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We consider multileg ladders of Rydberg atoms which have been proposed as quantum simulators for the
compact Abelian Higgs model (CAHM) in 1þ 1 dimensions [Y. Meurice, Phys. Rev. D 104, 094513
(2021)] and modified versions of theses simulators such as triangular prisms. Starting with the physical
Hamiltonian for the analog simulator, we construct translation-invariant effective Hamiltonians by
integrating over the simulator high-energy states produced by the blockade mechanism when some of
the atoms are sufficiently close to each other. Remarkably, for all the simulators considered, the effective
Hamiltonians have the three types of terms present for the CAHM (electric field, matter charge, and current
energy), but in addition, they have terms quartic in the electric field. For the two-leg ladder, these additional
terms cannot be removed by fine-tuning the adjustable parameters of currently available devices. For
positive detuning, the new terms create highly degenerate vacua, resulting in a very interesting phase
diagram. Using numerical methods, we demonstrate the close correspondence between the physical
simulator and the effective description for the ground-state energy and real-time evolution. We discuss the
phase diagram at fixed geometry with variable Rabi frequency and detuning, and we show that a rich
variety of phases can be reached with potential interest in the context of QCD at finite density. We illustrate
how the effective description can be used to design simulators with desirable properties from the point of
view of constructing hybrid event generators.
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I. INTRODUCTION

The idea of using quantum devices to study the real-time
evolution of strongly interacting particles in high-energy
and nuclear physics has gained considerable interest in
recent years [1–6]. In this context, the possibility of
building arrays of Rydberg atoms of significant size with
adjustable geometry and external parameters [7–9] offers
many new possibilities for analog simulations of lattice
field theory models. In addition, publicly available inter-
faces [10,11] allow users to configure arrays involving
hundreds of Rydberg atoms and run their own experiments.
This sets the path for extensive empirical exploration by
scientists who do not have direct access to this type of
facility.
This new technology has been used to propose simula-

tions of spin and lattice gauge theorymodels [12–23].One of
the simplest of these is theAbelianHiggsmodel [15,24–28].
In 1þ 1 dimensions, and after elimination of the non-
compact Brout-Englert-Higgs mode, the Hamiltonian reads

ĤCAHM ¼ D
XNs

i¼1

ðL̂z
i Þ2 − Y

XNs−1

i¼1

L̂z
i L̂

z
iþ1 − X

XNs

i¼1

Ûx
i ; ð1Þ

with Ns being the number of sites; L̂zjmi ¼ mjmi,
where m is a discrete electric field quantum number
(−∞<m<þ∞); and Ûx≡ 1

2
ðÛþþ Û−Þ, with Û�jmi ¼

jm� 1i. Note that in the derivation of the Hamiltonian, we
obtain a term of the form Y

2

P
iðL̂z

iþ1 − L̂z
i Þ2 that accounts for

matter interactions; however, for matching purposes which
become clear later, we have reabsorbed the local quadratic
couplings in the definition of the couplingD. In practice, we
also apply truncations: for a spin-mmax truncation, we have
Û�j �mmaxi ¼ 0. In the following, we focus on the spin-1
truncation.
It has been argued [15] that this spin-1Hamiltonian can be

approximately simulated using arrays of Rydberg atoms by
adapting the optical lattice construction using 87Rb atoms
separated by controllable (but not too small) distances,
coupled to the excited Rydberg state jri with a detuning Δ.
The ground state is denoted jgi, and the two possible states
jgi and jri can be seen as a qubit with njgi ¼ 0; njri ¼ jri.
The Hamiltonian for a generic array reads*Contact author: jzhang91@cqu.edu.cn
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Ĥ¼Ω
2

X
i

ðjgiihrijþ jriihgijÞ−Δ
X
i

n̂iþ
X
i<j

Vijn̂in̂j; ð2Þ

where the indices label atoms and Vij ¼ ΩR6
b=r

6
ij for a

distance rij between the atoms labeled as i and j. The
Rydberg blockade radius Rb is defined by the condition
Vij ¼ Ω when rij ¼ Rb.
The simplest simulator is a two-leg ladder [15] with the

correspondence

jggi→ jm¼0i; jgri→ jm¼1i; jrgi→ jm¼−1i ð3Þ

for two atoms on a rung. If the distance separating these
two atoms is small enough, the state jrri is unlikely to
appear. In Ref. [15], it was shown that a perfect matching
could be obtained for the individual sites; however, the
nearest-neighbor (NN) interactions controlled by Y could
not be matched exactly using the current technology, where
all the interactions are repulsive.
In this article, we show that it is possible to construct an

effective Hamiltonian for the simulator, provided that the
set of atoms used to emulate the local spin-1 degrees of
freedom are close enough—in other words, if the distance
separating them is less than Rb. We will show that if these
sets form the rungs of a ladder, and if the distance between
the ði; iþ 2Þ rungs is larger than Rb, the effective
Hamiltonian has the three types of terms found in
Eq. (1) with an additional quartic term of the formPNs−1

i¼1 ðL̂z
i Þ2ðL̂z

iþ1Þ2. The ladder models considered and
their effective Hamiltonians are presented in Sec. II.
Numerical tests are performed in Sec. III. Their phase
diagrams are discussed in Sec. IV. Practical applications
involving systems that can be simulated at facilities such as
QuEra are discussed in Sec. V. Implications for hybrid
algorithms are briefly discussed in the Conclusion.

II. RYDBERG SIMULATOR

The multileg ladder of Rydberg atoms is a promising
quantum simulator for exotic quantum critical phenomena
and lattice gauge theories, as we can use different rung
geometries to encode various local degrees of freedom.
Figure 1 shows a rectangular multileg ladder of Rydberg
atoms with Ns rungs and Nl legs. The Hamiltonian of the
multileg ladder reads

ĤmLR ¼ Ω
2

X
i¼1;2;…;Ns
s¼1;2;…;Nl

ðjgi;sihri;sj þ H:c:Þ − Δ
X

i¼1;2;…;Ns
s¼1;2;…;Nl

n̂i;s

þ
X

ði;sÞ≠ði0;s0Þ
Vi;s;i0;s0 n̂i;sn̂i0;s0 ; ð4Þ

where jri;siðjgi;siÞ is the Rydberg excited (ground) state at
the site on the ith rung and the sth leg; n̂i;s ¼ jri;sihri;sj is
the Rydberg number operator; and Ω and Δ are the Rabi

frequency and detuning, respectively. The interactions
between Rydberg states are long-range van der Waals
repulsive interactions taking the form

Vi;s;i0;s0 ¼
C6

½ði − i0Þ2a2x þ ðs − s0Þ2a2y�3

¼ V0

½ði − i0Þ2=ρ2 þ ðs − s0Þ2�3 ; ð5Þ

where ax (ay) is the lattice spacing in the x (y) direction, C6

is a constant, V0 ¼ C6=a6y, and ρ ¼ ay=ax is the inverse
aspect ratio. The Rydberg blockade mechanism means that
at most one Rydberg state is allowed with a significant
probability within a sufficiently small radius—typically the
blockade radius Rb that is defined by equating the inter-
action energy at distance Rb to the Rabi frequency:
C6=R6

b ¼ Ω, thus Rb ¼ ðC6=ΩÞ1=6. Below Rb, the inter-
action between Rydberg states is so strong that the laser
field cannot excite two Rydberg states simultaneously [29].
This imposes restrictions on the low-energy excitations for
those building blocks of quantum systems. The Rydberg
system is highly programmable. In our case, both the
geometry of rungs and the parameters can be tuned to
encode local spin degrees of freedom and realize a class of
spin chains. In the following, we label the leg by the spin
projection quantum numbers.

