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The lattice SU(2) gauge-scalar model with the scalar field in the adjoint representation of the gauge
group has two completely separated confinement and Higgs phases according to the preceding studies
based on numerical simulations that have been performed in the specific gauge fixing based on the
conventional understanding of the Brout-Englert-Higgs mechanism. In this paper, we reexamine this
phase structure in a gauge-independent way based on the numerical simulations performed without any
gauge fixing. This is motivated to confirm the recently proposed gauge-independent Brout-Englert-
Higgs mechanism for generating the mass of the gauge field without relying on any spontaneous
symmetry breaking. For this purpose, we investigate correlations between gauge-invariant operators
obtained by combining the original adjoint scalar field and the new field called the color-direction
field which is constructed from the gauge field based on the gauge-covariant decomposition of the gauge
field due to Cho-Duan-Ge-Shabanov and Faddeev-Niemi. Consequently, we reproduce gauge inde-
pendently the transition line separating the confinement phase and the Higgs phase, and show
surprisingly the existence of a new transition line that completely divides the confinement phase into
two parts. Finally, we discuss the physical meaning of the new transition and the implications of the
confinement mechanism.
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I. INTRODUCTION

In this paper, we investigate the gauge-scalar model to
clarify the mechanism of confinement in the Yang-Mills
theory in the presence of matter fields and also non-
perturbative characterization of the Brout-Englert-Higgs
(BEH) mechanism [1] providing the gauge field with the
mass, in the gauge-independent way.
For concreteness, we reexamine the lattice SUð2Þ

gauge-scalar model with a radially fixed scalar field
(no Higgs mode) which transforms according to the
adjoint representation of the gauge group SUð2Þ without
any gauge fixing. In fact, this model was investigated
long ago in [2] by taking a specific gauge, say unitary

gauge, based on the traditional characterization for the
BEH mechanism to identify the Higgs phase. It is a good
place to recall the traditional characterization of the BEH
mechanism: If the original continuous gauge group is
spontaneously broken, the resulting massless Nambu-
Goldstone particle is absorbed into the gauge field to
provide the gauge field with the mass. In the perturbative
treatment, such a spontaneous symmetry breaking is
signaled by the nonvanishing vacuum expectation value
of the scalar field. However, this is impossible to realize
on the lattice unless the gauge fixing condition is
imposed, since gauge noninvariant operators have van-
ishing vacuum expectation value on the lattice without
gauge fixing due to the Elitzur theorem [3]. This tradi-
tional characterization of the BEH mechanism prevents
us from investigating the Higgs phase in the gauge-
invariant way.
This difficulty can be avoided by using the gauge-

independent description of the BEH mechanism proposed
recently by one of the authors [4,5], which needs neither
the spontaneous breaking of gauge symmetry, nor the
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nonvanishing vacuum expectation value of the scalar field.
Then we can give a gauge-invariant definition of the mass
for the gauge field resulting from the BEH mechanism.
Therefore, we can study the Higgs phase in the gauge-
invariant way on the lattice without gauge fixing based
on the lattice construction of gauge-independent descrip-
tion of the BEH mechanism. Consequently, we can
perform numerical simulations without any gauge-fixing
and compare our results with those of the preceding
result [2] obtained in a specific gauge. Indeed, our gauge-
independent study reproduces the transition line separat-
ing Higgs and confinement phases obtained by [2] in a
specific gauge.
Moreover, we investigate the phase structure of this

model based on the gauge-independent (invariant) pro-
cedure to look into the mechanism for confinement. For
this purpose we introduce the gauge-covariant decom-
position of the gauge field originally due to Cho-Duan-
Ge-Shabanov and Faddeev-Niemi [6–9], which we call
CDGSFN decomposition for short. It has been confirmed
that this method is quite efficient to extract the dominant
mode responsible for quark confinement in a gauge-
independent way [10–12], even if we expect the dual
superconductor picture for quark confinement [13].
To discriminate and characterize the phases among

confinement phase, Higgs phase, and the other possible
phases, we investigate the correlations between the gauge-
invariant composite operators constructed from the scalar
field and the color-direction field obtained through the
CDGSFN decomposition. As a result of the gauge-
independent analysis, we find surprisingly a new transition
line that divides the conventional confinement phase into
two parts. Finally, we discuss the physical meaning of this
transition and the implications to confinement.
This paper is organized as follows. In Sec. II we define

the lattice SUð2Þ gauge-scalar model with a radially fixed
scalar field in the adjoint representation of the gauge
group and introduce the gauge-covariant CDGSFN
decomposition of the gauge field variable on the lattice.
We explain the method of numerical simulations in the
new framework of the lattice gauge theory. In Sec. III we
present the results of the numerical simulations. We give
an analysis in view of the gauge-covariant CDGSFN
decomposition. By measuring the correlations between
the gauge-invariant composite operators composed of the
original adjoint scalar field and the color-direction field
obtained from the decomposition, we find a new phase
that divides the confinement phase completely into two
parts. We further examine two kinds of correlations
between (n × n)-Wilson loops (n ¼ 1, 2) to obtain the
consistent result. In Sec. IV, we discuss understanding the
new phase structure obtained from numerical simulations.
The final section is devoted to conclusion and discussion.
In the Appendix, we further examine the Wilson-loop
operators to understand the transition between the two
confinement phases (I) and (III).

