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We present a lattice QCD study of the elastic S-wave DB̄ scattering in search of tetraquark candidates
with explicitly exotic flavor content bcū d̄ in the isospin I ¼ 0 and JP ¼ 0þ channel. We use four lattice
QCD ensembles with dynamical u=d, s, and c quark fields generated by the MILC collaboration. A
nonrelativistic QCD Hamiltonian, including improvement coefficients up to Oðαsv4Þ, is utilized for the
bottom quarks. For the rest of the valence quarks we employ a relativistic overlap action. Five different
valence quark masses are utilized to study the light quark mass dependence of theDB̄ scattering amplitude.
The finite volume energy spectra are extracted following a variational approach. The elastic DB̄ scattering
amplitudes are extracted employing Lüscher’s prescription. The light quark mass dependence of the
continuum extrapolated amplitudes suggests an attractive interaction between the B̄ and D mesons. At the
physical pseudoscalar meson mass (Mps ¼ Mπ) the DB̄ scattering amplitude has a subthreshold pole

corresponding to a binding energy of −39ðþ4
−6 Þðþ8

−18Þ MeV with respect to the DB̄ threshold. The critical
Mps at which the DB̄ scattering length diverges and the system becomes unbound corresponds to
M�

ps ¼ 2.94ð15Þð5Þ GeV. This result can hold significant experimental relevance in the search for a bound
scalar Tbc tetraquark, which could well be the next “doubly heavy” bound tetraquark to be discovered with
only weak decay modes.
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I. INTRODUCTION

The study of exotic hadrons is one of the most prominent
areas of research in contemporary particle physics. The
proliferating list of discovered exotic hadrons, exhibiting
properties that demand interpretations beyond conventional
meson and/or baryon models, continues to captivate the
scientific interest. A compilation of various exotic hadrons
discovered till now and their properties can be found in
Ref. [1]. Among these exotic hadrons, those with mani-
festly exotic flavor content having four quarks in their
valence structures are particularly popular. Several of them
are proximal to open flavor thresholds pointing to a
connection with the corresponding scattering channel for
their existence, and possibly their nature. These four quark
states could be compact tetraquarks, or meson-meson

molecular excitations, or a mixture of both or something
more intriguing: a much enviable research topic at this time.
An in-depth understanding of the binding mechanism
governing these hadrons can play a crucial role in elucidat-
ing the nonperturbative QCD dynamics.
A particularly notable common feature among the

discovered four quark hadrons is the presence of at least
one heavy quark constituent in their valence structure.
Phenomenologically it has been hypothesized and dis-
cussed that a color-singlet combination of two very heavy
quarks (antiquarks) and two light antiquarks (quarks) can
form a QQq̄1q̄2 bound state [2,3]. Recently a handful of
calculations using first principles method of lattice QCD
also strongly indicate the presence of deeply bound states
with the quark contents bbq̄1q̄2; q1 ∈ u, d; q2 ∈ dðsÞ; uðsÞ
[4–9]. Very interestingly a doubly charmed four quark
hadron, coined as Tþþ

cc , with the quark content ccū1d̄2 and
unusually long lifetime, has recently been discovered by
LHCb [10]. Lattice QCD calculations have also investi-
gated Tþþ

cc and suggested that the existence of this hadron
could be the result of a delicate fine tuning between the
light and heavy quark masses [11–14]. In summary, lattice
QCD calculations and phenomenological investigations
consistently suggest the existence of deeply bound states
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in doubly bottom four quark system, referred to as
Tbb ∈ bbq̄1q̄2, while experimental evidence has been
reported for a four quark hadron (Tcc) with the quark
content ccū d̄. Notably, the charm quark mass is compa-
ratively lighter than the bottom quark mass, suggesting
potentially differing binding strengths for doubly bottomed
and doubly charmed four quark states due to QCD
dynamics operating at multiple scales.
In this respect, four quark systems (Tbc ∈ bcq̄1q̄2),

which are in between Tbb and Tcc, i.e., with a bottom
and a charm valence quarks, are of particular interest.
Phenomenologically, predictions on the existence of such
states are ambiguous with their energies exhibiting con-
siderable spread over several hundreds of MeV around the
relevant two-meson threshold. Several model studies based
on heavy quark symmetry [15–17] suggest no binding.
Numerous nonchiral models [18–29] also suggest either a
weak binding or an unbound system. However, certain
chiral models [30–33] and QCD sum rule investigations
[34–38] propose a more pronounced binding. Some recent
studies like [39] also predict a bound state.
In such a scenario, first principles lattice QCD calcu-

lations can provide much needed information on the
bindings of Tbc states. However, previous lattice QCD
calculations [40–42] claim either no evidence for a bound
Tbc state or insufficient statistics to conclude its existence.
In Ref. [42], the authors do not come up to a conclusion
due to large uncertainties. In a recent work, we inves-
tigated the JP ¼ 1þ channel considering chiral as well as
continuum extrapolations and found an attractive inter-
action between the B̄� and D mesons indicating the
possible existence of a bound Tbc state with a binding
energy of −43ðþ6