A. Two-leg ladder

The one-dimensional Rydberg chain is a special case of
the multileg ladder system with Nl ¼ 1. For a two-leg
ladder, Nl ¼ 2, there are four degrees of freedom in each
rung: jgi;1gi;2i, jgi;1ri;2i, jri;1gi;2i, and jri;1ri;2i. The corre-
sponding on-rung energy is 0, −Δ, −Δ, and V0 − 2Δ,
respectively. In principle, the four states can be used to

FIG. 1. The rectangular multileg ladder of Rydberg atoms,
where axðyÞ is the lattice spacing in the x (y) direction, i labels
rungs, and s labels legs. Here it is a checkerboard stripe, where
empty circles represent the atomic ground state jgi, and the blue
solid circles are excited Rydberg states jri.
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represent the four projected states in the z direction for spin
3=2; then, the on-rung interaction can be expressed byP

3
u¼0 AuðL̂z

i Þu, where the coefficients Au can be found by
matching the energy spectrum. However, in real quantum
systems, the most common onsite terms are the linear term,
which is coupled to the external field, and the quadratic
term, which is the single-ion anisotropy. In addition, the
Rydberg interaction is strong when the rung size is smaller
than the Rydberg blockade radius, such that the jri;1ri;2i
state is not likely to appear. Here we only consider a spin-1
realization by mapping the first three states to the spin-1
projected states j0i, jþ1i, and j−1i, respectively. The
onsite interaction term in spin language is thus −ΔðL̂z

i Þ2.
The relation of the z-component spin operator to the
Rydberg number operator is defined as [15]

L̂z
i ¼ n̂i;þ1 − n̂i;−1: ð6Þ

If we take the square of this equation, use the property
n̂2 ¼ n̂, and drop the term n̂i;þ1n̂i;−1, which is zero in the
low-energy sector, we obtain effectively

�
L̂z
i

�
2 ¼ n̂i;þ1 þ n̂i;−1: ð7Þ

Solving for n̂i;m, we get

n̂i;þ1ð−1Þ ¼
��
L̂z
i

�
2 � L̂z

i

�
=2: ð8Þ

Plugging Eq. (8) into the Rydberg interactions, we can
easily write down the interactions in terms of spin oper-
ators. If ρ ≪ 1, we can just keep the nearest-neighbor-rung
interactions because of the fast decay of the van der Waals
interactions. Figure 2 shows the interactions between the
ði; iþ 1Þ rungs, which contain the Rydberg interactions
between atoms in the same leg V1 ¼ V0ρ

6 and those

between atoms in different legs V2 ¼ V0ρ
6=ð1þ ρ2Þ3.

The interactions between the ði; iþ 1Þ rungs are

Ĥ2LR;NN ¼ V1 − V2

2
L̂z
i L̂

z
iþ1 þ

V1 þ V2

2

�
L̂z
i

�
2
�
L̂z
iþ1

�
2: ð9Þ

For generic values of ρ, it is necessary to include the
long-range interactions. The interactions between the
spin at site i and that at site iþ k take the same form

as Eq. (9) by replacing V1, V2 by VðkÞ
1 ¼ V0ρ

6=k6,

VðkÞ
2 ¼ V0ρ

6=ðk2 þ ρ2Þ3.
Finally, we note that the Rydberg Rabi term can flip the

spin projections between j0i and j�1i, but there is no
direct flipping channel between jþ1i and j−1i, where the
Rabi term is equivalent to the spin-1 ladder operator. In
summary, if the rung size of the two-leg ladder is smaller
than the Rydberg blockade radius, or V0 ≫ Δ;Ω, the two-
leg Rydberg ladder is an effective spin-1 chain:

Ĥeff
2LR ¼ −Δ

XNs

i¼1

�
L̂z
i

�
2 þ

X
k

 
VðkÞ
1 − VðkÞ

2

2

XNs−k

i¼1

L̂z
i L̂

z
iþk

þ VðkÞ
1 þ VðkÞ

2

2

XNs−k

i¼1

�
L̂z
i

�
2
�
L̂z
iþk

�
2

!

þ Ω
2

XNs

i¼1

�
Ûþ

i þ Û−
i

�
: ð10Þ

We now consider the case where the long-range
interactions have a negligible effect and keep only the
ði; iþ 1Þ rung interactions. In this situation, the effective
Hamiltonian reads

Ĥeff
2LR ¼ −Δ

XNs

i¼1

�
L̂z
i

�
2 þ V1 − V2

2

XNs−1

i¼1

L̂z
i L̂

z
iþ1

þ V1 þ V2

2

XNs−1

i¼1

�
L̂z
i

�
2
�
L̂z
iþ1

�
2

þΩ
2

XNs

i¼1

�
Ûþ

i þ Û−
i

�
: ð11Þ

The matching with the target model requires that the
following be true:
(1) Δ ¼ −D; note that the sign matters.
(2) The coefficient for L̂z

i L̂
z
iþ1 is positive for the sim-

ulator (repulsive/antiferromagnetic), but the CAHM
has ferromagnetic interactions. This can be remedied
by redefining the observable L̂z

2iþ1 → −L̂z
2iþ1 (stag-

gered interpretation).
(3) After this redefinition, V1 ¼ −V2 ¼ Y > 0, but

V2 > 0 with current technology.
(4) Ω ¼ −X; the sign does not matter, because we can

redefine the relative phase between jgi and jri
without physical consequences.

These results agree with the two-rung results of [15].

FIG. 2. The two-leg Rydberg ladder with Ns ¼ 2 rungs. In each
rung, the state with one Rydberg state in the upper leg is labeled
by the spin jþ1i state, and the one with one Rydberg state in the
lower leg is labeled by the spin j−1i state. The spin j0i state
labels the state with no Rydberg state in the rung. The interactions
between Rydberg states in the same rung, in the same leg, and in
different legs are V0, V1, and V2, respectively.
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B. Three-leg ladder

Another scheme to realize spin-1 chains is to use a three-
leg ladder, where the three states each with only one
Rydberg state in a rung represent the three spin projection
states in the z direction [15]. The configuration is shown in
Fig. 3, where five different types of interactions V0, V 0

0, V1,
V2, and V3 exist, and we allow a small offset for the
detuning in the middle leg, Δþ Δ0. There are eight states
in a rung, four of which have more than one Rydberg state,
and one of which has no Rydberg state. We consider two
cases here:
In case 1, the whole rung is within the Rydberg blockade

radius 2ay < Rb, only the four states with fewer than two
Rydberg states are allowed in the low-energy band. We can
further tune the detuning Δ such that only the three states
with one Rydberg state are allowed in the low-energy band.
In case 1, we require V0; V 0

0 ≫ Δ ≫ jΔ0j; jΩj.
In case 2, the Rydberg states in the ðs; sþ 1Þ legs in the

same rung are blockaded by letting ay < Rb, but the size
of the whole rung is larger than Rb, and the state with
two Rydberg states in the upper and the lower legs of the
same rung may have a lower energy than those states
with one Rydberg state—that is, −2Δþ V 0

0 < −Δ if
V 0
0 ¼ V0=64 < Δ. Thus, the spin-1 sector is not in the

lowest-energy band. If the energy gap Δ − V 0
0 ≫ Ω, the

tunneling from the spin-1 sector to the ground state is
small, and the three-leg Rydberg system can still simulate
the spin-1 dynamics with good accuracy. In case 2, we
require V0;Δ; jV0 − Δj ≫ V 0

0; jΔ0j; jΩj.
For both cases, the three spin projection states are nearly

degenerate and form an energy band. They are nearly
orthogonal to other Rydberg states. In both cases, in order
to obtain the effective spin-1 Hamiltonian, we adapt the

relation between the z component of the spin-1 operator
and the Rydberg number operator [15], proceed as in
Eq. (7), impose the constraint that there is exactly one
Rydberg state for the three spin-1 states, and obtain the
equations

L̂z
i ¼ n̂i;þ1 − n̂i;−1;�

L̂z
i

�
2 ¼ n̂i;þ1 þ n̂i;−1;

n̂i;−1 þ n̂i;0 þ n̂i;þ1 ¼ 1: ð12Þ

When the detuning term is a uniform constant −Δ, the
constraint among the occupation numbers in a rung implies
that the detuning energy is a constant. If we allow a small
offset Δ0 to the detuning in the middle leg [15], the
detuning energy Ĥdetun:;i at rung i reads