II. LATTICE SUð2Þ GAUGE-SCALAR MODEL
WITH A SCALAR FIELD IN THE ADJOINT

REPRESENTATION

A. Lattice action

The SUð2Þ gauge-scalar model with a radially fixed
scalar field in the adjoint representation is given on the
lattice with a lattice spacing ϵ by the following action with
two parameters β and γ:

SGS½U;ϕ� ≔ SG½U� þ SH½U;ϕ�; ð1Þ

SG½U� ≔
X
x;μ<ν

β

2
trð1 −Ux;μνÞ þ c:c:

¼
X
x;μ<ν

β

2
trð1 −Ux;μUxþμ̂;νU

†
xþν̂;μU

†
x;νÞ þ c:c:; ð2Þ

SH½U;ϕ� ≔
X
x;μ

γ

2
trððDϵ

μ½U�ϕxÞ†ðDϵ
μ½U�ϕxÞÞ

¼
X
x;μ

γtrð1 − ϕxUx;μϕxþμ̂U
†
x;μÞ; ð3Þ

where Ux;μ ¼ expð−igϵAx;μÞ∈ SUð2Þ represents a gauge
variable on a link hx; μi, Ux;μν is the plaquette variable
defined on a plaquette hx; μνi by

Ux;μν ¼ Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν; ð4Þ

ϕx ¼ ϕA
x σ

A ∈ suð2Þ (A ¼ 1, 2, 3) represents a scalar field
on a site x in the adjoint representation subject to the
radially fixed condition ϕx · ϕx ¼ ϕA

xϕA
x ¼ 1, andDϵ

μ½U�ϕx

represents the covariant derivative in the adjoint represen-
tation defined as

Dϵ
μ½U�ϕx ≔ Ux;μϕxþϵμ̂ − ϕxUx;μ: ð5Þ

This action reproduces in the naive continuum limit ϵ → 0
the continuum gauge-scalar theory with a radially fixed
scalar field jϕxj ¼ v and a gauge coupling constant g where
β ¼ 4=g2 and γ ¼ v2=2 [4].
The lattice action (3) is invariant: SGS½U0;ϕ0� ¼

SGS½U;ϕ� under the local gauge transformation Ωx ∈
SUð2Þlocal for the link variable Ux;μ and the site variable
ϕx given by

Ux;μ ↦ U0
x;μ ¼ ΩxUx;μΩ†

xþμ;

ϕx ↦ ϕ0
x ¼ ΩxϕxΩ

†
x: ð6Þ

Therefore, the color symmetry is preserved in the sense that
SGS½U;ϕ� is invariant under the global transformationΩx ¼
Ω∈ SUð2Þglobal in Eq. (6).
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B. Gauge-covariant decomposition

To investigate gauge independently the phase structure
of the gauge-scalar model, we introduce the lattice version
[10,11] of change of variables based on the idea of the
gauge-covariant decomposition of the gauge field, so
called the CDGSFN decomposition [6–9]. For a review,
see [12].
We introduce the (Lie algebra valued) site variable

nx ≔ nAx σA ∈ suð2Þ − uð1Þ which is called the color-
direction (vector) field, in addition to the original link
variable Ux;μ ∈ SUð2Þ. The link variable Ux;μ and the site
variable nx transform under the gauge transformation
Ωx ∈ SUð2Þ as

Ux;μ →ΩxUx;μΩ
†
xþμ ¼U0

x;μ; nx →ΩxnxΩ
†
x ¼n0x: ð7Þ

In the decomposition, a link variable Ux;μ is decomposed
into two parts:

Ux;μ ≔ Xx;μVx;μ: ð8Þ

We identify the lattice variable Vx;μ with a link variable
which transforms in the same way as the original link
variable Ux;μ:

Vx;μ → ΩxVx;μΩ
†
xþμ ¼ V 0

x;μ: ð9Þ

On the other hand, we define the lattice variable Xx;μ

such that it transforms in just the same way as the site
variable nx:

Xx;μ → ΩxXx;μΩ
†
x ¼ X0

x;μ; ð10Þ

which automatically follows from the above definition of
the decomposition. Such decomposition is obtained by
solving the defining equations:

Dμ½V�nx ≔ Vx;μnxþμ − nxVx;μ ¼ 0; ð11Þ

trðnxXx;μÞ ¼ 0: ð12Þ

This defining equation has been solved exactly, and the
resulting link variable Vx;μ and site variable Xx;μ are of the
form [10]

Ṽx;μ ≔ Ux;μ þ nxUx;μnxþμ;

Vx;μ ≔ Ṽx;μ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðṼ†

x;μṼx;μÞ=2
q

;

Xx;μ ≔ Ux;μV−1
x;μ: ð13Þ

This decomposition is obtained uniquely for a given set of
link variables Ux;μ once the site variable nx is given. The
configurations of the color-direction field fnxg are obtained
by minimizing the functional:

Fred½fnxgjfUx;μg� ≔
X
x;μ

trfðDx;μ½U�nxÞ†ðDx;μ½U�nxÞg;

ð14Þ

which we call the reduction condition.
Note that this functional has the same form as the action

of the scalar field:

Sϕ ¼ γ

2
Fred½fϕxgjfUx;μg�: ð15Þ

Therefore, the color-direction field obtained as the solution
of the reduction condition satisfies the equations of motion
of the adjoint scalar field. In other words, the color-
direction field is identified with degrees of freedom
corresponding to the scalar field extracted from the gauge
field. Moreover, by using the color-direction fields, we can
construct a gauge-invariant mass term without a scalar
field [4].

