 for Σð36 × 3Þ. The letter indicates the generator and the subscript indicates the qubit in the
generator register. This implementation requires 119 T gates and four ancillae.

FIG. 4. U−1, for Σð36 × 3Þ using qutrit-qubit encoding.

1A clean ancilla is in state j0i. Dirty ancillae have unknown
states.
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To obtain a quantum circuit realizing UTr, we use the
tree-traversal algorithm developed in [115]2 which was
shown to yield an exact circuit with an asymptotically
optimal CNOT gates count. The circuit obtained has 130
CNOT gates and 111 Rz gates. Additional methods are also
found in Ref. [117]. A second method for deriving this gate
involves mapping group elements to their respective trace
classes. Σð36 × 3Þ has 14 conjugacy classes that map to ten
different trace classes. If we only require the real part of the
trace then this grouping reduces the ten trace classes to
seven trace classes. The seven valid traces are
Re TrðgÞ ¼ f3;− 3

2
; 0;�1;� 1

2
g, which we can be labeled

using three bits ðv0; v1; v2Þ as shown in Table III.
This map can be represented as three Boolean functions,

one for each of the variables v0, v1 and v2. For quantum
computation, it is convenient to write boolean functions in
the so-called exclusive-or sum of products (ESOP) form

[118,119]. Then, the function can be mapped to a quantum
circuit in a straightforward manner since each term in the
ESOPs corresponds to a Toffoli gate. For each function, we
start with their minterm forms [120]. Then, we use the
exorcism algorithm to find a simpler ESOP expression for
each of the three functions. After factorizations, we show
the final expressions in the following equation:

v0 ¼ p̄0½1 ⊕2 t̄ðq0r1 ⊕2 q1r0Þ ⊕2 s̄ðq̄0r̄0 ⊕2 q̄1r̄1Þ�
⊕2 p̄1½t ⊕2 sðq̄1r̄0 ⊕2 q̄0r̄1Þ�
⊕2 p̄1t̄ðq0 ⊕2 q̄1Þðr0 ⊕2 r̄1Þ;

v1 ¼ t̄ ⊕2 ðq0 ⊕2 q̄1Þðr0 ⊕2 r̄1Þs̄ t̄;
v2 ¼ s ⊕ s̄t: ð27Þ

UTr can be decomposed as UTrðθÞ ¼ VU0
TrðθÞV† where

V is a unitary operator realizing the map ðp; q; r; s; tÞ ↦
ðv0; v1; v2Þ. This yields U0

TrðθÞ≡ eiθH
0
, where

H0 ¼ 3

16
III þ 3

16
IIZ þ 3

16
IZI þ 5

16
IZZ

þ 1

16
ZII þ 9

16
ZIZ þ 9

16
ZZI þ 15

16
ZZZ: ð28Þ

Figure 7 shows the quantum circuit of the operator V
realizing the map ðp; q; r; s; tÞ ↦ ðv0; v1; v2Þ. Finally, the

FIG. 5. Qubit implementation of U× using the permutation gate χ and its inverse (both shaded orange) using two ancillae and has a
cost of 308 T gates.

FIG. 6. Qutritþ Qubit implementation of U× using the per-
mutation gate χ ¼ Xð1;2ÞXð0;1Þ and its inverse (both shaded
orange).

TABLE III. Map ðp; q; r; s; tÞ ↦ ðv0; v1; v2Þ via Re TrðgÞ.

Re TrðgÞ 3 − 3
2

−1 − 1
2

0 1 1
2

v0 0 1 0 1 0 0 1
v1 0 0 1 0 1 0 1
v2 0 0 1 1 0 1 1

2The codes accompanying the cited publication can be found at
this GitHub repository [116].
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circuit of UTr
0ðθÞ is shown in Fig. 8. The qubit-qutrit

hybrid circuit is provided in Fig. 9.