Ĥdetun:;i ¼ Δ0

�
L̂z
i

�
2 − Δ − Δ0: ð13Þ

The interaction term between ði; iþ 1Þ rungs Ĥ3LR;NN can
be rewritten as

Ĥ3LR;NN ¼ ½ð3V1 þ V3Þ=2 − 2V2�
�
L̂z
i

�
2
�
L̂z
iþ1

�
2

þ ½ðV1 − V3Þ=2�L̂z
i L̂

z
iþ1

þ ðV2 − V1Þ
��
L̂z
i

�
2 þ �L̂z

iþ1

�
2
�þ V1: ð14Þ

The effective Hamiltonian for the Rabi term is different
for the two cases mentioned above. In case 1, the whole
rung is blockaded, the Rabi term can flip between each two
of the three spin states via hopping back and forth between
the empty state and the spin-1 sector. Notice that there is
also a possibility for the atom to jump out from and go back
to the same state, so the Rabi term effectively contributes
both a diagonal term and a clock ladder operator Ĉ�

i , which
provides (anti)cyclic permutations.
In case 2, the energy of the jrgri state is about jΔj lower

than the states in the spin-1 sector (V 0
0 is small), while the

energy of the empty state is the same amount higher.
The hopping amplitudes of flipping between jþ1i and
j−1i via the empty state and that via the jrgri state have
nearly the same magnitude but opposite signs, so they are
canceled. The Rabi term is effectively a spin-1 ladder
operator, Û�

i .
We can come to the same conclusion using perturbation

theory to calculate the effective coupling constants.
Treating the Rabi term as a perturbation, the effective
Hamiltonian for the Rabi term is

he0jĤeff
3LR;Ωjei ¼

1

2

X
f≠e;e0

he0jĤ3LR;ΩjfihfjĤ3LR;Ωjei

×

�
1

Ee0 − Ef
−

1

Ef − Ee

�
; ð15Þ

FIG. 3. The three-leg Rydberg ladder with Ns ¼ 2 rungs. In
each rung, the three states that have only one Rydberg state in the
upper, middle, or lower leg are labeled by the spin jþ1i, j0i, and
j−1i states, respectively. In the same rung, the ðs; sþ 1Þ leg
interaction is V0, and the ðs; sþ 2Þ leg interaction is
V 0
0 ¼ V0=64. The inter-rung interactions between atoms in the

same leg, in ðs; sþ 1Þ legs, and in ðs; sþ 2Þ legs are V1, V2, and
V3, respectively.
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where jeiðjfiÞ is the state inside (outside) of the
spin-1 sector. The effective matrix for the Rabi term in
the spin-1 sector is

−
Ω2

4

0
B@

A Γ Λ
Γ B Γ
Λ Γ A

1
CA; ð16Þ

where

A ¼ 1

V0 − Δ − Δ0

þ 1

V0
0 − Δ

þ 1

Δ
;

B ¼ 2

V0 − Δ
þ 1

Δþ Δ0

;

2Γ ¼ 1

Δ
þ 1

V0 − Δ
þ 1

Δþ Δ0

þ 1

V0 − Δ − Δ0

;

Λ ¼ 1

V 0
0 − Δ

þ 1

Δ
: ð17Þ

The diagonal part of the effective matrix can be written as
½ðB − AÞΩ2=4�ðL̂z

i Þ2 up to a constant. For case 1,
Γ ≈ Λ ≈ 1=Δ, the off-diagonal part is a three-state clock
ladder operator. For case 2, Λ ≈ 0, the off-diagonal part is
a spin-1 ladder operator. Thus, effectively

Ĥeff
3LR;Ω ¼

8><
>:

− Ω2

4Δ
P
i

�
Ĉþ
i þ Ĉ−

i

�
for case 1;

− Ω2Γ
4

P
i

�
Ûþ

i þ Û−
i

�
for case 2:

ð18Þ

In summary, one can write down the effective spin-1
Hamiltonian for the three-leg Rydberg ladder:

Ĥeff
3LR ¼

�
Δ0 þ

Ω2ðB − AÞ
4

	XNs

i¼1

�
L̂z
i

�
2

þ ðV2 − V1Þ
XNs−1

i¼1

��
L̂z
i

�
2 þ �L̂z

iþ1

�
2
�

þ V1 − V3

2

XNs−1

i¼1

L̂z
i L̂

z
iþ1

þ
�
3V1 þ V3

2
− 2V2

�XNs−1

i¼1

�
L̂z
i

�
2
�
L̂z
iþ1

�
2

þ Ĥeff
3LR;Ω þ Const:Î; ð19Þ

where the constant Const: ¼ −ðΔþ Δ0ÞNs − NsΩ2B=4þ
V1ðNs − 1Þ.

C. Triangular prism

If we allow the middle leg of the three-leg ladder to move
out of plane, the effective Hamiltonian for case 1 does not

change as long as the size of the whole rung is within Rb. In
particular, if the three sites in a rung form an equilateral
triangle (Fig. 4), V2 ¼ V3, and V0 ¼ V 0

0 ≫ Δ ≫ jΔ0j; jΩj.
Thus, for Γ ≈ Λ, B ≈ A, the effective Hamiltonian for the
Rydberg simulator is

Ĥeff
prism ¼ Δ0

XNs

i¼1

�
L̂z
i

�
2 þ ðV2 −V1Þ

XNs−1

i¼1

��
L̂z
i

�
2 þ �L̂z

iþ1

�
2
�

þV1 −V2

2

XNs−1

i¼1

L̂z
i L̂

z
iþ1

þ 3ðV1 −V2Þ
2

XNs−1

i¼1

�
L̂z
i

�
2
�
L̂z
iþ1

�
2

−
Ω2V0

4ΔðV0 −ΔÞ
XNs

i¼1

�
Ĉþ
i þ Ĉ−

i

�þConst:Î: ð20Þ

Here, the coefficient of L̂z
i L̂

z
iþ1 and that of ðL̂z

i Þ2ðL̂z
iþ1Þ2

have a fixed ratio; the physics originating from the
competition between the two terms may be missing in
the Hamiltonian. But the blockade radius required is just
half of that in Fig. 3.

FIG. 4. Same as Fig. 3, but the middle leg is put out of plane to
form a equilateral triangular prism.

FIG. 5. Same as Fig. 4, but triangles reside in the same plane.
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D. Triangles in the same plane

As a three-dimensional triangular prism is not easy to
realize in experiment, we can just shift the middle leg in the
same plane. As shown in Fig. 5, we shift the middle leg to
the left (or right). Now, the off-rung interactions between
nearest-neighbor legs depend on its location and take the
two values V2, V4. The effective Hamiltonian reads

Ĥeff
in-plane ¼ Δ0

XNs

i¼1

�
L̂z
i

�
2

þ
XNs−1

i¼1

�ðV2 −V1Þ
�
L̂z
i

�
2 þ ðV4 −V1Þ

�
L̂z
iþ1

�
2
�

þV1 −V3

2

XNs−1

i¼1

L̂z
i L̂

z
iþ1

þ
�
3V1 þV3

2
−V2 −V4

�XNs−1

i¼1

�
L̂z
i

�
2
�
L̂z
iþ1

�
2

−
Ω2V0

4ΔðV0 −ΔÞ
XNs

i¼1

�
Ĉþ
i þ Ĉ−

i

�þConst:Î: ð21Þ

By shifting the middle leg, we have more degrees of
freedom to tune the coefficients of the interaction terms: if
V0,Δ, andΩ are fixed, we can tuneΔ0, ax, and the angle of
the triangle to tune couplings of the ðL̂z

i Þ2, L̂z
i L̂

z
iþ1, and

ðL̂z
i Þ2ðL̂z

iþ1Þ2 terms.

III. NUMERICAL TESTS

We have derived the low-energy effective Hamiltonian
for various Rydberg ladder systems using perturbation
theory. All the effective spin-1 Hamiltonians obtained in
Sec. II have the same form:

Ĥeff ¼ D
XNs

i¼1

�
L̂z
i

�
2 þ R

XNs−1

i¼1

L̂z
i L̂

z
iþ1

þ R0 XNs−1

i¼1

�
L̂z
i

�
2
�
L̂z
iþ1

�
2 − J

XNs

i¼1

�
Ûþ

i þ Û−
i

�
; ð22Þ

where the ladder operator Û�
i can be replaced by the clock-

raising and -lowering operator Ĉ�
i for the cases that allow

hopping between j�1i states. In this section, we provide
some numerical calculations to test the validity of our
results. The numerical results for large system sizes are
calculated by the density matrix renormalization group
(DMRG) algorithm [30–32]. Our DMRG calculations are
performed with the ITENSOR JULIA library [33]. When
searching for the ground state, we gradually increase the
maximum bond dimension during the variational sweeps
until the truncation error ϵ is below 10−10. DMRG sweeps
are terminated once the ground-state energy changes less

than 10−11 and the von Neumann entanglement entropy
changes less than 10−8 between the last two sweeps.