−7Þðþ14
−24Þ MeV with respect to the DB̄�

threshold [43]. Afterwards, in another recent calculation
[44], some of the authors of Ref. [42] studied JP ¼ 0þ as
well as 1þ channels, involving bilocal two-meson inter-
polators corresponding to the elastic excitations of DB̄ð�Þ
scattering. They found attractive interactions in both
channels, and subsequently pointed to the existence of
shallow bound states. Given the coarse lattices they utilize
for these hadrons with two heavy quarks, it will be
important to check whether the binding of these states
observed in Ref. [44] will survive or enhance with
continuum extrapolation.
Motivated by the recent progress, and building upon our

previous work for JP ¼ 1þ channel [43], in this work we
perform a lattice QCD calculation of elastic DB̄ mesons1

scattering in the isoscalar scalar channel IðJPÞ ¼ 0ð0þÞ.
Following a partially quenched approach, we investigate
the light quark mass dependence of the DB̄ mesons
scattering. The lattice-extracted scattering amplitudes,

employing Lüscher’s finite-volume prescription, are
extrapolated to the continuum limit. The amplitude at
the physical pion mass is deduced following a study of
the light quark mass dependence of these continuum-
extrapolated results. Finally, the hadronic pole information
in this physical amplitude is studied towards identification
of bound state poles.
Experimentally, JP ¼ 0þ channel is also more interesting

as it could be the next “doubly heavy” tetraquark to discover
since it has a reduced heavy diquark mass that is lower than
that for the bbq̄1q̄2 system. It would also likely be the first
tetraquark that would unambiguously decay only weakly.
The remainder of the manuscript is structured as follows.

A brief overview of our lattice setup is provided in Sec. II.
In Sec. III, we discuss various relevant technical details
involved in our calculation such as the observable mea-
sured, the interpolating operators utilized and the extraction
of finite volume energy spectra, which are presented in
Sec. IV. The extraction of scattering amplitudes, continuum
extrapolations, and chiral extrapolations made are pre-
sented in Sec. V. In Sec. VI we present a discussion on
the bindings of Tbc four-quark states, in perspectives of
available lattice and nonlattice results, along with a
comparison of scattering lengths for DD�, DB�, BB�,
and DB̄ scatterings. Finally we summarized our results
in Sec. VII.

II. LATTICE DETAILS

The computational setup used in this calculation is
similar to the one in several of our previous publications
[7,45–54] and most recently in Ref. [43]. We use fourNf ¼
2þ 1þ 1 ensembles with dynamical quark fields respect-
ing a highly improved staggered quark (HISQ) action
generated by the MILC collaboration [55]. Other relevant
details of various lattice QCD ensembles used are listed in
Table I. The lattices have different volumes and lattice
spacings a, which are estimated using the r1 parameter
[55]. The gauge fields respect one-loop and follow the
tadpole-improved Symanzik gauge action with tuned coef-
ficients through Oðαsa2; nfαsa2Þ [56]. The valence quark
masses up to the charm quark are realized using an overlap
fermion action that is OðamÞ improved [57,58]. The bare
charm quark mass on each ensemble was tuned using the
kinetic mass of spin averaged 1S charmonia faM̄c̄c

kin ¼
0.75aMkinðJ=ψÞ þ 0.25aMkinðηcÞg determined for the
respective ensembles following the Fermilab prescription
[59] (for more details see Refs. [48,49]). The bare strange
quark mass is tuned to the physical point such that the
lattice estimate for the fictitious pseudoscalar s̄s equals
688.5 MeV [60].
Our setup assumes an exact isospin symmetry mu ¼ md

over a range of light quark masses corresponding to
Mps ∼ 0.5, 0.6, 0.7 (equivalent to the strange quark mass),
1.0, and 3.0 (equivalent to the charm quark mass) GeV, to

1We assume mu ¼ md, ignore QED effects, and refer to the
degenerate (DþB−; D0B̄0) threshold as DB̄.
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map the light quark mass dependence over a wide range of
Mps values. In Fig. 1, we present the landscape of different
light quark masses (in terms of Mps) studied in the lattice
ensembles employed. We utilize a wall-smearing procedure
at the quark source for our propagator measurements which
is described in Refs. [7,51,54].
We use a nonrelativistic QCD (NRQCD) Hamiltonian

approach for the bottom quark [61]. The bottom quark mass
was tuned following the Fermilab prescription [59], match-
ing the lattice-determined kinetic mass of the spin-averaged
1S bottomonium state to its experimental value. For details
regarding the NRQCD Hamiltonian, improvement coeffi-
cients, and bottom quark mass tuning specific to our setup,
see Ref. [50].

III. DETERMINING THE FINITE VOLUME
SPECTRA USING LATTICE QCD

The time dependence of Euclidean two-point correlation
functions

CijðtÞ¼
X

x

hOiðx; tÞÕ†
jð0Þi¼

X

n

Zn
iZ

n†
j

2En e−E
nt; ð1Þ

featuring operators Oiðx; tÞ with the desired quantum
numbers dictate the time evolution of finite volume spectral
levels. Here the operator-state overlap Zn

i ¼ h0jOijni
determines the coupling of the operator Oi with the state
n. The wall-smearing at the quark source in our setup filters
out all the high-momentum modes at the source, whereas at
the sink time slice we utilize a point sink for the quark fields
and project the correlation function to its rest frame as
shown in Eq. (1). This asymmetric nature of the wall-source
point-sink setup is emphasized in Eq. (1) with different
operators and the operator-state overlaps at the source and
at the sink.
For the B̄ and D mesons, we compute two-point

correlation functions using the standard local quark bilinear
interpolators (Q̄Γ q) with spin structure Γ ∼ γ5. Since we
are only interested in the rest frame ground state, single
meson correlation functions are evaluated only for the A−

1

irrep in the finite volume.
Our study focuses on the S-wave DB̄ scattering in the

rest frame leading to infinite volume quantum numbers
JP ¼ 0þ, which reduces to the Aþ