D. Fourier transform gate

The standard n-qubit quantum Fourier transform (QFT)
[121] corresponds to the quantum version of the fast Fourier
transform of Z2n . QFTs, UQFT, over some non-Abelian
groups are known [97,101,111,112,114]. However, for all
the crystal-like subgroups of interest to high-energy physics
UQFT is currently unknown [122] and there is not a clear
algorithmic way to constructUQFT in general. Therefore, we

instead construct a suboptimal UF from Eq. (20) using the
irreps of Sec. II. The structure of UF is ordered as follows.
The columns index jgi from j0i to j256i according toEq. (1).
We then index the irreducible representation ρi ordered
sequentially from i ¼ 1 to i ¼ 14.
Since Σð36 × 3Þ has 108 elements, on a qubit device UF

must be embedded into a larger 28 × 28 ¼ 256 × 256
matrix. The matrix was then passed to the Qiskit
v0.43.1 transpiler, and an optimized version of UF needed
30 956 CNOTs, 2666 RX, 32 806 RY , and 55 234 RZ gates;
the Fourier gate is the most expensive qubit primitive. As
will be discussed in Sec. V, UF dominates the total
simulation costs and future work should be devoted to
finding a Σð36 × 3ÞUQFT.
For the hybrid qubit-qutrit implementation, UF is of

dimensions 108 × 108. To obtain a quantum circuit,
we built a qubit-qutrit compiler; see Ref. [123]. The
outline of the compilation is discussed in Appendix E. The
compiler uses the gates discussed in Sec. III, and Table IV
shows its resulting gates count. The final component is a
phasing corresponding to the gauge kinetic term. This
involves decomposing the diagonal phasing operation into
a sum of Pauli matrices or equivalents for qudit-based
systems. For the pure qubit-based system this decom-
position involves 256 Rz rotations and 254 CNOT gates.
The gate cost on a mixed qubit-qutrit device is shown in
Table VIII.

V. RESOURCE COSTS

The relatively deep circuits presented above strongly
suggest that simulating Σð36 × 3Þ will require error cor-
rection and longer coherence times on quantum devices.
The preclusion of universal transversal sets of gates stated
in the Eastin-Knill theorem [124] requires compromises be
made. In most error correcting codes, the Clifford gates are
designed to be transversal [104,125–128]. This leaves the

FIG. 7. Quantum circuit of the map ðp; q; r; s; tÞ ↦ ðv0; v1; v2Þ
from the group to the seven real trace classes
ReTrðgÞ ¼ f3;−1.5; 0;�1;�0.5g. This requires 15 Toffoli gates
and thus 105 T gates.

FIG. 8. Quantum circuit of the operator U0
TrðθÞ where we have

set ϕ≡ − θ
8
.

TABLE IV. Gate cost of primitive gates for Σð36 × 3Þ for a
qutrit-qubit architecture. The costs for UF were obtained with the
hybrid compiler described in Appendix E. CdXb;c refers to an X
rotation between states b, c of a qutrit controlled by a qudit with d
levels.

Basic gate U−1 U× UTr UF

Rα 0 0 7 92 568
Rα
b;c 3 0 0 35 310

CNOT 1 2 9 16 656
C2NOT 0 1 2 0
C3NOT 0 0 0 0
C4NOT 0 0 0 0
C2Xb;c 2 3 0 67 260
C3Xb;c 12 20 1 8988
C3C2Xb;c 8 12 13 0
C3C3Xb;c 4 36 45 0

FIG. 9. Quantum circuit of the map ðp; q; r; s; tÞ ↦ ðv0; v1; v2Þ
from the group to the seven real trace classes ReTrðgÞ ¼
f3;−1.5; 0;�1;�0.5g for qutritþ qubit. In analogy to the closed
andopen circle notation for control qubits, the black andwhite qutrit
controls represent controlled-on or controlled-on-others e.g. awhite
1 is a control qutrit which applies a gate if in the state j0i or j2i.
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nontransversal T gate as the dominant cost of fault-tolerant
algorithms [104,129]. Beyond these standard codes, novel
universal sets exist with transversal BT ;BO;BI and He(3)3

gates [130–134] which warrant exploration for use in lattice
gauge theory.
For this work, we consider the following decompositions

of gates into T gates for our resource estimates. First, while
the CNOT is transversal, the Toffoli gate decomposes into
six CNOTs and seven T gates [104]. With this, one can
construct any CnNOT gates using 2⌈ log2 n⌉ − 1 Toffoli
gates and n − 2 dirty ancilla qubits which can be reused
later [104,108,109]. For the RZ gates, we use the repeat-
until-success method of [135] which finds that these gates
can be approximated to precision ϵ with on average
1.15 log2ð1=ϵÞÞ T gates [and at worst −9þ 4 log2ð1=ϵÞ
[136] ]. For RY and RX, one can construct them with at most
three RZ. Putting everything together, we can construct gate
estimates for Σð36 × 3Þ (see Table V).
While the results in TableVare nearly optimal for theUTr,

