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We present a spectroscopy scheme for the lattice field theory by using the tensor renormalization group
method combining with the transfer matrix formalism. By using the scheme, we cannot only compute the
energy spectrum for the lattice theory but also determine quantum numbers of the energy eigenstates.
Furthermore, the wave function of the corresponding eigenstate can also be computed. The first step of the
scheme is to coarse grain the tensor network of a given lattice model by using the higher order tensor
renormalization group, and then after making a matrix corresponding to a transfer matrix from the coarse-
grained tensors, its eigenvalues are evaluated to extract the energy spectrum. Second, the quantum number of
the eigenstates can be identified by a selection rule that requires to compute matrix elements of an associated
insertion operator. The matrix elements can be represented by an impurity tensor network and computed by
the coarse-graining scheme. Moreover, we can compute the wave function of the energy eigenstate by
putting the impurity tensor at each point in space direction of the network. Additionally, the momentum of
the eigenstate can also be identified by computing appropriate matrix elements represented by the tensor
network. As a demonstration of the new scheme, we show the spectroscopy of the ð1þ 1Þd Ising model and
compare it with exact results. We also present a scattering phase shift obtained from two-particle state energy
using Lüscher’s formula.
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I. INTRODUCTION

Computing the energy spectrum and eigenstates is a
fundamental and important task when studying a given
quantum system. For example, in lattice quantum chromo-
dynamics (QCD), where the Monte Carlo method is usually
used, the hadron spectrum is obtained by computing the
two-point function of a given insertion operator that belongs
to a desired quantum channel. The methodology of the
hadron spectroscopy has been well developed so far [1,2]
and the numerical results are in good agreement with the
experimental values [3], but there are unavoidable practical
difficulties in the method. For instance, when one wants to
accurately obtain the lowest energy gap, the Euclidean time
extent should be taken quite large to suppress the effect of
higher excited states. Furthermore, if one wants to extract
the energy spectrum of higher excited states, very large

statistics are required to suppress the statistical noise.
Motivated by these difficulties, we look for alternative
numerical tools for the spectroscopy. A potential candidate
is the tensor network method (see Refs. [4–6] for review)
that can be classified into two groups: Hamiltonian formal-
ism [7–13] and Lagrangian formalism [14–44]. For exam-
ple, the spectroscopy using the former was done in [45,46]
for ð1þ 1Þd quantum electrodynamics (QED). On the other
hand, the spectroscopy for the latter is discussed in [47,48],
but the quantum number identification was not addressed.
In the current work wewill complete the spectroscopy using
the Lagrangian formalism and this is the main purpose of
the paper.
Our new spectroscopy scheme starts by considering the

transfer matrix formalism. In principle, a direct diagonaliza-
tion of the transfer matrix provides us the exact energy
spectrum of a system and it does not require the large time
extent in contrast to the Monte Carlo method. The transfer
matrix itself, however, has a very large dimensionality and it
increases exponentially with respect to the volume of a
system. In order to reduce the dimensionality, we employ the
tensor renormalization group (TRG) method that uses the
information compression technique based on the singular
value decomposition. So far, many TRG coarse-graining
algorithms are proposed [49–63], but we here choose the
higher order tensor renormalization group (HOTRG) [50]
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since it has relatively high accuracy and can be extended
into higher dimensional systems. By using the new scheme,
we are not only able to compute the energy spectrum but
also classify the quantum number of the energy eigenstates.
The latter procedure can be done by a selection rule that is
derived from a symmetry of the system. A crucial quantity
in the selection rule is the matrix element of an interpolating
operator associated with the symmetry. The matrix element
can be represented by the tensor network with some
impurity and evaluated by the coarse-graining scheme.
Moreover, we can compute the wave function of the energy
eigenstate from the matrix element where a proper operator
is inserted at each point in the space direction of the lattice.
From the position dependence of the wave function, we can
infer the momentum of the state. We will demonstrate the
new scheme by applying to the ð1þ 1Þd Ising model and
show that the energy spectrum and the quantum number
are correctly reproduced by comparing with the exact
results [64]. Furthermore, we will show a scattering phase
shift obtained from the two-particle state energy using
Lüscher’s formula [65–73].
The rest of the paper is organized as follows. Theoretical

basics are summarized in Sec. II. We briefly remind of the
spectroscopy using the correlation function in Sec. II A and
the transfer matrix formalism in Sec. II B. In Sec. II C, we
explain how to numerically obtain the energy spectrum and
how to identify the quantum number of energy eigenstate
by using the tensor renormalization group method and this
is a key section of the paper. The numerical results for the
ð1þ 1Þd Ising model are given in Sec. III where the energy
spectrum, the quantum number classification, momentum
identification, and the scattering phase shift are presented in
Secs. III A–III D, respectively. The summary is given in the
final section. In Appendix A, we summarize the transfer
matrix and the tensor network representation for the Ising
model. The exact spectrum of the transfer matrix for the
Ising model is summarized in Appendix B. For compari-
son, a spectroscopy using the one-time slice transfer matrix
is given in Appendix C.

II. FORMULATION

A. Spectroscopy using correlation function

Let us briefly remind how to obtain the energy spectrum
from a correlation function [1,2]. In the continuum
Euclidean space-time with time extent T, the correlation
function for an interpolating operator is defined as

hÔ†
qðτÞÔqð0Þi ¼

Tr
h
Ô†

qðτÞÔqð0Þe−ĤT
i

Tr
�
e−ĤT

� ; ð1Þ

where ÔqðτÞ is the Euclidean time Heisenberg operator
whose quantum number is denoted by q,

ÔqðτÞ ¼ eĤτÔqð0Þe−Ĥτ; ð2Þ

and Ĥ is the Hamiltonian of a system. In a finite spatial
volume, the eigenvalue of Ĥ is discretized,

Ĥjn; q0i ¼ En;q0 jn; q0i; ð3Þ

for n ¼ 0; 1; 2;… and for all possible quantum numbers q0.
The spectral decomposition of the numerator in the
correlation function is given by

Tr
h
Ô†

qðτÞÔqð0Þe−ĤT
i

¼
X∞
m;n¼0

X
q0;q00

jhn;q00jÔqð0Þjm;q0ij2e−ðT−τÞEm;q0e−τEn;q00 : ð4Þ

For the large T limit, in the summation of m and q0,
the ground state, that is, the minimum energy eigenstate
of the vacuum channel ðm; q0Þ ¼ ð0; vacÞ dominates the
summations,