C. Numerical simulations

The numerical simulation can be performed by updating
link variables and scalar fields alternately. For the link
variableUx;μ we can apply the standard Hamiltonian Monte
Carlo (HMC) algorithm, while for scalar field ϕx ∈ suð2Þ −
uð1Þ we apply the adjoint-orbit representation for the
reparametrization:

ϕx ≔ Yxϕ0Y
†
x ¼ Yxσ

3Y†
x; Yx ∈ SUð2Þ; ð16Þ

which satisfies the normalization condition ϕx · ϕx ¼ 1
automatically. Under the local gauge transformation
Ωx ∈SUð2Þlocal, Yx is required to transform as

Yx ↦ Y 0
x ¼ ΩYx; ð17Þ

to reproduce the transformation of ϕx∶ ϕx ↦ ϕ0
x ¼

ΩxϕxΩ
†
x.

Therefore, we can replace the Haar measureQ
x dϕxδðϕx · ϕx − 1Þ by

Q
x dYx, which enables us to

apply the standard HMC algorithm for Yx to update
configurations of the scalar fields ϕx.
We perform Monte Carlo simulations on the 164 lattice

with periodic boundary condition in the gauge-indepen-
dent way (without gauge fixing). In each Monte Carlo step
(sweep), we update link variables fUx;μg and scalar fields
fϕxg alternately by using the HMC algorithm with
integral interval Δτ ¼ 1 as explained in the previous
section. We take thermalization for 5000 sweeps and
store 800 configurations for measurements every 25
sweeps. Figure 1 shows datasets of the simulation param-
eters in the β–γ plane.
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III. LATTICE RESULT AND
GAUGE-INDEPENDENT ANALYSES

A. Action densities for the plaquette
and scalar parts

The search for the phase boundary is performed by
measuring the expectation value hOi of a chosen operator
O by changing γ (or β) along the β ¼ const: (or γ ¼ const:)
lines. In order to identify the boundary, we used the
bent, step, and gap observed in the graph of the plots
for hOi.
First of all, in order to determine the phase boundary of

the model, we measure the Wilson action per plaquette
(plaquette-action density),

P ≔
1

6Nsite

X
x;μ<ν

1

2
trðUx;μνÞ; ð18Þ

and the scalar action per link (scalar-action density),

M ≔
1

4Nsite

X
x;μ

1

2
trððDμ½Ux;μ�ϕxÞ†ðDμ½Ux;μ�ϕxÞÞ; ð19Þ

as Brower et al. have done in [2].
First, we try to determine the phase boundary from the

plaquette-action density. Figure 2 shows the results of
measurements of the plaquette-action density hPi in the
β–γ plane. The left panel shows the plots of hPi along
β ¼ const: lines as functions of γ, where error bars are not
shown because they are smaller than the size of the plot
points. On the other hand, the right panel shows the plots of
hPi along γ ¼ const: lines as functions of β.
Next, in the same way, we try to determine the phase

boundary from the scalar-action density. Figure 3 shows the
results of measurement of the scalar-action density hMi in
the β–γ plane. The left panel of Fig. 3 shows the plots of
hMi along β ¼ const: lines as functions of γ, while the right
panel of Fig. 3 shows the plots of hMi along γ ¼ const:
lines as functions of β.
Figure 4 shows the resulting phase boundary. The left

panel presents the phase boundary determined from the
plaquette-action density hPi (see Fig. 2). The right panel
shows the phase boundary determined from the scalar-
action density hMi (see Fig. 3). The interval between the
two simulation points corresponds to the short line with
ends. The error bars in the phase boundary are due to the
spacing of the simulation points. It should be noticed that
the two phase boundaries determined from hPi and hMi are
consistent within accuracy of numerical calculations. Thus
we find that the gauge-independent numerical simulations
reproduce the phase boundary obtained by Brower
et al. [2].

B. Susceptibilities for P and M

To find out more about phase boundary, we next measure
“susceptibility” for the action densities:

FIG. 2. Average of the plaquette-action density hPi. Left: hPi versus γ on various β ¼ const: lines. Right: hPi versus β on various
γ ¼ const lines.

FIG. 1. Simulation points in β − γ plane.
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hχðPÞi ≔ ð6NsiteÞ½hP2i − hPi2�; ð20Þ

hχðMÞi ≔ ð4NsiteÞ½hM2i − hMi2�: ð21Þ

Figure 5 shows the measurements of hχðPÞi. The upper
panels show plots of hχðPÞi versus γ along β ¼ const: lines,
while the lower panels show plots of hχðPÞi versus β along
the γ ¼ const: lines.
Figure 6 shows the measurements of hχðMÞi. The upper

panels show plots of hχðMÞi versus γ along β ¼ const:
lines, while the lower panels show plots of hχðMÞi versus β
along the γ ¼ const: lines.
Figure 7 shows the phase boundary determined by the

susceptibility (specific heat) as a function of β or γ. The
green boundary is determined from the position of the peak
in the susceptibility graph. The black boundary was
determined from the position of the bend in the suscep-
tibility graph. The orange boundary in the left panel of
Fig. 7 is determined from the peak position of the plaquette-
action susceptibility.