U×, and U−1, the result for UF is not. In Ref. [110] the
authors showed explicit demonstrations of an efficient
decomposition of the non-Abelian QFT UQFT using the
methods of [101] for certain SUð2Þ and SUð3Þ subgroups.
Since it is expected that the gate cost for Fourier transforms
should scale as a polynomial of logarithms of the group size
[114], one can perform a fit from the results in Ref. [110] to
obtain an order of magnitude estimate for UQFT of 147þ
75 log2ð1=ϵÞ—a factor of ∼2000 smaller than our UF.
Clearly, the cost of simulating Σð36 × 3Þ depends on ϵ.

To optimize the cost, the synthesis error from finite ϵ should
be balanced with other sources of error in the quantum
simulation like Trotter error, discretization error, and finite
volume error. These other sources of error are highly
problem dependent, but here we follow prior works
[41,137,138] and take a fiducial ϵ ¼ 10−8.

Primitive gate costs for implementing HKS [139] and
HI [95], per link per Trotter step δt are shown in Table VI.
Using this result, we can determine the total T gate count
NH

T ¼ CH
T × dLdNt for a d spatial lattice simulated for a

time t ¼ Ntδt. We find that for HKS

CKS
T ¼ 2394ðd − 1Þ þ ð371791þ 4.025dÞlog2

1

ϵ
: ð29Þ

With this, the total synthesis error ϵT can be estimated as
the sum of ϵ from each RZ. In the case of HKS this is

ϵT ¼ 1

2
ð646593þ 7dÞdLdNt × ϵ: ð30Þ

If one looks to reduce lattice spacing errors for a fixed
number of qubits, one can use HI which would require

CI
T ¼ 9884d − 8414þ ð744167þ 12.075dÞlog2

1

ϵ
; ð31Þ

where the total synthesis error is

ϵT ¼ 1

2
ð1293179þ 21dÞdLdNt × ϵ: ð32Þ

Following [99,137,140], we make resource estimates based
on our primitive gates for the calculation of the shear
viscosity η on a L3 ¼ 103 lattice evolved for Nt ¼ 50, and
total synthesis error of ϵT ¼ 10−8. Considering only the
time evolution and neglecting state preparation (which can
be substantial [74,141–155]), Kan and Nam estimated
6.5 × 1048 T gates would be required for a pure-gauge
SUð3Þ simulation of HKS. This estimate used a truncated
electric-field digitization and considerable fixed-point
arithmetic—greatly inflating the T gate cost. Here, using
Σð36 × 3Þ to approximate SUð3Þ requires 7.0 × 1012 T
gates for HI and 3.5 × 1012 T gates for HKS. The T gate
density is roughly 1 per Σð36 × 3Þ-register per clock cycle.
Thus Σð36 × 3Þ reduces the gate costs of [137] by 1036.
Similar to the previous results for discrete groups of SUð2Þ,
UF dominates the simulations, being over 99% of the
computation regardless of the Hamiltonian. However
Ref. [110] showed that the Fourier transformation for
BT and BO can be brought down. Using the estimate
for Σð36 × 3Þ, the Fourier gate contribution is reduced to
only 51% of the simulation with a reduced total T gate
count of 5.7 × 109 for HI with L ¼ 10.

TABLE V. Number of physical T gates and clean ancillae
required to implement logical gates for (top) basic gates taken
from [104] and (bottom) primitive gates for Σð36 × 3Þ.
Gate T gates Clean ancillae

C2NOT 7 0
C3NOT 21 1
C4NOT 35 2
CSWAP 7 0
RZ 1.15 log2ð1=ϵÞ 0
U−1 119 4
U× 308 2
UTr 210þ 8.05 log2ð1=ϵÞ 7
UF 185897.5 log2ð1=ϵÞ 0
UPh 294.4 log2ð1=ϵÞ 0

TABLE VI. Number of primitive gates per link per δt neglect-
ing boundary effects as a function of d for HKS and HI .

