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Motivated by one-dimensional color-electric flux-tube formation in four-dimensional (4D) QCD,
we investigate a possibility of effective dimensional reduction in the 4D Yang-Mills (YM) theory. We
propose a new gauge fixing of “dimensional reduction (DR) gauge” defined so as to minimize
RDR ≡ R

d4sTr½A2
xðsÞ þ A2

yðsÞ�, which has a residual gauge symmetry for the gauge function Ωðt; zÞ like
2D QCD on the t-z plane. We investigate effective dimensional reduction in the DR gauge using SU(3)
quenched lattice QCD at β ¼ 6.0. The amplitude of AxðsÞ and AyðsÞ are found to be strongly suppressed in
the DR gauge. We consider “tz-projection” of Ax;yðsÞ → 0 for the gauge configuration generated in the DR
gauge, in a similar sense to Abelian projection in the maximally Abelian gauge. By the tz-projection in the
DR gauge, the interquark potential is not changed, and AtðsÞ and AzðsÞ play a dominant role in quark
confinement. In the DR gauge, we calculate a spatial correlation hTrA⊥ðsÞA⊥ðsþ ra⊥Þið⊥ ¼ x; yÞ and
estimate the spatial mass of A⊥ðsÞð⊥ ¼ x; yÞ asM ≃ 1.7 GeV. It is conjectured that this large mass makes
A⊥ðsÞ inactive and realizes the dominance of AtðsÞ and AzðsÞ in infrared region in the DR gauge. We also
calculate the spatial correlation of two temporal link-variables and find that the correlation decreases as
expð−mrÞwithm ≃ 0.6 GeV. Using a crude approximation, the 4DYM theory is reduced into an ensemble
of 2D YM systems with the coupling of g2D ¼ gm.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
theory of strong interactions. However, its analytical solving
is an important difficult problem even at present due to
its strong-coupling nature in low-energy region [1,2].
In particular, understanding the mechanism of quark con-
finement is one of the most difficult problems in four-
dimensional (4D) QCD and has not yet been solved by
analytical methods.
In 4D QCD, quark confinement is characterized by a

linear interquark potential and one-dimensional squeezing
of color-electric fields, which is idealized as the string
picture in the infrared region. Here, the string tension
σ ≃ 0.89 GeV=fm gives the quark confining force and is
the key parameter of quark confinement. Historically, the
string picture of hadrons was proposed to explain the Regge
trajectory of hadrons [3,4], and the interquark potential was
investigated from the spectra of heavy quarkonia [5].

After lattice QCD was performed as the first principle
calculations of the strong interaction [6], many lattice
QCD studies have shown that the interquark potential is
expressed to be a sum of the one-gluon-exchange Coulomb
part and a linear part belonging to the string picture [7–9].
The one-dimensional color-flux-tube formation is also
directly observed between (anti)quarks in lattice QCD
calculations [8,10,11].
In nature, ordinary waves propagate isotropically. In fact,

electromagnetic fluxes, gravitational waves and sound
waves spread over three-dimensional space. In contrast,
as schematically shown in Fig. 1, a color-electric flux is
squeezed one-dimensionally in QCD, which can be
regarded as a reduction of the spatial dimension by two.
The one-dimensional flux-tube formation might be con-
sidered as a kind of effective dimensional reduction. Note
also that the flux-tube formation explains not only quark
confinement but also gluon confinement because the
gluonic flux is confined inside a narrow tube area between
(anti)quarks, unlike the widely spread electromagnetic flux
in QED [9].
Such a flux-squeezing is also observed as the Abrikosov

vortex in type-II superconductors immersed in magnetic
fields, where the Meissner effect induced by Cooper-
pair condensation repels the magnetic fields and a one-
dimensional magnetic-flux-tube is formed.
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Motivated by the Abrikosov vortex, Nambu, ’t Hooft
and Mandelstam proposed the dual superconductor picture
[12–14] to explain the color-flux-tube formation in 4D
QCD. In this picture, color-electric flux is squeezed by the
dual Meissner effect due to color-magnetic-monopole
condensation. Although QCD does not contain monopoles
explicitly, they appear as topological objects in the Abelian
gauge [15]. Using maximally Abelian (MA) gauge, the
dual superconductor picture has been demonstrated in
lattice QCD [16–27].
As another example of effective dimensional reduction,

the Parisi-Sourlas mechanism [28] shows the equivalence
of a d-dimensional spin system under Gaussian random
magnetic fields and the (d − 2)-dimensional system with-
out magnetic fields.
As for the QCD vacuum, it is pointed out that the SU(2)

Yang-Mills theory has color-magnetic instability, and
color-magnetic fields are spontaneously generated, which
is called the Savvidy vacuum [29]. In fact, the gluon
condensate is found to be positive,

�
αs
π
Ga

μνGaμν

�
∝ hH2

a − E2
ai > 0; ð1Þ

in the QCD sum rule [30] and also in lattice QCD [31–33].
Thus, the QCD vacuum is considered to be filled with
color-magnetic fields. Considering that the ground-state
solution is not uniform at the one-loop level [34], the real
QCD vacuum is conjectured to be filled with random color-
magnetic fields at a large scale, which is called the
Copenhagen (spaghetti) vacuum [35]. There might be some
connection between the effective dimensional reduction in
4D QCD and the Parisi-Sourlas mechanism, where random
magnetic fields play an important role [36].
In any case, “effective dimensional reduction”might be a

key concept in 4D QCD. In this paper, we consider a way to
show effective dimensional reduction in 4D QCD and
demonstrate it in the 4D Yang-Mills (YM) theory, focusing
gauge degrees of freedom.
In particular, we investigate the possibility of describing

the 4D YM theory in terms of 2D YM-like degrees of

freedom. Such a description has some merits, and one of
them is its analyticity. In 2D QCD, analytical methods are
more effective than in 4D QCD, and the meson description
is performed in the large Nc limit [37]. Another merit is
that, in two-dimensional spacetime, even the tree-level
potential is linear, and quark confinement is automatically
realized.
To clarify the low-dimensional picture in 4D QCD, we

utilize gauge degrees of freedom, and propose a new gauge
fixing of “dimensional reduction (DR) gauge”. Note here
that, while physical quantities are gauge invariant, a
physical picture could be gauge dependent like the dual
superconductor picture in the MA gauge. In fact, there
might be a suitable gauge to see effective dimensional
reduction in 4D QCD.
Now, we mention “utility of gauge fixing” to obtain a

mathematical description or a semi-physical picture for
some phenomenon. One of the merit to use a specific
gauge fixing is to find out a semi-physical picture to grasp
the phenomenon. Of course, all the physical quantities
must be gauge invariant and can be described with the
gauge-invariant quantities in principle. Nevertheless, there
could be suitable gauge fixing to get a mathematical
description or a semiphysical picture based on some
physical analogy.
One typical example is the use of MA gauge fixing for

the Abelian dual superconductor picture [16–27], where the
electromagnetic duality is manifest. In the MA gauge, the
YM theory is described as an Abelian gauge theory with
Abelian gauge fields and adjoint charged matter fields. This
description is suitable for the Abelian dual superconductor
picture. Even without gauge fixing, the similar mechanism
might be embedded in the YM theory. However, the way of
the description is highly nontrivial and complicated without
use of the MA gauge.
The other example is the use of covariant gauge fixing to

find the Kugo-Ojima criterion [38] for color confinement,
which is sometimes called the inverse Higgs-mechanism
theorem, and also to get the Gribov-Zwanziger horizon
condition [39–42]. To get the Kugo-Ojima-Gribov-
Zwanziger picture, one has to take a globally SU(Nc)-
symmetric covariant gauge such as the Landau gauge, since
the BRST and Lorentz symmetry play the key role to
formulate. This confinement picture has been investigated
also in lattice QCD in the Landau gauge [43].
A familiar example is the use of the Coulomb gauge for

canonical quantization in QED because the canonical struc-
ture becomes clear [44] in the Coulomb gauge ∇ · A ¼ 0.
Although Lorentz invariance is apparently broken in the
Coulomb gauge, it is recovered when physical quantities are
calculated.
In this way, in spite of gauge invariance of physical

quantities, some specific gauge fixing could be economi-
cally useful to get a semiphysical picture or a mathematical
description for each physical phenomenon.

