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While neutrino oscillations have led to attention and research on field mixing arising from quadratic
interactions, the field mixing inherent in clothed particles is more fundamental, serving as a significant
source of complexity and nonperturbative challenges in quantum field theory. We present an example of an
analytical solution for field mixing involving a three-point interaction between a bosonic field and a
fermionic field. Specifically, we study the Rothe-Stamatescu (RS) model and utilize lattice regularization to
provide a well-defined Hamiltonian that is absent in the original continuous RS model. Because of the
complexity introduced by three-point interactions compared to quadratic interactions, the Fock repre-
sentation commonly used in discussions of field mixing does not work well; instead, we define a
representation based on real space to investigate the physical vacuum and clothed particles. These
eigenstates not only reveal the field mixing between the bosonic and fermionic fields but also allow us to
directly observe the spatial entanglement structure.
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I. INTRODUCTION

Traditional perturbative quantum field theory fails in
nonperturbative regimes. To address this issue, lattice
quantum field theories have been proposed as a means to
regulate quantum field theory before encountering any
ill-defined formal calculations. These theories have well-
defined path integrals or Hamiltonians [1–10]. While
correlation functions in the path integral formulation of a
lattice theory can be numerically computed using com-
puters, the calculations are performed in Euclidean spaces
after aWick rotation. This choice limits our ability to directly
observe real-time dynamics, such as time-dependent proc-
esses like string breaking phenomena, and also introduces
challenges associated with the sign problem [10–12]. The
Hamiltonian formulation of a lattice theory, on the other
hand, provides a well-defined Hamiltonian and allows for
explicit discussions about quantum states, entanglement
structure, and time evolution [8,9,13]. In addition,
Hamiltonian simulations of relativistic lattice field theories,
based on the tool of Hamiltonian lattice field theory, have
recently garnered significant attention [14].

When it comes to studying the Hamiltonian formulation
of a theory, we immediately encounter two major issues.
The first is defining the quantumversion of theHamiltonian,
and the second is finding the eigenstates (and eigenvalues) of
the Hamiltonian. Because of the complexity of dealing
directly with the full 3þ 1-dimensional Standard Model,
researchers often first consider simpler models in lower
dimensions, such as the Schwinger model. The Schwinger
model, which is QED in 1þ 1 dimensions, was initially
proposed bySchwinger in 1962 [15]. Subsequently, in 1971,
Lowenstein and Swieca defined and solved the equations
of motion for the Schwinger model [16]. Following this
development, the Hamiltonian version of the Schwinger
model emerged [17–20]. The energy spectrum and eigen-
states of the quantum Hamiltonian were also determined,
enabling in-depth exploration of the nonperturbative
effects. These studies often utilized techniques such as
heat kernel regularization or ζ-function regularization.
On the other hand, lattice regularization was employed
to construct the Hamiltonian of the lattice Schwinger
model [21–24]. Recently, it became popular to employ
lattice regularization based on Kogut-Susskind staggered
fermions [2,3,21] to explore aspects such as the structure
of the vacuum state, quark confinement, energy spectra,
entanglement structure, gauge symmetries, topology, and
real-time dynamics [13,25–36].
However, in the Schwinger model, electromagnetic

waves are absent due to Gauss’s law, leaving only a
fermion field. As for the quadratic interaction between
two fields, it has been thoroughly investigated in studies
related to neutrino oscillations. Considering two different
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flavor neutrinos, νe and νμ, the Lagrangian for fermion
mixing [37] is given by

Lf ¼ ν̄eðiγα∂α −meÞνe þ ν̄μðiγα∂α −mμÞνμ
−meμðν̄eνμ þ ν̄μνeÞ:

Because of the interaction term LI ¼ −meμðν̄eνμ þ ν̄μνeÞ,
the creation operator corresponding to an individual flavor
field cannot annihilate the vacuum, nor can it generate the
eigenstates of the Hamiltonian from the vacuum. The
creation and annihilation operators for mass eigenstates
are a combination of the original flavor creation and
annihilation operators. In addition to fermion mixing,
boson mixing has also been studied [38]. The
Lagrangian for boson mixing is given by

Lb ¼ L0;α þ L0;β − λðϕ†
αϕβ þ ϕ†

βϕαÞ;

where L0;αðβÞ represents the free Lagrangian for the bosonic
fields, and the interaction term LI ¼ −λðϕ†

αϕβ þ ϕ†
βϕαÞ

leads to mixing of the bosonic fields. The nonperturbative
vacuum states, nonperturbative effects due to field mixing,
and the entanglement resulting from field mixing have all
been extensively researched and discussed in the context of
both fermion and boson mixing [39–47].
It is worth noting that the previously mentioned LI and

LI are simple quadratic interactions involving fields of the
same type. However, in general cases, interactions can be
of higher order and can involve the coupling between
fermionic and bosonic fields, which leads to more com-
plex field mixing. Pauli and Fierz introduced a trans-
formation to the fundamental equations of nonrelativistic
QED [where the bare electron is described by
1
2m ðp − e

cAÞ2], effectively replacing the electron with its
own field plus the electron itself [48]. This transformed
entity came to be known as the “dressed electron.”
Ref. [49] describes how the concept of the dressed
electron inspired the birth of renormalization and its
significant implications for condensed matter physics.
With the development of quantum field theory, a concept
similar to the dressed electron emerged in relativistic
QED known as a “dressed state,” which describes a
charged particle dressed with an infrared “cloud of soft
photons” [50–53]. In QED, the interaction does not fall off
asymptotically, which requires choosing dressed states
involving the mixing of bosonic and fermionic fields as
in and out states for the S matrices, ensuring the absence of
infrared divergences. Additionally, a concept similar to
the dressed state is the “clothed particle.” In quantum
field theory, a one-particle state is an eigenstate of the
Hamiltonian, and it is referred to as a clothed particle to
distinguish it from a bare particle [54–56]. The concept of
clothed particles demonstrates a more general and funda-
mental field mixing, which can reflect the process of

renormalization nonperturbatively. Because of the interac-
tion between the fermionic field and bosonic field in
the Hamiltonian, the excitation of the one-fermion state
involves both the fermionic field and the bosonic
field, rather than just the fermionic field alone. The same
applies to a one-boson state. Furthermore, the physical
vacuum encompasses entanglement between various inter-
acting fields.
For the previously discussed case of quadratic inter-

actions (LI and LI), there is a significant difference
between the physical vacuum and the bare vacuum, and
the unitary inequivalence of the Fock space of base
(unmixed) eigenstates and the physical mixed eigenstates
has been demonstrated. The specific structure of the
physical vacuum for quadratic interactions has been
precisely determined, and the condensate structure of
the physical vacuum can lead to nonperturbative effects.
For example, approximating the physical vacuum as the
bare vacuum results in different neutrino oscillation
formulas compared to nonperturbative oscillation formu-
las. As for the three-point interactions, which are more
general interactions, Ref. [54] solves the Hamiltonians of
three solvable models to discuss issues related to clothed
particles. However, in these models, the free part of the
fermionic field is oversimplified to H0 ¼ m

R
dpb†pbp

instead of the relativistic form H0 ¼
R
dpEpb

†
pbp. These

models are nonrelativistic, and due to the absence of
pair effects, the bare vacuum is equivalent to the physical
vacuum, and bare bosons are equivalent to clothed bosons.
Reference [53] discusses dressed states in a Hamiltonian
formulation, where the fermionic field is described by

the nonrelativistic expression H0 ¼
R
dp p2

2m b
†
pbp, and the

bare vacuum is equivalent to the physical vacuum.
Therefore, the model we aim to study is the Hamiltonian
formulation of a relativistic theory involving a three-
point interaction between bosonic and fermionic fields,
where the physical vacuum and clothed particles can be
solved in a nonperturbative manner to reveal the mixing
structure of bosonic and fermionic fields within the
eigenstates.
In this paper, we choose the Rothe-Stamatescu (RS)

model to investigate its eigenstates, explicitly demonstrat-
ing the mixing of fermionic and bosonic fields. The RS
model is a solvable (1þ 1)-dimensional model introduced
by Rothe and Stamatescu [57]. In the original variables of
the RS model, there is a bosonic field ϕ0 with mass m0 and
a massless fermionic field Ψ0 that interact through the term
ΔL ¼ −g0∂uϕ0Ψ̄0γ

5γμΨ0 in the Lagrangian. At first
glance, it appears that there is a three-point “interaction”
vertex in the Lagrangian. However, it is important to
emphasize that this interaction is, in fact, spurious and
falls within the Borchers class of the free field [58], as it can
be eliminated through a field redefinition. This field
redefinition will be illustrated in subsequent discussions.
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For convenience, we will continue to refer to this three-
point vertex as an interaction, but it should be kept in mind
that it is spurious. Rothe and Stamatescu regularized the
equations of motion for the RS model and obtained
the correlation functions. Later, Ref. [59] propose the
possibility of describing the RS model using a
Hamiltonian framework. However, it only provides a
classical Hamiltonian without the ability to demonstrate
the renormalization process and compute energy eigenval-
ues or eigenstates. As mentioned earlier, it is currently
popular to use lattice regularization with Kogut-Susskind
staggered fermions to construct the Hamiltonian formu-
lation of the Schwinger model [25,26,28–34], which can
reveal the real space structure of quantum states and avoid
the fermion doubling problem (in 1þ 1 dimensions).
Therefore, we adopt the same regularization method to
deal with the RS model. We provide the Hamiltonian of
the lattice RS model with staggered fermions, solve the
operator equations of motion for the Hamiltonian, and
compare them with the original RS model. We also derive
the correlation functions and demonstrate that the corre-
lation functions of the lattice RS model can recover those
of the original RS model in the continuum limit. This
confirms that the lattice RS model presented in this paper
is indeed equivalent to the original RS model in the
continuum limit. Since we are dealing with a relativistic
theory with a three-point interaction, using the traditional
Fock representation would make the representation of
quantum states excessively complex, obscuring the struc-
ture of the quantum states. Therefore, we introduce a
representation based on real space to represent the
physical vacuum and clothed particles. This representation
not only directly reveals how the bosonic field degrees of
freedom mix with the fermionic field degrees of freedom
but also illustrates the spatial entanglement structure.
This paper is organized as follows. In Sec. II, we

provide a brief introduction to the original RS model and
some fundamental results related to it using our notation
system. In Sec. III, we present the Hamiltonian of the
lattice RS model. In Sec. IV, we employ new field
variables to decouple the bosonic and fermionic parts
of the lattice Hamiltonian. We then derive the eigenstates
of the bosonic part in a representation expanded by the
eigenstates of new field operator, while the eigenstates of
the fermionic part are expressed in a specially defined
representation. In Sec. V, we derive the correlation
functions for the lattice RS theory and define renormalized
fields, masses, and coupling constants. Notably, the field-
strength renormalization constant of the fermionic field
tends to zero in the continuum limit. We also show that the
lattice correlation functions approach those of the original
RS model in the continuum limit. In Sec. VI, we introduce
a representation corresponding to the original field vari-
ables and express the physical vacuum and clothed
particles in this representation. This not only reveals the

entanglement between the bosonic and fermionic compo-
nents of these eigenstates but also allows us to directly
observe the spatial entanglement structure of quantum
states. In Appendix A, we derive the equations of motion
for the bosonic field in the lattice RS model and compare
them with those of the original RS model. Similarly, in
Appendix B, we derive the equations of motion for the
fermionic field in the lattice RS model and compare them
to the original RS model. Section VII concludes the paper
with a summary and some discussions, along with an
outlook on this work.

