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We explore the potential application of quantum computers to the examination of lattice holography,
which extends to the strongly coupled bulk theory regime. With adiabatic evolution, we compute the
ground state of a spin system on a (2þ 1)-dimensional hyperbolic lattice, and measure the spin-spin
correlation function on the boundary. Notably, we observe that with achievable resources for coming
quantum devices, the correlation function demonstrates an approximate scale-invariant behavior, aligning
with the pivotal theoretical predictions of the anti–de Sitter/conformal field theory correspondence.
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I. INTRODUCTION

The anti–de Sitter/conformal field theory (AdS=CFT)
[1–3] correspondence proposes a duality between a
strongly coupled CFT on the d-dimensional boundary of
a (dþ 1)-dimensional space with hyperbolic isometries,
and a weakly coupled quantum theory of gravity in the
bulk, which suggests the study of quantum field theories
via their gravitational duals. Yet, exploring the correspon-
dence for strongly coupled bulk theories remains a
challenge.
An alternative method to study quantum field theories is

to discretize space-time into a lattice [4–6]. Although
sacrificing continuous space-time symmetries, it enables
the application of statistical mechanics’ numerical tech-
niques to explore strongly coupled quantum field theories.
The application of lattice field theory to the AdS=CFT
correspondence then potentially allows for the nonpertur-
bative study of strongly coupled bulk dynamics for boun-
dary physics. Studies combining AdS=CFT and numerical
lattice field theory have revealed that even coarse hyper-
bolic lattices, where only a subset of the original continu-
ous symmetries remain, exhibit power-law correlations
supporting an approximate CFT on the lattice’s boundary
[7–14].

However, simulating such strongly coupled systems—
including those in the AdS=CFT context—becomes costly
for large volumes, where large amounts of entanglement
can also be involved. These limitations ultimately stifle
classical simulations of such systems, especially in space-
time dimensions greater than two [15]. On the other hand, a
cutting-edge tool poised to enhance theoretical calculations
in physics is the quantum computer, which boasts the
capacity to enumerate an exponential number of quantum
states using linear resources, enabling efficient handling of
intricate, highly entangled states.
An intriguing query then arises: Can quantum computers

be utilized in the near term to investigate the holographic
principle? The answer to such a question started to be
investigated recently [16] through a many-body simulation
of a Sachdev-Ye-Kitaev system [17]. This exactly soluble
model has allowed for insights into the AdS=CFT corre-
spondence through analytical means, and experimental
tests [18–21]. In this work, we investigate the holographic
correspondence between a boundary theory and a strongly
coupled spin system situated on a hyperbolic lattice in
2þ 1 dimensions where the aforementioned classical
simulations will be ultimately limited. This involves
preparing quantum states across various lattice sizes, and
measuring boundary observables to detect indications of
scale-invariant behavior. Specifically, we focus on the spin-
spin correlation function among boundary spins.
While computing expectation values with a quantum

computer via sampling is straightforward, generating the
desired quantum state remains a challenging task. One
particularly promising near-term algorithm is the adiabatic
state preparation (ASP) method [22]. Although ASP
ensures the preparation of the desired quantum state for
a gapped system, accomplishing this with a manageable
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circuit depth generally remains a significant hurdle. By
employing classical simulators, we will show that the
quantum state for the hyperbolic lattice theory can be
prepared via ASP with a remarkably constant, and achiev-
able circuit depth as the lattice size increases, fostering the
realistic test of holography at large lattices with quantum
computers.
Section II introduces the boundary-to-boundary corre-

lation function, our key observable, and our expectations
for its behavior. Section III elaborates on the state prepa-
ration method used. Sections IV and V present and discuss
outcomes from classical simulations of quantum systems
on hyperbolic lattices. Finally, Sec. VI offers concluding
remarks and future research directions.