QCD QED

FIG. 1. Schematic figure of electric-fluxes in QCD and QED.
The left represents the one-dimensional flux-tube formation in
QCD, and the right the flux in QED which spreads over three-
dimensional space.
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This paper is organized as follows. In Sec. II, we
formulate the DR gauge and tz-projection in continuous
QCD. We also formulate them in lattice QCD in Sec. III. In
Sec. IV, we perform the lattice QCD calculations and
numerical analyses in the DR gauge. In Sec. V, we discuss
on analytical modeling of the YM theory in the DR gauge
with an approximation. Section VI is devoted for the
summary and concluding remarks.

II. DIMENSIONAL REDUCTION GAUGE:
FORMULATION IN CONTINUUM QCD

In this section, we define “dimensional reduction (DR)
gauge” and “tz-projection” in continuous QCD. In this
paper, we use s ¼ ðx; y; z; tÞ as a space-time coordinate
four-vector.
The SUðNcÞ QCD action is given as

SQCD ¼
Z

d4s

�
−
1

2
TrGμνGμν þ q̄ðiγμDμ −mÞq

�
; ð2Þ

where q is quark field and m a current quark mass. The
covariant derivative Dμ is defined by SUðNcÞ gluon field
Aμ ∈ suðNcÞ and the QCD gauge coupling g as

Dμ ≡ ∂þ igAμ; ð3Þ

and the field strength tensor Gμν is defined as

Gμν ≡ 1

ig
½Dμ; Dν� ¼ ∂μAν − ∂νAμ þ ig½Aμ; Aν�: ð4Þ

In this study, we only deal with the gauge part of the action
(2), that is, the YM theory.

A. Definition of dimensional reduction (DR) gauge

Dimensional reduction (DR) gauge is defined so as to
minimize

RDR ≡
Z

d4s
X
⊥¼x;y

Tr½A⊥ðsÞ2�

¼
Z

d4sTr½AxðsÞ2 þ AyðsÞ2� ð5Þ

with the gauge transformation. Here, the subscript ⊥
denotes x and y in this paper. Since RDR does not contain
AtðsÞ, the DR gauge can be defined in Minkowski
spacetime, and this gauge fixing can be perform locally
in the temporal direction, like the Coulomb gauge.
The DR gauge has a residual gauge symmetry for the

gauge function Ωðt; zÞ. In fact, with the gauge function
Ωðt; zÞ, the gauge fields transform as

At;zðsÞ → Ωðt; zÞ
�
At;zðsÞ þ

1

ig
∂t;z

�
Ω†ðt; zÞ; ð6Þ

A⊥ðsÞ → Ωðt; zÞ
�
A⊥ðsÞ þ

1

ig
∂⊥

�
Ω†ðt; zÞ

¼ Ωðt; zÞA⊥ðsÞΩ†ðt; zÞ: ð7Þ

Since RDR in Eq. (5) is invariant under this partial
gauge transformation, DR-gauged QCD has the residual
symmetry.
Note that this residual gauge symmetry is the same as 2D

QCD on the t-z plane. From the gauge transformation (6),
AtðsÞ and AzðsÞ correspond to the gauge fields in 2D QCD.
On the other hand, the gauge transformation (7) represents
that AxðsÞ and AyðsÞ can be interpreted as charged matter
belonging to the adjoint representation in 2D SUðNcÞ
gauge theory. Thus, DR-gauged QCD can be regarded
as 2D SUðNcÞ gauge theory with gauge fields At;zðsÞ and
charged matter fields Ax;yðsÞ.
The above definition of the DR gauge is a global

definition. The local condition of the DR gauge is given byX
⊥¼x;y

∂⊥A⊥ðsÞ≡ ∂xAxðsÞ þ ∂yAyðsÞ ¼ 0: ð8Þ

similar to the Landau gauge or the Coulomb gauge. This
local condition is derived as the minimal condition of
Eq. (5) with gauge transformation.
Including the gauge fixing term, the gauge action of

DR-gauged QCD is expressed as

SDR ¼
Z

d4s

�
−
1

2
TrGμνGμν þ 1

2α

X
⊥¼x;y

Trð∂⊥A⊥Þ2
�
: ð9Þ

The second term is for the DR gauge fixing (α is the gauge
fixing parameter), and it is invariant for the residual gauge
transformation (7) as

Trð∂⊥A⊥Þ2 → TrfΩðt; zÞ∂⊥A⊥Ω†ðt; zÞg2
¼ Trð∂⊥A⊥Þ2: ð10Þ

Therefore, DR-gauged QCD has a residual gauge sym-
metry for Ωðt; zÞ, and it is the same as that 2D QCD on the
t-z plane.
In the path-integral formalism in the Euclideanmetric, the

generating functional of DR-gauged QCD is expressed as

Z¼
Z

DADqDq̄e−SQCDδð∂⊥A⊥ÞDetð∂⊥D⊥Þ

¼
Z

DADqDq̄DcDc̄e−SQCDþ
R
d4sc̄ð∂⊥D⊥Þcδð∂⊥A⊥Þ; ð11Þ

where the last factor in the first line is the Faddeev-Popov
(FP) determinant [45] and c and c̄ denote the FP ghost and
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antighost fields, respectively. Note that the additional factors
relating to the DR-gauge fixing does not include At and Az,
and the action form on At;z is formally unchanged.
Accordingly, the FP (anti)ghost field directly couples only
to A⊥ in the DR gauge.
Then, the generating functional Z is formally rewritten as

Z ¼
Z

DAt;zDA⊥DqDq̄e−St;z½At;z�e−Scross½At;z;A⊥�

× e−S⊥½A⊥�δð∂⊥A⊥ÞDetð∂⊥D⊥Þ

¼
Z

DAt;zDA⊥DqDq̄e−St;z½At;z�e−Scross½At;z;A⊥�e−Seff ½A⊥�;

ð12Þ

where St;z½At;z� and S⊥½A⊥� are defined by

St;z½At;z� ¼ SQCD½At;z;A⊥ ≡ 0�;
S⊥½A⊥� ¼ SQCD½A⊥;At;z ≡ 0�; ð13Þ

and Scross½At;z; A⊥� denotes the cross term including both
At;z and A⊥. For the simple notation, the quark field has
been abbreviated in the argument of the actions. The second
line of Eq. (12) only includes A⊥, and then the action/
interaction form of At;z is unchanged in Z, while the
effective action Seff ½A⊥� can be drastically changed from
the original one.
As a general caution, similarly in the Landau, Coulomb,

and MA gauges, the DR gauge fixing also has the Gribov
ambiguity [39], which is a general problem appearing in
gauge fixing, except for the axial-gauge-type fixing.