II. A BRIEF REVIEW OF THE RS MODEL

In this section, we offer a concise overview of the
RS model, as proposed in the work by Rothe and
Stamatescu [57]. We will refer to this continuous RS
model as the “original RS model” in the following to
distinguish it from the lattice RS model introduced later.
We present the main results using our notation system,
and for more detailed derivations and conclusions, please
refer to Ref. [57].
The Lagrangian of the RS model can be written as

L¼ iΨ̄0γ
μ
∂μΨ0þ

1

2
∂μϕ0∂

μϕ0−
1

2
m2

0ϕ
2
0−g0Ψ̄0γ

5γμΨ0∂μϕ0:

ð1Þ

In the given expression, ϕ0 stands for the bare bosonic
field, characterized by its bare mass denoted as m0. The
bare fermionic field is identified as Ψ0, while the bare
coupling between the bosonic and fermionic fields is
represented by g0. Additionally, the γ matrices used here
are taken as

γ0 ¼ γ0 ¼
�
0 1

1 0

�
; γ1 ¼ −γ1 ¼

�
0 −1
1 0

�
;

γ5 ¼ γ0γ1 ¼
�
1 0

0 −1

�
: ð2Þ

It is imperative to emphasize that the Lagrangian (1) is
only a formal representation, the precise formulation of the
theory necessitates a suitable regularization. Later on, we
will perform regularization at the level of Hamiltonian,
while the regularization is carried out at the level of
equations of motion in the original RS model [57]. The
regularized equation of motion governing the bosonic field
is expressed as

ð∂μ∂μ þm2
0Þϕ0ðxÞ ¼ g0∂μlim

ϵ→0

�
Ψ̄0ðxþ ϵÞγ5γμΨ0ðxÞ

−
g0
π
ϵμλϵνρ

ϵλϵρ
ϵ2

∂νϕ0ðxÞ
�
; ð3Þ
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where ϵμ is a spacelike vector satisfying ϵ2 < 0 and ϵμν is
the Levi-Civita tensor in 2D. The regularized fermionic
field equation of motion can be written as

iγμ∂μΨrðxÞ¼ grlim
ϵ→0

γ5
�
γμΨrðxÞ∂μϕrðx− ϵÞ− i

gr
2π

=ϵ
ϵ2
ΨrðxÞ

�
;

ð4Þ

where we introduce the renormalized fermionic field Ψr,
the renormalized bosonic field ϕr, and the renormalized
coupling constant gr, which are connected to the bare
parameters as follows:

ϕr ¼
�
1 −

g20
π

�1
2

ϕ0; ð5Þ

ΨrðxÞ ¼ lim
ϵ→0

exp

�
1

2
g20hΩjϕ0ðϵÞϕ0ð0ÞjΩi

�
Ψ0ðxÞ; ð6Þ

gr ¼
�
1 −

g20
π

�
−1
2

g0: ð7Þ

The regularized equations of motion (3) and (4) establish
the precise framework for the RS model. Through the
utilization of (3) and (4), we gain the ability to compute
various observables, including the correlation functions.
The two-point correlation function for the bosonic field is
expressed as

hΩjTfϕrðx1; t1Þϕrðx2; t2ÞgjΩi

¼
Z

dqdωq
i

ω2
q−q2−m2

r þ iϵ
e−iωqðt1−t2Þþiðx1−x2Þq; ð8Þ

where we introduce the renormalized mass parameter as
mr ¼ ð1 − g20=πÞ−1=2m0. The two-point correlation for the
fermionic field can be formulated as

hΩjΨrðxÞΨ̄rðyÞjΩi ¼ −
i
2π

γμðx − yÞμ
ðx − yÞ2

× exp ðg2rhΩjϕrðxÞϕrðyÞjΩiÞ: ð9Þ

It is crucial to highlight that, for the sake of simplicity and
without sacrificing generality, we have assumed a particular
time order x0 > y0. Consequently, we have omitted the time
order operator T in this context. Turning to the interaction,
the three-point correlation function can be expressed as
follows:

hΩjϕrðxÞΨrðyÞΨ̄rð0ÞjΩi ¼ igrγ5hΩjΨrðyÞΨ̄rð0ÞjΩi
×
�hΩjϕrðxÞϕrðyÞjΩi

− hΩjϕrðxÞϕrð0ÞjΩi
	
: ð10Þ

Once again, we omit the time-ordering operator, as we are
focusing on a specific time-ordering sequence where
x0 > y0 > 0. Please note that, for the sake of brevity, we
will represent the operator Â as A. However, if any
ambiguity arises, we will include the operator hat symbol
for clarity.
In the subsequent sections, we adopt lattice regulariza-

tion to construct the Hamiltonian formulation of the RS
model which was originally defined only at the level of
equations of motion.

III. THE LATTICE RS MODEL

In this study, we adopt a real-time lattice approach,
which implies that we refrain from employing Wick
rotation, instead focusing solely on discretizing the spatial
direction. The discrete field operators, denoted as
ϕn; πn;ΨαðnÞ, maintain a relationship with the original
continuous field operators ϕðxÞ; πðxÞ;ΨcαðxÞ as follows:

ϕn ¼
1

a

Z
naþa

2

na−a
2

dxϕðxÞ; πn ¼
Z

naþa
2

na−a
2

dxπðxÞ;

ΨαðnÞ¼
1ffiffiffi
a

p
Z

naþa
2

na−a
2

dxΨcαðxÞ: ð11Þ

Based on the commutation relations of the continuous
fields, we can derive the commutation relations of the
discrete fields,

½ϕðxÞ; πðyÞ� ¼ iδðx − yÞ ⇒ ½ϕn; πm� ¼ iδn;m:�
ΨcαðxÞ;Ψ†

cβðyÞ
� ¼ δα;βδðx − yÞ ⇒ �

ΨαðnÞ;Ψ†
βðmÞ�

¼ δα;βδn;m:

½ΨαðnÞ;ϕm� ¼ 0; ½ΨαðnÞ; πm� ¼ 0: ð12Þ

It is worth noting that in (1þ 1) dimensions, the fermionic
field has only two components. We label the components
with α ¼ u, d.
We are now ready to present the lattice Hamiltonian for

the RS model,
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H ¼ 1

2

X
n

�
−i
h
ΨuðnÞ þΨuðnþ 1Þ

i†h
Ψuðnþ 1Þ −ΨuðnÞ

i 1
a
þ i

h
ΨdðnÞ þΨdðnþ 1Þ

i†h
Ψdðnþ 1Þ −ΨdðnÞ

i 1
a

�

þ 1

2

X
n

�
i
h
Ψdðnþ 1Þ − ΨdðnÞ

i†h
Ψuðnþ 1Þ −ΨuðnÞ

i 1
a
þ i

h
ΨuðnÞ −Ψuðnþ 1Þ

i†h
Ψdðnþ 1Þ −ΨdðnÞ

i 1
a

�

þ
X
n

a

�
1

2F

�
πn
a

�
2

þ F
2

�
ϕnþ1 − ϕn

a

�
2

þ 1

2
m2ϕ2

n

�

þ
X
n

1

2aF

n
−2g

h
Ψ†

uðnÞΨuðnÞ − Ψ†
dðnÞΨdðnÞ

i
πn þ g2

h
Ψ†

uðnÞΨuðnÞ − Ψ†
dðnÞΨdðnÞ

i
2
o

þ
X
n

1

2a

h
iðeigϕnþ1−igϕn − 1ÞΨ†

uðnþ 1ÞΨuðnÞ þ iðeigϕnþ1−igϕn − 1ÞΨ†
dðnÞΨdðnþ 1Þ þ H:c:

i

þ
X
n

1

2a

h
2iðe−2igϕn − 1ÞΨ†

dðnÞΨuðnÞ þ H:c:

þ iðeigϕnþ1þigϕn − 1ÞΨ†
uðnþ 1ÞΨdðnÞ þ iðeigϕnþigϕnþ1 − 1ÞΨ†

uðnÞΨdðnþ 1Þ þ H:c:
i
− E0; ð13Þ

where H.c. denotes the Hermitian conjugate of all terms in
the same row, and E0 is introduced to ensure that the energy
of the ground state is 0. Furthermore, it will be revealed
later through the analysis of correlation functions that if we
require the continuum limit of the lattice’s bare field ϕn to
be the bare field ϕ0ðxÞ of the original RS model, then the

coefficient F takes the value of F ¼ 1 − g2

π .
We require that space forms a circle, and let this circle

have N lattice points with each lattice point separated by a
distance a. Thus, the total length of the circle is L ¼ Na.
Starting from index 0, we number the lattice points
consecutively, such that lattice point n ¼ 0 and lattice
point n ¼ N correspond to the same point. This is equiv-
alent to imposing periodic boundary conditions. Therefore,
the summation over n is defined to range from n ¼ 0 to
n ¼ N − 1, denoted as

P
n ≡P

N−1
n¼0 . Keeping the lattice

spacing a constant, as the number of lattice points N
approaches infinity, the length of the circle becomes
infinitely large, and the boundary conditions can be
neglected. This returns our model to the lattice field theory
on infinite space. Furthermore, if we let the lattice spacing a
approach zero, the lattice field theory eventually becomes a
continuous field theory. The process of converting a lattice
theory with finite volume (length) into a theory of infinite
volume is referred to as taking the “continuum limit,”
denoted as the limit of lima→0 limN→∞. However, for
convenience, we sometimes refer to lima→0 as the con-
tinuum limit in the subsequent text. It is important to note
that, before taking the limit lima→0, we have already taken
the limit limN→∞, so referring to both lima→0 and
lima→0 limN→∞ as the continuum limit in the following
text will not cause any confusion.
Although the lattice Hamiltonian (13) may appear

complex, it can be shown that, in the continuum limit,
the lattice Hamiltonian transforms into the classical
HamiltonianHcl corresponding to the Lagrangian (1) when

we treat all the field operators of the lattice Hamiltonian
as classical fields and set F ¼ 1; m ¼ m0; g ¼ g0.
Specifically, in the continuum limit, the first two lines of
(13) tend toward Hf ¼ R

dxð−iΨ†
cγ0γ1∂1ΨcÞ, the third line

tends toward Hb ¼
R
dx½1

2
π2 þ 1

2
ð∂1ϕÞ2 þ 1

2
m2ϕ2�, the

fourth line tends toward V1 ¼
R
dx½gJ05π þ 1

2
g2ðJ05Þ2�,

and the remaining lines tend toward V2 ¼
R
dxgJ15∂1ϕ,

where Ψc is the continuous classical fermionic field and
Jμ5 ≡ Ψ̄cγ

5γμΨc. Formally, the naive continuum limit of the
lattice Hamiltonian (13) retrieves the classical Hamiltonian
Hcl ≡Hf þHb þ V1 þ V2 of the classical RS model.
However, it is important to note that the fields in the
Hamiltonian (13) are originally operators, and the original
RS model is a quantum field theory, not a classical field
theory. Therefore, verifying that the continuum limit of the
lattice RS model corresponds to the original RS model
requires further work. In the following sections, we will
demonstrate that the continuum limit of lattice RS model
correlation functions matches the correlation functions of
the original RS model. Additionally, in the Appendixes, we
calculate the equations of motion for the lattice RS model
and compare them with those of the original RS model.
Starting from the lattice Hamiltonian (13), we can derive

the equations of motion for the operators ϕn and ΨðnÞ
based on the Heisenberg equations. Appendix A derives the
continuum limit of the equations of motion for the operator
ϕn and compares them to the equations of motion for the
original RS model (3). In Appendix B, the continuum
limit of the equations of motion for the operator ΨðnÞ is
derived and compared to the equations of motion for the
original RS model (4). A careful analysis reveals that the
behavior exhibited by taking the continuum limit and
subsequently letting the field separation tend to zero in
our lattice theory is consistent with the original RS model.
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For a more detailed derivation and analysis, please refer to
Appendixes A and B.