II. ADS/CFT CORRESPONDENCE

The AdS=CFT correspondence is strictly a relationship
between a bulk quantum gravitational theory with AdS
shape, and a CFT on the boundary of that space-time. On
the bulk side, we approximate the gravitational theory as a
quantum scalar field theory living on a fixed hyperbolic
lattice [23]. In this case, we work with a discretized and
regulated scalar field theory where the lattice spacing is one
and bulk fluctuations are given by the transverse Ising
model,

H ¼ −Jx
X
i

Xi − Jzz
X
hi;ji

ZiZj; ð1Þ

with i summing over all lattice sites on the hyperbolic
lattice, and hi; ji being all possible nearest neighbor pairs.
Jx and Jzz are two couplings quantifying the interaction
strength of an external field, and between nearest sites,
respectively. We use X and Z to denote the Pauli-x and -z
operators. An illustration of the geometry for this lattice can
be seen in Fig. 1, for a finite volume. Figure 1 is a
projection of the hyperbolic lattice onto the flat plane called
the Poincaré disk. This causes the edge lengths to vary
throughout the lattice when, in fact, all edge lengths are
equal in the true hyperbolic lattice.
It is important to note that here we take space as a

hyperbolic slice, while time is simply uniform over the
space. This is different from true AdS where time warps as
a function of the spatial coordinates. In such a case, the
couplings, which are considered to be functions of spatial
and temporal lattice spacings from a higher-dimensional
lattice, will be spatially dependent [24,25]. Nevertheless,
we still expect salient aspects of holography to survive in
our scenario, as we discuss below.
We consider the bulk theory away from criticality where

the system is gapped. This holds true for most pairs of
Jx; Jzz values. Furthermore we consider the corresponding
ground state. To appreciate the choice of such a generic
bulk state, consider the boundary-to-boundary correlator
between boundary site i and site j that are a distance r away

on the boundary,

CðrÞ ¼ 1

Nb

XNb

i

X
j∋ji−jj¼r

hZiZji; ð2Þ

averaging over all Nb boundary lattice sites. The correlator
decays like

CðRÞ ∝ e−μR; ð3Þ

where R is the distance between i and j as measured along
the geodesic traversing the bulk, and μ is the mass gap of
the bulk scalar theory for given Jx, Jzz values [26].
Because of the curvature of the lattice, the number of

points on the boundary of the lattice grows exponentially
with the size of the lattice. Moreover, for two widely
separated boundary points, the geodesic distance traversing
the bulk is related to the distance along the boundary by

R ≈ αL logðr=LÞ; ð4Þ

where L is the radius of curvature of the lattice, and α is a
dimensionless number. From this relation we can see that,
when measured along the boundary, correlations between
boundary points go like

FIG. 1. The order-7 triangular lattice with 85 sites. The lattice
boundary is denoted with open circles. The inner sites outlined by
the gray boundary show a smaller volume with 29 sites. The
double-banded edges outline yet a smaller lattice with only 15
sites. The colored edges demonstrate a pattern for pairs of qubits
to be acted on simultaneously by two-qubit gates; that is, the sites
bounding all edges of a similar color can be acted on in parallel by
two-qubit gates.
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CðrÞ ∝ e−μRðrÞ ≈ e−μαL logðr=LÞ ¼
�
r
L

�
−μαL

; ð5Þ

which is a power-law function of r, indicating a conformal
theory with no intrinsic scale on the boundary.
The above argument relies on the system possessing a

gap in the bulk, and the underlying space being hyperbolic
shaped. In the next section we discuss how such gapped
state preparation is possible on a quantum computer.

III. STATE PREPARATION

We focus on the Jx and Jzz values where the bulk theory
is gapped. The ground state of Eq. (1) in principle can be
prepared via adiabatically evolving the noninteracting
(Jzz ¼ 0) ground state, jψ0i ¼ jþi ⊗ � � � ⊗ jþi, by gradu-
ally increasing the strength of Jzz. In practice, the desired
ground state cannot be prepared exactly due to the fact that
the evolution only proceeds for a finite amount of time, t
[27]. This finite evolution introduces some error into the
calculation, since the adiabatic evolution requires an
infinite amount of time to reach the exact ground state.
Moreover, the time evolution itself cannot be carried out
faithfully, and must be approximated in some way. Here we
use the Suzuki-Trotter approximation [28,29]. This method
digitizes the continuous-time evolution into a finite number
of steps, Nstep, each of which move the system forward by
an amount Δt ¼ t=Nstep. Therefore, for adiabatic evolution
to be successful requires a sufficiently large Nstep, and t.
The Trottereized time-evolution operator has the form