Gate UF UTr U−1 U×

e−iδHKS 2 1
2
ðd − 1Þ 3ðd − 1Þ 6ðd − 1Þ

e−iδHI 4 3
2
ðd − 1Þ 2þ 11ðd − 1Þ 4þ 26ðd − 1Þ

3The Heisenberg group of dimension three, which is a non-
crystal-like subgroup of SUð3Þ.
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VI. OUTLOOK

This article provided a construction of primitive gates
necessary to simulate a pure SUð3Þ gauge theory via a
discrete subgroup Σð36 × 3Þ. In addition, we have also
estimated the T-gate cost incurred to compute the shear
viscosity using the Σð36 × 3Þ group. Notably, we found
that our construction improves the T-gate cost upon that of
Ref. [137] by 36 orders of magnitude. This cost reduction
comes at the expense of model accuracy.
For both qubit and hybrid qubit-qutrit implementations,

UF dominates the cost suggesting that further reductions
can be made by identifying aUQFT for Σð36 × 3Þ. In fact, as
demonstrated in Ref. [110], the cost of a UQFT versus UF

can be as large as a factor of ∼2000.
In addition, the much-improved overall cost due to the

use of the Σð36 × 3Þ group supports the need to also study
other discrete subgroups of SUð2Þ and SUð3Þ. To this end,
recent studies (e.g. Refs. [99,100]) have already con-
structed primitive gates for some SUð2Þ discrete subgroups,
the binary tetrahedral and binary octahedral. It remains to
develop such gates for other subgroups, for example the
larger subgroups of SUð3Þ such as Σð72 × 3Þ, Σð216 × 3Þ
and Σð360 × 3Þ as well as the BI group. The larger groups
will reduce discretization errors but at the cost of a longer
circuit depth.
Finally, beyond pure gauge, approximating QCD

requires incorporating fermion fields [78,156,157]. Many
methods exist to incorporate staggered and Wilson fer-
mions. It is worth comparing the resource costs for explicit
spacetime simulations using staggered versus Wilson
fermions in terms of not only T gates but also spacetime
costs using methods such as those in [158].
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APPENDIX A: DERIVATION
OF INVERSION GATES

The inversion rules from Eq. (23) are written in a three-
level notation. If one wants to simulate systems using
qubits one needs to map these from qudit basis rules to
qubit basis rules. We first begin with the p0 rule

p0 ¼ 2p ⊕3 qrð1 − tÞ
¼ 2ðp0 ⊕3 2p1Þ ⊕3 ðq0 ⊕3 2q1Þðr0 ⊕3 2r1Þð1 − tÞ
¼ 2ðp0 ⊕3 2p1Þ ⊕3 ð1 − tÞðq0r0 ⊕3 2q1r0

⊕3 2r1q0 ⊕3 4q1r1Þ:

In order to turn this trinary arithmetic into binary arithmetic
we need the following transformation axiom:

p0 ¼ p ⊕3 1;

p0
0 ¼ p0 ⊕2 p1 ⊕2 1;

p0
1 ¼ p0; ðA1Þ

and

p0 ¼ p ⊕3 2;

p0
0 ¼ p1;

p0
1 ¼ p1 ⊕2 p0 ⊕2 1: ðA2Þ

Using this set of transformation rules we find

p0
0 ¼ p1 ⊕2 ð1 ⊕2 tÞðð1 ⊕2 p0Þðq0r0 ⊕2 q1r1Þ

⊕2 p0ðq1r0 ⊕2 r1q0ÞÞ;
p0
1 ¼ p0 ⊕2 ð1 ⊕2 tÞðð1 ⊕2 p1Þðq1r0 ⊕2 q0r1Þ

⊕2 p1ðq0r0 ⊕2 q1r1ÞÞ;
q00 ¼ q1ð1 ⊕2 sÞð1 ⊕2 tÞ ⊕2 q0sð1 ⊕2 tÞ

⊕2 r1ð1 ⊕2 sÞt ⊕2 r0st;