IV. SOLVING THE LATTICE RS MODEL

In this section,we focus on resolving theHamiltonian (13).
To simplify the Hamiltonian expression, we introduce a new
set of variables,

φn ¼ F
1
2ϕn;

π0n ¼
�
1

F

�1
2�
πn − g



Ψ†

uðnÞΨuðnÞ −Ψ†
dðnÞΨdðnÞ

�	
;

ψðnÞ ¼ e−igγ
5ϕnΨðnÞ: ð14Þ

It can be shown that these new variables still satisfy the
canonical commutation relations,

½φm;π0n� ¼ iδnm; fψuðmÞ;ψ†
uðnÞg¼ δnm;

½ψuðmÞ;π0n� ¼ 0; ½ψuðmÞ;φn� ¼ 0;

fψdðmÞ;ψ†
dðnÞg¼ δnm; ½ψdðmÞ;π0n� ¼ 0;

½ψdðmÞ;φn� ¼ 0; fψuðmÞ;ψdðnÞg¼ 0: ð15Þ

With the aid of these recently introduced variables, we can
now reformulate the Hamiltonian (13) into a more concise
expression,

H¼ 1

2

X
n

�
−i
�
ψuðnÞþψuðnþ1Þ	†�ψuðnþ1Þ−ψuðnÞ

	1
a

þ i
�
ψdðnÞþψdðnþ1Þ	†�ψdðnþ1Þ−ψdðnÞ

	1
a

�

þ1

2

X
n

�
i
�
ψdðnþ1Þ−ψdðnÞÞ

	†�ψuðnþ1Þ−ψuðnÞ
	1
a

þ i
�
ψuðnÞ−ψuðnþ1Þ	†�ψdðnþ1Þ−ψdðnÞ

	1
a

�

þ
X
n

a

�
1

2

�
π0n
a

�
2

þ1

2

�
1

a

�
2

ðφnþ1−φnÞ2

þ1

2
ðF−1

2mÞ2φ2
n

�
−E0: ð16Þ

Clearly, Eq. (16) can be decomposed into two separate
components: H ¼ HB þHF. Here, HB encompasses con-
tributions solely from the bosonic field and its conjugate
momentum, while HF consists of contributions solely from
the fermionic fields ψuðnÞ and ψdðnÞ. In conclusion, as
stated in the Introduction, the vertex in the original
Hamiltonian (13) can be precisely eliminated through
the field redefinition (14), resulting in a free theory
Hamiltonian (16). Therefore, upon mentioning the interac-
tion in the following discussions, it becomes evident that

these interactions are spurious and can be eliminated
using (14).

A. Solving the bosonic part

As previously mentioned, the Hamiltonian has been
divided into two distinct components. We will initially
focus exclusively on the contributions originating fromHB,
which can be specifically expressed as

HB ¼
X
n

a

�
1

2

�
π0n
a

�
2

þ 1

2

�
1

a

�
2

ðφnþ1 − φnÞ2

þ 1

2

�
F−1

2m

�
2

φ2
n

�
− E0B; ð17Þ

where E0B is chosen to ensure the ground state has zero
energy.
For convenience in calculation, we stipulate that N

is an odd number. Similar to the solution in continuous
field theory, we can solve HB using creation and annihi-
lation operators that satisfy the commutation relation
½aq; a†l � ¼ δql,

HB ¼
X
q

�
a†qaq þ

1

2

�
ωq − E0B;

ωq ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

a
sin

aq
2

�
2

þ ðF−1
2mÞ2

s
: ð18Þ

Here, we define E0B as E0B ≡ 1
2

P
q ωq, such that the

ground state energy of HB is zero. The annihilation
operators can be expressed in terms of the field ϕn and
its canonical conjugate π0n as

aq ¼
ffiffiffiffiffiffiffiffiffi
Lωq

2

r
1

N

X
n

�
φn þ

i
aωq

π0n

�
e−inaq: ð19Þ

Considering the imposed periodic boundary condition, all
admissible values for q are determined as follows: q ¼ 2πk

Na ,
where k¼−N−1

2
;−N−1

2
þ1;…;N−1

2
−1;N−1

2
. Consequently,

the summation over q equivalently translates into a sum-
mation over integer k, ranging from k ¼ − N−1

2
to k ¼ N−1

2
,

which is expressed as
P

q ≡PðN−1Þ π
Na

q¼−ðN−1Þ π
Na
¼ PN−1

2

k¼−N−1
2

.

Having successfully diagonalized HB, we can now
proceed to compute the eigenstates associated with this
Hamiltonian. We denote the ground state of HB as jΩiB,
thus aqjΩiB ¼ 0. Then a one-boson state can be repre-
sented as

jqiB ¼ a†qjΩiB: ð20Þ

To illustrate how the bosonic and fermionic fields
interact in the upcoming discussion, we need to employ
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a representation based on real space. For the bosonic part,
we can choose the representation expanded by the eigen-
states of bosonic field operators. The eigenstates of the field
operator ϕ̂n denoted as jϕiB satisfy ϕ̂njϕib ¼ ϕnjϕiB for
any spatial point n. We will subsequently refer to the
representation constructed from these field operator eigen-
states as fjϕiBg. According to Eq. (19), Eq. (14), and the
properties aqjΩiB ¼ 0, we can derive the expressions for
the ground state and one-boson states in the representation
fjϕiBg,

jΩiB ¼ NF
1
2

Z
dϕe−

F
2

P
n;m

Enmϕnϕm jϕiB; ð21Þ

jqiB ¼ NF
ffiffiffiffiffiffiffiffiffiffiffi
2Lωq

q 1

N

×
Z

dϕ
�X

n

einaqϕn

�
e−

F
2

P
n;m

Enmϕnϕm jϕiB; ð22Þ

where

Enm ≡ 1

N

X
q

aωqeiðn−mÞaq;

Z
dϕ≡

Z
dϕ1

Z
dϕ2 � � �

Z
dϕN: ð23Þ

We can also derive the expression for ϕn in terms of
creation and annihilation operators,

ϕnðtÞ ¼ F−1
2φn ¼ F−1

2

X
q

ffiffiffiffiffiffiffiffiffiffiffi
1

2Lωq

s
ða†qeiωqt−inaq

þ aqe−iωqtþinaqÞ ¼ ϕ−
n ðtÞ þ ϕþ

n ðtÞ: ð24Þ

Employing the commutation relation between creation and
annihilation operators, we can compute the commutation
relation between ϕþ

n and ϕ−
n at t ¼ 0,

fðn − n0Þ≡ ½ϕþ
n ;ϕ−

n0 �

¼ F−1
XN−1

2

k¼−N−1
2

1

2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a sin πk

N Þ2 þ ðF−1
2mÞ2

q
× cos

�
ðn − n0Þ 2πk

N

�
: ð25Þ

It is worth noting that fðnÞ exhibits even symmetry in
relation to n: fð−nÞ ¼ fðnÞ. Furthermore, in the con-
tinuum limit, both fð0Þ and fð1Þ tend toward infinity.
However, the disparity between fð0Þ and fð1Þ can remain
finite: lima→0 limN→∞½fð0Þ − fð1Þ� ¼ 1

Fπ.

B. Solving the fermionic part

According to (16), the Hamiltonian for the fermionic
part is

HF¼
1

2

X
n

�
− i

�
ψuðnÞþψuðnþ1Þ	†�ψuðnþ1Þ−ψuðnÞ

	1
a

þ i
�
ψdðnÞþψdðnþ1Þ	†�ψdðnþ1Þ−ψdðnÞ

	1
a

�

þ1

2

X
n

�
i
�
ψdðnþ1Þ−ψdðnÞÞ

	†�ψuðnþ1Þ−ψuðnÞ
	1
a

þ i
�
ψuðnÞ−ψuðnþ1Þ	†�ψdðnþ1Þ−ψdðnÞ

	1
a

�
−E0F; ð26Þ

where E0F is chosen such that the ground state energy is
zero. In fact, HF is equivalent to the Hamiltonian of free
fermionic fields regularized on a lattice using the Kogut-
Susskind staggered fermions [2,3,21]. The formulation of
HF as presented in Eq. (26) adopts the standard represen-
tation for the γ matrices given by (2). However, the lattice
Hamiltonian with staggered fermions proposed by Kogut
and Susskind employs a different representation of the γ
matrices: γ00 ¼ Rγ0R†; γ01 ¼ Rγ1R†; γ05 ¼ γ00γ01, where the
transformation matrix R is

R ¼ 1ffiffiffi
2

p
�

1 1

−1 1

�
: ð27Þ

In the γ0 representation, we denote the fermionic field
operators corresponding to ψu and ψd as ψ 0

u and ψ 0
d. Their

relationship with the original field operators ψu and ψd can
be expressed as follows:

ψ 0
uðnÞ ¼

1ffiffiffi
2

p �
ψuðnÞ þ ψdðnÞ

	
;

ψ 0
dðnÞ ¼

1ffiffiffi
2

p �
−ψuðnÞ þ ψdðnÞ

	
: ð28Þ

By employing the ψ 0
u and ψ 0

d operators, we can offer a more
concise representation of the fermionic component of the
Hamiltonian,

HF ¼
X
n

�
iψ 0†

uðnÞ
�
ψ 0
dðnþ1Þ−ψ 0

dðnÞ
	1
a

þ iψ 0†
dðnþ1Þ�ψ 0

uðnþ1Þ−ψ 0
uðnÞ

	1
a

�
−E0F: ð29Þ

This is precisely the lattice Hamiltonian with stag-
gered fermions formulated by Kogut and Susskind.
They employed the Jordan-Wigner transformation to
rewrite the Hamiltonian (29) into the Hamiltonian of a
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one-dimensional quantum antiferromagnetic spin chain.
Our approach differs from theirs in that we do not rewrite
the Hamiltonian (29), but instead directly solve the
equations of motion from (29). Then we can express
the solutions in terms of creation and annihilation oper-
ators that satisfy the anticommutation relations fdq; d†l g ¼
δql and fbq; b†l g ¼ δql,

ψ 0
uðn; tÞ ¼

X
q≠0

1ffiffiffiffiffiffiffi
2N

p �
dqe−iEqtþiðnþ1

2
Þaq

þ sgnðqÞb†qeiEqt−iðnþ1
2
Þaq	þ 1ffiffiffiffi

N
p d0; ð30Þ

ψ 0
dðn;tÞ¼

X
q≠0

1ffiffiffiffiffiffiffi
2N

p �
−sgnðqÞdqe−iEqtþinaq−b†qeiEqt−inaq

	

−
1ffiffiffiffi
N

p b†0; ð31Þ

where Eq ≡ j 2a sin aq
2
j and sgnðqÞ is the sign function.

By employing Eqs. (30) and (31), we can reformulate the
Hamiltonian (26) using the creation and annihilation
operators with E0F ≡ −

P
q≠0

2
a j sin ða2 qÞj,

HF ¼
X
q≠0

Eqðd†qdq þ b†qbqÞ: ð32Þ

Then we can employ the diagonalized Hamiltonian (32) to
determine the ground state jΩiF that is annihilated by bq
and dq for all q: bqjΩiF ¼ dqjΩiF ¼ 0. Now, we are going
to introduce a representation for the fermion. First, define a
quantum state j0iF as follows:

j0iF ≡Y
q

b†−qjΩiF: ð33Þ

It is straightforward to demonstrate the normalization of
j0iF: Fh0j0iF ¼ FhΩj

Q
q0 bq0

Q
q b

†
−qjΩiF ¼ 1. Based on

the properties b†qb
†
q ¼ 0 and dqjΩiF ¼ 0, we can infer that

j0iF possesses the following crucial attributes:

ψ 0
uðn;tÞj0iF ¼ 0; ψ 0

dðn;tÞj0iF ¼ 0: ð34Þ
Next, we act on j0iF with any number of fermionic fields
ψ 0†ðnÞ to generate a sequence of quantum states

ψ 0†
α1ðn1Þψ 0†

α2ðn2Þψ 0†
α3ðn3Þ � � �ψ 0†

αsðnsÞj0iF; ð35Þ

where

s¼ 1;2;…;N; αi¼ u;d; ni ≠ nj; ∀ αi ¼ αj:

According to Eq. (34) and the commutation relations, it is
easy to prove that the quantum states (35) are orthogonal
and normalized.