A. Two-leg ladder

In this case, the effective Hamiltonian is shown
in Eq. (11) with D ¼ −Δ, R ¼ ðV2 − V1Þ=2, R0 ¼
ðV1 þ V2Þ=2, J ¼ −Ω=2. Since the error of the effective
Hamiltonian is of order Ω2=ð4V0Þ, we set V0 to a large
value. Given that Vij ¼ C6=r6ij with C6 ¼ 858386 ×
2πMHz μm6, we set V0 ¼ 1000 × 2πMHz by taking the
length of the rung to be ay ¼ 3.083 μm. Figure 6 presents
the ground-state-energy difference between the two-leg
Rydberg ladder Ĥ2LR and the corresponding effective
Hamiltonian (11) as a function of Ω for Ns ¼ 16,
Δ ¼ 1 × 2πMHz. The effective Hamiltonian only contains
NN interactions, while Ĥ2LR contains all van der
Waals interactions. If the inverse aspect ratio ρ ¼ 0.5,
the relative energy difference is about 18% for small
Ω=ð2πMHzÞ ¼ 0.2, and it decreases quickly toward zero
asΩ is increased. For a smaller inverse aspect ratio ρ ¼ 0.4,
the relative difference behaves the same way, but with an
overall smaller magnitude. The inset shows that the
absolute energy difference also decreases with increasing
Ω and decreasing ρ.
Note that the error from perturbation theory is of order

Ω2=ð4V0Þ, which should increase as we increaseΩ, but it is
small compared to the error from the omitted long-range
interactions. For small Ω, the blockade radius Rb=ay ¼
ðV0=ΩÞ1=6 is large, and the interactions beyond the
ði; iþ 1Þ rungs play important roles and are not negligible,

FIG. 6. The relative error of the ground-state energy Eeff
0;2LR of

the effective Hamiltonian [Eq. (11)] as a function of Ω. All the
two-body van der Waals interactions are kept in the original two-
leg Rydberg ladder to compute the actual ground-state energy
E0;2LR. Here, Ns ¼ 16, V0 ¼ 1000 × 2πMHz, Δ ¼ 1 × 2πMHz,
and two inverse aspect ratios ρ ¼ 0.5, 0.4 are considered. The
inset shows the ground-state energy as a function of Ω. The
energy for ρ ¼ 0.4 is shifted by −1 for a better view.
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so the relative energy difference is large. As we increase Ω,
the blockade radius Rb is decreased, and the effects of long-
range interactions fade away, so the relative energy differ-
ence is small. By fixing ay and increasing ax such that ρ is
decreased, Rb becomes relatively smaller compared to ax,
so the effects of long-range interactions also decrease.
For 1 < Ω=ð2πMHzÞ < 10, 2.154 < Rb=ay < 3.162, the
Rydberg blockade radius is smaller than 2ax, and two
Rydberg states are allowed in the ði; iþ 2Þ rungs for both
ρ ¼ 0.5 and ρ ¼ 0.4. One can see that the relative energy
difference is below 5% for 1 < Ω=ð2πMHzÞ < 10. We
conclude that it is safe to omit interactions with a range
longer than ði; iþ 1Þ rungs when the blockade radius Rb is
smaller than the ði; iþ 2Þ rung distance. The dynamics of
the exact two-leg Rydberg ladder with all interactions
included and those of the effective Hamiltonian (with just
nearest-neighbor interactions) also agree in very good
approximation, as shown in Sec. V.

B. Three-leg ladder

The effective Hamiltonian for the three-leg Rydberg
ladder is shown in Eq. (19), where there are two limiting
cases with different quantum operators, Ĉ�

i or Û�
i . Because

the error from the perturbation theory is well controlled, we
just consider case 2. Matching the form in Eq. (22), we have
D ¼ Δ0 þ Ω2ðB − AÞ=4þ 2ðV2 − V1Þ, R ¼ ðV1 − V3Þ=2,
R0 ¼ ð3V1 þ V3Þ=2 − 2V2, and J ¼ Ω2Γ=4. Notice that on
both ends D1 ¼ DNs

¼ Δ0 þ Ω2ðB − AÞ=4þ ðV2 − V1Þ,
but the boundary terms will not affect the bulk properties
in the thermodynamic limit. We can use exact diagonaliza-
tion to show that the real three-leg Rydberg ladder
system and the effective Hamiltonian have close energy
values for small system sizes. The results for Ns ¼ 4,
V0 ¼ 2Δ ¼ 40 × 2πMHz, and Δ0 ¼ 0.5 × 2πMHz with
different inverse aspect ratios are presented in Fig. 7. One
can see that the ground-state energy difference between
Ĥ3LR and Ĥeff

3LR is small for all the inverse aspect ratios (ρ)
considered here. The energy difference decreases as ρ
increases, because the effects of long-range interactions
become small as ax increases. When Ω increases, the error
from the second-order perturbation theory increases, as does
the energy difference.
For large system sizes, one expects to use DMRG to

calculate the energy. However, because the spin-1 sector is
not the lowest-energy band in the real three-leg Rydberg
ladder, the low-energy states in the effective Hamiltonian
correspond to the high-energy states in the real Rydberg
system. We cannot check the effective Hamiltonian using
normal DMRG, which finds the ground state. We have seen
that the effective Hamiltonian for the two-leg Rydberg
ladder works well, so we believe the effective Hamiltonian
in Eq. (19) also well describes the physics of the spin-
1 sector. If one energy band largely separates from other
bands, the time-evolved quantum state from an initial state

in that band will stay inside the band for a long time. The
real three-leg Rydberg ladder can still simulate the dynam-
ics of the effective spin Hamiltonian with high precision.
We calculate the time evolution of the initial state with all

Lz
i ¼ 0 for the effective Hamiltonian and compare it with

the time evolution of the initial state, with all the rungs
having only one Rydberg state in the middle leg for the real
Rydberg system. The results are shown in Fig. 8 for
Ns ¼ 4, V0 ¼ 2Δ ¼ 40 × 2πMHz, Ω ¼ 1 × 2πMHz, and
ρ ¼ 0.4. Then R=ð2πMHzÞ ≈ 0.06335, R0=ð2πMHzÞ≈
0.05440, and J=ð2πMHzÞ ≈ 0.02500. Three values of
Δ0=ð2πMHzÞ ¼ 0, 0.1, and 0.2 are considered, which
correspond to D=ð2πMHzÞ ¼ −0.092346, 0.007529, and
0.107404, respectively. It is seen that the probability of
detecting the initial state j0; 0; 0; 0i in the time-evolved
quantum state jΨðtÞi, jhΨðtÞj0; 0; 0; 0ij2, for the effective
Hamiltonian is almost the same as that for the real three-leg
Rydberg ladder. This good agreement persists for a long
time, >79.6 μs, as shown in Fig. 8. We remark that the
values ofD, R, R0, and J are in the same order here, and the
system is not in the limiting case of the weak interacting
regime. Therefore, our results confirm that the derived
effective Hamiltonian in Eq. (19) accurately describes the
many-body physics of the spin-1 sector for the real three-
leg Rydberg ladder. In other words, the three-leg Rydberg
ladder can quantum-simulate the many-body dynamics of
the effective spin-1 Hamiltonian in Eq. (19).

C. Other geometries

We have shown that the spin-1 effective Hamiltonians
work well for the two-leg and the three-leg Rydberg
ladders. For the triangular prism (Sec. II C) and the
triangles in the same plane (Sec. II D), the quantum

FIG. 7. The ground-state energy difference between the effec-
tive Hamiltonian in Eq. (19) for case 2 and the real three-leg
Rydberg ladder. The system size is Ns ¼ 4, and the parameters
are V0 ¼ 2Δ ¼ 40 × 2πMHz and Δ0 ¼ 0.5 × 2πMHz. Five val-
ues of the inverse aspect ratio ρ ¼ ay=ax are considered here.

CRITICAL BEHAVIOR OF LATTICE GAUGE THEORY RYDBERG … PHYS. REV. D 110, 034513 (2024)

034513-7



operators are both clock ladder operators Ĉ�
i , and

J ¼ Ω2V0=½4ΔðV0 − ΔÞ�. The effective interaction
strengths are D ¼ Δ0 þ 2ðV2 − V1Þ, R ¼ ðV1 − V2Þ=2,
and R0 ¼ 3ðV1 − V2Þ=2 for the triangular prism, and
D ¼ Δ0 þ V2 þ V4 − 2V1, R ¼ ðV1 − V3Þ=2, and R0 ¼
ð3V1 þ V3Þ=2 − V2 − V4 for the triangles in the same
plane. It is easy to derive the effective Hamiltonians for
other geometries and numerically test their validity; we will
not show more results here. The effective Hamiltonian
approach can largely reduce the dimension of the Hilbert
space for finite-size systems and increase the efficiency of
the search for the low-energy quantum states and the study
of the dynamical properties of quantum systems numeri-
cally on classical computers.