q01 ¼ q0ð1 ⊕2 sÞð1 ⊕2 tÞ ⊕2 q1sð1 ⊕2 tÞ
⊕2 r0ð1 ⊕2 sÞt ⊕ r1st;

r00 ¼ r1ð1 ⊕2 sÞð1 ⊕2 tÞ ⊕2 r0sð1 ⊕2 tÞ
⊕ q0tð1 ⊕2 sÞ ⊕ q1ts;

r01 ¼ r0ð1 ⊕2 sÞð1 ⊕2 tÞ ⊕2 r1sð1 ⊕2 tÞ
⊕2 q1tð1 ⊕2 sÞ ⊕2 q0ts: ðA3Þ

Naively translating these rules as written yields the circuit
provided in Fig. 10. However the resource cost of 420 T
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gates can be optimized significantly. By clever use of
ancillae one could reduce the T-gate costs down to 203 T
gates using the circuit provided in Fig. 11.
Instead of writing a circuit for the whole inversion rule

set of Eq. (23), one instead could use commutation rules to
reduce the T-gate costs even further. This construction
allows the inversion operation to be decomposed into a
product of smaller operations:

U−1 ¼ UC
−1U

E
−1U

V2

−1U
V
−1U

l
−1: ðA4Þ

Ul
−1 takes each local generator to its inverse:

t → t

s → s ⊕2 t

r → 2r

q → 2q

p → 2p:

The operation UV
−1 involves propagating through the

operator Vt until it is the rightmost element. This yields
the transformations

s → s;

r → rð1 − tÞ ⊕3 qt;

q → 2rt ⊕3 qðt − 1Þ;
p → p ⊕3 rqð1 − tÞ:

The generators C and E are normal ordered at this point.
The operation UV2

−1 has the following transformation rule:

r → 2rs ⊕3 rð1 − sÞ;
q → 2qs ⊕3 qð1 − sÞ;
p → p:

At this point the transformation rules for C, E, and ω are
trivial. After all these suboperations are constructed we end
up with the inversion operation from the main text provided
in Figs. 3 and 4.

APPENDIX B: DERIVATION OF THE
MULTIPLICATION GATE

The construction of the multiplication gate rules is going
to follow in a similar spirit to the derivation of the inversion
rules. We first start with two registers corresponding to
group elements

g ¼ ωp1Cq1Er1V2s1þt1 ;

and

h ¼ ωp2Cq2Er2V2s2þt2 ;

with gh given by the product rules of Eq. (24). When
we multiply the group elements g and h together, we
iteratively move the elements of g over onto h. This
commutation begins by first by moving the Vt1 component
over to h:

gh ¼ ωp1Cq1Er1V2s1þt1ωp2Cq2Er2V2s2þt2

¼ ðωp1Cq1Er1V2s1Þωp0
2Cq0

2Er0
2V2s0

2
þt0

2 : ðB1Þ

Propagating through Vt1 gives the following transforma-
tions to the elements p2, q2, r2, s2, and t2:

FIG. 10. U−1 for Σð108Þ which requires 420 T gates.

FIG. 11. A more T-gate optimized version of U−1 for Σð108Þ which requires 203 T gates and two ancillae.
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p2 → p0
2 ¼ p2 ⊕3 2r2q2t1;

q2 → q02 ¼ q2ð1 − t1Þ ⊕3 2r2t1;

r2 → r02 ¼ q2t1 ⊕3 r2ð1 − t1Þ;
s2 → s02 ¼ s2 ⊕2 t1t2;

t2 → t02 ¼ t2 ⊕2 t1: ðB2Þ

All together this gives the circuit operation, U×;t in Fig. 6.
The next step involves moving the V2s1 operation across

such that

gh ¼ ðωp1Cq1Er1ÞV2s1ωp0
2Cq0

2Er0
2V2s0

2
þt0

2

¼ ðωp1Cq1Er1Þωp00
2Cq00

2Er00
2V2s00

2
þt00

2 : ðB3Þ

In this case, the operators now transform under the rules

p0
2 → p00

2 ¼ p0
2;

q02 → q002 ¼ q02ð1 − s1Þ ⊕3 2q02s1;