1 finite-volume irrep. The
elastic two-meson threshold is at EDB̄ ¼ mD þmB̄,
whereas the lowest inelastic threshold corresponds to the
D�B̄� scattering channel, which is sufficiently high to
assume a purely elastic DB̄ scattering in the S-wave.
There are no relevant low lying three particle thresholds
in this channel and the lowest multiparticle inelastic
threshold corresponds to DB̄ππ.
In the present analysis, we use both a meson-meson type

of operator and a local diquark-antidiquark kind of operator
as in Ref. [41]:

O1ðxÞ ¼ ½ūðxÞγ5bðxÞ�½d̄ðxÞγ5cðxÞ�
− ½d̄ðxÞγ5bðxÞ�½ūðxÞγ5cðxÞ�;

O2ðxÞ ¼ ðūðxÞTΓ5d̄ðxÞ
− d̄ðxÞTΓ5ūðxÞÞðbðxÞΓ5cðxÞÞ: ð2Þ

Here O1ðxÞ is a meson-meson operator associated with
the DB̄ threshold with the individual D and B̄ forming a
color singlet. We do not include any other scattering
operators since the next one, corresponding to the D�B̄�
is sufficiently higher up in energy and is assumed to have
negligible effects on the low-lying spectrum. Excited elastic
two-meson operators of DB̄ system with nonzero relative
mesonmomenta, such as those used in Ref. [44], are also not
utilized in this study. The wall-smearing setup we utilize
disallows construction of such elastic scattering operators.
O2ðxÞ is a local diquark-antidiquark type operator where

all the (anti)quark fields are jointly projected to zero
momentum. In the color space, diquarks/antidiquarks are
built in the antitriplet/triplet representations of SUð3Þc. In
Eq. (2), Γk ¼ Cγk with C ¼ iγyγt being the charge
conjugation matrix. Phenomenologically, doubly heavy

FIG. 1. A landscape plot of the pseudoscalar masses used
across the different lattice ensembles. The light quark masses are
varied across these five values, while charm and bottom quarks
are tuned to their physical values. The horizontal gray bands
represent estimates of Mps, to facilitate a comparison of pseu-
doscalar meson masses across all four ensembles.

TABLE I. Details of lattice QCD ensembles employed. Msea
ps

refers to the sea pion mass. S1, S2, and S3 refer to small spatial
volume ensembles and L1 refers to the large volume ensemble.

Ensemble
Symbol
(a) [fm]

Lattice spacing
(N3

s × Nt) Dimensions Msea
ps

S1 0.1207(11) 243 × 64 305
S2 0.0888(8) 323 × 96 312
S3 0.0582(4) 483 × 144 319
L1 0.1189(9) 403 × 64 217
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tetraquarks are expected to be deeply bound and compact in
the heavyquark limit,whichmotivates the use of this operator
[5,62]. Such compact local operators were also considered in
our previous study [43] of axial-vector bottom-charm tetra-
quarks. It is also empirically known fromseveral other studies
of doubly bottom tetraquarks that such operators have a rich
overlap with the ground state [41,42,63–68].
With these two operators, we find a suitable linear

combination that overlaps maximally to the ground state
by solving for the generalized eigenvalue problem [69],

CðtÞvnðtÞ ¼ λnðtÞCðt0ÞvnðtÞ: ð3Þ

The eigenvalues, λnðtÞ correspond to the nth lowest eigen-
states with energy En, where n ≤ 1 in our case. We are only
interested in the ground state E0. The time evolution of the
lowest eigenvalue, limt→∞ λ0ðtÞ ∼ A0e−E

0t, gives the value
of the ground state energy in the large time limit, whereas
the magnitude of the operator state overlaps

Z0
i ¼ h0jOij0i ¼

ffiffiffiffiffiffiffiffi
2E0

p
ðV−1Þ0i eE0ðt0Þ=2; ð4Þ

indicates the coupling of the operators to the ground state.
Here V is the matrix of eigensolutions vnðtÞ, which are
expected to be time independent in the large time limit,
where CðtÞ is saturated by the lowest N eigenstates.
The quality of signals in the energy estimates are

assessed using the effective energies,

aEeff ¼ ½lnðCðtÞ=Cðtþ δtÞÞ�=δt; ð5Þ

cf. Fig. 2, where we plot present aEeff for the case Mps ∼
3 GeV on the finest lattice. The black points represent the

effective energy of the interacting system CðtÞ ¼ λ0ðtÞ,
whereas the red points indicate the effective energy of the
correlator CðtÞ ¼ CDðtÞCB̄ðtÞ of the noninteracting system
of D and B̄ mesons and serve as a reference. A negative
shift of the interacting energy level with respect to the
noninteracting ones is evident in Fig. 2.
The energy estimates are extracted from the correlator

data from fitting them with their expected asymptotic
forms. This can be performed in two ways: the obvious
way of fitting the interacting correlator λ0ðtÞ directly or to
fit the ratio of correlators

R0ðtÞ ¼ λ0ðtÞ
CDðtÞCB̄ðtÞ

; ð6Þ

with a single exponential form in the large time limit. We
are primarily interested in determining the energy split-
tings between the interacting data and the noninteracting
one, ΔE0 ¼ E0 −MD −MB̄. Fits to R

0ðtÞ directly leads to
the estimates for ΔE0. Alternatively, these splittings can
be evaluated as differences between the estimates for
energy E0 from fits to λ0ðtÞ and for (MD, MB̄) from
separate fits to CDðtÞ and CB̄ðtÞ, respectively. A compari-
son of estimates from these two procedures assures that
the ground state energy splittings we extract are not
influenced by any conspired cancellation of noises leading
to any fake energy plateaus. We present a demonstration
of such a comparison in Fig. 3, where it is evident that the
value of ΔE0 estimated from the two different procedures
agree with each other within error bars. This trend is
observed throughout all the correlators examined. The
final results quoted in this paper are based on fitting the
ratio correlators defined in Eq. (6).