IV. PHASE DIAGRAM

We take the two-leg Rydberg ladder as an example to
study the ground-state phase diagram of the Rydberg ladder
system. In the effective Hamiltonian (22), when D and R0
are large, all spins are zero, which is the trivial large-D
phase [34]. For large J, the system is in the disordered
phase. When R is large, the antiferromagnetic (AFM)
ordered phase with hL̂z

i i ¼ −hL̂z
iþ1i is favored. When R

is negative and large in magnitude, the ferromagnetic (FM)
ordered phase with all hL̂z

i i taking the same value is
favored. When R0 is large and D is negative, a new
Rydberg density wave (RDW) order may emerge: the

values of hðL̂z
i Þ2ðL̂z

iþ1Þ2i are minimized, and the values
of hðL̂z

i Þ2i in the system take the form …; f; t; f; t; f; t;…
(0 ≤ t < f ≤ 1). The order parameters are

MFM ¼ 1

Ns

X
i

hL̂z
i i;

MAFM ¼ 1

Ns

X
i

ð−1ÞihL̂z
i i;

MRDW ¼ 1

Ns

X
i

ð−1Þi
�L̂z
i

�
2
� ð23Þ

for FM, AFM, and RDW, respectively. The susceptibilities
for the three order parameters are defined by

χF ¼
1

Ns

X
i;j

�

L̂z
i L̂

z
j

�
−


L̂z
i

�

L̂z
j

��
;

χA ¼ 1

Ns

X
i;j

ð−1Þiþj
�

L̂z
i L̂

z
j

�
−


L̂z
i

�

L̂z
j

��
;

χR ¼
1

Ns

X
i;j

ð−1Þiþj
�
�

L̂z
i

�
2
�
L̂z
j

�
2
�
−

�
L̂z
i

�
2
�
�

L̂z
j

�
2
��
;

ð24Þ

respectively. At the phase transition point between the
ordered phase and the disordered phase, the associated
susceptibility diverges if the phase transition is of second
order. Bearing in mind that the spin operators and the
Rydberg state operators are related by Eqs. (6) and (7) is
helpful in the following analysis.
The possible phases with different values of the order

parameters are summarized in Table I. In the FM phase,
only MFM is nonzero, and the up-down Z2 symmetry is
broken. Similarly, only MAFM is nonzero in the AFM
phase. In the RDW phase, MRDW is nonzero, and if the
other two order parameters are both zero, we have the
paramagnetic RDW (PRDW) phase. In the PRDW phase,
hL̂z

i i ¼ 0 for all the sites, but hðL̂z
i Þ2i ≠ 0 for even or odd

sites, which means all the rungs in the Rydberg ladder
preserve the up-down Z2 symmetry, and only the transla-
tional Z2 symmetry is broken. Because the state with two
Rydberg states in a rung is blockaded, the single-rung state

FIG. 8. The real-time evolution of the initial state j0; 0; 0; 0i
with the effective Hamiltonian [Eq. (19)] for case 2 (Ĥeff

3LR) and
that with the three-leg Rydberg ladder Hamiltonian (Ĥ3LR). Here,
Ns ¼ 4, V0 ¼ 2Δ¼ 40×2πMHz, Ω ¼ 1 × 2πMHz, and ρ ¼ 0.4.
Three values of Δ0=ð2πMHzÞ ¼ 0, 0.1, and 0.2 are considered
for (a), (b), and (c), respectively.

TABLE I. The values of order parameters for different phases.
The corresponding susceptibilities diverge on the critical lines.

MFM MAFM MRDW

FM ≠0 ¼0 ¼0
AFM ¼0 ≠0 ¼0
FRDW ≠0 ≠0 ≠0
PRDW ¼0 ¼0 ≠0
Disorder ¼0 ¼0 ¼0
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in the PRDW phase should have a large overlap with
the entangled state ðjni;þ1 ¼ 1; ni;−1 ¼ 0i þ jni;þ1 ¼ 0;
ni;−1 ¼ 1iÞ= ffiffiffi

2
p

. Similar phases with a translational Z3

symmetry breaking are also found in a two-leg square
Rydberg ladder [35]. We remark that the state with AFM
order in even or odd sites also satisfies the above condition
for the PRDW phase, but it requires strong next-nearest-
neighbor (NNN) interactions that do not exist in our
effective Hamiltonian. If all three of the order parameters
are nonzero, we have the ferromagnetic RDW (FRDW)
phase, where a FM phase exists in the sublattice with even
or odd sites, and other sites are empty. The schematic views
of the AFM, the FRDW, and the PRDW phases are shown
in Fig. 9(b).
We calculate the order parameters and the associated

susceptibilities for the effective Hamiltonian (11) with
Ns ¼ 512, V0 ¼ 1000 × 2πMHz, and ρ ¼ 0.5. As shown
in Fig. 9(a), three ordered phases—the AFM, the FRDW,
and the PRDW phases—are identified in the Δ −Ω plane.
The peak positions of the susceptibilities are used to estimate
the phase transition lines. In practice, we use the peak of χR
to estimate the phase transition line between the PRDWand
the disordered phases, and the phase transition line between
the FRDWand theAFMphases.Notice that from the FRDW
phase to theAFMphase, the lattice translational symmetry is
restored from Z2 symmetry breaking for hðL̂z

i Þ2i, so the
susceptibility χR can also detect the phase transition point.
From the FRDWphase to the PRDWphase, the FMorder on
even or odd sites vanishes, so we use χF to locate the phase
boundary. Finally, we use χA to locate the phase boundary
between the AFM and the disordered phases. The empty
markers in Fig. 9(a) are the results for the real two-leg
Rydberg ladder Ĥ2LR,which are consistentwith those for the
effective Hamiltonian.
The existence of the ordered phases in each parameter

regime can be understood from the classical limit. When
Ω ¼ 0, the Hamiltonian in Eq. (11) is diagonal. By
comparing the energy density of the possible orders, one
knows that the system is in the large-D phase
(j…; 0; 0; 0; 0;…i) for Δ < 0, in the RDW phase
(j…;�1; 0;�1; 0;…i) for 0 < Δ < 2V2, and in the
AFM phase (j…;þ1;−1;þ1;−1;…i) for Δ > 2V2.
Because 0 < R < R0 independent of Δ or Ω, the
ðL̂z

i Þ2ðL̂z
iþ1Þ2 interaction term dominates, and even or

odd sites should be empty to minimize the interaction
energy. Then, the large-D phase is favored for positive D,
and the RDW phase is favored for negative D with small
magnitude. When D ¼ −Δ is negative with large magni-
tude, ðLz

i Þ2 ¼ 1 is preferred for each site, and the positive R
picks out the AFM phase. The RDW phase at Ω ¼ 0 has
exponentially large degeneracy. When Ω is turned on a
little, an equal superposition of jþ1i and j−1i is favored
in the presence of the operator Ûþ

i þ Û−
i , so the PRDW

phase shows up. In the presence of quantum fluctuations
(Ω > 0), the NNN nonzero-spin states can also interact via

the middle spin in a perturbative way. One can perform
degenerate perturbation theory for small Ω and obtain an
effective Ising model on even or odd sites:

Ĥeff
Ising ¼

Ω2

4

�
−Jeff

X
i

σziσ
z
iþ2 −

1

Δ

X
i

σxi

�
; ð25Þ

FIG. 9. (a) Ground-state phase diagram for the effective
Hamiltonian [Eq. (11)] of the two-leg Rydberg ladder. The phase
boundaries between the PRDW and the disordered phases,
between the PRDW and the FRDW phases, between the FRDW
and the AFM phases, and between the AFM and the disordered
phases are determined by the peak positions of susceptibilities
χR, χF, χA, and χA, respectively, with Ns ¼ 512. Here,
V0 ¼ 1000 × 2πMHz, and ρ ¼ ay=ax ¼ 0.5. The empty markers
are the corresponding peak positions of susceptibilities in the real
two-leg Rydberg ladder. The red cross at Ω ¼ 0 is the analytical
value of the phase transition point between the PRDW and the
FRDW phases in the Ω → 0 limit. (b) The density maps for the
three ordered phases. The filled and the empty circles represent
the Rydberg excited states and the single-atom ground states,
respectively. The shaded rungs in the PRDW phase represent
entangled bonds without up-down symmetry breaking.
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with