B. tz-projection

In the DR gauge, from its definition with Eq. (5), the
amplitudes of⊥-directed gluon fieldsAxðsÞ andAyðsÞwould
be strongly suppressed. To investigate the possibility of
describing 4D QCD in terms of 2D QCD-like degrees of
freedom, we introduce “tz-projection” as removal of the ⊥-
directed gluon fieldsAxðsÞ andAyðsÞ, i.e., the replacement of

Ax;yðsÞ → 0: ð14Þ

Then, applying the tz-projection in the DR gauge, we
investigate properties on effective dimensional reduction
in the 4D YM theory.
After the tz-projection (14), the gauge action (9) of DR-

gauged QCD becomes

StzDR ¼
Z

dxdy
Z

dtdz

�
TrG2

tz

þ
X
⊥¼x;y

Trfð∂⊥AtÞ2 − ð∂⊥AzÞ2g
�

ð15Þ

at the tree-level. In this action, the first term is equal to the
2D YM action on the t-z plane. The second term is
interpreted as interaction between neighboring 2D YM-
like systems in the x and y directions. Thus, as shown in
Fig. 2, the DR-gauged YM theory after the tz-projection
can be expressed as 2DYM-like systems on t-z planes piled
in the x and y directions and these 2D systems interacting
with each other. In fact, the integration over x and y in
Eq. (15) represents that the 2DYM-like systems are piled in
the x and y directions.

III. LATTICE FORMALISM OF DR GAUGE

We formulate SUðNcÞ lattice QCD on a 4D lattice with
spacing a in the Euclidean spacetime. In lattice QCD, the
gauge degree of freedom is described as the link-variable
UμðsÞ≡ eiagAμðsÞ ∈SUðNcÞ, instead of the gluon field
AμðsÞ∈ suðNcÞ. As the lattice gauge action, we use the
standard plaquette action

Slat ≡ β
X
s

�
1 −

1

Nc

X
μ<ν

ReTrPμνðsÞ
�
; ð16Þ

where PμνðsÞ denotes the plaquette variable defined as

PμνðsÞ≡UμðsÞUνðsþ aμÞU†
μðsþ aνÞU†

μðsÞ: ð17Þ

Here, aμ denotes the four vector in the μ direction with
length of a.

A. DR gauge and tz-projection in lattice QCD

In this subsection, we formulate the DR gauge and
tz-projection in lattice QCD. The DR gauge on a lattice is
defined so as to maximize

Rlat
DR½U⊥�≡

X
s

X
⊥¼x;y

ReTr½U⊥ðsÞ�

¼
X
s

ReTr½UxðsÞ þUyðsÞ� ð18Þ

FIG. 2. Schematic figure of the DR-gauged YM theory under
the tz-projection. 2D YM-like systems are piled in the x and y
directions, and they interact with the piled neighbors.
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with gauge transformation. This corresponds to the defi-
nition with Eq. (5) in the continuous limit, a → 0. In fact,
considering enough small a, U⊥ðsÞ can be expanded as

U⊥ðsÞ ¼ 1þ iagA⊥ðsÞ −
1

2
a2g2A2⊥ðsÞ þOða3Þ; ð19Þ

and Eq. (18) becomes

Rlat
DR ≃ −

1

2
a2g2

X
s

X
⊥¼x;y

ReTr½A⊥ðsÞ� ð20Þ

up to Oða2Þ, apart from a real constant. Therefore, the
maximization of Rlat

DR corresponds to the minimization of
RDR in continuous spacetime.
Next, we derive the local condition of the DR gauge on a

lattice. Considering gauge transformation withΩðsÞ only at
a spacetime s, the variation δRlat

DR of the function Rlat
DR is

δRlat
DR ¼

X
⊥¼x;y

ReTr½ΩðsÞU⊥ðsÞ þ U⊥ðs − a⊥ÞΩ†ðsÞ�

− ½ΩðsÞ ¼ 1�

¼ ReTr

�
ΩðsÞ

X
⊥¼x;y

fU⊥ðsÞ þU†
⊥ðs − a⊥Þg

�

− ½ΩðsÞ ¼ 1�; ð21Þ

where a⊥ is a four-vector in the ⊥ direction with a length
of lattice spacing a. For the infinitesimal gauge trans-
formation with parameters ωa, ΩðsÞ can be expressed as
ΩðsÞ ¼ eiω

aTa ≃ 1þ iωaTa þOðω2Þ. Thus, in the continu-
ous limit, Eq. (21) is written as

δRlat
DR ¼ −agReTr

�
ωaTa

X
⊥¼x;y

�
A⊥ðsÞ − A⊥ðs − a⊥Þ

	�

¼ −a2gReTr
�
ωaTa

X
⊥¼x;y

�
∂
B⊥A⊥ðsÞ

	� ð22Þ

up to Oða2Þ. From the first to second lines, we use a
backward derivative ∂

B⊥. The extremum condition δRlat
DR ¼

0 for any ωa leads to

X
⊥¼x;y

∂
B⊥A⊥ðsÞ ¼ 0: ð23Þ

Thus, the local condition (8) is derived in the continu-
ous limit.
Now, we consider tz-projection in lattice QCD. In

continuous spacetime, we define the tz-projection as the
replacement Ax;yðsÞ → 0. In lattice QCD, the tz-projection
is defined by a simple replacement:

Ux;yðsÞ → 1: ð24Þ

The tz-projection changes the action (16) into

Slattz-DR ¼ β
X
s

�

1 −

1

Nc
ReTrPtzðsÞ

�

þ
X
μ¼t;z



1 −

1

Nc

X
⊥¼x;y

ReTr½UμðsÞU†
μðsþ a⊥Þ�

��

ð25Þ

at the tree-level. As well as the action (15), the first term is
the 2D lattice YM action on the t-z plane, and the second
term is interpreted as interaction between neighbors in the x
and y directions: the interaction is written as the product of
neighboring link-variables, UμðsÞU†

μðsþ a⊥Þ, for μ ¼ t, z.
Then, through this interaction, 2D YM systems seem to be
correlated in the x and y directions.
In the next section, we perform DR gauge fixing and

tz-projection in lattice QCD. In the practical calculation,
the tz-projection is achieved by removal of Ax and Ay, i.e.,
replacement of Ux and Uy by unity, for the gauge configu-
ration generated in lattice QCD in the DR gauge, in a similar
manner to Abelian projection in the MA gauge [16–27] or
center projection in the maximal center gauge [46].