FIG. 2. Effective energy plot for the eigenvalue of the ground
state λ0ðtÞ in circular black markers and for the lowest threshold
which is the product of single-meson correlators for the D and B̄
meson, CDðtÞCB̄ðtÞ in square red markers. The corresponding
blue and orange bands are the energy fit estimates using single
exponential fit forms on λ0ðtÞ and the single-meson correlation
functions, respectively.

FIG. 3. aΔE0 versus t=a plot, for Mps ∼ 3 GeV on the finest
lattice. Here aΔE0ðtÞ, shown in the circular black data datapoints,
is the effective energy splitting determined using Eq. (5) with
CðtÞ ¼ R0ðtÞ. The fit estimates determined from the single
exponential fits to λ0ðtÞ and R0ðtÞ is shown in gray and blue
bands, respectively.

RADHAKRISHNAN, PADMANATH, and MATHUR PHYS. REV. D 110, 034506 (2024)

034506-4



As emphasized in the preceding text, the wall-source
point-sink setup can efficiently suppress the nonzero
momentum excitations providing a cleaner access to the
ground state energy. However, a drawback of this setup is
that the different smearings at the source and sink can result
in coefficients in the spectral decomposition of the two-
point functions that are not positive definite. This renders
the matrix of two-point correlation functions to be asym-
metric. Hence, it is possible that the effective energies
could approach their asymptotic values as rising from
below, as opposed to a conventional expected monotonic
falling-from-above behavior. This is evident from the red
points in Fig. 4 showing the behavior of aEeff from wall
source and point sink setup. If the fitting window is not
sufficiently distant from the source, there could be mis-
leading low-lying plateaus at early times that mimic the
actual ground state plateau. This can result in incorrect
estimates of the energy difference between the true ground
state and the threshold.
The comparison of the energy splitting obtained from the

nonratio correlators [Eq. (5)] and the ratio correlators
[Eq. (6)] in Fig. 3, helps in validating the robustness of
the ground state. Additionally, to investigate any remnant
associated systematic effect of the above-mentioned pattern
(rising from below) of effective energies, we also use a
setup with wall-smeared source and box-smeared sink with
various radii (SR). This exercise helps to study the
asymptotic approach to the symmetric limit, where the
effective energies are expected to display a falling-from-
above behavior as the box smearing radius (SR) increases
[41]. We have employed such setup previously in
Refs. [43,54] to demonstrate the asymptotic behavior in
axial-vector Tbc tetraquarks, and fully bottomed dibryons.

In Fig. 4, we plot the time dependence of the ground state
effective energies, for the case where the pseudoscalar mass
Mps ∼ 0.7 GeV on the finest lattice we use. The datapoints
in different colors represent different smearing radius-
squared of the box-sink S2R ¼ 9, 25, 49, in units of lattice
spacing. The data with S2R ¼ 0 represents the results with
point-sink setup. We clearly observe that, as the smearing
radius increases, the effective mass approaches the sym-
metric limit with the falling-from-above feature, but is
noisier compared to the wall-source point-sink setup
(S2R ¼ 0). With the blue shaded region and dashed black
line we also show the fitting-window and fitted-value of the
ground state with its error bar, obtained from the wall-
source setup. The presence of consistent effective mass
plateaus for all the values of the smearing radius assure that
the value of the ground states extracted from the asym-
metric setup does not deviate from the symmetric setup at
large enough times.

IV. FINITE VOLUME SPECTRA

In Fig. 5, we present the extracted finite-volume energy
spectra of the 0ð0þÞ bcū d̄ channel on the four ensembles
listed in Table I, at the five different mu=d values corre-
sponding to roughly,Mps ∼ 0.5, 0.6, 0.7, 1.0, and 3.0 GeV.
The energy spectrum shown is normalized by the threshold
MD þMB̄, such that center-of-mass energy at threshold is
unity in these units. In each panel, the x axis represents the
spatial extension of the lattice.
The finite-volume energies are determined from

energy splittings extracted from the ratio correlators
given in Eq. (6). These energy splittings are free of the
additive offsets, inherent to the NRQCD formulation,
as the numerator and denominator in Eq. (6) carries same
number of valence NRQCD-based bottom quarks. The
reconstruction of the finite-volume energies from the
energy splittings follow the same lines as in Ref. [43].
A clear trend of negative shifts for the ground state

energies with respect to the DB̄ threshold can be observed
for all the lattices and for all the quark masses studied. It is
also evident that this negative shifts decreases in magnitude
with increasing Mps, as expected for a doubly heavy
tetraquark system [5,62]. The variation in this splitting
across different lattice spacings for any given Mps is not
transparent due to large uncertainties, whereas unlike in our
study of axial-vector Tbc tetraquark, a moderate trend of
decreasing splitting with increasing volume can be
observed as expected. However, it is too early to substan-
tiate this behavior considering the large uncertainties.
Despite the large uncertainties, the consistent negative
shifts clearly point to an attractive interaction between
the D and B̄ meson in the scalar channel.
In the wall-smearing setup we use, the elastic DB̄

excitations involving nonzero relative meson momenta
are suppressed. This should not affect the ground state