Jeff ¼
1

Δ − V1 − V2

−
1

2Δ − 4V2

−
1

2Δ − 4V1

: ð26Þ

We notice that Jeff is always positive for 0 < Δ < 2V2. So,
the PRDW phase can spontaneously break the up-down Z2

symmetry to have a FM order in even or odd sites. In this
case, we have the FRDW phase. In a word, the nonzero
quantum fluctuations remove the macroscopically large
degeneracy of the classical ground states and stabilize a
definite order (the PRDW or the FRDW orders here),
which is called the order-by-disorder mechanism [36].
This phenomenon is also observed in a two-leg Rydberg
ladder with staggered detuning [37]. The Ising critical point
can be determined by Jeff ¼ 1=Δ, which gives Δc ≈
12.509 × 2πMHz. This analytical Ising critical point in
the classical limit is highlighted by the red cross in the
phase diagram in Fig. 9(a). We extrapolate the numerical
phase transition points between the FRDW and the PRDW
phases to the value at the Ω ¼ 0 limit, which agrees
perfectly with the analytical result.
Across each phase transition line, only one Z2 symmetry

is spontaneously broken, and we expect that all the phase
transitions belong to the Ising universality class. We can
use the entanglement entropy to detect the Ising phase
transition. If the ground state is jΨi, the first-order Rényi
entropy or the von Neumann entropy SvN ¼ −TrρA ln ρA,
where ρA ¼ TrBjΨihΨj is the reduced density matrix for
the subsystem A if the system is partitioned into A and B
parts. The nth-order Rényi entropy can be calculated by
Sn ¼ 1=ð1 − nÞ ln TrρnA. We consider the cut to be at the
middle, and subsystems A and B to have the same volume.
The conformal field theory (CFT) predicts that the central
charge c ¼ 0.5 for the Ising phase transition [38], and that
the nth-order Rényi entanglement entropy at the critical
point diverges logarithmically with a coefficient related to
the central charge [39–43]:

Sn ¼
8<
:

cðnþ1Þ
12n lnðNsÞ þ so for OBC;

cðnþ1Þ
6n lnðNsÞ þ sp for PBC;

ð27Þ

where soðpÞ is a nonuniversal constant, and OBC and PBC
stand for the open boundary condition and periodic
boundary condition, respectively.
In order to calculate the central charge, it is required to

obtain the critical point in the thermodynamic limit first.
For the phase transition point between the PRDW and the
disordered phases, we consider the Δ ¼ 3 × 2πMHz cut,
calculate the susceptibility χR in a small window around the
peak, and find the peak position Ωp for different system
sizes. The results for both PBC and OBC are presented in
Fig. 10(a). The data for PBC and OBC become indistin-
guishable for large Ns. We use a polynomial to fit Ωp as a

function of 1=Ns and extrapolate the value of Ωp to
the Ns → ∞ limit. Then we obtain the critical point
Ωc ¼ 2.1181ð5Þ × 2πMHz, where the uncertainty is esti-
mated from the error of the curve fit and the discrepancy
between the results of PBC and OBC. In Fig. 10(b), we
show the von Neumann entropy SvN and the second-order
Rényi entropy as functions of lnðNsÞ for PBCs at Ωc. The
entropy data are fit to the CFT form in Eq. (27), and the
extracted values of the central charge are c ¼ 0.4999 and
c ¼ 0.5012 for SvN and S2, respectively. Notice that we add
a 1=N2

s correction term in the curve fit to increase the
accuracy [44]. The results perfectly agree with the expected
value of c ¼ 0.5 for Ising CFT. We also fit the peak height
of χR to the power-law form aN1−η

s þ b and obtain
η ¼ 0.257 and 0.248 for OBCs and PBCs, respectively,
which are consistent with η ¼ 1=4 for the Ising universal-
ity class.
We next consider the Ω ¼ 0.61 × 2πMHz cut and study

the phase transition between the PRDW and the FRDW
phases in Fig. 11. In this case, the susceptibility χF and the
von Neumann entropy SvN for OBCs are calculated, and
the finite size scalings of the peak positions Δp are used for

FIG. 10. (a) Finite-size scaling of the peak position of the
susceptibility χR of the ground state on the Δ ¼ 3 × 2πMHz cut
for the effective Hamiltonian [Eq. (11)] of the two-leg Rydberg
ladder. Changing Ω drives the phase transition between the
PRDW and the disordered phases. Both PBCs and OBCs are
considered. Almost the same extrapolated values of the critical
point for the two boundary conditions are obtained, and
Ωc ¼ 2.1181ð5Þ × 2πMHz. The Hamiltonian parameters in the
plot are in units of 2πMHz. (b) The von Neumann entanglement
entropy SvN and the second-order Rényi entropy S2 for PBCs as
functions of lnðLÞ are plotted at Ωc ¼ 2.1181. The extracted
values of the central charge c are close to 0.5, as predicted by
Ising CFT.
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the extrapolation of the critical point. We also obtain
almost the same value of Δc from χF and SvN, and
Δc ¼ 12.5374ð11Þ × 2πMHz. The numerical values of
the central charge are c ¼ 0.4963 and c ¼ 0.4967 for
SvN and S2, respectively. We perform the same procedure
for the Δ ¼ 15 × 2πMHz cut, where there are two critical
points: Ωc ¼ 1.2531ð1Þ × 2πMHz between the FRDWand
the AFM phases, and Ωc ¼ 4.97686ð5Þ × 2πMHz between
the AFM and the disordered phases. The results for the
entanglement entropy at the critical points are presented in
Fig. 12. One can see that the numerical values of the central
charge are all consistent with the Ising CFT prediction of
c ¼ 0.5. We also obtain η ¼ 0.249, 0.251, and 0.252 for the
three critical points, which are all consistent with η ¼ 1=4
for the Ising universality class.
In summary, the effective spin-1 Hamiltonian in Eq. (11)

for the two-leg Rydberg ladder with the inverse aspect ratio
ρ ¼ 0.5 has a rich phase diagram with three density wave
orders and a disordered phase. The phase boundaries
between these phases are all Ising critical lines. We remark
that both the PRDW phase and the AFM phase sponta-
neously break one translational Z2 symmetry, and the
ground states have twofold degeneracy, while the FRDW
phase breaks two different Z2 symmetries, and the ground
state has fourfold degeneracy. The phase transition from the

FRDW phase to the disordered phase can only take place
across the intersection point of the two Ising critical lines,
which is in the universality class of the four-state clock
model or two uncoupled Ising models. Our results suggest
studying Δ > 0 as an environment effect, as well as
staggered structures (cells with two sites), and to explore
outside the region of validity of Ĥeff

mLR.

V. PRACTICAL APPLICATIONS

In this section, we discuss simple examples of real-time
evolution for two-leg ladders with ten atoms (five sites).
This situation can be implemented remotely using QuEra
facilities or simulated with a local SDK [10,45]. In
this case, the system is initialized with the ten atoms in
the ground state. This initial state is invariant under the
transformation L̂z

i → −L̂z
i , or equivalently swapping the

two legs of the ladder, and as we turn on the evolution,
the hL̂z

i i values remain zero. For this reason, we display
the values of hðL̂z

i Þ2i for the five sites, which are also
invariant under staggered redefinitions of L̂z

i . Note also
that the results are left-right symmetric. Results for the
typical QuEra values Ω ¼ 2 × 2πMHz, Δ ¼ 2Ω, ρ ¼ 0.5
and the distance between the sites ax ¼ 1Rb ≃ 8.7 μm are
shown below. The distance between the two atoms on one
site is ay ¼ 0.5Rb, so jrri’s at that site are unlikely. This
case corresponds to V0 ¼ 128 × 2πMHz and V0 ≫ Δ;Ω,
so the spin-1 effective Hamiltonian should be a good

FIG. 11. (a) Finite-size scaling of the peak position of the
susceptibility χA and that of the von Neumann entanglement
entropy SvN for the ground state of the Hamiltonian in Eq. (11)
with OBCs on the Ω ¼ 0.61 × 2πMHz cut. Varying Δ drives the
phase transition between the PRDW and the FRDW phases. The
extrapolated values of the critical point from χA and SvN
are almost the same, and Δc ¼ 12.5374ð11Þ × 2πMHz is
obtained. The Hamiltonian parameters in the plot are in units
of 2πMHz. (b) Same as Fig. 10(b), but for Δc ¼ 12.5374ð11Þ×
2πMHz and Ω ¼ 0.61 × 2πMHz.