B. Comparison of DR gauge with MA gauge

Before proceeding the lattice QCD calculation, we
compare the DR gauge with the MA gauge in this
subsection. Using the Cartan subalgebraHa and the raising
and lowering operators E�α of suðNcÞ, the gluon field
AμðsÞ∈ suðNcÞ can be expressed as

AμðsÞ ¼ Ai
μðsÞHi þ Aα

μðsÞE−α; ð26Þ

where Ai
μðsÞ denotes the diagonal component and Aα

μðsÞ the
off-diagonal component of the gluon field. The MA gauge
is defined so as to minimize

RMA ≡
Z

d4s
X
α

½Aα
μðsÞA−α

μ ðsÞ� ð27Þ

by gauge transformation in Euclidean spacetime.
Comparing RMA with RDR in Eq. (5), they take similar
form. The summation is taken for the internal color index α
in the MA gauge, while the sum for the external spacetime
index ⊥ in the DR gauge. Accordingly, the residual gauge
symmetry becomes Uð1ÞNc−1 in the MA gauge, while the
symmetry for the gauge function Ωðt; zÞ. From the defi-
nition with Eq. (27), the amplitude of off-diagonal com-
ponents Aα

μðsÞ is strongly suppressed in the MA gauge,
which is demonstrated in lattice QCD [22,26].
From lattice QCD calculations, it is also found that, in

the MA gauge, only the diagonal components Ai
μðsÞ play
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dominant role to the low-energy phenomena such as
quark confinement [17,25,26] and spontaneous chiral
symmetry breaking [19,20,27], which is called Abelian
dominance [47]. On the other hand, the off-diagonal
components Aα

μðsÞ become massive in the MA gauge,
and their mass is estimated as Moff ∼ 1 GeV [23,24].
Thus, long-range propagation of off-diagonal gluons is
strongly suppressed and Abelian dominance is realized in
the MA gauge.
From the similarity, we might expect that two gauge

components AtðsÞ and AzðsÞ are dominant in the low-
energy region, and the other components AxðsÞ and AyðsÞ
do not make a major contribution to quark confinement in
the DR gauge.

IV. NUMERICAL CALCULATION
IN LATTICE QCD

To investigate effective dimensional reduction in the 4D
DR-gauged YM theory, we perform SU(3) lattice QCD
Monte Carlo calculations at the quenched level. We use the
standard plaquette action with β ¼ 6.0 on a 4D lattice of
size Ns ¼ 244. The lattice spacing is a ≃ 0.10 fm, i.e.,
a−1 ≃ 2.0 GeV at β ¼ 6.0, which is determined from the
string tension [7]. Using the pseudoheat bath algorithm, we
generate 800 gauge configurations, which are picked up
every 1000 sweeps after 20,000 sweeps for thermalization.
After generating the gauge configurations, we perform

DR gauge fixing. For each gauge configuration, we
numerically maximize Rlat

DR in Eq. (18) using an iterative
maximization algorithm, similarly in Landau or MA gauge
fixing [26,27]. For rapid convergence, we use the over-
relaxation (OR) method with the OR parameter 1.6. When
Rlat
DR is maximized,

ΔDRðsÞ≡
X
⊥¼x;y

∂
B⊥A⊥ðsÞ ð28Þ

has to be zero. Here, the lattice gluon field is defined as

A⊥ðsÞ≡ 1

2iag
½U⊥ðsÞ − U†

⊥ðsÞ�jtraceless ∈ suðNcÞ; ð29Þ

where “traceless”means the subtraction of its trace part. As
a numerical convergence criterion, we impose that the
maximization of Rlat

DR stops when ϵDR < 4.0 × 10−12 is
satisfied for

ϵDR ≡ 1

NcNs

X
s

Tr½ΔDRðsÞΔ†
DRðsÞ�: ð30Þ

Finally in this subsection, we try a simple numerical
check [25] on the Gribov ambiguity [39] in the DR gauge
fixing. The DR gauge fixing is achieved by maximizing the
global value of Rlat

DR½U⊥� in Eq. (18), which leads to the

local gauge fixing condition (23). The Gribov ambiguity is
expressed as taking a “bad local maximum” where Rlat

DR is
unacceptably small or accidentally taking a “local mini-
mum” of RDR, which also satisfies the local gauge fixing
condition (23). Then, we check the value of Rlat

DR for each
gauge configuration in lattice QCD. For, when a bad
maximum or a local minimum is taken in some gauge
configuration, the value of RDR becomes too small than the
average. For 800 used gauge configurations, we calculate
the ensemble averaged value hRlat

DRi and its standard
deviation ΔRlat

DR in the DR gauge. For the normalized
quantity Rlat

DR=ð2L3LtNcÞ, which is unity whenU⊥ ≡ 1, we
find

1

2L3LtNc
hRlat

DRi ≃ 0.921; ð31Þ

1

2L3LtNc
ΔRlat

DR ≃ 0.972 × 10−4: ð32Þ

In comparison with the ensemble average hRlat
DRi, the

standard deviation ΔRlat
DR is fairly small. In other words,

the maximized value of Rlat
DR is almost the same for all the

gauge configurations. This seems to indicate that the
present method succeeds to avoid bad local extreme where
Rlat
DR is relatively small. Then, we expect that the Gribov

copy effect is not so significant in our calculation.

A. Properties of link-variables in DR gauge

As the local property of link-variables in the DR gauge,
we define and compute a distance between a link-variable
Uμ and a unit matrix I. Denoting the distance dðUμ; IÞ, the
squared distance is defined as

dðUμ; IÞ2 ¼
1

2Nc
Tr½ðUμ − IÞ†ðUμ − IÞ�

¼ 1

2Nc

XNc

i;j¼1

jðUμ − IÞijj2; ð33Þ

which is proportional to the Frobenius norm of the matrix
Uμ − I. Since Uμ is an element of SUðNcÞ,

dðUμ; IÞ2 ¼
1

2Nc
Trð2I −Uμ − U†

μÞ

¼ 1 −
1

Nc
ReTrUμ: ð34Þ

For even Nc, −I is an element of SUðNcÞ, and the
maximum value of dðUμ; IÞ2 is realized for Uμ ¼ −I:
dðUμ ¼ −I; IÞ2 ¼ 2. On the other hand, for odd Nc,
Uμ ¼ −I does not belong to SUðNcÞ. In this case, the
maximum value of dðUμ; IÞ2 is realized when Uμ is the
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closest element to −I among the center of ZNc ∈SUðNcÞ.
In fact, the range of dðUμ; IÞ2 is found to be

(
0≤ dðUμ; IÞ2 ≤ 2 ðNc is evenÞ;
0≤ dðUμ; IÞ2 ≤ 1− cosπðNc−1Þ

Nc
ðNc is oddÞ:

ð35Þ

Table I shows the vacuum expected value of dðUμ; IÞ2
calculated in SU(3) lattice QCD. In the case of no gauge
fixing, we find hdðUμ; IÞ2i ¼ 1, which can be analytically
shown with the integration on the SUðNcÞ group manifold.
As for the result of hdðUt;z; IÞ2iDR in the second line,
similar argument for the residual gauge symmetry with
Ωðt; zÞ can be applied, and the distance is calculated as
unity. (In this paper, we use h� � �iDR for a vacuum expect-
ation value in the DR gauge.)
On the other hand, the vacuum expectation value

hdðU⊥; IÞ2iDR equals to 0.076 in the DR gauge, which
is about one order smaller than the value of no gauge fixing.
Therefore, the amplitudes of two components AxðsÞ and
AyðsÞ are strongly suppressed by the DR gauge fixing.
Note that, the value of hdðU⊥; IÞ2iDR seems to be

consistent with Eq. (31). From Eq. (34), hdðU⊥; IÞ2iDR
can be written as

hdðU⊥; IÞ2iDR ¼ 1 −
1

Nc
hReTrU⊥iDR ≃ 0.076: ð36Þ

Then, the summation of hRlat
DRi and hdðU⊥; IÞ2iDR is to be

unity under appropriate normalization,

1

2L3LtNc

�
hRlat

DRi þ
X
s

X
⊥¼x;y

hdðU⊥; IÞ2iDR
�
¼ 1: ð37Þ

From Eqs. (31) and (36), the lattice result of the sum is
found to be almost unity,

0.921þ 0.076 ≃ 0.997 ≃ 1; ð38Þ

which indicates consistency of the lattice calculation.