It is worth noting that the expression ψ 0†
α1ðn1Þ×

ψ 0†
α2ðn2Þψ 0†

α3ðn3Þ � � �ψ 0†
αsðnsÞj0iF exhibits similarities with

the traditional Fock space basis B†
α1ðq1ÞB†

α2ðq2ÞB†
α3ðq3Þ � � �

B†
αsðqsÞjΩiF, where B1ðqÞ ¼ bq; B2ðqÞ ¼ dq. However,

while momentum labels the creation operators in the
Fock space, our “creation” operators ψ 0†

αðnÞ are labeled
by spatial coordinates. Here, we define a new representa-
tion by utilizing the set of quantum states (35) as our basis
and denote this representation as fQψ 0†j0iFg. Our sub-
sequent calculations will be built upon this representation.
Next, let us derive the representation of the ground state

in the representation fQψ 0†j0iFg. According to the def-
inition of j0iF in Eq. (33) and the commutation relation
fbq; b†l g ¼ δql, we can express the ground state as

jΩiF ¼
Y
q

bqj0iF: ð36Þ

Combining Eqs. (30) and (31), we can express the creation
and annihilation operators in terms of the field operators ψ 0

u
and ψ 0

d,

dq¼ e−i
1
2
aq 1ffiffiffiffiffiffiffi

2N
p

X
n

e−ianqψ 0
uðnÞ

− sgnðqÞ 1ffiffiffiffiffiffiffi
2N

p
X
n

e−ianqψ 0
dðnÞ;

d0¼
1ffiffiffiffi
N

p
X
n

ψ 0
uðnÞ; ð37Þ

bq ¼ sgnðqÞe−i12aq 1ffiffiffiffiffiffiffi
2N

p
X
n

e−ianqψ 0†
uðnÞ

−
1ffiffiffiffiffiffiffi
2N

p
X
n

e−ianqψ 0†
dðnÞ;

b0 ¼ −
1ffiffiffiffi
N

p
X
n

ψ 0†
dðnÞ: ð38Þ

By substituting (38) into (36), we can express jΩiF using
the basis (35),

jΩiF ¼
ffiffiffi
2

p YN−1
2

k¼−N−1
2

1ffiffiffiffiffiffiffi
2N

p
�
sgnðkÞe−i122πkN

X
n

e−in
2πk
N ψ 0†

uðnÞ

−
X
n

e−in
2πk
N ψ 0†

dðnÞ
�
j0iF: ð39Þ

The creation operators for fermions and antifermions are
d†q and b†q, respectively. The quantum state of a single
fermion is denoted as jq;þiF, while the quantum state of a
single antifermion is denoted as jq;−iF. We can express
jq;þiF and jq;−iF (where q ≠ 0) in the representation
fQψ 0†j0iFg as follows:
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jq;þiF ¼ 1ffiffiffiffi
N

p
�
ei

1
2
2πk
N

X
n

ein
2πk
N ψ 0†

uðnÞ

− sgnðkÞ
X
n

ein
2πk
N ψ 0†

dðnÞ
�

×
YN−1

2

k0¼−N−1
2

1ffiffiffiffiffiffiffi
2N

p
�
sgnðk0Þe−i122πk0N

X
n

e−in
2πk0
N ψ 0†

uðnÞ

−
X
n

e−in
2πk0
N ψ 0†

dðnÞ
�
j0iF; ð40Þ

jq;−iF ¼
ffiffiffi
2

p YN−1
2
;k0≠k

k0¼−N−1
2

1ffiffiffiffiffiffiffi
2N

p
�
sgnðk0Þe−i122πk0N

X
n

e−in
2πk0
N ψ 0†

uðnÞ

−
X
n

e−in
2πk0
N ψ 0†

dðnÞ
�
j0iF; ð41Þ

where k ¼ N
2π q. It is worth noting that, in Eq. (41), we omit

the potential negative sign, as quantum states that differ by
a negative sign still describe the same physical system, and
quantum states remain normalized.

V. THE CORRELATION FUNCTIONS
AND RENORMALIZATION

As demonstrated in Eq. (16), the Hamiltonian can be
divided into two distinct components: H ¼ HB þHF.
Notably, these components are entirely uncoupled, indicat-
ing that the vacuum state for the complete Hamiltonian (13)
can be factored into a direct product of the ground state for
the bosonic part and the ground state for the fermionic part:
jΩi ¼ jΩiFjΩiB. Therefore, by utilizing the solution of the
complete equation of motion for the bosonic field (24), we
are ready to compute the two-point correlation function for
the bosonic field:

hΩjϕnðt1Þϕmðt2ÞjΩi¼F−1
X
q

1

2Lωq
e−iωqðt1−t2Þþiðn−mÞaq;

ð42Þ

where ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a sin aq

2
Þ2 þ ðF−1

2mÞ2
q

.

Since q ¼ 2πk
Na , where k ¼ − N−1

2
;− N−1

2
þ 1;− N−1

2
þ

2;…; N−1
2

− 1; N−1
2
, the difference between neighboring q

values is Δq ¼ 2π
Na ¼ 2π

L . Consequently, we can express
Eq. (42) in the following form:

hΩjϕnðt1Þϕmðt2ÞjΩi¼F−1
X
q

Δq
1

4πωq
e−iωqðt1−t2Þþiðn−mÞaq:

ð43Þ

To explore the continuum limit, our initial step involves
keeping the lattice spacing a constant while letting N
tend to infinity. As a result, Δq tends to zero, which implies
that q becomes continuous. Consequently, the summation
over q in Eq. (43) can be replaced by an integral with
respect to q,

lim
N→∞

hΩjϕnðt1Þϕmðt2ÞjΩi

¼ F−1
Z π

a

−π
a

dq
1

4πωq
e−iωqðt1−t2Þþiðn−mÞaq: ð44Þ

In the continuum limit, the relationship between the
continuous bosonic field operator ϕðx; tÞ and the discrete
field operator ϕn is given by ϕnðtÞ ¼ ϕðx; tÞjx¼na.
Considering two spatial coordinates x1 ¼ na and
x2 ¼ ma, with x1 and x2 fixed, the expression for the
continuous two-point correlation function in the limit
where the lattice spacing a tends to zero is

hΩjϕðx1; t1Þϕðx2; t2ÞjΩi
¼ lim

a→0
lim
N→∞

hΩjϕnðt1Þϕmðt2ÞjΩi

¼ lim
a→0

F−1
Z π

a

−π
a

dq
1

4πωq
e−iωqðt1−t2Þþiðx1−x2Þq: ð45Þ

In order to arrive at a more explicit form, we can introduce a
deformation to the integral. To start, we separate the
integral in Eq. (45) into two distinct parts,Z π

a

−π
a

dq
1

ωq
e−iωqðt1−t2Þþiðx1−x2Þq

¼ lim
ϵ→0

Z π
a

0

dq
1

ωq
e−iωqðt1−t2Þþiðx1−x2Þq−ϵq

þ lim
ϵ→0

Z
0

−π
a

dq
1

ωq
e−iωqðt1−t2Þþiðx1−x2Þqþϵq: ð46Þ

In Eq. (46), we have introduced an ϵ suppression, which is a
common technique in standard field theory. Additionally,
we will make a reasonable assumption that, for the
complete integral expression, the limits limϵ→0 and
lima→0 can be interchanged. In Eq. (46), the last two
integrals have identical structures, so we only need to focus
on the first integral. Taking the limit a → 0, we split it into
two new integrals,

lim
a→0

Z π
a

0

dq
1

ωq
e−iωqðt1−t2Þþiðx1−x2Þq−ϵq

¼ lim
a→0

Z πffiffi
a

p

0

dq
1

ωq
e−iωqðt1−t2Þþiðx1−x2Þq−ϵq

þ lim
a→0

Z π
a

πffiffi
a

p
dq

1

ωq
e−iωqðt1−t2Þþiðx1−x2Þq−ϵq: ð47Þ
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Based on the expression for ωq, it is easy to show that, for
sufficiently small a (implying that q > π=

ffiffiffi
a

p
is large), we

have ωq > 1. Hence, the last integral in Eq. (47) satisfies
the following inequality:

����lima→0

Z π
a

πffiffi
a

p
dq

1

ωq
e−iωqðt1−t2Þþiðx1−x2Þq−ϵq

����
≤ lim

a→0

Z π
a

πffiffi
a

p
dq

1

ωq

����e−iωqðt1−t2Þþiðx1−x2Þq
����e−ϵq

≤ lim
a→0

Z π
a

πffiffi
a

p
dq e−ϵq ¼ lim

a→0

e−ϵ
π
a − e−ϵ

πffiffi
a

p

−ϵ
¼ 0; ð48Þ

which indicates that the last integral in Eq. (47) becomes
negligible. Therefore, by substituting the dispersion rela-
tion for ωq, Eq. (47) can be expressed as

lim
a→0

Z π
a

0

dq
1

ωq
e−iωqðt1−t2Þþiðx1−x2Þq−ϵq

¼
Z

∞

0

dq
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ðF−1
2mÞ2

q
× e−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þðF−1

2mÞ2
p

ðt1−t2Þþiðx1−x2Þq−ϵq: ð49Þ

We can apply the same method to analyze the continuum
limit of the last integral in (46). Therefore, according to
(49), (46), and (45), we can derive the continuum limit of
the two-point correlation functions for the bosonic field,

hΩjϕðx1; t1Þϕðx2; t2ÞjΩi
¼ lim

a→0
lim
N→∞

hΩjϕnðt1Þϕmðt2ÞjΩi

¼ F−1
Z

∞

−∞
dq

1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðF−1

2mÞ2
q

× e−iðt1−t2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þðF−1

2mÞ2
p

þiðx1−x2Þq: ð50Þ

Now, introducing the renormalized bosonic field ϕr ≡ F
1
2ϕ

and the renormalized mass mr ≡ F−1
2m, the continuum

limit of the lattice correlation function (50) recovers the
two-point correlation function of the original RS model (8).
Considering the relationship between Ψ and ψ as given

in Eq. (14), hΩjΨðn; t1ÞΨ̄ðm; t2ÞjΩi can be expressed in
terms of ψ . For example, one component of the fermionic
two-point correlation function can be written as

hΩjΨdðn;t1ÞΨ̄uðm;t2ÞjΩi¼ e−g
2fð0Þeg2hΩjϕnðt1Þϕmðt2ÞjΩi

× hΩjψdðn;t1Þψ†
dðm;t2ÞjΩi:

ð51Þ

Using Eqs. (30), (31), and (28), we can express the
correlation function of ψ as

hΩjψdðn; t1Þψ†
dðm; t2ÞjΩi

¼ −
1

4N

X
q≠0

sgnðqÞe−iEqðt1−t2Þþiðn−mþ1
2
Þaq

−
1

4N

X
q≠0

sgnðqÞe−iEqðt1−t2Þþiðn−m−1
2
Þaq

þ 1

2N

X
q≠0

e−iEqðt1−t2Þþiðn−mÞaq þ 1

2N
: ð52Þ

Using the techniques for handling the continuum limit
of bosonic correlation functions, we can also obtain the
continuum limit of Eq. (52) (keeping x1 ¼ na and x2 ¼ ma
invariant),

hΩjψcdðx1; t1Þψ†
cdðx2; t2ÞjΩi

¼ lim
a→0

1

a
lim
N→∞

hΩjψdðn; t1Þψ†
dðm; t2ÞjΩi

¼ −
i
2π

1

ðt1 − t2Þ þ ðx1 − x2Þ
; ð53Þ

where the relationship between the discrete field ψðn; tÞ
and the continuous fermionic field ψcðx; tÞ is given
by ψðn; tÞ ¼ ffiffiffi

a
p

ψcðx; tÞjx¼na.
Here we introduce the renormalized fermionic field

Ψðn;tÞR≡e
1
2
g2fð0ÞΨðn;tÞ, then based on Eqs. (51) and (53),

the continuum limit of the renormalized correlation func-
tion hΩjΨdðn; t1ÞRΨ̄uðm; t2ÞRjΩi can be expressed as

hΩjΨrdðx1; t1ÞΨ̄ruðx2; t2ÞjΩi

¼ lim
a→0

1

a
lim
N→∞

hΩjΨdðn; t1ÞRΨ̄uðm; t2ÞRjΩi

¼ −
i
2π

1

ðt1 − t2Þ þ ðx1 − x2Þ
eg

2hΩjϕðx1;t1Þϕðx2;t2ÞjΩi; ð54Þ

where we utilized the relation between the discrete
renormalized fermionic field Ψðn; tÞR and the continuous
renormalized fermionic field Ψrðx; tÞ, which is given
by Ψðn; tÞR ¼ ffiffiffi

a
p

Ψrðx; tÞjx¼na.
Using a similar method, we can calculate the other

components. If we further define the renormalized coupling
constant as gr ≡ F−1

2g and combine it with the definition of
the renormalized bosonic field, ϕr ≡ F

1
2ϕ, then the con-

tinuum limit of the two-point correlation function for the
fermionic field is

hΩjΨrðx1; t1ÞΨ̄rðx2; t2ÞjΩi

¼ −
i
2π

γμxμ

x2
eg

2
rhΩjϕrðx1;t1Þϕrðx2;t2ÞjΩi; ð55Þ
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where xμ ¼ ðx0; x1Þ ¼ ðt1 − t2; x1 − x2Þ. This is indeed the
two-point fermion correlation function (9) in the original
RS model.
It is worth noting that here we have defined gr ≡ F−1

2g to
match the two-point fermion correlation functions on the
lattice with those in the original RS model. However, in
practice, the most accurate definition of the renormalized
coupling constant typically involves the three-point corre-
lation functions corresponding to interaction vertices. So, it
is essential to verify whether gr ≡ F−1

2g also ensures that
the continuum limit of the three-point correlation functions
matches those of the original RS model.
In a similar vein, we can compute all components of

hΩjϕnðt1ÞΨðm; t2ÞΨ̄ð0; 0ÞjΩi and its continuum limit.
Combining the results from all components, we obtain
the continuum limit of the lattice three-point correlation
function corresponding to the interaction vertex as

hΩjϕrðxÞΨrðyÞΨ̄rð0ÞjΩi¼ igrγ5hΩjΨrðyÞΨ̄rð0ÞjΩi
×
�hΩjϕrðxÞϕrðyÞjΩi

− hΩjϕrðxÞϕrð0ÞjΩi
	
: ð56Þ

Equation (56) corresponds precisely to the three-point
correlation function in the original RS model associated
with the interaction vertex, as given in Eq. (10). This also
confirms that the renormalized coupling constant can
indeed be defined as gr ≡ F−1

2g. It is necessary to clarify
that the three-point correlation function does not contradict
our previous discussion, wherein the interaction can be
eliminated by field redefinition. This is because the fields
involved are nonlinear functions of the free fields in
Eq. (14), which are directly related to the particle content
of the theory. Indeed, the same phenomenon would occur if
an arbitrary nonlinear field transformation were applied in
any free field theory.
In this section, we have computed the two- and three-

point correlation functions for the RS model on the lattice.
We discovered that their continuum limit converges to the
correlation functions of the original model after undergoing
renormalization. This observation demonstrates that the
intricate Hamiltonian we constructed in Eq. (13) effectively
reproduces the correct behavior of the RS model in the
continuum limit. It is worth noting that, in both the
continuum limit of lattice theory and the original RS
model, the bosonic field’s correlation functions expressed
in terms of the bare field and bare mass do not diverge (this
is not the case for fermionic field correlation functions).
Therefore, the bare fields ϕ and ϕ0 are well-defined
quantities in both theories. We can directly equate ϕ to
ϕ0, implying that the continuum limit of the lattice theory’s
bare field is equal to the original RS model’s bare field.
Consequently, the connection between the lattice bare
parameters (m, F, g) and the bare parameters of the original
RS model (m0, g0) can be summarized as

F¼ 1−
g20
π
; m¼m0; g¼ g0: ð57Þ

However, in the original RSmodel, the correlation functions
of the bare fermionic field would exhibit divergences, which
can also be observed from the computation of lattice
correlation functions. To be more specific, considering
the definition of the renormalized lattice fermionic field
as Ψðn; tÞR ¼ e

1
2
g2fð0ÞΨðn; tÞ and the expression for fðnÞ in

Eq. (25), it is apparent that the field-strength renormalization
constant Z ¼ e−g

2fð0Þ for the lattice fermionic field tends to
zero in the continuum limit, i.e., lima→0limN→∞Z ¼ 0. To
further summarize the relationship between the lattice RS
model’s renormalization parameters and bare parameters,
we have the following:

gr≡F−1
2g; ϕr≡F

1
2ϕ; ΨðnÞR¼ e

1
2
g2fð0ÞΨðnÞ: ð58Þ

VI. EIGENSTATES AND FIELD MIXING

In this section, our attention is drawn to the vacuum state
and the clothed particles (one-particle states) of the com-
plete Hamiltonian (13). Our objective is to understand how
the Hamiltonian’s original bosonic component and fer-
mionic component combine to give rise to the eigenstates
of the full Hamiltonian. This mixing of the bosonic field
and the fermionic field provides insights into the inter-
actions among the fundamental degrees of freedom, shap-
ing the spectrum of the Hamiltonian and, ultimately, giving
rise to the observable degrees of freedom.
The previously defined representations, namely, fjϕiBg

and fQψ 0†j0iFg, each represent a subspace of the entire
system. The complete system encompasses both the fer-
mionic and bosonic fields, and it can be described as a
composite system. The basis for this composite system can
be formed by taking the direct product of the basis states
from the representation fQψ 0†j0iFg [as given in Eq. (35)]
and the basis states from the representation fjϕiBg,

ψ 0†
α1ðn1Þψ 0†

α2ðn2Þψ 0†
α3ðn3Þ � � �ψ 0†

αsðnsÞj0iFjϕiB; ð59Þ

where

s¼ 1;2;…;N; αi¼ u;d; ni ≠ nj; ∀ αi ¼ αj:

We will denote the representation formed by the basis (59)
as fQψ 0†j0iFjϕiBg.
A representation similar to fQψ 0†j0iFg can also be

defined for the fermionic field Ψ. We define the quantum
state j0i as an eigenstate of the fermionic field Ψ with an
eigenvalue of zero,

ΨuðnÞj0i¼ 0; ΨdðnÞj0i¼ 0: ð60Þ
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Following this, we can apply any number of fermionic field
operators Ψ†ðnÞ to the state j0i, yielding a series of
quantum states

Ψ†
α1ðn1ÞΨ†

α2ðn2ÞΨ†
α3ðn3Þ � � �Ψ†

αsðnsÞj0i: ð61Þ

It can be easily verified that the quantum states (61) are
normalized by the commutation relations between Ψ and
Ψ† as well as the properties (60). Using the states (61) as a
basis, we can define a new representation, denoted as
fQΨ†j0ig. As for the bosonic field ϕ in the original
Hamiltonian (13), a representation similar to fjϕiBg can be
defined. The eigenstates of ϕ, denoted as jϕi, satisfy the
equation

ϕ̂jϕi ¼ ϕjϕi: ð62Þ

The representation constructed using jϕi as a basis is
denoted as fjϕig. It is worth noting that, even though jϕi in
Eq. (62) and jϕiB are both eigenstates of the bosonic field ϕ̂
with an eigenvalue of ϕ, they belong to different sub-
systems, and they are not the same quantum state. The
direct product of the basis from the representation
fQΨ†j0ig with the basis from the representation fjϕig
yields a basis for the entire Hilbert space,

Ψ†
α1ðn1ÞΨ†

α2ðn2ÞΨ†
α3ðn3Þ � � �Ψ†

αsðnsÞj0ijϕi: ð63Þ

The representation constructed using (63) as a basis is
denoted as fQΨ†j0ijϕig.
Let us now derive the relationship between the

representation fQψ 0†j0iFjϕiBg and the representation
fQΨ†j0ijϕig. In other words, we will investigate the
connection between the quantum states (59) and (63).
To begin, let us analyze the most special states in
both representations, namely, j0iFjϕiB and j0ijϕi. Based
on Eqs. (14) and (28), we can derive the relationship
between the field operators ψ 0 and the original field
operators Ψ,

ψ 0
uðnÞ ¼

1ffiffiffi
2

p �
e−igϕnΨuðnÞ þ eigϕnΨdðnÞ

	
;

ψ 0
dðnÞ ¼

1ffiffiffi
2

p �
−e−igϕnΨuðnÞ þ eigϕnΨdðnÞ

	
; ð64Þ

ΨuðnÞ ¼
1ffiffiffi
2

p eigϕn
�
ψ 0
uðnÞ − ψ 0

dðnÞ
	
;

ΨdðnÞ ¼
1ffiffiffi
2

p e−igϕn
�
ψ 0
uðnÞ þ ψ 0

dðnÞ
	
: ð65Þ

Because both ψ 0
uðnÞ and ψ 0

dðnÞ annihilate the state
j0iFjϕiB, utilizing the relation given by Eq. (65) we have

ΨuðnÞj0iFjϕiB ¼ ΨdðnÞj0iFjϕiB ¼ 0: ð66Þ

This demonstrates that the quantum state j0iFjϕiB is an
eigenstate of the field operator Ψ with an eigenvalue of
zero. Additionally, this state is also an eigenstate of the field
operator ϕ̂ with an eigenvalue of ϕ. Similarly, the quantum
state j0ijϕi is an eigenstate of field operator Ψ with a zero
eigenvalue and is simultaneously an eigenstate of field
operator ϕ̂ with an eigenvalue of ϕ. Therefore, we can
conclude that

j0iFjϕiB ¼ j0ijϕi: ð67Þ

It is worth noting the basis of fQψ 0†j0iFjϕiBg and
fQΨ†j0ijϕig are constructed based on j0iFjϕiB and
j0ijϕi, respectively. Therefore, we can establish the rela-
tionship between these two basis sets using Eq. (67). To be
precise, by substituting (64) and (67) into (59), we can
derive the explicit expression for the transformation
between these two distinct bases,

ψ 0†
α1ðn1Þψ 0†

α2ðn2Þψ 0†
α3ðn3Þ � � �ψ 0†

αsðnsÞj0iFjϕiB
¼
Ys
i¼1

1ffiffiffi
2

p �ð−1ÞfðαiÞeigϕniΨ†
uðniÞþ e−igϕniΨ†

dðniÞ
	j0ijϕi;

ð68Þ

where fðuÞ ¼ 0 and fðdÞ ¼ 1. Upon expanding the prod-
uct in Eq. (68), we obtain a series of summations over
quantum states (63). This indicates that we have effectively
expressed the basis of fQψ 0†j0iFjϕiBg in terms of the
basis of fQΨ†j0ijϕig. With the relation given by Eq. (68),
we can now express the vacuum state and clothed
particles of the Hamiltonian (13) in the representa-
tion fQΨ†j0ijϕig.
Using Eqs. (21) and (39), we can derive the representa-

tion of the vacuum state jΩi of the total Hamiltonian (13) in
terms of the basis fQψ 0†j0iFjϕiBg,

jΩi ¼ jΩiFjΩiB ¼
ffiffiffi
2

p
NF

1
2

Z
dϕ e−

F
2

P
n;m

Enmϕnϕm

×
YN−1

2

k¼−N−1
2

1ffiffiffiffiffiffiffi
2N

p
�
sgnðkÞe−i122πkN

X
n

e−in
2πk
N ψ 0†

uðnÞ

−
X
n

e−in
2πk
N ψ 0†

dðnÞ
�
j0iFjϕiB: ð69Þ

Based on the transformation relations between the bases
of the representations fQψ 0†j0iFjϕiBg and fQΨ†j0ijϕig
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given by Eq. (68), we can express the vacuum state (69) in
the representation fQΨ†j0ijϕig as follows:

jΩi ¼
ffiffiffi
2

p
NF

1
2

Z
dϕ e−

F
2

P
n;m

Enmϕnϕm

×
YN−1

2

k¼−N−1
2

1

2
ffiffiffiffi
N

p
�

sgnðkÞe−i122πkN þ 1

�

×
X
n

e−in
2πk
N eigϕnΨ†

uðnÞ

þ 

sgnðkÞe−i122πkN − 1

�X
n

e−in
2πk
N e−igϕnΨ†

dðnÞ
�
j0ijϕi:

ð70Þ
This is the physical vacuum state represented using the
original field degrees of freedom in the Hamiltonian (13).
Note that each fermionic field operator Ψ†ðnÞ is first
attached by a value eigϕn related to the bosonic field
eigenstate before being summed. This makes the vacuum
state an entangled state, where fermionic and bosonic field
degrees of freedom are entangled, exhibiting a mixing
between the bosonic and fermionic fields, rather than a
simple direct product of the bare fermion vacuum and bare
boson vacuum.
Likewise, we can derive the one-boson state jq;Bi in the

representation fQΨ†j0ijϕig using (22), (39), and (68),

jq;Bi¼ 2NF
ffiffiffiffiffiffiffiffiffi
Lωq

p 1

N

Z
dϕe−

F
2

P
n;m

Enmϕnϕm

�X
n

einaqϕn

�

×
YN−1

2

k¼−N−1
2

1

2
ffiffiffiffi
N

p
�

sgnðkÞe−i122πkN þ1

�

×
X
n

e−in
2πk
N eigϕnΨ†

uðnÞ

þ

sgnðkÞe−i122πkN −1

�X
n

e−in
2πk
N e−igϕnΨ†

dðnÞ
�
j0ijϕi:

ð71Þ
This is the one-boson state represented using the original
field degrees of freedom in the Hamiltonian (13). Once
again, we can observe that the one-boson state also exhibits
entanglement, mixing the fermionic and bosonic degrees of
freedom. The only difference between the one-boson state
and the vacuum state is the additional term in the one-boson
state, which is given by

P
n e

inaqϕn. However, this term
does not involve fermionic content. Therefore, it may be
said that the entanglement between the fermionic and
bosonic fields in the one-boson state arises from the
entanglement in the vacuum state.
Similarly, we can apply a nearly identical approach to

derive the one-fermion state in the basis of fQΨ†j0ijϕig.
By employing (21), (40), and (41), we can deduce the one-
fermion state jq;Fþi as well as the one-antifermion state
jq;F−i of the total Hamiltonian (13),

jq;Fþi ¼ NF
1
2

Z
dϕ e−

F
2

P
n;m

Enmϕnϕm
1ffiffiffiffi
N

p
��

ei
1
2
2πk
N þ sgnðkÞ

�X
n

ein
2πk
N eigϕnΨ†

uðnÞ

þ
�
ei

1
2
2πk
N − sgnðkÞ

�X
n

ein
2πk
N e−igϕnΨ†

dðnÞ
� YN−1

2

k0¼−N−1
2

1

2
ffiffiffiffi
N

p
��

sgnðk0Þe−i122πk0N þ 1

�X
n

e−in
2πk0
N eigϕnΨ†

uðnÞ

þ
�
sgnðk0Þe−i122πk0N − 1

�X
n

e−in
2πk0
N e−igϕnΨ†

dðnÞ
�
j0ijϕi; ð72Þ

jq;F−i ¼
ffiffiffi
2

p
NF

1
2

Z
dϕ e−

F
2

P
n;m

Enmϕnϕm
YN−1

2
;k0≠k

k0¼−N−1
2

1

2
ffiffiffiffi
N

p
��

sgnðk0Þe−i122πk0N þ 1

�X
n

e−in
2πk0
N eigϕnΨ†

uðnÞ

þ
�
sgnðk0Þe−i122πk0N − 1

�X
n

e−in
2πk0
N e−igϕnΨ†

dðnÞ
�
j0ijϕi; ð73Þ

where k≡ aN
2π q. This is the one-fermion state represented

using the original field degrees of freedom in the
Hamiltonian (13). It also exhibits entanglement between
fermionic and bosonic degrees of freedom. However, the
structure of fermionic (antifermionic) one-particle states is
vastly different from that of one-boson states. In addition,
Eqs. (71)–(73) indicate that there is a significant distinction

in the structure between clothed particles (real one-particle
states) and bare particles. Because of the interaction between
the fermionic field and bosonic field in the Hamiltonian, the
excitation of the fermionic clothed particles involves both
the fermionic field and the bosonic field [considering
Eqs. (37), (38), and (64) together], rather than just the
fermionic field alone. Although the boson creation operator
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is composed entirely of the bosonic field [considering
Eqs. (14) and (19) together], due to the vacuum entangle-
ment between bosonic and fermionic field degrees of free-
dom, bosonic clothed particles also exhibit a mixture of
fermionic and bosonic content.
Furthermore, the representation fQΨ†j0ijϕig can

also reveal the spatial entanglement structure of quantum
states. As seen from (63), the basis in the representation
fQΨ†j0ijϕig is formed by the direct product of the
fermionic part Ψ†

α1ðn1ÞΨ†
α2ðn2ÞΨ†

α3ðn3Þ � � �Ψ†
αsðnsÞj0i and

the bosonic part jϕi. The quantum states of the bosonic part
are eigenstates of the bosonic field operator ϕ̂jϕi ¼ ϕjϕi.
The field operators ϕ̂ at different points are independent
of each other and satisfy the commutation relations
½ϕ̂n; ϕ̂m� ¼ 0. As a result, the eigenstate of ϕ̂ can be
written in a direct product formulation as follows:
jϕi ¼ jϕ1i1jϕ2i2jϕ3i3 � � � ¼

Q
n jϕnin, where jϕin is the

eigenstate of ϕ̂n but in a Hilbert space constructed only for
the lattice point n.
Similarly, due to the anticommutation of fermionic fields

at different spatial points, one can define the following
four quantum states at a specific spatial point n: j00in;
j10in ≡Ψ†

uðnÞj00in; j01in ≡Ψ†
dðnÞj00in; j11in ≡Ψ†

uðnÞ×
Ψ†

dðnÞj00in. Then, the quantum state j0i can be expressed
as the direct product of quantum states at different spatial
points: j0i ¼ j00i0j00i1 � � � j00iN−1. For quantum states of
the form like (61), they can also be expressed as a direct
product of quantum states at different spatial points,

Ψ†
uðn1ÞΨ†

uðn2ÞΨ†
dðn2Þ � � �Ψ†

dðnsÞj0i
¼ � � � j00in1−1j10in1 j00in1þ1 � � � j00in2−1j11in2 j00in2þ1 � � �
× j00ins−1j01ins j00insþ1 � � � : ð74Þ

This signifies that the basis of the representation
fQΨ†j0ijϕig can be expressed as a direct product of
quantum states at different spatial points. Consequently,
employing the representation fQΨ†j0ijϕig not only high-
lights the entanglement between fermionic and bosonic
fields, as mentioned earlier, but also reveals the spatial
entanglement structure of the vacuum state through (70),
while (71)–(73) also illustrate the spatial entanglement
structure of the clothed particles.

VII. CONCLUSIONS AND DISCUSSIONS

We have presented the lattice Hamiltonian of the RS
model, diagonalized it, and subsequently derived lattice
correlation functions, as well as the physical vacuum and
clothed particles. The continuum limit of the lattice corre-
lation functions matches the original RS model’s correlation
functions, affirming that the continuum limit of the lattice
theory corresponds to the original RS model. In order to gain
a more intuitive understanding of the complex Hamiltonian,

we have analyzed the equations of motion for the lattice
theory in the Appendixes. In Appendix A, we obtained the
equations of motion for the bosonic field in the lattice RS
model and compared them with those of the original RS
model. Similarly, in Appendix B, we derived the equations
of motion for the fermionic field in the lattice RS model and
compared them to the original RS model. It is worth noting
that the equations of motion for the lattice RS model share
the same structure as those of the original RS model, with
only some differences in the coefficients of regularization
terms. These differences arise because the original RS model
describes the infrared behavior of the lattice RS model. Even
the ultraviolet behavior of the original RS model falls under
the infrared behavior of the lattice model. Consequently, the
coefficients of the regularization terms in the equations of
motion for the original RS model differ slightly from those
of the lattice model. However, this discrepancy does not
imply that the continuum limit of the lattice theory is not the
original RS model. As mentioned earlier, the continuum
limit of the lattice correlation functions matches the original
RS model’s correlation functions, and the behavior exhibited
by taking the continuum limit first and then letting the field
spacing tend to zero aligns with that of the original
RS model.
Creation and annihilation operators directly associated

with the bare fields are referred to as “bare operators,”
denoted as ap. One-particle states that are eigenstates of the
Hamiltonian are called clothed particles, and the creation
and annihilation operators that produce clothed particles
from the physical vacuum are called clothed operators,
denoted as αp. Then, clothed operators α can be expressed
in terms of bare operators a, with the specific “clothing
transformation” given by αp ¼ W†apW, where the trans-
formation operator W is a function of all bare operators a
and satisfiesW†W ¼ WW† ¼ 1 [55]. It is worth noting that
the transformation operators W induced by interactions
such as LI ¼ −meμðν̄eνμ þ ν̄μνeÞ and LI ¼ −λðϕ†

αϕβ þ
ϕ†
βϕαÞ have been studied in previous works [37,40].
Although we did not adopt the Fock representation in

this paper, we can still convert the results of the paper into
the Fock representation and express the clothed operators in
terms of bare operators. In fact, the operators ap in Eq. (19),
dp in Eq. (37), and bp in Eq. (38) are already clothed
operators. If we denote the corresponding bare operators as
Ap, Dp, and Bp, then by combining Eqs. (19), (37), (38),
and (14), we can express the clothed operators (a, d, b) in
terms of bare operators (A, D, B), i.e., xp ¼ fðA;D;BÞ,
where x ¼ a, d, b. Since we are considering the interaction
ΔL ¼ −g∂uϕΨ̄γ5γμΨ, which is more complex than the
quadratic interactions mentioned above, expressing it in the
form xp ¼ WðA;D; BÞ†XpWðA;D; BÞ (where X ¼ A, D,
B) would require further derivations and calculations.
However, it can be anticipated that WðA;D;BÞ will be
highly complex and challenging to intuitively understand.
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Therefore, in this paper we did not employ the conventional
Fock representation but instead chose the representation
defined by the basis (63), denoted as fQΨ†j0ijϕig. In this
representation, the specific form of the physical vacuum of
the RS model is given by Eq. (70), the specific form of the
one-boson state is given by Eq. (71), and the one-fermion
states and one-antifermion states are given by Eqs. (72)
and (73), respectively. It can be observed that both the
physical vacuum and the clothed particles exhibit entan-
glement between the bosonic and fermionic fields.
In addition to the entanglement between the fermionic

and bosonic fields, the basis vectors of the representation
fQΨ†j0ijϕig can all be expressed as direct products of
quantum states at different spatial points, allowing us to
directly observe the spatial entanglement structure of the
quantum states. The vacuum in classical theory is local,
meaning that if space is divided into many parts, each part
is still a vacuum. However, in quantum field theory, due to
the nonlocality of quantum states and the entanglement
between spatial points, strictly speaking, the vacuum state
cannot be simply divided into two parts. Nevertheless,
since the vacuum state corresponds to the classical vacuum,
it should exhibit locality on large scales. Let us first ignore
the entanglement between the bosonic and fermionic
fields and focus solely on the wave function of the bosonic
part in the vacuum state (70), which is given byR
dϕe−