The left panel of Fig. 7 gives same boundary as that
determined by hχðPÞi in Fig. 4 for relatively large γ.
It should be remarked that the phase boundaries in

Figs. 4 and 7 do not necessarily coincide: in Fig. 4 the
boundary line in the region β > 2 (the black line) extends
along the horizontal line γ ≃ 1 toward the pure scalar axis at
β ¼ ∞, while in the left panel of Fig. 7 the boundary line
extends also to the point ðβ ≃ 2.2; γ ¼ 0Þ on the pure gauge
axis at γ ¼ 0 (the orange line).
However, the orange part of the phase boundary can only

be found from the measurement of susceptibility hχðPÞi.
Indeed, it cannot be found from the measurement of hχðMÞi.
This fact indicates that the orange part is not the phase
boundary and could be the crossover, discriminating theweak
coupling asymptotic scaling region from the strong coupling
region, as seen by Bhanot and Creutz in their model [14].
The right panel of Fig. 7 shows the phase boundary

determined by measurements of hχðMÞi given in Fig. 6.
The phase boundary determined from hχðPÞi and hχðMÞi
coincide. Note that the location of the phase boundary is

FIG. 4. The phase boundary determined by the action densities. Left: hPi. Right: hMi.

FIG. 3. Average of the scalar-action density hMi: Left: hMi versus γ on various β ¼ const: lines. Right: hMi versus β on various
γ ¼ const: lines.
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well approximated by the two lines: the right part of γ ≃
0.75 and the upper part of β ≃ 1.2 except for the neighbor-
hood of their intersection point.

C. Correlations between the scalar field and the
color-direction field through the gauge covariant

decomposition

We measure the scalar-color correlation detected by the
scalar-color composite operator:

Q ¼ 1

Nsite

X
x

1

2
trðnxϕxÞ; ð22Þ

where nx is the color-direction field in the gauge-covariant
decomposition for the gauge link variable. For this purpose,
we need to solve the reduction condition (14) to obtain the
color-direction field nx, which however has two kinds of
ambiguity. One comes from so-called the Gribov copies
that are the local minimal solutions of the reduction
condition. In order to avoid the local minimal solutions
and to obtain the absolute minima, the reduction condition
is solved by changing the initial values to search for the
absolute minima of the functional. The other comes from
the choice of a global sign factor, which originates from the

fact that whenever a configuration fnxg is a solution, the
flipped one f−nxg is also a solution, since the reduction
functional is quadratic in the color-direction fields. To
avoid these issues, we propose to use hjQji and hQ2i, which
are examined as the order parameters that determine the
phase boundary.
The phase boundary is searched for based on two ways:
(i) the location at which hjQji changes from hjQji ≃ 0

to hjQji > 0. This is also the case for hQ2i.
(ii) the location at which hjQji changes abruptly, as was

done for hPi and hMi. This is also the case for hQ2i.
Figure 8 shows the measurements of hjQji. The left panel

shows plots of hjQji versus γ along various β ¼ const:
lines, while the right panel shows plots of hjQji versus β
along various γ ¼ const: lines.
Figure 9, on the other hand, shows the measurements of

hQ2i in the same manner as hjQji.
Figure 10 shows the phase boundary (critical line)

determined by hjQji and hQ2i. The left panel of Fig. 10
shows the phase boundary determined from hjQji. The
right panel of Fig. 10 shows the phase boundary determined
from hQ2i.
The purple boundary indicates that (i) hjQji changes

from hjQji ≃ 0 to hjQji > 0 (or hQ2i changes

FIG. 5. Susceptibility of plaquette hχðPÞi. Upper panels: hχðPÞi versus γ on various β ¼ const: lines. Lower panels: hχðPÞi versus β
on various γ ¼ const: lines.
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from hQ2i ≃ 0 to hQ2i > 0). The black boundary
corresponds to the location at which hjQji (or hQ2i)
has gaps. The orange boundary corresponds to the
location at which hjQji (or hQ2i) bends. The results of
left and right panels in Fig. 10 are consistent with
each other.

Figure 10 shows not only the phase boundary that
divides the phase diagram into two phases, the so-called
Higgs phase and the confinement phase, but also the new
boundary that divides the confinement phase into two
different parts. It should be remarked that this finding
owes much to gauge-independent numerical simulations

FIG. 7. Critical lines determined from susceptibilities: Left: from hχðPÞi. Right: from hχðMÞi.

FIG. 6. Susceptibility for the scalar action hχðMÞi. Upper panels: hχðMÞi versus γ on various β ¼ const: lines. Lower panels: hχðMÞi
versus β on various γ ¼ const: lines.
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FIG. 8. Average of the scalar-color composite field hjQji. Left: hjQji versus γ on various β ¼ const: lines. Right: hjQji versus β on
various γ ¼ const: lines.