U ¼ eiðΔtÞJx=2
P

i
XieinðΔtÞðδJzzÞ

P
hijiZiZj

× eiðΔtÞJx=2
P

i
Xi ; ð6Þ

with n ¼ 1; 2;…, Nstep, and δJzz ¼ Jzz=Nstep. For Eq. (6),
the depth of a Trotter step—characterized by the number of
controlled-NOT (CNOT) gates not run in parallel—is 14, and
the total number of CNOT gates is 2×(the number of edges).
This particular depth is possible because of the sevenfold
symmetry of the lattice, which allows for the two-qubit
gates within each Trotter step to be organized into seven
parallel applications. These seven layers can be seen in
Fig. 1 using different colors.

IV. CLASSICAL SIMULATIONS

We examine the validity of ASP by checking the
convergences of the average energy hHi and Eq. (2) in
the prepared state using classical simulations of the
quantum algorithm. We perform calculations on four
different volumes, V ¼ 8, 15, 29, and 85, with the three
largest volumes identified in Fig. 1. The simulations are
performed on personal laptops, as well as the OriginQ
operating system [30], with 8000 shots. We use the Python

programming language with the NumPy [31], SciPy, and

QPanda packages, Mathematica [32], and IBM’s Qiskit

quantum simulation software [33]. For the largest lattices,
we used Qiskit’s matrix product state simulator.
During ASP we must first ensure that the entire system

does not cross a quantum critical point in the adiabatic
evolution. As the initial state is chosen to be the disordered
state jψ0i, we hope to terminate similarly in the disordered

phase which is true for Jzz less than a (possible) critical J
ðcÞ
zz .

To assess the existence of JðcÞzz , we add a small longitudinal
field term to H,

δH ¼ −Jz
X
i

Zi; ð7Þ

to split a trivial degeneracy in the ordered phase and
examine the behavior of the magnetic susceptibility mea-
sured over the entire lattice volume V,

χ ¼ 1

V
ðhM2i − hMi2Þ; ð8Þ

with

M ¼
X
i

Zi: ð9Þ

With the small Jz term, a potential phase transition is hinted

at by a peak in χ at the critical coupling JðcÞzz . With exact
diagonalization for V ¼ 8 and 15, we indeed find a peak in

χ around JðcÞzz ≈ 0.4 which could make adiabatic evolution
to larger Jzz values difficult. Since we are interested in a
gapped phase regardless, we restrict to Jzz < 0.4 and
disregard the δH term going forward.
With a valid range of Jzz values in hand, we can now

work to identify ideal values of t and Nstep. To do this we
consider a volume of 15 qubits with 60 CNOT gates and Rz
gates per Trotter step, and we vary t∈ ½0; 12�, and
Nstep ∈ ½10; 200�. As time increases at fixed Δt, the algo-
rithm’s average energy converges to the exact ground state
value for that particular coupling [34]. Figure 2 illustrates
this convergence, exhibiting agreement in the large-time
limit. Figure 2 also depicts the energy convergence in Δt
at fixed t. For sufficiently large t and small Δt, the
average energy approaches the exact value. Additionally,
Fig. 3 shows the convergence of Eq. (2) under similar
circumstances.
The practical cost for ASP depends on Nstep. From

Fig. 2, Nstep ≈ 30 yields an accuracy consistent with the
exact ground state energy, implying a total CNOT depth
of 420—assuming all-to-all connectivity. This type of
connectivity is possible on trapped-ion machines. For
machines with fixed topology such as IBM’s
Brisbane machine, we have compiled a single Trotter
step for the 29-qubit case and found a circuit depth of≈250,
which is realistic for coming quantum devices. We now
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present results in the next section computed using t ¼ 10,
and Δt ¼ 1=3.