B. Wilson loop and interquark potential after
tz-projection in DR-gauged YM theory

As shown in the previous section, AxðsÞ and AyðsÞ are
strongly suppressed in the DR gauge.
From the similarity between DR gauge and MA gauge as

discussed in Sec. III B, we might expect that two gluon
components AtðsÞ and AzðsÞ play a dominant role in low-
energy phenomena such as quark confinement. To inves-
tigate this, we apply the tz-projection to the Wilson loop
and extract the interquark potential.
As the opposite of the tz-projection, we define “xy-

projection” as replacement

At;z → 0 ⇔ Ut;z → 1: ð39Þ

We apply the tz-projection and the xy-projection to the
Wilson loop as shown in Fig. 3.
Note that the tz-projection does not change the

Wilson loop on the t-z plane because it does not contain
U⊥ð⊥ ¼ x; yÞ explicitly. Then, we consider the Wilson
loop on the t-⊥ð⊥ ¼ x; yÞ plane. (Of course, the expect-
ation value of the Wilson loop on the t-z plane is the same
as that on the t-⊥ plane, although the description looks
different in the DR gauge.)
Before showing numerical results, we mention about the

gauge transformation property of these projected Wilson
loops in terms of the residual gauge transformation
with Ωðt; zÞ.
Figure 4 shows the tz- and xy-projected Wilson loops on

the t-⊥ plane. First, we consider the tz-projected Wilson
loop Wtzðr; TÞ, the left one in Fig. 4. This Wilson loop is
decomposed into two Wilson lines L†

left and Lright,

Wtzðr; TÞ ¼ Tr½L†
leftLright�; ð40Þ

TABLE I. Vacuum expectation values of dðUμ; IÞ2. The first
line is for no gauge fixing, the second line for Ut;z in the DR
gauge, and the third line for Ux;y in the DR gauge.

Gauge hdðUμ; IÞ2i
No fixing 1.000
DR (μ ¼ t, z) 1.000
DR ð⊥ ¼ x; yÞ 0.076

FIG. 3. Schematic figure of the tz-projection and xy-projection
to the Wilson loop on the t-⊥ plane, respectively.
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as shown in Fig. 4. Under the residual gauge transformation
with Ωðt; zÞ, L†

left and Lright transform as

L†
left → Ωðt0; z0ÞL†

leftΩ†ðt; zÞ; ð41Þ

Lright → Ωðt; zÞLrightΩ†ðt0; z0Þ; ð42Þ

and the tz-projected Wilson loop transforms as

Wtzðr; TÞ → Tr½Ωðt0; z0ÞL†
leftΩ†ðt; zÞΩðt; zÞLrightΩ†ðt0; z0Þ�

¼ Tr½L†
leftLright� ¼ Wtzðr; TÞ: ð43Þ

Thus, the tz-projected Wilson loop is invariant under the
residual gauge transformation.
Next, we consider the xy-projected Wilson loop

Wxyðr; TÞ, the right one in Fig. 4. This Wilson loop is
also decomposed into two Wilson lines L†

upper and Lbottom,

Wxyðr; TÞ ¼ Tr½L†
upperLbottom�: ð44Þ

Under the residual gauge transformation with Ωðt; zÞ, these
two Wilson lines transform as

L†
upper → Ωðt0; z0ÞL†

upperΩ†ðt0; z0Þ; ð45Þ

Lbottom → Ωðt; zÞLbottomΩ†ðt; zÞ: ð46Þ

Therefore, the xy-projected Wilson loop transforms as

Wxyðr; TÞ → Tr½Ωðt0; z0ÞL†
upperΩ†ðt0; z0Þ

×Ωðt; zÞLbottomΩ†ðt; zÞ�
¼ Tr½Ω̃L†

upperΩ̃†Lbottom�; ð47Þ

where Ω̃≡Ω†ðt; zÞΩðt0; z0Þ. After some consideration in
Appendix A, we find that the vacuum expectation value of

hWxyðr; TÞiDR is calculated as

hWxyðr; TÞiDR ¼ 1

Nc
hTrL†

upperTrLbottomiDR: ð48Þ

1. Interquark potential from tz-projected Wilson loop

Now, we investigate the effect from the tz-projection
of Ux;yðsÞ → 1 for the interquark potential. To this end,
we calculate the static interquark potential from the
tz-projected Wilson loop hWtzðr; TÞiDR on the t-⊥ plane
in the DR gauge. In fact, starting from ordinary lattice QCD
Monte Carlo sampling, we compute the Wilson loop using
the tz-projected gauge configurations in the DR gauge.
Similar to the ordinary static potential, we define the tz-
projected static potential VtzðrÞ as

hWtzðr; TÞiDR ¼ Ae−V
tzðrÞT ð49Þ

for large T. Then, the tz-projected potential VtzðrÞ is
extracted from hWtzðr; TÞiDR as

VtzðrÞ ¼ −
1

T
lnhWtzðr; TÞiDR: ð50Þ

For the accuracy and efficiency of numerical calculations,
we have used the gauge-covariant smearing method with
Refs. [7,48].
The lattice QCD result is shown in Fig. 5. The horizontal

axis r denotes the interquark distance, and the vertical axis
the potential energy. The dots denote the tz-projected
potential VtzðrÞ calculated from hWtzðr; TÞiDR on the
t-⊥ plane, and the solid line the standard interquark
potential calculated in SU(3) lattice QCD [7] of which
the functional form is found to be the Cornell potential [5].
The tz-projected potential VtzðrÞ is good agreement with

FIG. 4. The tz-projected Wilson loop (left) and the xy-projected
Wilson loop (right) on the t-⊥ plane. We note t0 ¼ tþ T
and z0 ¼ z.

FIG. 5. The interquark potential VtzðrÞ from the tz-projected
Wilson loops hWtzðr; TÞiDR on the t-⊥ plane. The horizontal axis
r denotes the interquark distance, and the vertical axis the
potential energy. The dots denote the tz-projected potential
VtzðrÞ in lattice QCD at β ¼ 6.0, and the solid line the best fit
Cornell potential in lattice QCD [7].
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the Cornell potential. This means that the interquark
potential is reproduced with two gluon components
AtðsÞ and AzðsÞ in the DR gauge.
The dominant role of AtðsÞ and AzðsÞ for the static

potential seems to be natural because only the temporal
gauge component is relevant for it [49]. However, this
result is practically nontrivial at least for the terminated
Wilson-line correlator in lattice QCD, since the static
potential cannot be reproduced only with the temporal
gluon, e.g., in the Landau gauge [50].