FIG. 9. Average of the squared scalar-color composite field hQ2i. Left: hQ2i versus γ on various β ¼ const: lines. Right: hQ2i versus β
on various γ ¼ const: lines.

FIG. 10. Critical lines determined (left) from hjQji, and (right) from hQ2i.
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and their analyses, and these new results can only be
established through our framework.

D. Susceptibility for the scalar and color-direction field

Next we investigate the “susceptibility” of the scalar-
color local correlation:

hχðjQjÞi ¼ ð4NsiteÞ½hQ2i − hjQji2�: ð23Þ

Figure 11 shows the measurement of hχðjQjÞi. The upper
panel of Fig. 11 show plots of hχðjQjÞi versus γ along the
β ¼ const: lines, while the lower panels show plots of
hχðjQjÞi versus β along the γ ¼ const: lines.
First, we search for the transition along the vertical lines

with fixed values of β in a phase diagram. For a relatively
small fixed value of β (0 ≤ β ≤ 1.6), hχðjQjÞi is nearly
equal to zero for small γ, but reaches a large but finite value
across a critical value γcðβÞ, showing a peak as γ increases.
For larger values of β (1.8 ≤ β ≤ 4.0), hχðjQjÞi increases
from zero to a finite value, which shows however no peak
and increases monotonically as γ increase. These observa-
tions yield the existence of a new transition line γ ¼ γcðβÞ.
Next, we search for the transition along the horizontal

line with fixed values of γ in a phase diagram. For a

small fixed value of γ (0 ≤ γ ≤ 1.5), hχðjQjÞi shows a
nonzero value for small β, and decreases monotonically as
β increases.
Figure 12 shows the phase boundary (critical line)

determined from hχðjQjÞi. The blue boundary is obtained

FIG. 11. Susceptibility for the scalar-color field hχðjQjÞi. Upper panels: hχðjQjÞi versus γ on various β ¼ const: lines. Lower panels:
hχðjQjÞi versus β on various γ ¼ const: lines.

FIG. 12. Critical line determined from the susceptibility
hχðjQjÞi.
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from the location of the rapid change. The red and
black intervals are obtained from the location of bends.
This result agrees with the critical line already obtained
above.

E. Correlations between the scalar field and small
Wilson loops

To confirm the results obtained in the previous section,
we further examine two kinds of correlations between
(n × n)-Wilson loops (n ¼ 1, 2) and scalar fields. They
are defined in the gauge invariant way using only the
original field variables without relying on the color-direc-
tion field.
First, we consider the gauge-invariant correlation

between a (1 × 1)-Wilson loop (a plaquette) and scalar
fields:

R ≔
1

6Nsite

X
x;μ<ν

1

2
trðUx;μνϕxU

†
x;μνϕxÞ; ð24Þ

where Ux;μνϕxU
†
x;μνϕx represents the averaged correlation

defined by

Ux;μνϕxU
†
x;μνϕx

≔
1

4
ðUx;μ;νϕxU

†
x;μ;νϕxþUx;ν;−μϕxU

†
x;ν;−μϕx

þUx;−μ;−νϕxU
†
x;−μ;−νϕxþUx;−ν;μϕxU

†
x;−ν;μϕxÞ; ð25Þ

with Ux;−μ ¼ U†
x−μ̂;μ, which is identical to averaging the

correlations between a scalar field and four plaquettes
surrounding it (see the left panel of Fig. 13). Here we
want to define a lattice version of a local operator in the
continuum measuring the correlation between the gauge
field strength and the scalar field by using plaquette
variables and scalar field variables on the lattice.
However, on the lattice such definitions are not unique.
Therefore, to avoid such arbitrariness, we have defined the

operator R by averaging over the plaquettes around the
scalar field to reduce the lattice artifact.
Next, we consider the gauge-invariant correlation

between ð2 × 2Þ-Wilson loops and scalar fields:

W ≔
1

6Nsite

X
x;μ<ν

1

2
trðŴð2×2Þ

x;μ;ν ϕxŴ
ð2×2Þ†
x;μ;ν ϕxÞ; ð26Þ

where we have introduced the variable Ŵð2×2Þ
x;μν defined by

the (2 × 2)-Wilson loop along a path C (a 2 × 2 rectangular
loop) connected by the Schwinger lines (link variables):

Ŵð2×2Þ
x;μν ≔ Ux;μ

� Y
hx;ρi∈C

Ux;ρ

�
U†

x;μ: ð27Þ

Here we have an arbitrariness in defining the correlation
between the Wilson loop and the scalar field, at which
site the scalar field is located. We here define the
correlation between the Wilson loop and the scalar field
at the center x of the Wilson loop so that W has similar
information to R. To construct a gauge-invariant operator,
we connect the Wilson loop and the scalar field ϕx at the
center using the Schwinger lines (see the right panel
of Fig. 13.)
Now we examine the data for the correlation between the

scalar field and Wilson loop: hRi and hWi. The phase
boundaries are searched in the same way as in the previous
section.
Figure 14 shows the measurements of hRi. The left panel