V. RESULTS

With the methods under control, we investigate the
expected signals mentioned in Sec. II pertaining to CðrÞ
by performing adiabatic evolution using a digital simulator
with classical resources. Using the resultant state prepared
for various Jzz values, we calculate Eq. (2) between spins
on the boundary. Other thermodynamic observables [35]
which help articulate the boundary physics can also be
calculated and are left for future studies.
We expect Eq. (2) to obey a power law when

1 < r < Nb. This is when the physics probed is at a scale
larger than the lattice spacing but less than the volume. In
that case a functional form like

CðrÞ ¼ a

�
e−br

rc
þ e−bðNb−rÞ

ðNb − rÞc
�
þ d ð10Þ

would be applicable, where it also quantifies the exponen-
tial decay in the correlation function due to the finite lattice
spacing, as well as the periodicity of the boundary. The
finite volume corrections for such a circular boundary can
also be incorporated by considering the angle θ between
two boundary points as

CðθÞ ¼ a
e−b sinðθ=2Þ

sin ðθ=2Þc þ d; ð11Þ

with θ≡ 2πr=Nb [36]. In fact, in all cases, the fitted value
for b is consistent with zero, allowing for the exponential
dependence to be ignored and instead a pure power-law fit
can be used,

CðθÞ ¼ a
sin ðθ=2Þc þ d: ð12Þ

This provides more evidence that the boundary theory is
indeed approximately massless.
Figure 4 demonstrates the results of the fits for three

values of the Jzz coupling in the disordered phase for
V ¼ 29. There, the data are plotted with error bars,
alongside the best fit line. We find that deep in the
disordered phase the fit quality is best, with it degrading

as we approach the potential JðcÞzz where the bulk theory is
strongly coupled. The χ2=d:o:f: ¼ 0.5, 0.7, and 1.8 for
Jzz ¼ 0.25, 0.3, and 0.35, respectively, with 17 degrees of
freedom.
Figure 5 similarly shows CðθÞ, however for three differ-

ent volumes considered at a fixed Jzz ¼ 0.25. Here we
again see excellent agreement between data and the fit
ansatz, with χ2=d:o:f: ¼ 5.9=8, 8.2=17, and 37.1=50 for
V ¼ 15, 29, and 85, respectively. This figure demonstrates
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FIG. 3. Correlation functions on the 15-qubit lattice as a
function of the angle θ along the boundary for different t and Δt.
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FIG. 4. The boundary correlation function on the 29-qubit
lattice for three values of Jzz, along with the corresponding best
fit lines using Eq. (12).
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FIG. 2. Energy convergence from adiabatic evolution using
different numbers of Trotter steps for t ¼ 10 or different t but
fixing Δt ¼ 1=3. The black dashed line is the ground state energy
from exact diagonalization for V ¼ 15.
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the emerging long-distance power-law behavior visible on
larger lattices exemplified by the linear behavior for the
V ¼ 85 data starting with r ¼ 2 and ending at r ≈ 21.

VI. CONCLUSIONS

We have investigated the near-term potential to observe
scale-invariant behavior of a quantum field theory on the
boundary of hyperbolic space using a quantum computer.
This behavior takes the form of near-critical correlation
across a range of coupling-constant values. The quality of
our results have indicated that with modest circuit depths,
this behavior could be seen in coming quantum simula-
tions. This quantum capability opens the window to
facilitate future study of interesting features of holography
such as entanglement entropy, boundary thermodynamics

and critical exponents associated with a potential phase
transition of the boundary theory.
Of course, quantum computation in the present day is

error ridden, and future work would also include a repeated
analysis diagnosing errors, and implementing error miti-
gation techniques during the preparation of the scale-
invariant state. On the other hand, promising results in
engineering error-corrected machines are emerging [37].
Finally, more complicated models could be considered,
such as Z2 gauge theory on similar lattices, or considering
spin models on (3þ 1)-dimensional lattices.
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