FIG. 4. A comparison of effective energies for the ground state
between the asymmetric wall-source point-sink setup (S2R ¼ 0,
red points) and those extracted with various box smearing radius-
squared S2R ¼ 9, 25, 49 in the wall-source box-sink setup [41].
The smearing radius squared are presented in units of the lattice
spacing. The black dashed line is the fit estimate for the ground
state energy with S2R ¼ 0, with blue horizontal band showing the
fitting window and error bar.
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determination because it is unlikely that operators
with relative momenta contribute to the ground state.
Additionally, we employ various cross checks that helps
us estimate the excited state contaminations in the ground
state energy, that are then included in the systematic
uncertainties. We refrain from using or plotting the excited
states determined from the solutions of Eq. (3) in Fig. 5, as
they do not represent the elastic DB̄ excitations in the wall-
smearing setup. Another significant limitation of the wall-
smearing setup is its asymmetry, leading to the possibility
of the ground-state energy plateau being approached from
below. The agreement observed between the energy split-
tings calculated from ratios of correlators and those
determined from the difference in energy fit estimates
for individual single meson and interacting two-meson
correlators indicates that our correlator-based fitting esti-
mates effectively manage contaminations from excited
states which are then incorporated into the systematic
errors.

V. DB̄ SCATTERING AMPLITUDE FROM THE
FINITE-VOLUME SPECTRA

In this section, we present S-wave elastic DB̄ scattering
amplitudes determined following Lüscher’s finite-volume
prescription [70]. We use only the ground state energies to
constrain the amplitudes, since the wall-smearing pro-
cedure that we utilize for quark sources is not suited to
extract the elastic excitations but only the ground states
[43]. For the scalar channel considered in this work, the
lowest inelastic threshold is D�B̄�, which is significantly
high in energy and there are no higher partial wave that can
mix with the S-wave, justifying an elastic S-wave analysis.

A topical aspect in the study of doubly heavy hadrons is
the influence of left-hand cuts due to off-shell pion
exchanges [71]. Recently, there has been efforts to accom-
modate the left-had cut effects arising from single pion
exchanges [72–74]. In DB̄ scattering, the closest non-
analyticity below the threshold can happen from an off-
shell two-pion exchange, which has its branch point well
below the elastic threshold. Hence we ignore any effects of
such left-hand nonanalyticities in our analysis.

A. Amplitude fits using Lüscher’s finite-volume
formalism

The Lüscher’s finite-volume formalism relates the ampli-
tude of two-particle scattering to the finite volume-
spectrum in a cubic box. Particularly for the elastic
S-wave scattering of B and D mesons,

k cot½δ0ðk2Þ� ¼
2Z00½1; ðkL2πÞ2Þ�

L
ffiffiffi
π

p ; ð7Þ

where Z00 is the generalized zeta function described in
Ref. [70], L is the spatial extent of the cubic box and δ0ðkÞ
is the S-wave phase shift as a function of k, which is the
momentum of either mesons in the center of momentum
frame related to the center of momentum energy Ecm ¼ ffiffiffi

s
p

through 4sk2¼ðs− ðMDþMB̄Þ2Þðs− ðMD−MB̄Þ2Þ. From
Eq. (7), it is clear that there is a one-to-one correspondence
between the energy level and the δ0ðkÞ, i.e., each finite-
volume energy level provides a specific value of the S-wave
elastic phase shift with which one can constrain the energy
or k dependence of the phase shift.

FIG. 5. The ground state finite volume energies in the 0ð0þÞ bcū d̄ channel. Different panels stand for different Mps values indicated
on the top of the respective channel. The y axis indicates the energy in the center-of-mass frame, in units of energy of the DB̄ threshold.
The x axis in each panel indicates the spatial extent of the lattice ensembles used.
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We perform the amplitude fits with the ground states
from all four ensembles listed in Table I, and repeat this for
all five values of Mps indicated in Fig. 1. The fits follow
minimization of a cost function defined as

χ2 ¼
X

i;j

ðfðk2i Þ − fðfAg; k2i ÞÞ

× ðC−1Þijðfðk2jÞ − fðfAg; k2jÞÞ; ð8Þ
where fðk2i Þ is the amplitude [lhs of Eq. (7)] extracted from
the simulations at k2i , and fðfAg; k2i Þ is the parametrization
of the energy dependence of the amplitude. C is the
covariance matrix defined as in Ref. [75]. We verify that
the results determined from the χ2 defined in Eq. (8) are
consistent with that one gets from the procedure outlined in
Appendix B of Ref. [14]. Considering the smallness of
ðk=EDB̄Þ2 and the limited energy range over which the
ground states are placed, we assume a zero-range approach
for the amplitude parametrization. Additionally, we include
a linear lattice spacing dependence to account for the cutoff
effects in the extracted amplitude, which takes the form

k cot½δ0� ¼ A½0� þ aA½1�; ð9Þ
where A½0� ¼ −1=a0, with a0 being the scattering length in
the continuum limit.
In Figs. 6 and 7, we present the fit results to k cot½δ0� (the

bands) as a function of the lattice spacing and ðk=EDB̄Þ2,
respectively, along with the lattice data. The bands in Fig. 7
are the continuum extrapolated results given by the
parameter A½0�. Different horizontal panels represent differ-
ent Mps values. The best fit parameters and corresponding
quality of fits are tabulated in Table II.
Given the negative energy shifts and the sign of