2. xy-projected Wilson loop

In the previous section, we have found that the interquark
potential is reproduced with two gauge components AtðsÞ
and AzðsÞ in the DR gauge. Then, we investigate a
contribution from AxðsÞ and AyðsÞ to quark confinement.
We calculate the xy-projected Wilson loop hWxyðr; TÞiDR.
Figure 6 shows the lattice QCD result at β ¼ 6.0. The

vertical axis denotes the xy-projected Wilson loop
hWxyðr; TÞ, and the horizontal axis the temporal length
T. Denoting the spatial length r of the Wilson loop, we plot
hWxyðr; TÞiDR for r ¼ 1 (green square), r ¼ 3 (red dia-
mond), r ¼ 6 (orange circle) and r ¼ 9 (orange triangle) as
typical distances.
The xy-projected Wilson loop is independent of T:

hWxyðr; TÞiDR ¼ ϕðrÞ: ð51Þ

We also define the xy-projected static potential VxyðrÞ as

hWxyðr; TÞiDR ¼ e−V
xyðrÞT ð52Þ

for large T. Then, the xy-projected potential VxyðrÞ is
calculated from hWxyðr; TÞiDR as

VxyðrÞ ¼ − lim
T→∞

1

T
lnhWxyðr; TÞiDR: ð53Þ

Because of Eq. (51), we find

VxyðrÞ ¼ 0: ð54Þ
This result suggest that AxðsÞ and AyðsÞ do not make major
contribution to quark confinement in the DR gauge.
As a caution, since the link-variables are not commu-

tative, the Wilson loop cannot be simply factorized into
Wtzðr; TÞ and Wxyðr; TÞ:

Wðr; TÞ ≠ Wtzðr; TÞWxyðr; TÞ: ð55Þ
Therefore, AxðsÞ and AyðsÞmight give some contribution to
the whole Wilson loop, although their contribution would
be small for quark confinement.

C. Spatial correlation and mass of AxðsÞ
and AyðsÞ in DR gauge

In Sec. IV B, it has been shown that two gauge
component AtðsÞ and AzðsÞ play a dominant role in quark
confinement, and the other components AxðsÞ and AyðsÞ
does not contribute. Here, we consider the reason why
AxðsÞ and AyðsÞ are inactive in the infrared region.
In the MA gauge, the large mass of the off-diagonal

components Aα
μðsÞ is considered to realize infrared inac-

tivity [23,24]. Here, we calculate the spatial correlation of
two ⊥-directed link-variables and estimate the mass of
AxðsÞ and AyðsÞ in the DR gauge.
The gluon mass can be estimated from the gluon

propagator GðrÞ which is defined as a two-point function
of gluon fields,

GðrÞ≡ hAa⊥ð0ÞAa⊥ðra⊥ÞiDR; ð56Þ
where we have used the translational symmetry in the
⊥ directions. As shown in Sec. IVA, the amplitudes
of AxðsÞ and AyðsÞ are strongly suppressed, and it is
justified to expand U⊥ðsÞ by A⊥ðsÞ as in Eq. (19).
Then, a spatial correlation of two link-variables FðrÞ≡
1
Nc
hTrUxð0ÞU†

xðraxÞiDR can be written as

FðrÞ≡ 1

Nc
hTrUxð0ÞU†

xðraxÞiDR

¼a2

β
hAa

xð0ÞAa
xðraxÞiDRþ



1−

a2

β
hAa

xð0Þ2iDR
�

ð57Þ

up to Oða2Þ, where hAa
xð0Þ2iDR ¼ hAa

xðraxÞ2iDR is used
due to the translational symmetry. The first term is the
gluon propagator, and second a constant. The spatial mass
of AxðsÞ is estimated from the infrared behavior of FðrÞ.
Figure 7 shows the lattice QCD result for FðrÞ at

β ¼ 6.0, and the lattice QCD data denoted by dots is well

FIG. 6. The lattice QCD result of the xy-projected Wilson loop
hWxyðr; TÞiDR in the DR gauge, plotted against the temporal
length T, for several values of the spatial length r, i.e., r ¼ 1
(green square), r ¼ 3 (red diamond), r ¼ 6 (orange circle) and
r ¼ 9 (orange triangle).
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reproduced with exponential function

FðrÞ ≃ Ae−M⊥r þ B ð58Þ
with following best fit parameters

A ≃ 0.155; ð59Þ
M⊥ ≃ 0.87a−1 ≃ 1.71 GeV; ð60Þ
B ≃ 0.851: ð61Þ

The behavior of the gluon propagator is described by A and
M⊥, and B corresponds to a constant of the second term in
Eq. (57). The fact that the value of B is close to unity
reflects the strong suppression of the amplitudes of AxðsÞ
and AyðsÞ, as shown in Sec. IVA.
The spatial mass of AxðsÞ and AyðsÞ is estimated as

M⊥ ≃ 1.71 GeV, and thus, they are considered to be
massive in the DR gauge. This result implies that AxðsÞ
and AyðsÞ are inactive in the infrared region, and then, AtðsÞ
and AzðsÞ become dominant in the DR gauge.

D. Spatial correlation between
two temporal links

The results in previous sections imply that, in the DR
gauge, temporal gluon component AtðsÞ is dominant for
quark confinement in the x and y directions. We here
investigate the spatial correlation between two temporal
link-variables in lattice QCD.
In lattice QCD, the tz-projected action is expressed in

Eq. (25), and the local interaction

β
X
s

X
μ¼t;z



1 −

1

Nc

X
⊥¼x;y

ReTr½UμðsÞU†
μðsþ a⊥Þ�

�
ð62Þ

provides a distant correlation between t-z planes in the x
and y directions. Then, as shown in Fig. 8, we calculate the
spatial correlation of two temporal link-variables,

CðrÞ≡ 1

Nc
hReTrUtðsÞU†

t ðsþ ra⊥ÞiDR; ð63Þ

in the ⊥ (x or y) direction with lattice QCD at β ¼ 6.0.
Figure 9 shows the lattice QCD result of the spatial

correlation CðrÞ of two temporal link-variables, plotted
against the distance r in the ⊥ direction. The lattice QCD
data is well reproduced by the exponential function

CðrÞ ≃ Ae−mr; ð64Þ

with the following best fit parameters

A ≃ 0.83; ð65Þ

m ≃ 0.32a−1 ≃ 0.64 GeV: ð66Þ

Introducing the correlation length ξ defined as

ξ≡ 1

m
≃ 0.31 fm; ð67Þ

the correlation CðrÞ almost vanishes in larger region than ξ.

FIG. 7. The spatial correlation of two⊥-directed link-variables,
FðrÞ≡ 1

Nc
hTrUxð0ÞU†

xðraxÞiDR, in lattice QCD at β ¼ 6.0. The
dots are the lattice data, and the solid line the best exponential fit
Ae−M⊥r þ B with A ≃ 0.155, M⊥ ≃ 1.71 GeV and B ≃ 0.851.

FIG. 8. Schematic figure of the spatial correlation between link-
variables UtðsÞ and U†

t ðsþ ra⊥Þ on the t-z planes separated by r
in the ⊥ direction.

FIG. 9. The spatial correlation CðrÞ between two temporal link-
variables, UtðsÞ and Utðsþ ra⊥Þ, in the DR gauge. The dots are
lattice QCD data at β ¼ 6.0, and the solid line the best
exponential fit Ae−mr with A ≃ 0.83 and m ≃ 0.64 GeV.
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Thus, the correlation in the x and y directions are short
distance and its range is approximately ξ.