Tr
h
Ô†

qðτÞÔqð0Þe−ĤT
i

∼T→∞X∞
n¼0

X
q00

jhn; q00jÔqð0ÞjΩij2e−ðT−τÞEΩe−τEn;q00 ; ð5Þ

where the ground state is denoted by jΩi ¼ j0; vaci.
Furthermore, thanks to the conservation of quantum num-
bers, the q00 ¼ q sector only survives

hn; q00jÔqð0ÞjΩi ≠ 0 for q00 ¼ q ð6Þ

and other matrix elements vanish, thus we have

Tr
h
Ô†

qðτÞÔqð0Þe−ĤT
i

∼T→∞X∞
n¼0

jhn; qjÔqð0ÞjΩij2e−ðT−τÞEΩe−τEn;q : ð7Þ

In total, by taking into account the denominator, the
correlation function in the T → ∞ limit is given by

lim
T→∞

Tr
h
Ô†

qðτÞÔqð0Þe−ĤT
i

Tr
�
e−ĤT

�
¼
X∞
n¼0

jhn; qjÔqð0ÞjΩij2e−τðEn;q−EΩÞ: ð8Þ

In a usual Monte Carlo (MC) simulation for the hadron
spectroscopy, one computes the correlation function with a
proper interpolating operator for several time separations
then the energy gaps,
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ωn;q ¼ En;q − EΩ; ð9Þ

are extracted from the data. Such a computation requires
the large time extent as well as the large time separation to
avoid the contamination due to the higher excited states.
Furthermore, it is usually difficult to extract the energy of
the higher excited states, thus one needs sophisticated
methods, say, the variational method [65], and so on.

B. Transfer matrix formalism for lattice field theory

Needless to say, the computation of the correlation
function is not the only way to obtain the energy spectrum.
A more direct method is the diagonalization of the
Hamiltonian or equivalently the transfer matrix. In fact,
this method does not require computing the correlation
function or increasing the time extent in contrast to the MC
calculation. In this subsection, we briefly remind about the
transfer matrix formalism for lattice field theory. In the
following, the lattice spacing is set to a ¼ 1.
For simplicity, here we consider the field theory on the

two-dimensional lattice, although the discussion here can
be straightforwardly extended to higher dimensional sys-
tems. As a concrete example, we consider the lattice scalar
field theory with the nearest-neighbor interaction and a
similar argument can be straightforwardly applied to
fermion or gauge systems. The scalar fields ϕðrÞ reside
on the square lattice r ¼ ðt; xÞ∈Γ, where the lattice Γ is
defined:

Γ ¼ fðt; xÞjt ¼ 0; 1; 2;…; Lτ − 1

and x ¼ 0; 1; 2;…; Lx − 1g ð10Þ

and the periodic boundary condition (PBC) is imposed on
all directions. Here the 0 direction (1 direction) is consid-
ered as the time (space) direction. The partition function of
the system is given by

Z ¼
Z Y

r∈Γ
dϕðrÞe−S½ϕ�; ð11Þ

where the lattice action is given by

S½ϕ� ¼
X
r∈Γ

"X1
μ¼0

1

2
ðϕðrþ μ̂Þ − ϕðrÞÞ2 þ VðϕðrÞÞ

#
: ð12Þ

Here μ̂ is the unit vector for the μ direction. In the potential
term V, the mass term and the self-interaction term are
included, but here we do not specify them since such
detailed information is irrelevant in the following discus-
sion. Here we only assume that the potential V is bounded
from below.

The partition function can be represented by

Z ¼ Tr½T Lτ �; ð13Þ

where the transfer matrix T is given by [74]

T ½Φ0;Φ� ¼ exp

"
−
XLx−1

x¼0

1

2
ðϕðtþ 1; xÞ − ϕðt; xÞÞ2

−
1

2
L½Φ0� − 1

2
L½Φ�

#
; ð14Þ

L½Φ� ¼
XLx−1

x¼0

�
1

2
ðϕðt;xþ 1Þ−ϕðt;xÞÞ2þVðϕðt;xÞÞ

�
; ð15Þ

with the field configurations on the Euclidean time slice at
tþ 1 and t,

Φ0 ¼ fϕðtþ 1; xÞjx ¼ 0; 1; 2;…; Lx − 1g; ð16Þ

Φ ¼ fϕðt; xÞjx ¼ 0; 1; 2;…; Lx − 1g: ð17Þ

See Fig. 1 for a pictorial expression of the transfer matrix.
The transfer matrix for the continuous fields is an integra-
tion kernel operator but in the following we treat it as if it
were a usual matrix, that is,Φ is treated as an integer-valued
index just for notational simplicity:

T ½Φ0;Φ� ¼ hΦ0jT̂ jΦi ¼ T Φ0Φ: ð18Þ

FIG. 1. An image of the transfer matrix for the lattice
field theory. ϕ0

x ¼ ϕðtþ 1; xÞ and ϕx ¼ ϕðt; xÞ with x ¼ 0;
1; 2;…; Lx − 1. (Note that this figure is not a tensor network
representation.).
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Since T is Hermitian and positive definite in the model
of interest, it has the following eigenvalue decomposition
(EVD):

T Φ0Φ ¼
X∞
a¼0

UΦ0aλaðU†ÞaΦ ⇔ T̂ jai ¼ λajai; ð19Þ

where UΦa ¼ hΦjai is the unitary matrix1 composed from
the eigenstates and λa are the eigenvalues and assumed to
be arranged in descending order, λ0 ≥ λ1 ≥ � � �. The energy
gaps defined in Eq. (9) may be estimated from the transfer
matrix spectrum λa up to lattice cutoff effects,

ωa ¼ ln

�
λ0
λa

�
for a ¼ 1; 2; 3;…: ð20Þ

In this way, the diagonalization of the transfer matrix
tells us the energy eigenvalues and eigenstates but quantum
numbers of each eigenstate are not a priori known; that is,
at this stage the correspondence between ðn; qÞ in Eq. (3)
and a is not clear. To identify the quantum numbers of the
eigenstates, an additional procedure is required as follows.
First, we have to prepare matrix elements of an interpolat-
ing operator Ôq between the energy eigenstates,

Bba ≔ hbjÔqjai ¼ ðU†OqUÞba; ð21Þ

where U is the unitary matrix given in Eq. (19) and Oq is a
field representation of the interpolating operator,

ðOqÞΦ0Φ ¼ hΦ0jÔqjΦi: ð22Þ

In order to explain how the matrix element is used to
determine the quantum number of the eigenstates, let us
derive a selection rule for a given symmetry. First,
we consider the continuous symmetry case. Let Q̂ be
a conserved charge associated with the symmetry, and
it satisfies ½Q̂; T̂ � ¼ 0. The associated quantum number
(or charge) for some operator X̂ is denoted by qX,

½Q̂; X̂� ¼ qXX̂: ð23Þ

Assuming that the ground state has no charge Q̂jΩi ¼ 0,
Eq. (23) tells us that X̂jΩi is an eigenstate of Q̂ whose
quantum number is qX. By sandwiching Eq. (23) between
haj and jbi, one obtains a relationship between the charges
and the matrix elements,