A½0� ¼ −1=a0, determines the nature of the near-threshold
poles, if any. Note that for the noncharm light quark masses,
a0 is consistently positive suggesting that the strength of
interaction to be sufficient enough to house a bound state.
Whereas at the charm point a0 is negative, despite negative
energy shifts, suggesting only a feeble interaction that
cannot hold a subthreshold pole with square-integrable
wave function. This is similar to our observation in the
axial-vector channel using the same setup and formalism in
Ref. [43], aswell as to the phenomenological expectation for
doubly heavy four quark systems, here the binding energy is
expected to decrease with increasing light quark masses for
fixed heavy quark masses.
Another interesting observation is on the variation in the

cut off dependence of the amplitudes as the light quark
masses are varied. The cutoff dependence is accounted by
the parameter A½1�, which shows a signature change as the
light quark mass increases towards the charm point. This
suggests that for a doubly heavy four quark (QQ0l1l2)
system with ðml1 ¼ ml2 ; mQ;mQ0 ≫ mlÞ, the cut off effects
weaken the finite-volume energy splitting of the ground

state with the elastic threshold. On the other hand, close to
the charm point (wheremQ;mQ0 ∼ml) such effects enhance
this energy splitting in the QQ0l1l2 system determined in a
finite volume. Relatively large errors at the noncharm Mps

values partially obscure these effects, if any exist, while at
the charm point such effects are clearly reflected. Any
further quantified comments on this lattice spacing depend-
ence is currently beyond the scope of the current work,
particularly considering the large uncertainties.

B. Extrapolation to physical light quark mass

Following the extraction of the continuum extrapolated
amplitude at different Mps values, we delve into the light
quark mass dependence of the fitted parameters. The
leading order Mps term in the chiral expansion suggests
theMps dependence of hadron masses for lightmu=d values
(mq ≲ ΛQCD) to be M2

ps. Whereas in the heavy light quark
mass regime (mq ≫ ΛQCD) heavy hadron masses are
expected to be linear in Mps [76]. With these phenom-
enological expectations, we use three fit forms like [43]

FIG. 6. k cot½δ0� normalized by the elastic threshold EDB̄,
versus lattice spacing, a, for the Mps values studied in this
analysis as indicated in the different panels. The colored bands
indicate the fit results to the amplitude parametrization given in
Eq. (9). The marker conventions are as listed in Table I. For all the
Mps values except whenMps ∼ 3.0 GeV, the fits show a positive
scattering length a0, indicating an attractive interaction.
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flðMpsÞ ¼ αc þ αlMps;

fsðMpsÞ ¼ βc þ βsM2
ps; and

fqðMpsÞ ¼ θc þ θlMps þ θsM2
ps: ð10Þ

The light quark mass dependence is determined by min-
imizing another cost function. The function is defined in terms
of the differences in the data with the phenomenologically

motivated parametrizations [cf. Eq. (10)] for itsMps depend-
ence and the data covariance. We present the results for this
quark mass dependence in Fig. 8 together with the lattice
extracted amplitudes as a functionofM2

ps=E2
DB̄. The twoblack

symbols represents amplitude at the physical pion mass limit
(y axis intercept; Mps ¼ Mπ) and the critical mass (x axis
intercept;M�

ps) at which the system is close to unitarity branch
point. The inner errors associated with these black symbols
represent the statistical errors, whereas the outer errors also
include systematic uncertainties added in quadrature.
The scattering length at the physical pion mass

Mps ¼ Mπ

aphys0 ¼ 0.61ðþ3
−4Þð18Þ fm ð11Þ

together with the observed negative energy shifts in the
interacting lattice levels indicate an attractive interaction
between the B and D mesons, similar to the observation in
Ref. [43]. This attraction is sufficiently strong enough to
hold a real bound state with a binding energy

FIG. 7. k cot½δ0� versus k2 for the differentMps values shown in
the legend. The scales in either axis are plotted in units of elastic
DB̄ threshold EDB̄. The dashed orange curve is the unitarity
parabola related to the existence of a real bound state pole in the
scattering amplitude. The horizontal bands are the continuum
extrapolated amplitudes in Eq. (7) for each Mps, also listed in
Table II.

TABLE II. Fit results for amplitude with parametrization given
in Eq. (9) at various light quark masses, corresponding to Mps in
the first column. The optimized parameter values in the table are
expressed in units of the energy of the threshold, EDB̄. The
numbers within the parenthesis indicate the statistical errors.

Mps [GeV] χ2=d:o:f A½0�=EDB̄ A½1�=EDB̄

0.5 0.04=2 −0.038ðþ15
−11 Þ 0.004ðþ122

−134 Þ
0.6 0.43=2 −0.044ðþ8

−7 Þ 0.06(7)

0.7 3.76=2 −0.042ðþ5
−4 Þ 0.05ðþ5

−4 Þ
1.0 0.67=2 −0.043ð4Þ 0.12 (4)
3.0 5.32=2 0.002 (3) −0.17ðþ2

−3 Þ

FIG. 8. The elastic DB̄ scattering amplitude in the S-wave as a
function of the light quark mass, in terms of the pseudoscalar
mass squaredM2

ps. The amplitude andM2
ps are presented in units

of the energy ofDB̄ threshold (EDB̄). The bands indicate fits with
different functional dependencies listed in Eq. (10). The vertical
dotted line near the y axis represents the physical pion mass and
the black star on it indicates the scattering amplitude in the
physical limit. Another star symbol on the x axis indicates the
critical Mps where the DB̄ system becomes unbound.