V. DISCUSSION

Here, we briefly summarize the previous sections. In the
DR gauge, we have found that the amplitudes of AxðsÞ and
AyðsÞ are strongly suppressed, and tz-projection (14) does
not affect in quark confinement. This result implies that two
gauge components AtðsÞ and AzðsÞ are dominant in the
infrared region. In the DR gauge, the two gauge compo-
nents AxðsÞ and AyðsÞ are found to be massive, and their
large mass is conjectured to cause the dominance of AtðsÞ
and AzðsÞ in the infrared region. Then, removing the
would-be inactive components AxðsÞ and AyðsÞ in the
DR gauge, tz-projected 4D YM theory is regarded as an
ensemble of 2DYM-like systems on t-z planes as shown in
Fig. 2. These 2D YM-like systems locally interact with
neighbors in the x and y directions. Through the interaction,
these 2D systems are correlated globally in the x and y
directions. We have also found that the spatial correlation
between 2D systems exponentially decreases.
In this section, we consider a model analysis of the tz-

projected YM theory in the DR gauge, i.e., ensemble of 2D
YM-like systems on t-z planes, which are exponentially
correlated within short distance in the x and y directions.
For the analytical modeling, we make a crude approxi-

mation of replacement of the exponential correlation CðrÞ
by a step function, as shown in Fig. 10,

CðrÞ → θðξ − rÞ ¼


1 ðr < ξÞ
0 ðr > ξÞ ; ð68Þ

where ξ is the correlation length in Eq. (67).
Under this approximation, when r is smaller than ξ,

one finds CðrÞ¼ 1
Nc
hReTrUtðsÞU†

t ðsþ ra⊥ÞiDR ¼ 1, which
meansUtðsÞ ¼ Utðsþ ra⊥Þ. In fact,UtðsÞ can be regarded
to be uniform within a short distance below ξ in the x and y

direction. The similar relation holds for UzðsÞ because of
symmetry.
On the other hand, when r is larger than ξ, one finds

CðrÞ ¼ 1
Nc
hReTrUtðsÞU†

t ðsþ ra⊥ÞiDR ¼ 0, and therefore
the link-variables UtðsÞ and Utðsþ ra⊥Þ have no corre-
lation in the x and y directions, in other words, their product
UtðsÞU†

t ðsþ ra⊥Þ is completely random in the SU(Nc)
manifold. Also, the similar relation holds for UzðsÞ.
Therefore, by the approximation (68), the tz-projected

YM theory in the DR gauge can be regarded as an ensemble
of 2DYM systems on t-z layers, which have the width of ξ
and are piled in the x and y direction, as shown in Fig. 11.
Within each layer, gluon fields AtðsÞ and AzðsÞ are uniform
in the x and y direction, and these 2D YM systems are
independent and do not interact each other.
We label these independent layers with two integers m

(the x-coordinate) and n (the y-coordinate). Then, the gluon
fields AμðsÞ on the layer can be expressed as

AμðsÞ ¼ Aμðmξ; nξ; t; zÞ≡ AM
μ ðt; zÞ ð69Þ

in terms of layer index M ¼ ðm; nÞ.
Using AM

μ ðt; zÞ, the integral over x and y can be replaced
by the sum over m and n, and the tree-level action (15) is
written as

StzDR ≃
X

N¼ðm;nÞ
ξ2

Z
dtdzTrG2

tz; ð70Þ

where the second term in Eq. (15) is dropped off by the
approximation (68). This action (70) is described by “two-
dimensional” gluon field AM

t ðt; zÞ and AM
z ðt; zÞ. Thus, the

approximation (68) reduces the DR-gauged YM theory into
a “two-dimensional” theory.
We convert the 4D action (70) into the corresponding 2D

theory, by rescaling of the gluon field AM
μ ðt; zÞ with the

FIG. 10. A crude approximation of the spatial correlation CðrÞ.
The broken line represents the exponential correlation, as is
obtained in lattice QCD. The solid line is the approximated
correlation of θðξ − rÞ with the correlation length ξ.

FIG. 11. The Schematic figure of the DR-gauged YM system
under the approximation in Eq. (68). There is a 2DYM system on
each layer, which is independent and do not interact each other.
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correlation length ξ as

AM
μ ðt; zÞ≡ ξAM

μ ðt; zÞ: ð71Þ

Then, the field strength tensor GM
μν and the coupling

constant g are also rescaled as

GM
μν ≡ ∂μAM

ν − ∂μAM
ν þ ig½AM

μ ;AM
ν �; ð72Þ

g≡ g
ξ
¼ mg: ð73Þ

Using these quantities, the action (70) can be written as

StzDR ¼
Z

dtdz
X
M

1

2
Tr½GM

μνGM
μν�

¼
Z

dtdz
1

4
δMNG

a;M
μν Ga;N

μν ; ð74Þ

where subscripts μ and ν denote t or z, and the superscript a
the adjoint color index.
According to Eq. (73), the coupling constant g acquires a

mass dimension through the correlation length ξ. As the
general argument in 2D QCD, the coupling constant has a
mass dimension, and a scale of the theory must be
determined by hand. However, in the DR-gauged YM
theory, the scale is automatically set by the correlation
length ξ.
From the rescaled action (74), the interquark potential on

the t-z plane is calculated as

V treeðrÞ ¼
g2

2

4

3
r ð75Þ

at the tree-level, which is a linear potential, i.e., propor-
tional to the interquark distance r. Using g ¼ 1.0 at β ¼
6=g2 ¼ 6.0 and ξ ¼ 0.31 fm, the rescaled coupling is
obtained as

g ≃ 0.64 GeV: ð76Þ
Thus, the interquark potential becomes

V treeðrÞ ¼ σ2Dr; ð77Þ

with 2D string tension

σ2D ≃ 1.37 GeV=fm; ð78Þ

which seems to be consistent with the 4D QCD string
tension σ ≃ 0.89 GeV=fm.
As a caution, this argument is based on a crude

approximation (68), i.e., the replacement of the exponential
correlation by a step function, and also this treatment does
not include quantum effects. Then, this value is to be
regarded as a rough estimate. It is however interesting that

the estimated 2D string tension takes a similar value to the
string tension of 4D QCD.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, motivated by one-dimensional color electric
flux-tube formation, we have investigated effective dimen-
sional reduction in the 4D YM theory. We have proposed a
new gauge fixing of “dimensional reduction (DR) gauge”
defined so as to minimize RDR ≡ R

d4sTr½A2
xðsÞ þ A2

yðsÞ�,
which has a residual gauge symmetry for the gauge function
Ωðt; zÞ like 2D QCD on the t-z plane. We have defined
tz-projection as removal of Ax;yðsÞ → 0 in the gauge
configurations such as those generated in lattice QCD. By
the tz-projection in the DR gauge, the 4D YM theory is
reduced into an ensemble of 2DYM-like systems, which are
piled in the x and y directions and interact with neighboring
planes.
We have investigated effective dimensional reduction of

4D YM theory in SU(3) quenched lattice QCD at β ¼ 6.0.
We have found that, in the DR gauge, the amplitudes of two
gauge component AxðsÞ and AyðsÞ are strongly suppressed.
In the DR gauge, the interquark potential does not change
by the tz-projection, and the two components AtðsÞ and
AzðsÞ play a dominant role in quark confinement. For the
direction of ⊥ ¼ x, y, we have calculated the spatial
correlation hTrA⊥ðsÞA⊥ðsþ ra⊥ÞiDR and estimated the
spatial mass of A⊥ðsÞð⊥ ¼ x; yÞ as M⊥ ≃ 1.7 GeV in
the DR gauge. Then, it is conjectured that this large mass
makes A⊥ðsÞ inactive and realizes the dominance of AtðsÞ
and AzðsÞ in infrared region.
We have calculated the spatial correlation of two temporal

links, CðrÞ ≡ 1
Nc

hReTrUtðsÞU†
t ðs þ ra⊥ÞiDR, and have

found that the correlation decreases exponentially asCðrÞ ≃
expð−mrÞ with m ≃ 0.6 GeV, which corresponds to the
correlation length ξ≡ 1=m ≃ 0.3 fm. According to the
dominance of AtðsÞ and AzðsÞ, we have ignored AxðsÞ
andAyðsÞ and considered analytical modeling of the 4DYM
theory in the DR gauge, using a crude approximation of
replacement of CðrÞ → θðξ − rÞ for the spatial correlation.
Under this approximation, the 4DYM theory is found to be
regarded as an ensemble of 2D YM systems with the
coupling g2D ≡ gm.
In this work, we have used DR gauge fixing and have

drawn a possible picture of effective dimensional reduction
in the 4D YM theory. To be strict, however, the DR gauge
fixing has the Gribov ambiguity [39], which is a general
problem appearing along with most gauge fixing such as
the Landau, Coulomb, and MA gauges. To confirm the
obtained picture, it is desired to perform more careful
checks on effects from the Gribov ambiguity.
Finally, we list below future works related to this subject.