FIG. 12. Same as Figs. 10(b) and 11(b), but for (a) the critical
point between the FRDW and the AFM phases [Δ ¼
15×2πMHz, Ωc ¼ 1.2531ð1Þ×2πMHz], and (b) the critical point
between the AFM and the disordered phases [Δ ¼ 15×2πMHz,
Ωc ¼ 4.97686ð5Þ×2πMHz]. The Hamiltonian parameters in the
plot are in units of 2πMHz.
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approximation. The evolution for a period of 0.5 μs is
shown in Fig. 13, with exact diagonalization for the ten-
site problem, the QuEra local simulator, and the effective
Hamiltonian. It appears clearly that the three methods give
very similar results. A finer comparison for the first three
sites in Fig. 14 confirms that the effective Hamiltonian
results are in excellent agreement.
We have also explored values of the parameters that are

slightly outside the range of validity of Ĥeff
2LR. As a first

example, we keep ρ ¼ 0.5, but we reduce the lattice
spacing to ax ¼ Rb=2. The blockade mechanism is even
more effective, but ax ¼ Rb=2 implies next-to-nearest-
neighbor interactions not taken into account in the simple

Ĥeff
2LR with just NN interactions, as in Eq. (11). Figure 15

makes it clear that the effective description is a less accurate
description of the simulator than in the previous case;
however, there is a qualitative agreement between the exact
diagonalization with ten atoms and the corresponding
Ĥeff

2LR. It should also be noticed that for ax ¼ Rb=2, V1

and V2 are 64 times larger than in the previous case, and the
quartic term becomes very important. This is signaled by

FIG. 13. Values of hðL̂z
i Þ2i for five sites:Ω ¼ 4πMHz,Δ ¼ 2Ω,

ρ ¼ 0.5, ax ¼ 1Rb, and ay ¼ 0.5 × Rb. The vertical time units
are 10−8 s. Top: Exact diagonalization. Middle: QuEra (local
simulator). Bottom: Effective Hamiltonian.

FIG. 14. Values of hðL̂z
i Þ2i for the first three of the five sites.

The exact and effective evolutions shown in Fig. 13 are
compared here.
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Lz ¼ 0 bands screening the electric field both in the
effective theory and the original simulator. This is illus-
trated in Fig. 16.
The screening effect observed in the previous deforma-

tion can be partially remediated by instead increasing ρ in
order to have V2 ≪ V1. For this reason, we consider the
case ρ ¼ 2, ax ¼ Rb. The results are shown in Fig. 17. In
the original model, the Rydberg blockade radius Rb is
smaller than the length of the rungs, so a Rydberg state at
rung 2 will not forbid nearby rungs having Rydberg states.
We have used PBCs for numerical calculations of the

critical points and the central charge in Sec. IV. In the
quantum simulation setup, it is easy to put Rydberg atoms
equidistantly on a circle by moving the optical tweezers.
However, a ladder geometry with PBC is a cylinder with a
small height and requires a third dimension. If the PBC
system is confined within the two-dimensional plane, one
circular leg is inside the other bigger circular leg, and then
the distance between atoms on different legs is different.
Although the current machine from QuEra Computing Inc.

does not provide the feature to create three-dimensional
objects, it is technically feasible and has been realized [46].
We expect that this feature will be available online in the
near future.
Finally, notice that we express Ω and Δ in units of

2πMHz in this paper, which is commonly used in the
Rydberg atom experimental literature. The range of Ω in
these units (0 to 6) in Fig. 9 is in line with the values 2 used
in Ref. [47], 1.4 in Ref. [48], or 2.5 in Ref. [49]. In
Figs. 13–17, we use Ω ¼ 2 × 2πMHz with the QuEra local
simulator, which is in the same ballpark. There is a lower
limit on the distance between atoms in the experiment. For
V0 ¼ 1000 × 2πMHz, the distance between atoms in a
rung ay is about 3.1 μm, which is close to the current
technological limit. But the physics does not change if the
Hamiltonian is divided by a given overall factor. For a
smaller V0 with larger distance, the same phase diagram as
shown in Fig. 9 can be obtained with a smaller scale of Ω
and Δ. Therefore, the phase diagram and dynamics
calculated in this paper are accessible in the experimental
parameter regime.

FIG. 15. Five sites: ρ ¼ 0.5, ax ¼ 0.5 × Rb, Ω ¼ 4πMHz,
Δ ¼ 2Ω, with vertical time units of 0.01 μ sec. Top: Ten-atom
simulator. Bottom: Five-site Ĥeff

2LR.

FIG. 16. Five sites: ρ ¼ 0.5, ax ¼ 0.5 × Rb, Ω ¼ 4πMHz,
Δ ¼ 2Ω, with vertical time units of 0.01 μ sec. Top: Ten-atom
simulator. Bottom: Five-site Ĥeff

2LR.
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VI. CONCLUSION

In summary, we have considered ladder-shaped Rydberg
arrays with two or three atoms per site. Originally, these
simulators were designed with the idea of mimicking
closely the evolution of the compact Abelian Higgs model.
We constructed an effective Hamiltonian, valid when the
size of the rungs is small enough and the distance between
the rungs is not too small. In all cases, we found that the
effective Hamiltonians have the same three types of terms
as the target model in Eq. (1) plus an extra quartic term. The
effect of the extra term is significant at positive detuning
and is responsible for new quantum phases. More generally,
the ladder models have a very rich phase diagram that is
currently being explored using QuEra [10,49,50]. Matching
the effective theory with the target gauge theory requires
Δ < 0 (cost for producing electric field). The new phases
appear when Δ > 0 (m ¼ �1 form the degenerate ground
state). It is possible that a positive detuning could be used as
an environment effect relevant in the context of hybrid
hadronization [17]. A potential issue with microscopic
string breaking generated by extra terms with a large

coefficient suggests the study of staggered structures (cells
with two sites) that could be used to describe models
different from the target CAHM.
It should also be noted that there has been interest

in inhomogeneous phases and the Lifshitz regime for
QCD at finite temperature and density [51]. It has
been argued [52] that for massless quarks in the large-
Nc limit, dimensional reduction occurs and “chiral
spiral” condensates appear [53]. In this scenario, the
chiral spiral phase could appear at the end of the
crossover line and separate an ordered phase where
chiral symmetry is restored from the hadronic (confining)
phase where chiral symmetry is broken (see Fig. 6
in [51]). In this context, exploring the possibility of an
inhomogeneous phase in simulators is an interesting
direction of research.
In the future, it would also be interesting to have a

simulator where negative (attractive) couplings among
atoms could be engineered. This would allow us to cancel
the extra terms and to have an effective Hamiltonian
identical to the target Hamiltonian. Similar technology
needs to be present for quantum simulation of the tricritical
Ising model (with different types of NNN interactions
being negative) [16]. As we are moving toward better local
control of the individual atoms, we should look forward to
using new technologies for lattice gauge theory. It would
also be interesting to compare the manipulation of the three
states associated with a rung in our approach with qutrit
simulations [54,55] and figure out if the extra quartic term
found here could be understood in the context of Symanzik
improvement [56,57].
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APPENDIX: COMPACT SCALAR QED

The target model in Eq. (1) is the lattice scalar QED
(sQED) on a Ns × Nτ Euclidean spacetime lattice. There

FIG. 17. Five sites: ρ ¼ 2, ax ¼ 1 × Rb, Ω ¼ 4πMHz,
Δ ¼ 2Ω, with vertical time units of 0.01 μ sec. Top: Ten-atom
simulator. Bottom: Five-site Ĥeff

2LR.
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are two more columns on two sides, the zeroth and the
(Ns þ 1)th columns, controlling the boundary conditions.
We use the 00 boundary condition (00BC), where the
plaquette (field) quantum numbers on the zeroth and the
(Ns þ 1)th columns are zero; thus, the total charge in
the system is zero. In the time continuum limit [24,58], we
obtain the Hamiltonian in the charge representation