RADHAKRISHNAN, PADMANATH, and MATHUR PHYS. REV. D 110, 034506 (2024)

034506-8



δETbc
¼ ETbc

− EDB̄ ¼ −39ðþ4
−6Þðþ8

−18Þ MeV: ð12Þ

When mu=d ≫ ΛQCD, the leading linear behavior in Mps is
expected to be a good description. The black star at the
x-axis intercept based on the linear Mps dependence in
Fig. 8 indicates the critical point

M�
ps ¼ 2.94ð15Þð5Þ GeV; ð13Þ

at which a0 changes its sign from negative to positive. M�
ps

and the associated errors are evaluated from the fit form
flðMpsÞ inspired by the leading linear behavior based
on heavy quark effective field theory [76]. Note that the
inverse scattering length at the charm point is consistent with
zero and any fit form is constrained by the data at the charm
point. Hence systematics associated with the critical mass
estimates are significantly small compare to the statistical
errors.

C. Systematic uncertainties

In this section we discuss various sources of uncertain-
ties in this calculation that are summarized in Table III. We
follow the bootstrap procedure to carefully carry the
statistical errors. The most dominant systematics are
observed to be associated with the light quark mass
dependence in the chiral regime. Different chiral extrapo-
lation fit forms lead to different estimates for the physical
scattering length more significant than the statistical pre-
cision. The combination of Nf ¼ 2þ 1þ 1 MILC lattice
QCD ensembles we employ, together with the partially
quenched setup using an overlap fermion action for light
and charm quarks, and an NRQCD formulation for bottom
quarks, and a rigorous heavy quark mass tuning procedure
has been demonstrated to be quite efficient in extracting the
ground states from finite volume. This setup also repro-
duces the 1S hyperfine splittings in quarkonia very
precisely with uncertainties less than 6 MeV [50,54].

The energy splittings and mass ratios we have adopted to
work with, efficiently mitigate the systematics associated
with the lattice realization of heavy quark dynamics
[51,54]. We have also included the errors due to fit-window
which includes the excited-state contamination. The values
within the second parenthesis in Eqs. (11), (12), and (13)
represent the cumulative systematic uncertainties added in
quadrature where the uncertainties arising from chiral
extrapolation fit forms can be observed to be dominant
from Table III [51,54].

VI. DISCUSSION ON THE BINDINGS OF Tbc

At this stage, it is natural to assess, where our results stand
among other existing lattice QCD-based and phenomeno-
logical calculations of DB̄ðDB̄�Þ scattering in the isoscalar
channels. Our investigations presented in this work
(Ref. [43]) indicate negative finite-volume energy shifts in
S-wave elastic scattering in DB̄ðDB̄�Þ meson systems.
Further analysis of scattering amplitude using finite volume
Lüscher method points to the existence of a real square
integrable bound state with binding energy of approximately
40 MeV in scalar [see Eq. (12)] and axial vector channels in
Ref. [43]. While the erorr bar is large in the estimation in the
binding energy, the conclusion on the attractiveness is robust.
Recently another lattice QCD calculation with a different
lattice setup has also confirms the attractive nature of
interactions in both the channels, however, with a much
lower binding, just below the respective threshold ener-
gies [43].
In Fig. 9, we present the results from various calculations

on the binding of Tbc that have been predicted over the
years. The results presented include those determined using
lattice QCD and the nonlattice methods, separated by a
horizontal line. In each plot, the vertical dashed lines are the
respective elastic thresholds (DB̄ for 0þ and DB̄� for 1þ).
Results to the left of this vertical line suggests a bound state,
whereas those lying to the right points to an unbound system.
The vertical green bands are the results from our calculations
(left: thiswork, right is fromRef. [43]) in perspective to those
of other calculations. The left plot shows the results for 0ð0þÞ
channel while the right one is for those of 0ð1þÞ channel.
Estimates from nonlattice approaches seem to have a large
spread of the order of several hundred MeV across the
threshold. Both the lattice QCD results point towards the
existence of bound states of Tbc. However, more detailed
lattice calculations are necessary to find the exact locations
and the nature of the bound state poles. Given these
predictions from lattice QCD calculations, and considering
the importance of the Tbc states as discussed in the
introduction, experimental searches for these states would
indeed be highly worthwhile in the near future.
Another interesting quantity to compare is the scattering

length determining the small momentum meson-meson
interactions in different doubly heavy quark systems (Tbb,
Tbc, and Tcc) across various LQCD calculations. On the left

TABLE III. The error budget in the calculation of the scattering
length, aphys0 . This includes the systematics involved as a result of
scale setting, excited state effects, heavy quark mass tuning, and
uncertainties related to chiral and continuum extrapolations. The
total systematics is determined by adding differential estimates in
quadrature.