F
2

P
n;m

Enmϕnϕm . If Enm ∝ δnm, then there would be
no entanglement between different spatial points in the
bosonic vacuum state, and it would exhibit the same
locality as the classical vacuum. However, in reality, Enm ¼
1
N

P
q aωqeiðn−mÞaq is not proportional to δnm, indicating

entanglement between different spatial points and prevent-
ing the vacuum from being arbitrarily divided into two
parts. This seems contradictory to the locality of the
classical vacuum. Nevertheless, it can be easily proven
that Enm ∝ e−mrjna−maj → 0 as jna −maj → ∞. This
implies that the entanglement between points with large
spatial separations becomes weak. Consequently, from a
macroscopic perspective, the bosonic part of the vacuum
state (70) does indeed exhibit locality similar to the
classical vacuum.
However, for the fermionic part of the vacuum state (70),

it is challenging to intuitively discern locality. Moreover,
the complete quantum state exhibits entanglement between
fermions and bosons. Therefore, we need a more quanti-
tative analysis of this entanglement. Specifically, we can
choose two regions, denoted as regions A and B, with their
union referred to as region Aþ B. Since

Q
Ψ†j0ijϕi is a

representation based on real space, the entanglement
entropy of regions A, B, and Aþ B can be computed in
this representation. If the sum of the entanglement entropy
of region A and the entanglement entropy of region B,
minus the entanglement entropy of region Aþ B, decreases
rapidly as the distance between the regions A and B

increases, it confirms that the vacuum state exhibits locality
similar to the classical vacuum from a macroscopic
perspective.
In the future, in addition to computing the entanglement

entropy of quantum states, we can consider introducing
external sources to the RS model to make the system
nonuniform and study the possible emergence of spatial
cloud structures. We can also introduce a fermion mass
term to the RS model and develop perturbation theory
based on this work to compute quantum states. Essentially,
this paper provides a solvable Hamiltonian containing a
three-point interaction, from which Feynman rules can be
derived in a well-defined manner, demonstrating how the
bare parameters of the Hamiltonian evolve into various
parameters of the lower-level Feynman diagram.
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APPENDIX A: THE EQUATION OF MOTION
FOR THE BOSONIC FIELD

We denote the positive and negative frequency compo-
nents of ψuðnÞ as ψþ

u ðnÞ and ψ−
u ðnÞ, respectively, and the

positive and negative frequency components of ψdðnÞ as
ψþ
d ðnÞ and ψ−

d ðnÞ. Based on (30), (31), and (28), we can
further derive the following commutation relations:

fðψ−
u ðnÞÞ†;ψ−

u ðnþmÞg¼ 1

2

�
δm;0− i

1

2N
cot

��
mþ1

2

�
π

N

�

− i
1

2N
cot

��
m−

1

2

�
π

N

��
; ðA1Þ

fðψ−
d ðnÞÞ†;ψ−

d ðnþmÞg¼ 1

2

�
δm;0þ i

1

2N
cot

��
mþ1

2

�
π

N

�

þ i
1

2N
cot

��
m−

1

2

�
π

N

��
; ðA2Þ

fðψ−
d ðnÞÞ†;ψ−

u ðnþmÞg¼ 1

2

�
i
1

2N
cot

��
mþ1

2

�
π

N

�

− i
1

2N
cot

��
m−

1

2

�
π

N

�
−
1

N

�
;

ðA3Þ

fðψ−
u ðnÞÞ†;ψ−

d ðnþmÞg¼ 1

2

�
i
1

2N
cot

��
m−

1

2

�
π

N

�

− i
1

2N
cot

��
mþ1

2

�
π

N

�
−
1

N

�
:

ðA4Þ

Let us further require that Ψc¼ðlima→0 limN→∞C−1
2ÞΨ0,

where Ψc ¼ lima→0 limN→∞
1ffiffi
a

p ΨðnÞ and C≡ eg
2½fð0Þ−fð1Þ�.
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In this case, the continuous limit of Ψ0½n�≡ C−1
2

1ffiffi
a

p ΨðnÞ becomes the bare fermionic field Ψ0 of the original RS model.

Therefore, in order to compare the lattice equation of motion with those of the original RS model, we should express the
equation of motion in terms ofΨ0½n�. With the help of the commutation relations (A1)–(A4) and Eq. (58), we can derive the
equation of motion for the bosonic field ϕ from the lattice Hamiltonian (13),

∂
0
∂0ϕn −

1

a

�
ϕnþ1 − ϕn

a
−
ϕn − ϕn−1

a

�
þm2

0ϕn

¼ −g0
1

2
∂0

�
Ψ†

0u½nþ 1�Ψ0u½n� þ Ψ†
0u½n�Ψ0u½nþ 1� −Ψ†

0d½nþ 1�Ψ0d½n� − Ψ†
0d½n�Ψ0d½nþ 1�

�

− g0
1

2

�
Ψ†

0u½nþ 1�Ψ0u½n� − Ψ†
0u½n�Ψ0u½n − 1�

a
þ Ψ†

0u½n�Ψ0u½nþ 1� −Ψ†
0u½n − 1�Ψ0u½n�

a

þΨ†
0d½nþ 1�Ψ0d½n� −Ψ†

0d½n�Ψ0d½n − 1�
a

þΨ†
0d½n�Ψ0d½nþ 1� −Ψ†

0d½n − 1�Ψ0d½n�
a

�

þ g20
π
∂
0
∂0ϕn þ

g20
3π

1

a

�
ϕnþ1 − ϕn

a
−
ϕn − ϕn−1

a

�
þOðaÞ: ðA5Þ

To correspond to the lattice regularization established in the
time-slicing framework, we set the regularization param-
eters of the original RS model to be at equal time intervals,
i.e., ϵ0 ¼ 0 and ϵ1 ¼ ϵ. In this case, the coefficient in front
of the term ∂1∂1ϕ0 in the motion equation of the original RS
model, given by (3), is zero. By using the specific
representation of the γ matrices provided in (2), we can
observe that the only difference between the lattice bosonic
field’s motion equation (A5) and the continuum limit
of the original RS model’s Eq. (3) lies in the last term
of (A5). In the lattice equation, this term is given by

lima→0
g2
0

3π
1
a ðϕ0nþ1−ϕ0n

a − ϕ0n−ϕ0n−1
a Þ ¼ g2

0

3π ∂1∂1ϕ0, from which
we can clearly see that the coefficient in front of the

∂1∂1ϕ0 term is g2
0

3π. In contrast, the corresponding term in the
original RS model’s Eq. (3) has a coefficient of 0.
Let us discuss why the continuum limit of the lattice

motion equation (A5) includes an additional term g2
0

3π ∂1∂1ϕ0

compared to the original RS model’s Eq. (3). Defining the
variable x≡ na, we can obtain the following result with the
help of the commutation relations (A1)–(A4):

C0Ψ†
cuðxÞΨcuðxþ ϵÞ ¼ lim

a→0

1

a
lim
N→∞

e½gϕ
þ
n ;gϕ−

n �−½gϕþ
nþm;gϕ

−
n �

×Ψ†
uðnÞΨuðnþmÞ

¼ ψ†
cuðxÞψcuðxþ ϵÞ

þ 1

2π
g
ϕðxþ ϵÞ − ϕðxÞ

ϵ
; ðA6Þ

where C0 is defined as

C0 ¼ lim
a→0

lim
N→∞

e½gϕ
þ
n ;gϕ−

n �−½gϕþ
nþm;gϕ

−
n �

¼ lim
a→0

lim
N→∞

eg
2½fð0Þ−fðmÞ� ¼ lim

a→0
lim
N→∞

eg
2½fð0Þ−fðϵaÞ�: ðA7Þ

Utilizing (A6), we obtain the regularization for the field
operator product of Ψc as

lim
ϵ→0

C0Ψ†
cuðxÞΨcuðxþ ϵÞ¼ lim

ϵ→0
ψ†
cuðxÞψcuðxþ ϵÞ

þ 1

2π
g lim
ϵ→0

ϕðxþ ϵÞ−ϕðxÞ
ϵ

: ðA8Þ

Equation (A8) is precisely the axial-vector current formula
in the original RS model [see Eq. (3.35) in [57] ],

N½Ψ̄0ðxÞγ5γμΨ0ðxÞ� ¼ jμ5fðxÞþ
g0
π
∂
μϕ0ðxÞ≡ jμ5ðxÞ; ðA9Þ

where μ ¼ 1. The original RS model indeed used (A9) to
derive the equations of motion (3), demonstrating that our
lattice theory is consistent with the original RS model.
To further clarify the reason for the coefficient difference

between the lattice motion equation and the original RS
model motion equation, let us analyze the continuum limit

lim
a→0

1

a
lim
N→∞

CΨ†
uðnÞΨuðnþ1Þ¼ lim

a→0

1

a
lim
N→∞

ψ†
uðnÞψuðnþ1Þ

þ 2

3π
glim
a→0

lim
N→∞

ϕnþ1−ϕn

a
:

ðA10Þ
In Eq. (A10), the coefficient in front of the coupling
constant g is 2

3π, while in Eq. (A8), the coefficient in front
of the coupling constant g is 1

2π. The reason for this
difference in coefficients between the two equations lies
in the order of taking limits. To be more specific, in
deriving Eq. (A8), we took three limits in total, denoted as
limϵ→0 lima→0 limN→∞. It is important to note that, in this
sequence, we first let a tend to zero and then let ϵ tend to
zero. However, if we require ϵ and a to simultaneously
approach zero, i.e., limϵ¼a→0 limN→∞, we will obtain
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Eq. (A10), and the coefficient in front of the coupling constant
gwill change from 1

2π to
2
3π. This leads to an additional term in

the continuum limit of the lattice motion equation (A5)
compared to the original RS model’s motion equation (3).
This additional term isprecisely the onementioned repeatedly

before, i.e., lima→0
g2
0

3π
1
a


ϕ0nþ1−ϕ0n
a − ϕ0n−ϕ0n−1

a

� ¼ g2
0

3π ∂1∂1ϕ0.
Physically, this difference fundamentally originates from

the lattice’s ultraviolet behavior. After taking the continuum
limit lima→0 limN→∞ of the lattice theory, we obtain a
continuous theory, which captures the infrared behavior
of the lattice. Roughly speaking this is because, for any
nonzero field separation ϵ, the distance betweenΨ†

cuðxÞ and
Ψcuðxþ ϵÞ already encompasses infinitelymany lattice sites
in the continuum limit, and the lattice’s ultraviolet behavior
has been eliminated in this limit, leaving only the infrared
behavior. In this context, even as the field separation ϵ tends
to zero, it does not touch upon the lattice’s ultraviolet
behavior. However, if we set the field spacing ϵ ¼ a while
the continuum limit lima→0 is not yet complete, it means that
even later, no matter how small the lattice spacing becomes,
the two fields will always be on adjacent lattice points. This
implies that the lattice ultraviolet behavior continues to
affect the system, even after taking the “continuum limit.”
The lattice theory’s motion equation incorporates lattice
ultraviolet behavior that the original RS model’s motion
equation lacks, which is why there are slight differences in
their equations of motion. However, this does not imply that
the continuum limit of the lattice theory is not the originalRS
model. By comparing (A8) and (A9), we observe that the
lattice theory aligns with the continuous field theory of the
RS model if we first take the continuum limit and sub-
sequently let the interval ϵ vanish.