shows plots of hRi versus γ along various β ¼ const: lines.
The right panel shows plots of hRi versus β along various
γ ¼ const: lines.
Figure 15 shows the measurements of hWi. The left

panel shows plots of hWi versus γ along various β ¼ const:
lines. The right panel shows plots of hWi versus β along
various γ ¼ const: lines.
The left panel of Fig. 16 shows the phase boundary

determined from hRi. The blue boundary (βcðγÞ) corre-
sponds to the location at which hRi has gaps or bends. The
green boundary (γcðβÞ) corresponds to the location at
which the function hRi changes shape from a constant
function hRi ¼ const: to the increasing function. These
phase boundaries reproduce those determined from the
scalar-color correlation, i.e., hjQji and hQ2i (see Fig. 10).
The right panel of Fig. 16 shows the phase boundary

determined from hWi. The blue boundary (γcðβÞ) corre-
sponds to the location at which hWi has gaps or bends.
The green (γcðβÞ) and orange (β0cðγÞ) boundaries corre-
spond to locations at which the function hWi changes the
shape from a constant function to the increasing function.
The green boundary shows the function hWiðβÞ jumps at
the critical points. When we focus on blue and green
boundaries (βcðγÞ and γcðβÞ), the result reproduces the

FIG. 13. Left: the graphical representation of Eq. (25). The
green lines represent link variables Ux;μ, and the orange circle
represents the position where the scalar fieldϕx is inserted. Right:

the graphical representation of Ŵð2×2Þ
x;μν in Eq. (27). AWilson loop

of the 2 × 2 rectangular is connected by the Schwinger lines. The
orange circle represents the position where the scalar field is
inserted.
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FIG. 15. Average of the correlation function hWi between scalar and (2 × 2)-Wilson loop. Left: hWi versus γ on various β ¼ const:
lines. Right: hWi versus β on various γ ¼ const: lines.

FIG. 14. Average of scalar-plaquette correration function hRi. Left: hRi versus γ on various β ¼ const: lines. Right: hRi versus β on
various γ ¼ const: lines.

FIG. 16. Critical lines determined (left) from hRi, and (right) from hWi.
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phase diagram determined from the scalar-color correla-
tion (see Fig. 10).
On the other hand, the orange boundary seems to

separate the region below the green boundary into two
regions: in the region β < β0cðγÞ we have no correlation
between theWilson loop and the scalar field, hWi ≃ 0, while
in the region β > β0cðγÞhWi takes a nonzero value,
hWi≃ > 0. However, the orange boundary shows the loca-
tion at which hWiðβÞ has the bent, although it is continuous
without any gaps. On the other hand, we cannot find such a
boundary from the measurement of hRiðβÞ (in sharp contrast
to that of hWiðβÞ). Therefore, this orange boundary could be
the crossover as was discussed in Sec. III B.
In Fig. 16, although the transition line from hWi is

located a little higher than the transition line from hRi, these
two transition lines agree within errors of the numerical
simulations, as seen by the error bars.

IV. UNDERSTANDING THE NEW PHASE
STRUCTURE OBTAINED FROM NUMERICAL

SIMULATIONS

Finally, we discuss why the above phase structure should
be obtained and how the respective phase is characterized
from the physical point of view. Figure 17 shows the
schematic view of the resulting phase structure.

(i) First, we consider the region below the new critical
line γ < γcðβÞ. In the limit γ → 0, especially, the
SUð2Þ gauge-scalar model reduces to the pure
compact SUð2Þ gauge model which is expected to
have a single confinement phase with no phase
transition and has a mass gap on the whole β axis in
four spacetime dimensions [15]. Confinement is
expected to occur due to vacuum condensations
of “non-Abelian” magnetic monopoles [13]. Here
the “non-Abelian” magnetic monopole should be
carefully defined gauge independently using the

gauge-invariant method, which is actually realized
by extending the gauge-covariant decomposition of
the gauge field; see [12] for a review. More com-
ments will be given below.

Even in the region 0 < γ < γcðβÞ, the effect of the
scalar field would be relatively small, and confine-
ment would occur in the way similar to the pure
SUð2Þ gauge theory, which we call confinement
phase (I). Confinement phase (I) is regarded as a
disordered phase in the sense that the color direction
field nx takes various possible directions with no
specific direction in color space. This can be
estimated through Q in relation to the direction of
the adjoint scalar field ϕx, which yields very small or
vanishing values of the average hjQji ¼ 0.

(ii) Next, we consider the region above the new critical
line γ > γcðβÞ where hjQji takes the nonvanishing
value hjQji > 0, including the two phases: Higgs
phase (II) γ > γcðβÞ, β > βcðγÞ and confinement
phase (III) γ > γcðβÞ, β < βcðγÞ. In order to consider
the difference between the two phases (II) and (III),
we first consider the limit γ → ∞. In this limit, the
SUð2Þ gauge-scalar model reduces to the pure
compact Uð1Þ gauge model. The pure compact
Uð1Þ gauge model in four spacetime dimensions
has two phases: confinement phase with massive
Uð1Þ gauge field in the strong gauge coupling region
β < β� ¼ βcð∞Þ and the Coulomb phase with mass-
less Uð1Þ gauge field in the weak gauge coupling
region β > β� ¼ βcð∞Þ, which has been proved
rigorously [16,17]. Confinement in the compact
Uð1Þ gauge model in the strong gauge coupling
region β < β� ¼ βcð∞Þ is understood based on the
Uð1Þ magnetic monopole as shown in [18].