ðqb − qa − qXÞhbjX̂jai ¼ 0; ð24Þ

where the quantum number of jai is assumed to be
represented as qa:

Q̂jai ¼ qajai: ð25Þ

From Eq. (24), we see a selection rule for the continuous
symmetry:

for hbjX̂jai ≠ 0 ⇒ qb − qa − qX ¼ 0:

The selection rule can be used to identify the quantum
number of the transfer matrix eigenstates. For example,
when we consider Eq. (24) with setting a ¼ 0, which means
the ground state2 and its quantum number is zero, qa ¼ 0,
we can say that if the matrix element is hbjX̂jΩi ≠ 0 then
the quantum number of jbi is shown to be qb ¼ qX. In this
way, the matrix elements tell us the quantum number of the
eigenstates.
A similar argument holds for the discrete symmetry. Let

D̂ be a discrete transformation operator, and we assume that
the discrete transformation for an operator X̂ is given by

D̂ X̂ D̂−1 ¼ qXX̂; ð26Þ

where we call qX ¼ �1 charge of X̂ for the discrete
symmetry. The ground state is assumed to have the unit
charge D̂jΩi ¼ þjΩi. Then by using Eq. (26) one can
show that X̂jΩi is an eigenstate of D̂ whose eigenvalue is
qX, namely, D̂ X̂ jΩi ¼ qXX̂jΩi. From Eq. (26), one can
derive a relationship between the charges and the matrix
elements,

hbjX̂jai ¼ hbjD̂−1D̂ X̂ D̂−1D̂jai ¼ qbqaqXhbjX̂jai; ð27Þ

for the eigenstate jai whose charge is denoted by qa,

D̂jai ¼ qajai: ð28Þ

From Eq. (27), we read a selection rule for the discrete
symmetry:

for hbjX̂jai ≠ 0 ⇒ qbqaqX ¼ 1:

As seen in this subsection, the transfer matrix formalism,
in principle, cannot only obtain the spectrum of a system
but also determine the quantum number of the eigenstates.
There is, however, a practical difficulty for the formalism.
For large lattice volume, the dimension of the transfer

1For a continuous variableΦ, the unitary matrixUΦa should be
replaced by a set of orthonormal eigenfunctions uaðΦÞ that
satisfy the orthonormal condition

R
dΦuaðΦÞu�bðΦÞ ¼ δab and

the completeness
P

a uaðΦÞu�aðΦ0Þ ¼ δðΦ −Φ0Þ.

2In the finite spatial volume, the spontaneous symmetry
breaking does not occur; thus, we can assume that the ground
state is not degenerated.
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matrix becomes extremely large and the numerical
computation cannot be done. Thus, one has to rely on
approximation methods.

C. How to compute energy spectrum
and matrix elements

As mentioned at the end of the previous subsection,
although the transfer matrix formalism is rather theoreti-
cally apparent, it is practically very difficult to numerically
make the transfer matrix itself for the lattice field theory

since the dimensionality of the transfer matrix becomes
extremely large. One way to avoid such a problem is to
approximately make the transfer matrix by using the tensor
network method. In this case, the dimensionality of the
transfer matrix can be drastically reduced and one can
numerically treat it as we will see.
The starting point is the definition of the transfer matrix

in Eq. (14) but here we rewrite it for convenience in the
following discussion:

T Φ0Φ ¼
 YLx−1

x¼0

exp

�
−
1

2
ðϕ0

x − ϕxÞ2 −
1

4
Vðϕ0

xÞ −
1

4
VðϕxÞ

�!

×

 YLx−1

x¼0

exp

�
−
1

4
ðϕ0

xþ1 − ϕ0
xÞ2 −

1

8
Vðϕ0

xþ1Þ −
1

8
Vðϕ0

xÞ
�!

×

 YLx−1

x¼0

exp

�
−
1

4
ðϕxþ1 − ϕxÞ2 −

1

8
Vðϕxþ1Þ −

1

8
VðϕxÞ

�!
; ð29Þ

where ϕ0
x ¼ ϕðtþ 1; xÞ and ϕx ¼ ϕðt; xÞ with x ¼ 0;

1; 2;…; Lx − 1. The first term represents a hopping for
the time direction. The second and third terms are for the
space direction at the time slice tþ 1 and t, respectively. If
we apply the eigenvalue decomposition (EVD) to each
local Boltzmann weight for the time hopping in Eq. (29),

exp
�
−
1

2
ðϕ0

x − ϕxÞ2 −
1

4
Vðϕ0

xÞ −
1

4
VðϕxÞ

�

¼
X∞
kx¼0

uϕ0
xkxσkxðu†Þkxϕx

; ð30Þ

then we can decompose the transfer matrix as follows:

T Φ0Φ ¼
X
k

YΦ0kY
†
kΦ; ð31Þ

with

YΦk ¼
 YLx−1

x¼0

X∞
kx¼0

uϕxkx
ffiffiffiffiffiffi
σkx

p
!

×

 YLx−1

x¼0

exp

�
−
1

4
ðϕxþ1 − ϕxÞ2 −

1

8
Vðϕxþ1Þ

−
1

8
VðϕxÞ

�!
; ð32Þ

where we have defined the integrated index, k ¼ ðk0;
k1; k2;…; kLx−1Þ. An image of the decomposition in
Eq. (31) is shown in Fig. 2.

Substituting the transfer matrix in Eq. (31) into the
partition function, we obtain

Z ¼ TrΦ½T Lτ � ¼ TrΦ½ðYY†ÞLτ � ¼ Trk½ðY†YÞLτ � ¼ Trk½ALτ �;
ð33Þ

where in the last equal we have defined

A ≔ Y†Y: ð34Þ

Note that the ordering of Y and Y† is different in T and A.
As shown in Fig. 3, actually A can be simply expressed by
a tensor network representation,

FIG. 2. Graphical expression of the decomposition of the
transfer matrix in terms of Y in Eq. (31). (Note that this figure
is not a tensor network representation.).
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Akj¼
X
Φ
ðY†ÞkΦYΦj

¼
X
Φ

 YLx−1

x¼0

X∞
kx¼0

ðu†Þkxϕx

ffiffiffiffiffiffi
σkx

p
! YLx−1

x¼0

X∞
jx¼0

uϕxjx
ffiffiffiffiffiffi
σjx

p
!

×

 YLx−1

x¼0

exp

�
−
1

2
ðϕxþ1−ϕxÞ2−

1

4
Vðϕxþ1Þ−

1

4
VðϕxÞ

�!