r02 → r002 ¼ r02ð1 − s1Þ ⊕3 2r02s1;

s02 → s002 ¼ s02 ⊕ s1;

t02 → t002 ¼ t002: ðB4Þ

It follows immediately then that this is a controlled
permutation on the j1i3 − j2i3 subspace on the q and r
qutrits and a simple CNOT on the s2 register.
Propagation through of the Er1 then transforms the

remaining states on the h register to

p00
2 → p2

000 ¼ p00
2 ⊕3 q002r1;

q002 → q2000 ¼ q002;

r002 → r2000 ¼ r002 ⊕3 r1;

s002 → s2000 ¼ s002;

t002 → t2000 ¼ t002; ðB5Þ

which gives the expression for U×;E in Fig. 6.

APPENDIX C: QUBIT DECOMPOSITION OF X0;1,
X1;2 AND χ GATES

Since these gates act on qutrits, we implement them
using two qubits. We encode the qubit states as jq1q0i
where q0 is the least significant bit. That is, the states are
ordered as j00i, j01i, j10i and j11i.
The gate X0;1 interchanges the states j00i and j01i. It can

be implemented as shown in Fig. 12. The X1;2, on the other
hand, can be implemented as a qubit swap gate; see Fig. 13.
In addition, the χ gate can be implemented using the circuit
in Fig. 14.

APPENDIX D: ELECTRIC TERM OF THE
HAMILTONIAN

In this appendix, we explain the construction of the
electric term in the momentum (representation) basis. Such
construction for Lie groups can be performed straightfor-
wardly from the Casimir operators; see e.g. [139]. A
generalization to discrete groups can be obtained by using
the Laplacian operator on a Cayley graph associated to the
group as was done in Ref. [103].
For a brief review of the procedure, we choose Γ, a

subset of the group such that Γ is closed under inversion
and conjugation. That is Γ−1 ¼ Γ and gΓg−1 ¼ Γ
for all g∈G. In addition, we choose 1 ∉ Γ as including
this element will result in a constant shift of the spectrum.
Clearly, there may be several choices of Γ. However,
it was shown in Ref. [92] that the choice Γ ¼
fg∈GjReTrðgÞ is maximalg follows from the Wilson
action, and therefore results in a manifestly Lorentz-
invariant term in the Hamiltonian. Moreover, such a choice
of Γ also clearly fulfills the first two conditions. Then, to
compute the electric term, we discard the identity element
and choose only those elements with max ½ReTrðgÞ� ¼ 1
for the case of Σð36 × 3Þ. We find that Γ consists of 18
elements that generate the whole Σð36 × 3Þ group.
Having defined Γ, the electric term can be computed as

HE ¼ −g2

2

X
ρ;m;n

fðρÞjρ; m; nihρ; m; nj ðD1Þ

where the eigenvalues

fðρÞ ¼ jΓj − 1

dimðρÞ
X
g∈Γ

TrρðgÞ: ðD2Þ

FIG. 12. Two-qubit implementation of the X0;1 gate.

FIG. 13. Two-qubit implementation of the X1;2 gate.

FIG. 14. Two-qubit implementation of the χ gate.
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Direct computation of fðρÞ yields the values shown in
Table VII.
Having constructed the electric term above HE, we can

construct a quantum circuit of its time evolution using the
hybrid qubit-qutrit compiler that we describe in
Appendix E. We obtain the gate cost shown in Table VIII.

APPENDIX E: QUBIT-QUTRIT COMPILER

This appendix details the compilation method, and the
full codes can be found in Ref. [123]. The overarching
approach of this compiler is to generalize the qubit
quantum Shannon decomposition (QSD) [159,160] to
apply to a register with qubits and qutrits. We consider a
unitary operatorU acting on n1 qubits and n2 qutrits; that is
U is of dimension N × N where N ¼ 2n1 × 3n2 .
First, let us organize the qudits as q1; q2;…; qn1þn2 . We

say that the leftmost qudit is the top qudit. The compiler
iteratively performs the qubit QSD if the top qudit is a
qubit, and otherwise performs our realization of the qutrit
QSD. The process eventually terminates when we reach the
bottom qudit, in which case, we use either a single-qubit
gate decomposition or a single-qutrit gate decomposition
depending on whether the bottom qudit is a qubit or qutrit.
For the single qubit gate, we use the Euler angle para-
metrization ZYZ and for the single qutrit gate, we use the
decomposition given in Ref. [107].
It is convenient to start with the qubit QSD case. In this

case, a cosine-sine decomposition (CSD) (see e.g.
Refs. [161–163]) is first performed, resulting in