For large but finite γ < ∞, furthermore, the
critical line β ¼ βcðγÞ extends into the interior of
the phase diagram from the critical point ðβ� ¼
βcð∞Þ; γ ¼ ∞Þ as shown in [2] by integrating out
the scalar field to obtain the effective gauge theory,
which supports the above two regions even for
finite γ < ∞.
In the Higgs phase (II), β > βcðγÞ above the new

critical line γ > γcðβÞ with a finite γ < ∞, the off
diagonal gauge fields for the modes SUð2Þ=Uð1Þ
become massive due to the BEH mechanism, which
is a consequence of the (partial) spontaneous
symmetry breaking SUð2Þ → Uð1Þ according to
the conventional understanding of the BEH mecha-
nism, although this phenomenon is also understood
gauge independently based on the new understand-
ing of the BEH mechanism without the sponta-
neous symmetry breaking [4]. Therefore, the
diagonal gauge field for the mode Uð1Þ always
remains massless everywhere in the phase (II).

FIG. 17. Phase structure of the lattice SU(2) gauge-adjoint
scalar model: (I) confinement phase, (II) Higgs phase, (III)
confinement phase.
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This is not the case in the other phases. Therefore,
the Higgs phase (II) can be clearly distinguished
from the other phases. In the limit γ → ∞, espe-
cially, the off diagonal gauge fields become infi-
nitely heavy and decouple from the theory, while
the diagonal gauge field survives the limit both in
(II) and (III). Consequently, the SUð2Þ gauge-scalar
model reduces to the pure compact Uð1Þ gauge
model. This observation is consistent with the
above consideration in the limit γ → ∞.
The nonvanishing value hjQji > 0means that the

color-direction field nx correlates strongly with the
given scalar field ϕx which tends to align to an
arbitrary but a specific direction in the region γ >
γcðβÞ as expected from the spontaneous symmetry
breaking in an ordered phase.

(iii) In the left region (III) β < βcðγÞ above the new
critical line γ > γcðβÞ to be identified with another
confinement phase (III), the gauge fields become
massive due to different physical origins. In the
region (III), indeed, the gauge fields become massive
due to self-interactions among the gauge fields, as in
the phase (I). In the confinement phase (III), no
massless gauge field exists, and the gauge fields for
all the modes become massive, which is consistent
with the belief that the original gauge symmetry
SUð2Þ would be kept intact and not spontaneously
broken.
In the confinement phases (I) and (III) there

occur magnetic monopole condensations which
play the dominant role in explaining quark
confinement based on the dual superconductor
picture, while in the Higgs phase (II) there are
no magnetic monopole condensations, and con-
finement would not occur. However, it should be
remarked that the origin of magnetic monopoles is
different in the two regions, (I) and (III). In (III) the
magnetic monopole is mainly originated from the
adjoint scalar field just like the ’t Hooft-Polyakov
magnetic monopole in the Georgi-Glashow model
[19]. In (I) the magnetic monopole is constructed
from the gauge field. Indeed, the magnetic monop-
ole can be constructed only from the gauge degrees
of freedom, which is explicitly constructed from
the color direction field in the gauge-invariant
way [12].

V. CONCLUSION AND DISCUSSION

In this paper, we have investigated the lattice SUð2Þ
gauge-scalar model with the scalar field in the adjoint
representation of the gauge group in a gauge-independent
way. This model was considered to have two completely
separated confinement and Higgs phases according to the
preceding studies [2] based on numerical simulations

which have been performed in the specific gauge fixing
based on the conventional understanding of the Brout-
Englert-Higgs mechanism [1].
We have reexamined this phase structure in the gauge-

independent way based on the numerical simulations
performed without any gauge fixing, which should be
compared with the preceding studies [2]. This is motivated
to confirm the recently proposed gauge-independent Brout-
Englert-Higgs mechanics for giving the mass of the gauge
field without relying on any spontaneous symmetry break-
ing [4,5]. For this purpose we have investigated correlation
between gauge-invariant operators obtained by combining
the original adjoint scalar field and the new field called
the color-direction field which is constructed from the
gauge field based on the gauge-covariant decomposition
of the gauge field due to Cho-Duan-Ge-Shabanov and
Faddeev-Niemi.
Consequently, we have reproduced gauge independently

the transition line separating confinement and Higgs phase
obtained in [2], and show surprisingly the existence of a
new transition line that divides completely the confinement
phase into two parts. Moreover, we have shown that the
same new transition line as the above is also obtained based
on the gauge-invariant operators defined by the original
gauge field and scalar fields alone without using the color-
direction field.
We have discussed the physical meaning of the new