¼
YLx−1

x¼0

X∞
lx¼0

Akxlxjxlx−1 ð35Þ

with a rank-four tensor A,

Akxlxjxlx−1 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σkxσlxσjxσlx−1

p X
ϕx

ðu†Þkxϕx
ðu†Þlxϕx

uϕxjxuϕxlx−1 :

ð36Þ

When deriving the initial tensor A, we have applied the
EVD to the spatial hopping terms in Eq. (35),

exp

�
−
1

2
ðϕxþ1 − ϕxÞ2 −

1

4
Vðϕxþ1Þ −

1

4
VðϕxÞ

�

¼
X∞
lx¼0

uϕxþ1lxσlxðu†Þlxϕx
; ð37Þ

for x∈ f0; 1; 2;…; Lx − 1g.
Note that the singular value decomposition of Y is

given by

Y ¼ U
ffiffiffi
λ

p
W†; ð38Þ

where U and λ are the same as those of the transfer matrix
T in Eq. (19). On the other hand, the EVD forA is given by

A ¼ Y†Y ¼ WλW†; ð39Þ

thus A has the same eigenvalues as those of T .
From here let us explain how to numerically compute the

spectrum by using the tensor network method [47]. First,
we coarse grain3 the tensor network consisting of the initial
tensor A in Eq. (36) on the square lattice with Lτ ¼ Lx ¼ 2n

by using HOTRG [50] as shown in Fig. 4,

A ¼ A½0� ⟶
HOTRG

A½1� ⟶
HOTRG

A½2� ⟶
HOTRG � � � ; ð40Þ

and then after n − 1 iterations, one arrives at four renor-
malized tensors A½n−1�. Subsequently we perform the direct
contraction of those tensors taking into account the periodic
boundary condition on the spatial direction, and we obtain a
numerical approximation of a power of A as follows:

ALτ ≈A½n�
k1k2;j1j2

¼
X

l1;l2;m1;m2;n1;n2

A½n−1�
k1l1n1l2

A½n−1�
k2l2n2l1

A½n−1�
n1m1j1m2

A½n−1�
n2m2j2m1

: ð41Þ

Subsequently, we diagonalize4 A½n� as follows:

A½n� ¼ W½n�λ½n�W½n�†; ð42Þ

where W½n� is a unitary matrix containing numerical
eigenvectors, and λ½n� is the eigenvalues. Note that the
original lattice size in the time direction ofA½n� is Lτð¼ 2nÞ,
thus the tensor network estimation of the transfer matrix
eigenvalue is given by

λa ≈ ðλ½n�a Þ1=Lτ ð43Þ

then the energy gap is estimated as

ωa ≈
1

Lτ
log

�
λ½n�0

λ½n�a

�
≕ω½hotrg�

a for a ¼ 1; 2; 3;…: ð44Þ

Next, let us see how to compute the matrix elements by
the tensor network method. For that purpose, first we
rewrite the matrix elements in Eq. (21) in terms of the
tensor network related quantities. For an integerm ¼ Lτ=2

5

FIG. 3. The definition of A in Eq. (34) and its tensor network
representation in terms of the local tensor A in Eq. (36).

3Before coarse graining, we have to truncate the summation in
the initial tensor network and set a bond dimension for the initial
tensor.

4One may define A½n� from a single coarse-grained tensor A½n�
after n steps instead of Eq. (41). In this case, however, the
numerical matrix is not guaranteed to be positive definite and,
furthermore, we find that the accuracy of the spectrum is not so
good. On the other hand, thanks to 2 × 2 structure, the matrixA½n�
in Eq. (41) is manifestly positive definite and, furthermore, the
accuracy of the spectrum is much better than the former case.

5The reason why we take m ¼ Lτ=2 will be explained around
Eq. (47).
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(assuming that Lτ is an even number), the matrix elements may be expressed as follows:

Bba ¼ hbjÔqjai ¼ ðU†OqUÞba
¼ ðU†T −mT mOqT mþ1T −ðmþ1ÞUÞba ðusingT T −1 ¼ 1Þ
¼ ðU†ðUλU†Þ−mðYY†ÞmOqðYY†Þmþ1ðUλU†Þ−ðmþ1ÞUÞba ½using Eqs: ð19Þ and ð31Þ�
¼ ðλ−mU†YðY†YÞm−1Y†OqYðY†YÞmY†Uλ−ðmþ1ÞÞba
¼ ðλ−mU†YAm−1A0AmY†Uλ−ðmþ1ÞÞba ½using Eq: ð34Þ andA0 ≔ Y†OqY�
¼ ðλ−mþ1=2W†Am−1A0AmWλ−m−1=2Þba ½using Eq: ð38Þ�; ð45Þ

where we have defined an impurity version of A, that is,
A0 ≔ Y†OqY and an impurity tensor network Am−1A0Am

as shown in Fig. 5. Here we assume that the lattice size for
the impurity tensor network is the same as that of pure
tensor network Lτ ¼ Lx ¼ 2n. If we consider a single field
Oq ¼ ϕx at a lattice site x, then the associated impurity
tensor A0 is given by

A0
kxlxjxlx−1

≔ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σkxσlxσjxσlx−1

p

×
X
ϕx

ϕxðu†Þkxϕx
ðu†Þlxϕx

uϕxjxuϕxlx−1 : ð46Þ

In this way, one can represent the matrix elements in terms
of the impurity tensor network Am−1A0Am, W, and λ that
are obtained from the EVD of A as in Eq. (39).
In order to numerically evaluate the impurity tensor

network Am−1A0Am, we apply the coarse-graining pro-
cedure to this network using the same isometries as in the
pure tensor network coarse-graining steps shown in Fig. 4
until there are four tensors. We denote the coarse-grained
impurity tensor network (2 × 2 network in Fig. 5) as A0½n�,

Am−1A0Am ≈A0½n�: ð47Þ

Some readers may wonder why we choose m ¼ Lτ=2
but not some small value or just using a one-time slice
object that means cheap computational cost. In the latter
case, however, we find that an accuracy of the spectrum
and the evaluation of the impurity tensor network turns out
to be worse (see Appendix C for more details of a
spectroscopy using a one-time slice transfer matrix, that

FIG. 4. The black arrow shows the coarse-graining procedure of the tensor network. The procedure is done until there are only four
A½n−1�s. The gray arrow shows the direct contraction of the last four tensors to obtain the approximation of ALτ ≈A½n�. Here the PBC is
imposed on the space direction.

FIG. 5. The coarse-graining procedure of the impurity tensor
network Am−1A0Am with the single field operator Oq ¼ ϕx. The
procedure is done until there are four tensors.
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is, one-dimensional coarse-graining scheme). On the other
hand, for m ¼ Lτ=2 in Eq. (47) that corresponds to the
square impurity tensor network, the coarse-graining pro-
cedure is rather simple and we find that the accuracy is
reasonably maintained during the coarse graining, thus we
choose this value of m. By usingA0½n� in Eq. (47),W½n� and
λ½n� in Eq. (42), the matrix elements in Eq. (45) may be
estimated by

Bba ≈ ðλ½n�Þ−Lτ−1
2Lτ W½n�†A0½n�W½n�ðλ½n�Þ−Lτþ1

2Lτ ≕B½hotrg�
ba : ð48Þ

III. NUMERICAL RESULTS

In this section, we demonstrate our scheme by applying
it to the (1þ 1)d Ising model with zero external magnetic
field and the periodic boundary condition. The details for
the model, say its transfer matrix and tensor network
representation, are given in Appendix A. We will show
that the scheme can produce the energy spectrum of the
model and the result will be compared with the exact
spectrum [64] summarized in Appendix B. The matrix
elements for the model with a single spin field or double
fields are also computed to judge the quantum number of
the eigenstates. Furthermore, the wave function of the
eigenstates and the scattering phase shift are computed
as well.