ĤC ¼ U
2

X
1≤j;k≤Ns

cjkŜ
z
jŜ

z
k þ

Y
2

XNsþ1

i¼1

�
Ŝzi
�
2

−
X
2

XNs

i¼1

�
Ûþ

i Û
−
iþ1 þ Û−

i Û
þ
iþ1

�
;
X
i

Szi ¼ 0; ðA1Þ

where cjk ¼ Ns þ 1 −maxfj; kg. The eigenvalues of
the operator Ŝz (Ŝzjni ¼ njni) are integer charges
n ¼ 0;�1;�2;… attached on the vertical links, and the
eigenstates define the basis of the charge representation.
The operator Û� raises (lowers) the charge of a state by
1: Û�jni ¼ jn� 1i. The first term is the self-energy of
the electric field and is obtained by Gauss’s Law.
When the gauge coupling U ¼ 0, the spin-1 truncation
has an infinite-order phase transition from a gapped
phase into a BKT critical line [59]. For nonzero
gauge coupling, Eq. (A1) has unusual long-range inter-
actions; thus, it is difficult to design quantum simulators
for it. Using Gauss’s Law, we can go to the field
representation,

ĤF ¼ U
2

XNs

p¼1

�
L̂z
p

�
2 þ Y

2

XNsþ1

p¼1

�
L̂z
p − L̂z

p−1
�
2

−
X
2

XNs

p¼1

�
Ûþ

p þ Û−
p

�
; ðA2Þ

where the eigenvalues of L̂z are the field quantum
numbers m ¼ 0;�1;�2;… attached to the plaquettes.
There are Ns plaquettes and Nsþ1 links; m0¼mNsþ1 ¼ 0

under 00BC. For open boundary conditions (OBCs), p is
taken from 2 to Ns, and the Hamiltonian contains
multiple charge sectors that have total charge
mNs

−m1. The second term in Eq. (A2) can be expanded,
and then the on-site quadratic term is absorbed into the
first term to produce Eq. (1).
The field representation is identical to the charge

representation without applying a truncation. However,
the two Hamiltonians are quite different for small spin
truncations, jmj; jnj ≤ S. For one plaquette with two links,
the basis in the field representation is j−Si, j−Sþ 1i, …,
jSi. The basis in the charge representation is j−S; Si,
j−Sþ 1; S − 1i, …, jS;−Si. The two Hilbert spaces
observe one-to-one mapping. But for two plaquettes with
three links, the dimensions of the two Hilbert spaces are not

the same—e.g., for S ¼ 1, the basis in the field represen-
tation is j−1;−1i, j−1; 0i, j−1; 1i, j0;−1i, j0; 0i, j0; 1i,
j1;−1i, j1; 0i, and j1; 1i, while the corresponding states
that satisfy Gauss’s law in the charge representation are
j−1; 0; 1i, j−1; 1; 0i, j−1; 2;−1i, j0;−1; 1i, j0; 0; 0i,
j0; 1;−1i, j1;−2; 1i, j1;−1; 0i, and j1; 0;−1i. The two
states j−1; 2;−1i and j1;−2; 1i are truncated in the charge
representation with spin-1 truncation. Generally, for Ns
plaquettes with Ns þ 1 links, if the states jm1; m2;…; mNs

i
with jmp −mpþ1j > S in the field representation have a
large energy gap compared to other states, the effective
low-energy basis is a subset of the basis in the charge
representation with the same spin truncation.
For spin-1 truncation, we can add a high-energy penalty

for states j…;�1;∓1;…i, and then we have a new
Hamiltonian,

Ĥ0
F ¼ U

2

XNs

p¼1

�
L̂z
p

�
2 þ Y

2

XNsþ1

p¼1

�
L̂z
p − L̂z

p−1
�
2

−
Y 0

2

XNsþ1

p¼1

L̂z
pL̂

z
p−1
�
L̂z
p − L̂z

p−1
�
2 −

X
2

XNs

p¼1

�
Ûþ

p þ Û−
p

�

¼
�
U
2
þ Y

�XNs

p¼1

�
L̂z
p

�
2 − ðY þ Y 0Þ

XNsþ1

p¼1

L̂z
pL̂

z
p−1

þ Y 0 XNsþ1

p¼1

�
L̂z
p

�
2
�
L̂z
p−1
�
2 −

X
2

XNs

p¼1

�
Ûþ

p þ Û−
p

�
; ðA3Þ

where the Y 0 term is only nonzero for states like
j…;�1;∓1;…i. For OBC, the coefficients of ðL̂z

pÞ2 at
p ¼ 1; Ns are U=2þ Y=2 instead of U=2þ Y. By setting
Y 0 ≫ 1, the states like j…;�1;∓1;…i in the field
representation that have no counterpart in the charge
representation will be suppressed. When Ns ¼ 2, the two
representations have the same Hilbert space if states
j�1;∓1i are suppressed. The energy gaps for the two
representations should be the same in the large-Y 0 limit.
For Ns ¼ 2, U ¼ 0, Y ¼ X ¼ 1, the energy gap for ĤC is
ΔE ¼ 1, while ΔE ≈ 1.44 for ĤF. If we set Y 0 ¼ 1000,
then ΔE ¼ 1.00008 for Ĥ0

F. For Ns ≥ 3, the Hilbert
space for the field representation in the large-Y 0 limit
is a subset of that for the charge representation, and the
energy gap cannot be equal. But the energy gap in the
field representation can be closer to that in the charge
representation for large Y 0. For example, with Ns ¼ 10,
U ¼ 0, Y ¼ X ¼ 1, Y 0 ¼ 1000, the energy gaps for ĤC,
ĤF, and Ĥ0

F are 0.357, 0.605, and 0.532, respectively.
Since the states in the charge representation like

j…; 111;…i have no correspondence in the basis of the
field representation, the field representation with spin-1
truncation has no infinite-order phase transition that exists
in the charge representation with spin-1 truncation even if
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Y 0 ≫ 1 and the j…;�1;∓1;…i state are suppressed.
When S increases to ∞ in the spin-S truncation, the
difference between the spectrum of Eq. (A1) and that of
Eq. (A2) diminishes to zero [27,58]. For finite S, adding a
high-energy penalty like the Y 0 term in the spin-1 truncation
to suppress unwanted states can increase the precision of
quantum simulation proposals using the field representa-
tion. The spin-1 truncated model considered here can have
other interesting critical properties, and we are interested in
the quantum simulation of Eq. (A3) using Rydberg ladders.
Our discussion in the main text reveals that the effective
spin-1 Hamiltonian for the two- or three-leg Rydberg
ladder in Eq. (22) has exactly the same form as Ĥ0

F in
Eq. (A3), with D ¼ U=2þ Y, R ¼ Y þ Y 0, R0 ¼ Y 0,
and J ¼ X=2.
We have discussed the matching between the target

model in Eq. (1) and the effective Hamiltonian for the two-
leg Rydberg ladder in Eq. (11). If we match Eq. (A3) with
Eq. (11), Y should be negative, because 0 < R < R0 in
Eq. (11), while Y is positive in the original Hamiltonian
formulation of sQED. By matching the effective
Hamiltonian for the three-leg Rydberg ladder in Eq. (19)
to the target model Eq. (1), Ĥeff

3LR ¼ ĤCAHM þ Const:Î
(where Const: is a constant), we have the following
equations:

D ¼ Δ0 þ Ω2ðB − AÞ=4þ 2ðV2 − V1Þ;
Y ¼ R ¼ ðV1 − V3Þ=2;
X ¼ 2J ¼ Ω2Γ=2;

R0 ¼ ð3V1 þ V3Þ=2 − 2V2 ¼ 0; ðA4Þ

and Const: ¼ −ðΔþ Δ0ÞNs − NsΩ2B=4þ V1ðNs − 1Þ.
Notice that the coupling of ðL̂z

i Þ2 on the boundary is
different from that in the bulk, which can be remedied
by tuning the local detuning on boundary sites. The
problem here is that 4V2 ¼ 3V1 þ V3 cannot be satisfied
for any aspect ratio, but R=R0 is a monotonically increasing
function of ax=ay and R=R0 > 1 for ax=ay > 2.25. We can
tune the aspect ratio such that the effect of the quartic term
is small. Since R=R0 > 1 is realizable, Ĥeff

3LR in Eq. (19) can
be matched to Ĥ0

F in Eq. (A3). One can see that the three-
leg Rydberg ladder is a more programmable quantum
simulator for spin-1 models. Although the spin-1 sector
is not the lowest band in real Rydberg systems, one can first
prepare a product state like j…; 0; 0; 0;…i in the spin-
1 sector, and then adiabatically prepare the lowest-energy
state for a certain parameter regime in the energy band of
the spin-1 sector.
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