transition and implications to confinement mechanism.
To establish our claim given in this paper, it is important
to show how the distinction between (I) and (III)
manifests itself in physical observables, such as the
string tension, mass spectrum, or scattering amplitudes.
In order to continue our research to obtain the evidence in
this direction, we plan to measure the mass spectrum and
magnetic monopole condensation in each phase to
examine our claim, in addition to some theoretical
considerations possibly derived from the analytical cal-
culations in subsequent papers, together with more
discussions on the physical properties of the respective
phase. In particular, it is quite important to study whether
or not the new phase (III) is a lattice artifact and survives
the continuum limit.
The result obtained in this paper should be compared

with the lattice SUð2Þ gauge-scalar model with the scalar
field in the fundamental representation of the gauge group
in a gauge-independent way. This model has a single
confinement-Higgs phase where two confinement and
Higgs regions are analytically continued according to the
preceding studies [20,21]. Even in this case, it is shown
[22] that the composite operator constructed from the
original fundamental scalar field and the color-direction
field can discriminate two regions and indicate the exist-
ence of the transition line separating the confinement-Higgs
phase into two completely different phases, the confine-
ment phase and Higgs phase.
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APPENDIX: PHASE BOUNDARY EXAMINED BY
THE WILSON-LOOP AVERAGE

To understand the nature of the new transition between
the two confinement phases (I) and (III), we further
examine the Wilson-loop operator defined by

WðR×TÞ
C ≔

1

2
tr

� Y
hx;ρi∈C

Ux;ρ

�
; ðA1Þ

where the path C represents the loop consisting of links
hx; ρi on the perimeter of a (R × T) rectangle. To reduce the
statistical errors, we use the averaged operator WðR; TÞ
reflecting the translation and rotation invariance of the
Wilson-loop operator:

WðR; TÞ ≔ 1

Nsite

1

6

X
fCg

WðR×TÞ
C ; ðA2Þ

where the sum
P

fCg runs over all possible (R × T)
rectangular loops fCg on the six planes on the

four-dimensional lattice. In addition, we apply the APE
smearing method [23] to reduce the noise.
We first measure a Wilson-loop average hWðR; TÞi. The

search for a phase boundary is performed by measuring
the Wilson-loop average hWðR; TÞi by changing γ along
the β ¼ const: lines. To identify the phase boundary, we
use the bent, step, and gap observed in the graph for
hWðR; TÞi as is done for hPi.
Figure 18 shows the results of measurements of the

Wilson-loop average hWðR; TÞi in the β–γ plane. The left
panel of Fig. 18 shows plots of hWð3; 3Þi versus γ along
the β ¼ const: lines. For smaller values of β: β < 1.2,
hWð3; 3Þi takes almost the same constant value for
changing γ. We find no phase boundary between
the phases (I) and (III) from measurements of the
Wilson-loop average. For larger values of β: β ≥ 1.2,
on the other hand, hWð3; 3Þi is constant up to a critical
point γcðβÞ as γ increases, but for γ > γcðβÞ it changes
rapidly to take larger values. Thus we identify the critical
line γcðβÞ with the phase boundary from the Wilson-
loop average. Moreover, the right panel of Fig. 18 shows
plots of hWð4; 4Þi versus γ along the β ¼ const: lines.
We obtain the same results on the phase boundary as in
the case of hWð3; 3Þi. Note that these results are con-
sistent with that obtained by hPi (see the left panel
of Fig. 2).
Next, we examine the static potential from the Wilson-

loop average to obtain the information about the string
tension:

VðR; TÞ ¼ −
1

T
log hWðR; TÞi: ðA3Þ

Figure 19 shows the plots of static potentials for various
values of γ along the β ¼ const: lines. The left panel of

FIG. 18. Average of the Wilson loops versus γ on various β ¼ const: lines: (left) hWð3; 3Þi, and (right) hWð4; 4Þi.
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Fig. 19 shows the plots of the static potentials,1

VðR; T=ϵ ¼ 6Þ, for various values of γ along the β ¼ 0.8
line which crosses the phase boundary between the phases
(I) and (III). The potential V increases as R increases up to
the critical distance Rc ≃ 3 and immediately becomes flat
for R > Rc, which could be the string breaking due to the
screening of the gauge field by the pair creation of the
scalar particles from the vacuum. All plots of the static
potential overlap within errors irrespective of the values
of γ.
The right panel of Fig. 19 shows the plots of the static

potentials, VðR; T=ϵ ¼ 6Þ, for various values of γ along the
β ¼ 2.0 line which crosses the phase boundary between the

phases (I) and (II). We find two kinds of potentials
depending on the value of γ: smaller or larger than a
critical value γcðβÞ. In the confinement phase (I)
(γ < γcðβÞ) the potential V increases as R increases up
to the critical distance Rc ≃ 3 and becomes flat for R > Rc,
while in the Higgs phase (II) (γ > γcðβÞ) the potential VðRÞ
increases as R increases in the whole range of R, which
could be identified with the Yukawa potential.
In the text, we have shown that the phase boundary

separating confinement phases (I) and (III) can be eluci-
dated through the correlation between the scalar field and
theWilson loop (or the color direction field extracted by the
gauge-covariant decomposition). As shown in this appen-
dix, indeed, we cannot detect any phase boundary that
separates confinement phases (I) and (III) by using the
Wilson-loop operator alone without taking into account its
correlation with the scalar field. This result shows that the
new transition we claim is not a transition detectable by the
string tension.
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