A. Energy spectrum

According to Sec. II C, we compute the energy gaps

ω½hotrg�
a in Eq. (44) using HOTRG with a given bond

dimension χ. Figure 6(a) shows the three lowest energy
gaps in the temperature range T ¼ 2.2–2.44 encompassing
the critical point Tc ¼ 2

logð1þ ffiffi
2

p Þ for system size Lx ¼ 25–27

with χ ¼ 80. We observe an expected behavior; by

increasing the system size the lowest gap ω1 below Tc
tends to be close to zero while it stays nonzero for the
temperature above Tc. In order to see an accuracy of the
energy gap, we show its relative error,

δωa ¼
						
ω½exact�
a − ω½hotrg�

a

ω½exact�
a

						; ð49Þ

in Fig. 6(b). Here ω½exact�
a is the Kaufman’s exact results for

finite volume [64] (see Appendix B for details). From this
figure, we can see that the relative error increases for larger
system size due to the iteration of the coarse-graining step.
We also observe that δω1 apparently has a minimum around
the critical point while δω2 and δω3 do not show such a
behavior. We note that the behavior of δω1 is in contrast with
the relative error of the free energy at finite volume,

δf ¼
						
f½exact�V − f½hotrg�V

f½exact�V

						; ð50Þ

where f½exact�V is the exact free energy with volume V ¼ L2

with L ¼ Lx ¼ Lτ [64]. The relative error δf is shown
in Fig. 7 where the error becomes large around the
critical point.
Next, let us see how the relative error of the energy gap

scales with the bond dimension. Figure 8 shows δωa
(a ¼ 1; 2; 3) as a function of χ for selected values of the
temperature. From this figure, we can see that for all cases,
the relative error tends to decrease when increasing the
bond dimension.

FIG. 6. (a) Three lowest energy gaps ωa (a ¼ 1; 2; 3) for system size Lx ¼ 25; 26; 27 around the critical temperature Tc with χ ¼ 80.
(b) The relative error of the energy gap δωa.
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B. Quantum number classification

The Ising model with zero external magnetic field has Z2

symmetry, thus the energy eigenstates are divided into two
groups labeled by the quantum number q ¼ fþ1;−1g. In
order to determine the quantum number of the eigenstates,
following the procedure described in Sec. II C we compute

the matrix elements B½hotrg�
ba in Eq. (48) with a proper

interpolation operator. Here we choose the simplest choice,
i.e., a single spin field Oq ¼ sx (¼ s0 at x ¼ 0) whose
quantum number is q ¼ −1.
Once the elements of B½hotrg�

ba are estimated, the quantum
number of the eigenstate can be determined from the
selection rule as discussed in Sec. II B. Since the ground
state (a ¼ 0) has quantum number q ¼ þ1, we can classify

the quantum number of the rest of the states labeled with
a ¼ 1; 2; 3;…, by only looking at the first row of the

estimated matrix B½hotrg�
0a ≈ hΩjs0jai. The selection rule tells

us the quantum number of jai, qa as follows. For each a,

if B½hotrg�
0a ≠ 0 ⇒ qa ¼ −1: ð51Þ

To identify the states with qa ¼ 1, we have to compute a
matrix element using an operator whose quantum number
is q ¼ 1. However, the quantum number in the ð1þ 1Þd
Ising model is restricted only either −1 or 1. Thus, knowing
states with qa ¼ −1 will automatically determine the
quantum number of the rest of the states, that is, qa ¼ 1.

See Fig. 9 for the result of B½hotrg�
0a for a ¼ 1; 2; 3;…; 20 at

T ¼ 2.44, Lx ¼ 26, and χ ¼ 80. The judged result of qa is
listed in Table I together with the exact one obtained from
Appendix B. As a result, the quantum number is correctly
judged up to 20 eigenstates for this parameter set. On the
other hand, due to the truncation error which is caused in
the coarse-graining steps and strongly affects the high
energy modes, our scheme fails to reproduce the correct
quantum number for eigenstates with a > 20 although we
do not show them here. In fact, it is difficult not only to
judge the quantum number but also to obtain accurate
energy gaps for higher excited states as seen in Table I
(column for δωa) and Fig. 10 where the relative error of the
energy gap for T ¼ 2.2, Tc, and 2.44 tends to be large for
larger a.

C. Momentum identification

On a finite spatial volume, the momentum is discretized
as p ¼ 2πk=Lx with k ¼ 0; 1; 2;…; Lx − 1 (or equiva-
lently k ¼ −Lx=2þ 1;−Lx=2þ 2;…;−1; 0; 1;…; Lx=2 −
1; Lx=2 assuming that Lx is an even number), and the

FIG. 8. The relative error of the three lowest energy gaps at
three different temperatures T ¼ 2.2; Tc; 2.44 with Lx ¼ 26 as a
function of the bond dimension χ.

FIG. 9. The matrix element B½hotrg�
0a for a ¼ 1; 2; 3;…; 20 at

T ¼ 2.44 with Lx ¼ 26 and χ ¼ 80.
FIG. 7. The relative error of the free energy δf at finite volume
V ¼ L2 with L ¼ Lx ¼ Lτ computed by HOTRG with
χ ¼ 80. Around the critical point, δf has a peak in contrast to
δω1 in Fig. 6(b).
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momentum of the single particle state can also be
determined as follows.
A simple way to check (the absolute value of) the

momentum of a single particle state for the q ¼ −1 sector
is to look at its wave function in position space,

ψaðxÞ ¼ hΩjsxjai; ð52Þ

where sx is the spin field at x ¼ 0; 1; 2;…; Lx − 1.
The computation of the wave function can be done in a

similar way to the matrix element B½hotrg�
0a given in the

previous subsection, but now we have to repeat it for
all possible values of x. Figure 11 shows the numerical
results of the wave functions for the q ¼ −1 sector
(a ¼ 1; 2; 3; 4; 5; 7; 8; 14; 15; 20) with T ¼ 2.44, Lx ¼ 26,
and χ ¼ 80. The wave function data is well described by
functional form,