APPENDIX B: THE EQUATION OF MOTION
FOR THE FERMIONIC FIELD

The equation of motion for Ψ can be derived from the
lattice Hamiltonian (13),

iγ0∂0ΨðnÞ þ iγ1
1

2

��
Ψðnþ 1Þ −ΨðnÞ	 1

a

þ �
ΨðnÞ − Ψðn − 1Þ	 1

a

�

¼ gγ5γ0ΨðnÞ∂0ϕn−1 þ gγ5γ1ΨðnÞðϕn − ϕn−1Þ
1

a

− ig2
1

Fπ
γ5

aγ1
−a2

ΨðnÞ þ KOða3
2Þ; ðB1Þ

where K ≡ e−
1
2
g2½ϕþ

n ;ϕ−
n � ¼ e−

1
2
g2fð0Þ. Letting the lattice spac-

ing ϵ ¼ a in Eq. (6), and based on Eq. (58) and the
definition of K, we find that Ψ½n�R ≡ 1ffiffi

a
p e

1
2
g2fð0ÞΨðnÞ ¼

K−1 1ffiffi
a

p ΨðnÞ has the continuum limit of the renormalized

continuous fermionic field ΨrðxÞ. On the other hand, the
renormalized lattice fermionic field given in Sec. V is

ΨðnÞR ¼ e
1
2
g2fð0ÞΨðnÞ ¼ K−1ΨðnÞ, which exactly matches

Ψ½n�R ¼ 1ffiffi
a

p ΨðnÞR. This implies that the fact that the

continuum limit of Ψ½n�R is ΨrðxÞ is consistent with the
correspondence between lattice and continuous fermionic
fields discussed in Sec. V. Based on the relation between
renormalized parameters and bare parameters (58), we can
rewrite Eq. (B1) as

iγ0∂0Ψ½n�R þ iγ1
1

2

��
Ψ½nþ 1�R − Ψ½n�R

	 1
a

þ �
Ψ½n�R −Ψ½n − 1�R

	 1
a

�

¼ grγ5
�
γ0Ψ½n�R∂0ϕn−1 þ γ1Ψ½n�Rðϕn − ϕn−1Þ

1

a

− i
gr
π

aγ1
−a2

Ψ½n�R
�
þ OðaÞ: ðB2Þ

Comparing the continuum limit of (B2) with the fermionic
field equation of the original RS model (4) (with regulari-
zation parameters set as equal time intervals ϵ0 ¼ 0; ϵ1 ¼ ϵ),
we notice that the two equations are nearly identical. The
only difference lies in the coefficient of the last term: it is grπ in
Eq. (B2), whereas in Eq. (4), it is gr

2π.
We have previously analyzed the reasons for the

differences between the lattice bosonic field equation
and the original RS model equation. Here, the same reasons
lead to slight differences in the coefficients of the lattice
fermionic field equation compared to the original RS model
equation. Specifically, the mathematical origin of these
differences lies in the distinct orders of taking limits.
The correct limit to obtain the original RS Eq. (4) can
be effectively thought of as limϵ→0 lima→0 limN→∞, whereas
the continuum limit of the lattice equation (B2) is
limϵ¼a→0 limN→∞. From a physical perspective, the limit
limϵ¼a→0 limN→∞ makes (B2) exhibit the lattice’s ultra-
violet behavior. Therefore, (B2) differs slightly from (4),
which only contains lattice infrared behavior.
However, this does not imply that the continuum limit

of the lattice theory is not the original RS model. It is
worth noting that the alternative form of Eq. (B1) can be
written as

i∂0ΨuðnÞ ¼ −i
1

2

��
Ψuðnþ 1Þ − ΨuðnÞ

	 1
a

þ �
ΨuðnÞ − Ψuðn − 1Þ	 1

a

�
− gΨuðnÞ∂0ϕþ

n − g∂0ϕ−
nΨuðnÞ

− gðϕ−
n − ϕ−

n−1Þ
1

a
ΨuðnÞ

− gΨuðnÞðϕþ
n − ϕþ

n−1Þ
1

a
þ KOða3

2Þ: ðB3Þ
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Equation (B3) does not directly manifest the lattice’s
ultraviolet behavior, and its continuum limit corresponds
precisely to the equation of motion [i.e., Eq. (3.24) in
Ref. [57] ] in the original RS model.

APPENDIX C: COMPARISON OF THE RS
MODEL AND THE SCHWINGER MODEL

Using γ5γμ ¼ ϵμνγν and Aν ¼ ϵμν∂
μϕ, the “interaction

Lagrangian” of the RS model −gΨ̄γ5γμΨ∂μϕ is equal to the
one in the Schwinger model, i.e., −gΨ̄γμΨAμ. However, the
RS model has fermionic particles, while the Schwinger
model shows confinement and has no fermions in its
spectrum.
A rough picture of confinement is that the potential

energy between a positive and a negative charge is a linear
potential in 1þ 1 classical electrodynamics. Therefore, we
first calculate the interaction force between particles in the
classical RS model. During this process, we analyze the
similarities and differences between the RS model and
1þ 1 classical electrodynamics to understand how the
differences in the bosonic part of the action affect the
interaction force between a positive and a negative charge.
Since the fermionic part and the interaction part of the

Lagrangian in the RS model are the same as those in the
Schwinger model, the equations of motion for the fermions
are also the same. Therefore, in the classical RS model, the
force formula for particles can be obtained through the
Lorentz force in 1þ 1 electrodynamics with the help of
Aν ¼ ϵμν∂

μϕ. Specifically, the Lorentz force on a charge g
is given by

dp
dt

¼ gE ¼ gð∂0A1 − ∂1A0Þ; ðC1Þ

where A and ϕ can be considered as external fields. Thus,
using Aν ¼ ϵμν∂

μϕ, we can obtain the force on charge g in
the RS model as follows:

dp
dt

¼ g∂μ∂μϕ: ðC2Þ

Equation (C2) can also be regarded as another form of the
Lorentz force in 1þ 1 electrodynamics.
However, the bosonic part of the RS model Lagrangian is

different from that of the Schwinger model, hence the
corresponding equations of motion are also different. The
bosonic field equation of motion for 1þ 1 classical
electrodynamics is as follows:

∂μFμν ¼ gΨ̄γμΨ ¼ gJμ: ðC3Þ

Here, A and ϕ are not external fields, so the equation
Aν ¼ ϵμν∂

μϕ cannot be directly used to obtain the bosonic
field equation of motion for the RS model. Starting from
the Lagrangian of the RS model, the equation of motion for

the bosonic field can be derived as follows:

ð∂μ∂μþm2Þϕ¼ g∂μðΨ̄γ5γμΨÞ¼ gϵμν∂μðΨ̄γνΨÞ¼ gϵμν∂μJν:

ðC4Þ

To more clearly compare Eqs. (C3) and (C4), we use
Aν ¼ ϵμν∂

μϕ to express Eq. (C3) in terms of ϕ,

∂μ∂α∂
αϕ ¼ gϵμνJν: ðC5Þ

Equation (C5) can be further written as ∂μ∂
μ
∂α∂

αϕ ¼
gϵμν∂μJν, which looks very similar to Eq. (C4) in the case
where m ¼ 0. Therefore, we will first discuss the case
m ¼ 0. Now consider two point charges fixed in position.
For the RS model, according to (C4), the scalar field
generated by a point charge located at the origin satisfies
∂μ∂

μϕ ¼ 0; x ≠ 0. Therefore, according to (C2), the force

on another point charge is dp
dt ¼ g∂μ∂μϕ ¼ 0. For 1þ 1

classical electrodynamics, according to (C5), the scalar
field generated by a point charge g located at the origin
satisfies ∂μ∂

μϕ ¼ 1
2
g; x > 0. Furthermore, using (C2), the

force on another charge −g located at x1 > 0 is dp
dt ¼ − 1

2
g2.

Therefore, in 1þ 1 classical electrodynamics, there is a
linear potential between the two charges. Considering the
effects of quantum field theory, “it is energetically favor-
able for a new pair to materialize from the vacuumwhen the
separation is sufficiently great” (quoting Ref. [60]), which
leads to confinement.
Although in the classical RS model with m ¼ 0, the

force between point charges separated by a distance r ≠ 0
is zero, the situation is different for m ≠ 0. According
to (C4), the scalar field produced by a point charge located
at the origin is given by

ϕðxÞ ¼
(

1
2
gemx ; x < 0;

− 1
2
ge−mx ; x > 0:

ðC6Þ

Further utilizing (C2), we find that another charge −g
located at x1 > 0 experiences an exponentially decaying
force given by dp

dt ¼ − 1
2
g2m2e−mx1, indicating that the RS

model does not exhibit confinement.
At the quantum level, the Hamiltonian formulation is the

most direct method for studying eigenstates. As stated in
the original paper on the RS model [57], “we note that on
account of the derivative coupling in the Lagrangian we
have HI ≠ −LI ,” which seems to imply that the “inter-
action Hamiltonian” HI appears to be different although
the “interaction Lagrangian” LI of the RS model and the
Schwinger model appear to be the same. However, the
Hamiltonian of the Schwinger model also depends on
the chosen gauge, so further analysis is needed. To align as
closely as possible with the form of the RS model
Hamiltonian (13), we use the A0 ¼ 0 gauge Hamiltonian
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of the Schwinger model from Ref. [19],

H ¼
Z

L

0

�
1

2
E2 − iΨ†γ0γ1∂1Ψþ gΨ†γ0γ1A1Ψ

�
; ðC7Þ

with ½A1ðxÞ; EðyÞ� ¼ iδðx − yÞ and the first-class constraint
known as Gauss’s law,

∂1E ¼ gΨ†Ψ: ðC8Þ

Comparing (C7) with the Hamiltonian of the RS
model (13), it can be observed that the first two lines
of (13) correspond to the second term of (C7), the third line
of (13) corresponds to the first term of (C7), and the third
term of (C7) corresponds to the fifth–seventh lines of (13).
However, the fourth line of (13) is an additional term due to
the derivative coupling of the RS model, and it is the
absence of a similar term in (C7) that prevents the bosonic
and fermionic parts from being separated in the same way
as in the RS model. Specifically, similar to the fermionic
field transformation ψðnÞ ¼ e−iγ

5gϕnΨðnÞ in (14), we can

also perform the transformation ψðxÞ ¼ eig
R

x

0
dsAðsÞΨðxÞ for

the fermionic field in the Schwinger model. This allows us
to diagonalize the second and third terms of (C7), yielding

H ¼
Z

L

0

�
1

2
E2 − iψ†γ0γ1∂1ψ

�
: ðC9Þ

Formally, (C9) is very similar to (16), which features free
fermion excitations. However, in (C9), E does not commute
with the new fermionic field ψ . Similar to the trans-
formation π → π0 in (14), the bosonic field E also needs
to undergo a transformation E → E0 so that the new

bosonic field E0 commutes with the new fermionic field
ψ . However, if the transformation E → E0 is made, the
Schwinger Hamiltonian (C9) obviously cannot be decom-
posed into bosonic and fermionic parts. The reason the RS
model’s Hamiltonian (13) can be decomposed into bosonic
and fermionic parts after the transformation π → π0 is
precisely due to the sixth line of (13), which is caused
by the derivative coupling and is not present in the
Schwinger Hamiltonian. Therefore, although the interac-
tion Lagrangian LI of the RS model and the Schwinger
model appear to be the same, the Hamiltonian of the
Schwinger model cannot be decomposed into a free
fermion part in the same way as the RS model even when
ignoring the Gauss constraint.
In fact, by using an unphysical indefinite metric field,

we can derive a free fermion field from the Schwinger
model through a transformation [60,61] similar to the RS
model’s transformation ψðnÞ ¼ e−iγ

5gϕnΨðnÞ in (14).
However, this does not mean the Schwinger model has
fermions in its spectrum, because unphysical negative-
metric particles can obscure the propagation properties of
the fermion field [60]. Alternatively, from the definition of
the physical Hilbert space, one can also see that the
Schwinger model has no fermion. Equation (2.32) in
Ref. [61] presents a Hamiltonian decomposed into three
free parts. Although the part concerning φ̃ appears to be a
massless boson field, it is equivalent to the Hamiltonian of a
massless free fermion field according to Eq. (17.98) in
Ref. [62]. In this sense, it seems that the Schwinger model,
like the RS model, has free fermions in its spectrum.
However, the physical Hilbert space of the Schwinger
model is defined by Eq. (2.10) in Ref. [61], which causes φ̃
to decouple from the physical spectrum.
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