Source Error ½fm� × 102

Statistical errors ðþ3
−4 Þ

Scale setting 3
mb=c tuning 3
Excited states 4
Continuum extrapolation 8
Chiral extrapolation 15

Total systematics 18
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hand side of Fig. 10, we present the inverse scattering
length (1=a0) at the physical Mps determined for these
three exotic systems from different lattice calculations
[8,12,43,77], where the [43] is our previous study using
the same setup as the present study, together with the
scattering length for the discovered Tcc [10]. The only other
LQCD study of DB̄ scattering [44] has also been included
(faded point) for completeness albeit the analysis not being
extrapolated to physical pion mass and to the continuum
limit. The subscripts (H) and (L) in the x axis tick labels
refer to two distinct procedures, the HALQCD and
Lüscher-type finite-volume prescription followed, respec-
tively, in extracting the scattering length. The HALQCD
procedure followed in Refs. [12,77] provides quite
precise estimates, whereas the large uncertainty in the

BB� scattering using Lüscher-type procedure obscures
extracting a possible trend, if any exist. Subduing these
uncertainties require more finite-volume energy levels to
constrain the amplitudes, which can be achieved either by
extracting higher excited states, or by studying more
ensembles at different volumes or at nonzero lab frame
momenta [78]. In short, more followup studies involving
rigorous Lüscher-type finite-volume treatments with pre-
cise estimates are highly desirable to make concrete
procedure-independent statements on the bindings in differ-
ent doubly heavy systems. A similar comparison of the
scattering length in the S-wave scalarDB̄ channel is shown
on the right panel of Fig. 10. Considering the differences in
systematics between the two evaluations (this work and
Ref. [44]) for the DB̄ð�Þ systems, it is too early to argue on

FIG. 9. The binding energy calculated in this work in comparison to the recent lattice QCD calculation [44] and other nonlattice
determinations. Estimates from nonlattice approaches seem to have a mixed conclusion where several of them show shallow/deep
binding and many others predicting an unbound state.

FIG. 10. Left plot: the inverse scattering length for DD�, DB̄�, and BB� scatterings at the physical pion mass as determined in
Refs. [8,12,43,77]. The faded point corresponds to a recent lattice evaluation at an unphysically heavy pion mass [44]. Right plot: The
inverse scattering length (1=a0) in DB̄ scattering compared between this work and Ref. [44].
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the reasons for the observed discrepancies in the magnitude
of scattering length and binding energy. It could possibly be
related to the fact that the results from Ref. [44] lacks any
chiral or continuum extrapolations or related to the lack
of access to the excited elastic excitations in our work,
which needs to be investigated further. Despite this
discrepancy in the magnitude of scattering length, either
calculations support attractive interactions in these sys-
tems. The large errors from our current study naturally
indicate equally large uncertainty in the binding energy;
however the fact that a bound state is seen is expected to
be robust and consistent given the statistical relevance.
Here again, more followup studies with a large number of
interpolating operators and large statistics with rigorous
Lüscher finite-volume analysis is highly desirable to
obtain precise results.

VII. SUMMARY

In this work, we present a lattice QCD simulation
of elastic S-wave DB̄ scattering with explicitly exotic
flavor bcū d̄ in the isoscalar scalar quantum numbers
[IðJPÞ ¼ 0ð0þÞ]. We use four Nf ¼ 2þ 1þ 1 ensembles
with dynamical HISQ action generated by the MILC
collaboration, with the valence quarks, up to the charm
quark mass, realized using an overlap fermion action. The
valence bottom quarks are described using an improved
NRQCD formulation.
Using the ground state energy levels, presented in Fig. 5,

we perform a rigorous finite-volume amplitude analysis
using Lüscher’s prescription. The analysis accounts for the
lattice spacing effects by parametrizing the amplitude with
a lattice spacing dependence, and taking the continuum
limit separately for the five light quark masses studied. The
quark mass dependence is then investigated to determine
the elastic DB̄ scattering length aphys0 at the physical pion
mass and the critical pseudoscalar mass M�

ps at which a0
diverges. The negative energy shifts in the ground state
finite-volume energies taken together with the positive
estimates for aphys0 [presented in Eq. (11)] suggests an
attractive interaction between the D and B̄ mesons that is
strong enough to form a real square integrable bound state
with binding energy of −39ðþ4

−6Þðþ8
−18Þ MeV.

Recently another lattice QCD calculation on the DB̄
systems also supports an attractive interaction between the
mesons, however, with a smaller binding and closer to the
threshold [44]. Note that this calculation employed bilocal
two-meson-type operators at the source and sink and in
extracting the relevant elastic excitations in the DB̄

channel. However, the investigation is limited to two
lattice ensembles with approximately similar lattice
spacings (∼0.12 fm), that is comparable to our coarsest
lattice. The apparent discrepancy in the binding energy,
whether it is a result of uncontrolled excited state
contamination due to an asymmetric setup or if it is a
result of uncontrolled discretization effects, remains to be
understood. We leave this issue for the future lattice
investigations.
In this study we are limited to rest frame ground states.

While we are able to extract the amplitude with a zero-
range approximation, future investigations with more rigor
in extracting elastic excitations are necessary to constrain
the energy dependence of the amplitude over a wider
energy range. This would require meson-meson operators
with zero overall momentum but individual momentum
projected mesons like in Ref. [44] to extract the elastic
excitations as well as meson-meson operators with nonzero
overall momentum. Inclusion of such operators is beyond
the scope of our current setup. Additionally, future studies
involving fully dynamical simulations on a wider range of
ensembles with different fermion actions, high-statistics
studies with lighter up and down quark masses, and other
improvements. These additional efforts would help con-
strain the relevant scattering amplitude in a framework-
independent manner. In that journey, our calculation is an
important step ahead where we have clearly shown the
presence of an attractive interaction within the DB̄ system,
with controlled cutoff uncertainties and finite volume
effects. Our findings offer a stride towards understanding
the existence of 0ð0þÞTbc, which could well be the next
doubly heavy bound tetraquark to be discovered in the
near future.
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