ψaðxÞ ∝ cos

�
p

�
xþ 1

2

��
or sin

�
p

�
xþ 1

2

��
; ð53Þ

where p ¼ 2πk=Lx is the discrete momentum. For exam-
ple, the a ¼ 1 state in Fig. 11(a) shows constant behavior;
thus, this is apparently a zero momentum state. The states
for a ¼ 2 and 3 [see Fig. 11(b)] are described by

ψ2ðxÞ ∝ cos

�
p

�
xþ 1

2

��
and ψ3ðxÞ ∝ sin

�
p

�
xþ 1

2

��

with p ¼ 2π

Lx
; ð54Þ

therefore the momentum of those states are judged to be
jpj ¼ 2π=Lx. The same thing can be applied to other states
(a ¼ 4, 5 states are paired and they correspond to momen-
tum 4π=Lx, and so on), and the resulting momentum is
summarized in Table I. One thing to be noted is that the
wave function for a ¼ 20 in Fig. 11(f) seems to have zero
amplitude over all x at this scale of the y axis, but in fact it
has nonzero amplitude of order Oð10−3Þ as seen in Fig. 9,
where ψ20ð0Þ is plotted, therefore this is considered as a first
excited state for the zero momentum channel. The smallness
of the amplitude simply reflects the small overlap of this
state with the single spin field.
To quantitatively confirm the momentum identification

presented in the previous paragraph, we compute the matrix
elements with a proper momentum field. From the Fourier
transformation of the spin field,

sp ¼ 1

Lx

XLx−1

x¼0

sxe−ipx; ð55Þ

where the momentum is discretized p ¼ 2πk=Lx, one can
define matrix elements

hΩjspjai ¼
1

Lx

X
x

hΩjsxjaie−ipx: ð56Þ

Using the matrix elements together with the selection rule,
we can see that for given a (in q ¼ −1 sector) and p,

hΩjspjai ≠ 0 ⇒ jai belongs to jpj sector: ð57Þ

TABLE I. Comparison to the exact result for T ¼ 2.44 and
Lx ¼ 26. δωa is the relative error of the energy gap defined in
Eq. (49). The momentum p is diagnosed in Sec. III C.

a ω½exact�
a qa ω½hotrg�

a qa δωa jpj
1 0.1262302 − 0.1262307 − 0.000004 0
2 0.1597880 − 0.1597889 − 0.000006 2π=Lx
3 0.1597880 − 0.1597911 − 0.000020 2π=Lx
4 0.2326853 − 0.2327046 − 0.000083 4π=Lx
5 0.2326853 − 0.2327095 − 0.000104 4π=Lx
6 0.2708016 þ 0.2708359 þ 0.000127 �
7 0.3181546 − 0.3183329 − 0.000560 6π=Lx
8 0.3181546 − 0.3183705 − 0.000679 6π=Lx
9 0.3290037 þ 0.3291180 þ 0.000347 �
10 0.3290037 þ 0.3291425 þ 0.000422 �
11 0.3290037 þ 0.3291456 þ 0.000431 �
12 0.3290037 þ 0.3293794 þ 0.001142 �
13 0.3872058 þ 0.3878486 þ 0.001660 �
14 0.4073042 − 0.4083937 − 0.002675 8π=Lx
15 0.4073042 − 0.4090231 − 0.004220 8π=Lx
16 0.4100181 þ 0.4109090 þ 0.002173 �
17 0.4100181 þ 0.4112006 þ 0.002884 �
18 0.4100181 þ 0.4112120 þ 0.002912 �
19 0.4100181 þ 0.4114574 þ 0.003510 �
20 0.4457831 − 0.4461242 − 0.000765 0

FIG. 10. The relative error of the energy gap δωa for
a ¼ 1; 2; 3;…; 20 at three different temperature cases: T ¼
2.2, Tc, and 2.44. The system size is Lx ¼ 26 and the bond
dimension is χ ¼ 80.
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FIG. 11. The wave function of eigenstates for the q ¼ −1 sector with T ¼ 2.44 and Lx ¼ 26 computed by HOTRG with χ ¼ 80. The
wave functions ψaðxÞ for a ¼ 1; 2; 3; 4; 5; 7; 8; 14; 15, and 20 are plotted in (a)–(f).

FIG. 12. (a) Tensor network presentation with the impurity tensor for the single field in the momentum space sp ¼ 1
Lx

P
x sxe

−ipx. The
black points represent the impurity tensor A0 × e−ipx where A0 is defined in Eq. (46). (b) A coarse-graining procedure for the tensor
network of (a). Here three-leg tensors represent the isometry for HOTRG and n is the number of coarse-graining steps (n ¼ 1; 2; 3;…).
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In this way, the momentum of jai can be identified. The
matrix elements in Eq. (56) can be efficiently computed as
shown in Fig. 12 following the idea in [75]. Table II shows
numerical results of the matrix element for T ¼ 2.44 and
Lx ¼ 26. In order to see the bond dimension dependence,
we use χ ¼ 70; 80; 100. For example, we can see that the
momentum of a ¼ 1 and 20 states is p ¼ 0, and for a ¼ 2
and 3, their momentum is jpj ¼ 2π=Lx, and so on. We note
that some states develop fake nonzero matrix elements due
to the truncation error in the coarse-graining step. We can,
however, eliminate such a fake behavior by increasing the
bond dimension. For example, a ¼ 20 state has the nonzero
matrix elements for p ¼ 0; 4π=Lx; 8π=Lx, but the values
for p ¼ 4π=Lx and 8π=Lx tend to be small for larger χ.
Thus, we conclude that the a ¼ 20 state belongs to the zero
momentum.
As seen in the previous paragraph, the momentum is

determined thus now we can check the dispersion relation
between the energy and the momentum. As seen in Table I,
the degeneracy of the energy for the nonzero momentum
with q ¼ −1 is slightly broken due to the truncation error,
therefore we use an average of them as the energy ω. See
Fig. 13 for the dispersion relation with T ¼ 2.44 and
Lx ¼ 26. The data points are generated by HOTRG with

χ ¼ 80 and compared with the continuum version of the
dispersion relation

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
ð58Þ

and the lattice version [66]

ω ¼ arccoshð1 − cospþ coshmÞ; ð59Þ

where m is the rest mass. Both cases describe the data well
and the lattice version is slightly better especially for the
higher momentum region.