U ¼ ðV1 ⊕ V2Þ
�
C −S
S C

�
ðW1 ⊕ W2Þ; ðE1Þ

where V1;2,W1;2 are unitaries with dimensionN=2. C and S
are diagonal matrices e.g. C ¼ diagðcos θ1;…; cos θN=2Þ
and similarly for S.
Following [159], the next step is to decompose the two

block-diagonal unitary matrices:

ðV1 ⊕ V2Þ ¼ ð1 ⊗ MÞðD ⊕ D†Þð1 ⊗ NÞ; ðE2Þ

where M and N are unitaries acting only on n1 − 1 qubits
and n2 qutrits, and D is a diagonal unitary of dimension
N=2. Thus, the compilation problem is reduced to decom-
posing the unitaries D ⊕ D† and the CS into simple gates.
TheD ⊕ D† can be implemented as a uniformly controlled
rotation on the top qudit (see e.g. Ref. [159]). The CS
matrix, on the other hand, is related to D ⊕ D† by the
rotation gate Rxðπ=2Þ on the top qubit. This concludes the
case where the top qudit is a qubit.
In the case that the top qudit is a qutrit, we need to find a

qutrit realization of the procedure above. The starting point
is to perform two CSDs as in e.g. Ref. [164]. This
decomposition reads as

U ¼ ðV1 ⊕ V2 ⊕ V3Þð1 ⊕ D ⊕ D†ÞðW1 ⊕ W2 ⊕ W3Þ

×

0
B@

C −S
1

S C

1
CAðV 0

1 ⊕ V 0
2 ⊕ V 0

3Þð1 ⊕ D0 ⊕ D0†Þ

× ðW0
1 ⊕ W0

2 ⊕ W0
3Þ; ðE3Þ

where each block is a unitary of dimension N=3. The
blocks C, S D and D0 are defined analogously to the
qubit case.
The rest is to decompose the remaining block-diagonal

unitaries. By performing the decomposition in Ref. [159]
twice, we obtain the relation

V1 ⊕ V2 ⊕ V3 ¼ ð13×3 ⊗ MÞðD ⊕ D ⊕ D†Þ
× ð13×3 ⊗ NÞðD0 ⊕ D0† ⊕ 1Þ
× ð13×3 ⊗ M0ÞðD00 ⊕ D00 ⊕ D00†Þ
× ð13×3 ⊗ N0Þ: ðE4Þ

The unitaries 1 ⊕ D ⊕ D†, D ⊕ D† ⊕ 1, D ⊕ D ⊕ D†

and CS are uniformly controlled rotations. We can focus on
the diagonal blocks because as in the qubit case, the CS
matrix can be diagonalized with an appropriate Ri;j

x ðπ=2Þ
on the top qutrit. Reference [165] outlined the decom-
position of qutrit uniformly controlled rotations in terms of
single- and two-qutrit gates. A generalization can be
obtained simply by limiting a Ca

bX
c
i;j gate to Ca

1X
c
i;j when

the control qudit is a qubit.
For n ¼ 2 qubits, there exist optimal compilation algo-

rithms (see e.g. Ref. [166]). Therefore, when the bottom
two qudits are both qubits, we stop the decomposition and
use Qiskit transpiler to obtain a quantum circuit.

TABLE VII. Eigenvalues of the electric term. We define λ1 ¼ 2ð9þ ffiffiffi
3

p Þ and λ2 ¼ −2ð−9þ ffiffiffi
3

p Þ.
ρ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

fðρÞ 0 18 36 18 12 18 24 18 18 λ1 18 λ2 18 18

TABLE VIII. Gate cost for the time evolution due to the electric
term shown in Table VII.

Basic gate RZ RZ
b;c CNOT C1Xb;c C2Xb;c Total

Count 3 98 2 164 20 287
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