D. Scattering phase shift

In order to study the two-particle channel (q ¼ þ1
sector), we consider two-field operators

O2ðP; pÞ ¼
1

L2
x

XLx−1

x;y¼0

sxsye−ip1x−ip2y; ð60Þ

where p1 and p2 are the discrete momentum pj ¼ 2πnj=Lx

with nj ∈Z (j ¼ 1; 2), and the total momentum P and the
relative p are given by

P ¼ p1 þ p2; ð61Þ

p ¼ 1

2
ðp1 − p2Þ: ð62Þ

The matrix elements of the operators

TABLE II. The absolute value of the matrix elements
jhΩjspjaij for T ¼ 2.44 and Lx ¼ 26 using χ ¼ 70; 80; 100.
Here we show only nonzero values that are larger than
Oð10−5Þ. For the bold case, the associated matrix elements are
judged to be consistent with zero since their values are small and
they tend to be small for large χ.

k jpj a χ ¼ 70 χ ¼ 80 χ ¼ 100

0 0 1 0.31608 0.31609 0.31610
20 0.00195 0.00200 0.00208

1 2π=Lx 2 0.19850 0.19850 0.19850
3 0.19844 0.19849 0.19850

2 4π=Lx 4 0.16406 0.16406 0.16409
5 0.16370 0.16404 0.16406
1 0.00012 0.00002 <10− 5
14 0.00001 <10−5 <10−5

20 0.00021 0.00017 0.00012

3 6π=Lx 7 0.13934 0.13940 0.13967
8 0.13750 0.13932 0.13932
2 0.00006 0.00006 0.00002
3 0.00061 0.00010 0.00006

4 8π=Lx 14 0.12013 0.12104 0.12201
15 <10−5 0.12011 0.12012
1 0.00043 0.00006 0.00001
4 0.00057 0.00059 0.00017
5 0.00304 0.00052 0.00059
19 0.11386 <10−5 <10−5

20 0.00022 0.00035 0.00016

FIG. 13. The dispersion relation for the single particle of the
(1þ 1)d Ising model at T ¼ 2.44 with Lx ¼ 26. The circle is
the energy gap at the corresponding momentum computed by
HOTRG with χ ¼ 80. The dashed line is the continuum
dispersion relation in Eq. (58) while the solid line is the lattice
version in Eq. (59).
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hΩjO2ðP; pÞjai ð63Þ

are useful to identify the momentum for the states with the
q ¼ þ1 sector. For example, for a given value of P, if the
matrix element has a nonzero value,

hΩjO2ðP; pÞjai ≠ 0; ð64Þ

then the total momentum of jai is estimated to be P
irrespective of p. A tensor network representation with the
impurity tensors for the two-field operator with Lx ¼ 4 is
shown in Fig. 14 where its computational procedure is also
described. The numerical results of the matrix elements
together with the corresponding energy for T ¼ 2.44,
Lx ¼ 23–26, and χ ¼ 80 are given in Table III. The matrix

FIG. 14. (a) Tensor network presentation with the impurity tensors for the operator Ô2ðP; pÞ in Eq. (60). The black (red) point
represents the impurity tensor with the factor e−ip1x (e−ip2x). (b) A coarse-graining procedure for the tensor network of (a). Here n is the
number of coarse-graining steps (n ¼ 1; 2; 3;…).

TABLE III. The tensor network results of the energy and the matrix elements in Eq. (63) for some states with
q ¼ þ1 sector at T ¼ 2.44, Lx ¼ 23–26, χ ¼ 80. The total momentum of all states listed here is judged to be zero.

Lx a ω½hotrg�
a hΩjO2ð0; 0Þjai hΩjO2ð0; 2π=LxÞjai hΩjO2ð2π=Lx; π=LxÞjai

8 4 0.814585 0.37740 0.12364 <10−15

19 2.133922 0.07730 0.04844 <10−12

16 4 0.465348 0.31004 0.09529 <10−15

18 1.171480 0.06904 0.05901 <10−12

32 4 0.319553 0.21122 0.06541 <10−14

14 0.636356 0.04705 0.06178 <10−10

64 6 0.270836 0.12007 0.03888 <10−14

13 0.387849 0.03007 0.05024 <10−9
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elements of the zero total momentum operators with the
states listed there have finite value and the same thing is
confirmed even for large bond dimension χ ¼ 100. On the
other hand, the matrix elements for finite total momentum
are shown to be zero, therefore we conclude that the states
listed in the table belong to the zero total momentum sector.
See Fig. 15 for the two-particle energy with the zero total
momentum as a function of Lx.
From the two-particle state energy ω in Table III, one can

determine the relative momentum k,

ω ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
; ð65Þ

where m is the rest mass for one-particle state and here we
set the exact value for infinite volume limit mass,

m ¼ 0.12621870: ð66Þ

By using the value of k, the phase shift δðkÞ is determined
from Lüscher’s formula [65],

e2iδðkÞ ¼ e−ikLx : ð67Þ

See Fig. 16 for the phase shift as a function of k=m. The
tensor network results in the elastic region which is defined
as 2m ≤ ω < 4m or equivalently 0 ≤ k=m <

ffiffiffi
3

p
are con-

sistent with the theoretical expectation δðkÞ ¼ δIsing ¼
−π=2 [66]. On the other hand, the phase shift in the
inelastic region is deviated from −π=2 since Lüscher’s
formula is applicable only in the elastic region.

IV. SUMMARY

In the paper, we have proposed a spectroscopy scheme by
combining with the transfer matrix formalism and the
Lagrangian tensor network formulation. Using the new
scheme, the energy spectrum can be simply obtained from
the eigenvalues of the numerical transfer matrix that is
formed by the coarse-grained tensors. The quantum number
of the energy eigenstate is identified by the selection rule
that requires the matrix element of some insertion operator
sandwiched by the eigenstates. We have proposed the
procedure to compute the matrix elements by using the
impurity tensor network.
As a demonstration, we have studied the spectrum of the

ð1þ 1Þd Ising model whose exact spectrum is well known.
We have confirmed that the energy spectrum and the
quantum number are well reproduced up to 20 modes for
Lx ¼ 26 in disordered phase T ¼ 2.44 > Tc. The accuracy
of the lowest gap tends to be better around Tc in contrast to
the free energy where the accuracy gets worse around the
critical point. We have observed that the accuracy of the
energy gaps tends to be worse for larger system size due to
the truncation error in the coarse-graining step, and the
systematic error becomes larger for higher excited states at
the fixed system size. On the other hand, for larger bond
dimension, the accuracy of the energy gap gets smoothly
better. We also have computed the one-particle state wave
function for the energy eigenstates and try to identify their
momentum. To confirm the momentum identification using
the wave function, we have proposed another procedure
using the selection rule together with the proper matrix
elements and then both results were shown to be consistent.
Relatively higher momentum states are properly identified
and the dispersion relation is clearly observed. We also
identify the two-particle states and obtain the scattering
phase shift from their energy using Lüscher’s formula. The
resulting phase shift is consistent with the theoretical
expectation for the Ising model.
In the future, we plan to apply our new scheme to other

quantum field theories.
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FIG. 15. The two-particle state energy as a function of Lx.
Here m is the rest mass for the one-particle state, and we
set the value in Eq. (66).

FIG. 16. The phase shift as a function of k=m.
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APPENDIX A: TRANSFER MATRIX
AND INITIAL TENSOR FOR THE ð1 + 1Þd

ISING MODEL

Consider the Ising model on the square lattice Γ in
Eq. (10) with the zero external magnetic field. The
Hamiltonian of the model is given by

H½s� ¼ −J
X
r∈Γ

X2
μ¼1

sðrþ μ̂ÞsðrÞ; ðA1Þ

where the spin variables take sðrÞ ¼ �1 and the interaction
energy parameter J is set to unity in the following. The
partition function for the model is given by

Z ¼
X
fsg

e−βH ðA2Þ

with the inverse of temperature β ¼ T−1. The periodic
boundary condition is applied to the system.
The partition function can be written in terms of transfer

matrix

Z ¼ Tr½T Lτ �; ðA3Þ

where the transfer matrix T for the Ising model is given by

T S0S ¼
 YLx−1

x¼0

exp½βsðtþ 1; xÞsðt; xÞ�
!

×

 YLx−1

x¼0

exp

�
β

2
sðtþ 1; xþ 1Þsðtþ 1; xÞ

þ β

2
sðt; xþ 1Þsðt; xÞ

�!
: ðA4Þ

The spin configurations on the Euclidean time slice at tþ 1
and t are denoted by

S0 ¼ fsðtþ 1; xÞjx ¼ 0; 1; 2;…; Lx − 1g; ðA5Þ

S ¼ fsðt; xÞjx ¼ 0; 1; 2;…; Lx − 1g: ðA6Þ

To derive an initial tensor for the Ising model, first we
apply the EVD to the local Boltzmann factor,

eβs
0s ¼

X2
k¼1

us0kσkðu†Þks for s0; s ¼ �1 ðA7Þ

with

usk ¼
1ffiffiffi
2

p
�
1 1

1 −1

�
; σk ¼

�
2coshβ 0

0 2sinhβ

�
: ðA8Þ

By using the u and σ, we define the initial tensor A [see
Eq. (36) for the scalar field case],

Aabcd ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σaσbσcσd

p X
s¼�1

ðu†Þasðu†Þbsuscusd; ðA9Þ

where the indices a, b, c, d take 1 or 2. For a single spin
field Oq ¼ s with q ¼ −1, the associated impurity tensor
[see Eq. (46) for the scalar field case] is given by

A0
abcd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σaσbσcσd

p X
s¼�1

sðu†Þasðu†Þbsuscusd: ðA10Þ

APPENDIX B: EXACT SPECTRUM
OF TRANSFER MATRIX FOR THE ð1 + 1Þd

ISING MODEL

As given in [64], for the inverse temperature β and the
spatial lattice size Lx, the exact eigenvalues of the transfer
matrix for the ð1þ 1Þd Ising model are given by

ð2 sinhð2βÞÞLx=2 exp

�
1

2
ð�γ0 � γ2 � γ4 � � � � � γ2Lx−2Þ

�
for − sector ðB1Þ

ð2 sinhð2βÞÞLx=2 exp

�
1

2
ð�γ1 � γ3 � γ5 � � � � � γ2Lx−1Þ

�
for þ sector; ðB2Þ

where the even numbers of þ combination are only
selected for each sector, thus there are in total 2 × 2Lx−1
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eigenvalues. Here γn (n ¼ 1; 2;…; 2Lx and γ0 ¼ γ2Lx
) is

obtained by solving the equation

cosh γn ¼ coshð2β�Þ coshð2βÞ

− cos

�
nπ
Lx

�
sinhð2β�Þ sinhð2βÞ; ðB3Þ

where β� is defined from e−2β ¼ tanh β�.

APPENDIX C: SPECTROSCOPY
OF ONE-DIMENSIONAL HOTRG

In the body of the paper, we exclusively deal with the
square tensor network for the spectroscopy. To emphasize
its effectiveness, here we compare it with one-time slice

tensor network A in Eq. (35) as shown in the left figure of
Fig. 17. By using the eigenvalues λ and the unitary matrix
W of A in Eq. (39), the matrix element in Eq. (45) can be
expressed as

Bba ¼ ðU†OqUÞba ¼ ðU†T −1T OqT T −1UÞba
¼ λ−1=2W†A0Wλ−1=2: ðC1Þ

After coarse graining the network A using one-dimen-
sional HOTRG as shown in Fig. 17, its diagonalization
provides approximated λ and W. Approximated matrix
elements are computed using Eq. (C1) with approximated
A0, λ, and W. The relative error of the energy spectrum
δωa for the Ising model is shown in Table IV where the
standard two-dimensional HOTRG results are also shown
for comparison. As a result, the relative error of the two-
dimensional HOTRG is much smaller than that of the one-
dimensional case. The matrix elements are shown in
Fig. 18 and the resulting quantum number judgment is
listed in Table IV. Although the quantum number is
correctly judged for the low lying states, some misjudg-
ments occur for higher modes.
In conclusion, the spectroscopy using the one-time slice

transfer matrix, which is obtained by one-dimensional
HOTRG, is relatively affected by the coarse-graining
truncation error than the two-dimensional case. The reason
is as follows. The eigenvalue of the one-time slice transfer
matrix tends to be degenerated especially for larger spatial
size, therefore when coarse graining the transfer matrix, the
information compression does not work well and in the end
such a large truncation error occurs. On the other hand, for
the square tensor network which is given by multiple
products of the transfer matrix, the degeneracy for the
multiple transfer matrix is exponentially resolved and the
information compression can work efficiently.

FIG. 17. Coarse-graining process of one-time slice tensor
network A by one-dimensional HOTRG.

FIG. 18. The matrix elements for the one-dimensional HOTRG
at T ¼ 2.44 with Lx ¼ 26 and χ ¼ 80.

TABLE IV. The relative error δωa and the quantum number
qa obtained from the one- and two-dimensional HOTRG at
T ¼ 2.44 with Lx ¼ 26 and χ ¼ 80.

a δω½2d-hotrg�
a q½2d-hotrg�a δω½1d-hotrg�

a q½1d-hotrg�a

1 0.000004 þ 0.002436 þ
2 0.000006 − 0.005464 −
3 0.000020 − 0.007560 −
4 0.000083 − 0.009567 −
5 0.000104 − 0.012778 −
6 0.000127 þ 0.004938 þ
7 0.000560 − 0.013310 −
8 0.000679 − 0.017084 −
9 0.000347 þ 0.029064 þ
10 0.000422 þ 0.008621 þ
11 0.000431 þ 0.008667 þ
12 0.001142 þ 0.011308 þ
13 0.001660 þ 0.012843 þ
14 0.002675 − 0.017259 −
15 0.004220 − 0.020217 þ
16 0.002173 þ 0.014054 þ
17 0.002884 þ 0.014266 þ
18 0.002912 þ 0.014409 þ
19 0.003510 þ 0.015000 −
20 0.000765 − 0.008715 −
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