It is necessary to perform the lattice QCD calculations
for various β and to investigate the scaling property in the
DR gauge. Also, it is desired to improve the crude
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approximation of the spatial correlation, CðrÞ → θðξ − rÞ,
in Sec. V. For example, the correlation CðrÞ can be
represented by multistep functions asCðrÞ≃P

iCðξiþξiþ1

2
Þ×

θðξiþ1−rÞθðr−ξiÞ with appropriate ξi. By taking a more
appropriate approximation, more realistic correspondence
might be obtained between the 4D YM theory and 2D
systems.
To include quark degrees of freedom is also an important

future work. In particular, spontaneous breaking of chiral
symmetry is a typical nonperturbative property, and it
would be valuable to investigate the chiral condensate
hq̄qi in 4D DR-gauged QCD after the tz-projection.
It is also interesting to examine the behavior of

dynamical quarks in 4D DR-gauged QCD. As shown in
Sec. IV C and Sec. IV D, gluon propagation in the x and y
directions is suppressed. According to this, it is considered
that gluons are bounded on t-z planes in DR-gauged
QCD. However, quarks are not expected to be bounded on
the t-z plane, because the realization of a real 2D system
contradicts spontaneous chiral symmetry breaking which
is realized in 4D QCD, due to the Coleman theorem. Thus,
DR-gauged QCD system would be a system in which
gluons (bosons) are bounded on t-z planes and quarks
(fermions) propagate between the planes. This system is
similar to the graphene [51], where electrons (fermions)
are bounded on 2D planes and photons (bosons) propagate
between planes. Thus, the QCD system in the DR gauge
might be regarded as the “dual” graphene, where roles of
fermion and boson are interchanged.
Considering 4D DR-gauged QCD at finite temperatures

is another future work. At finite temperatures, a linear
potential disappears, and the Coulomb or Yukawa potential
between (anti)quarks is realized. As temperatures increase,
the dimensional reduction picture is considered to be
broken. It seems interesting to investigate how the dimen-
sional reduction picture changes and breaks down at high
temperatures.
In the DR gauge, AtðsÞ and AzðsÞ are considered to be

strongly correlated and propagate over long distances in
the t and z directions, like the 2D YM theory on the t-z
plane. As a while, the spatial correlation CðrÞ of two
temporal link-variables decreases exponentially as shown
in Sec. IV D, and this means that the propagation of AtðsÞ
and AzðsÞ in the x and y directions is suppressed in the DR
gauge. Thus, in the DR gauge, AtðsÞ and AzðsÞ seem to
have anisotropic masses. This property seems to suggest a
similarity between 4D DR-gauged QCD and a fracton
system [52], where propagation of an quasiparticle exci-
tation is restricted in some direction.
We have investigated effective dimensional reduction

of the 4D YM theory in the DR gauge, and using a crude
approximation, we have described the 4D YM system in
terms of 2D gauge degrees of freedom. This suggests a
possibility that an essence of 4D QCD can be expressed
with two-dimensional degrees of freedom. In other

words, there is a possibility that 4D QCD is a holograph
which is constructed from a hologram of the essential 2D
field variables, which might lead an idea of “holo-
gram QCD.”
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APPENDIX A: xy-PROJECTED WILSON
LOOP IN DR GAUGE

In Appendix A, we consider xy-projected Wilson loop in
the DR gauge and derive Eq. (48). Since the Wilson lines
Lupper and Lbottom are elements of SUðNcÞ, they can be
expressed as

Lupper ¼ L0
upper1þ La

upperTa; ðA1Þ

Lbottom ¼ L0
bottom1þ La

bottomT
a; ðA2Þ

where L0
upper; La

upper; L0
bottom and La

bottom are generally com-
plex numbers.
Using the notation in Sec. IV B, the xy-projected Wilson

loop transforms as

Wxyðr; TÞ → Tr½Ω̃ðL0�
upper1þ La�

upperTaÞ
× Ω̃†ðL0

bottom1þ Lb
bottomT

bÞ�
¼ NcL0�

upperL0
bottom

þ Tr½Ω̃La�
upperTaΩ̃†La

bottomT
a�; ðA3Þ

where TrTa ¼ 0 is used. While the second term is not
gauge-invariant for the residual gauge transformation with
gauge function Ωðt; zÞ, the first term is invariant. For the
vacuum expectation value of the xy-projected Wilson loop,
only the invariant term survives as

hWxyðr; TÞiDR ¼ NchL0�
upperL0

bottomiDR
¼ 1

Nc
hTrL†

upperTrLbottomiDR: ðA4Þ

Thus, the xy-projected Wilson loop hWxyðr; TÞiDR is
generally non-zero and finite.

APPENDIX B: TREE-LEVEL
POTENTIAL IN 2D QCD

In Appendix B, we derive the tree-level interquark
potential (75) in 2D QCD on the t-z plane, using the
same notation in Sec. V. In Euclidean spacetime, the
generating functional of 2D QCD at the quenched level is
written as
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Z2D ¼
Z

DA exp
�
−
Z

dtdz
�
1

4
δMNG

a;M
μν Ga;N

μν

þ Ja;Mμ Aa;M
μ

��

¼
Z

DA exp

�
−
Z

dtdz

�
1

4
Aa;M

μ Dab
μνδMNA

b;N
μ

þ Ja;Mμ Aa;M
μ þ � � �

��
; ðB1Þ

Dab
μν ≡ ð−∂2δμν þ ∂μ∂νÞδab; ðB2Þ

where Ja;Mμ is the color current coupling to the gauge field as
Ja;Mμ Aa;M

μ , and ð� � �Þ contains the third and fourth orders of
Aa;M

μ . Completing the square and performing the Gaussian
integral for Aa;M

μ , the generating functional (B1) becomes

Z2D ≃ exp

�
−
1

2

Z
d2ζ

Z
d2ζ0

× Ja;Mμ ðζÞðD−1ÞabμνδMNJ
b;N
ν ðζ0Þ

�
; ðB3Þ

where ζ ¼ ðt; zÞ denotes the two-dimensional coordinate
and we have ignore the higher orders ofAa;M

μ to consider at
tree-level. The operator ðD−1Þabμν is the inverse of Dab

μν .
Using the conservation law of the color current

∂μJ
a;M
μ ¼ 0; ðB4Þ

the generating functional (B3) is expressed as

Z2D ∝ exp

�
−
1

2

Z
d2ζ

Z
d2ζ0

× Ja;Mμ ðζÞ
�Z

d2p
ð2πÞ2

δμν
p2

eipðζ−ζ0Þ
�
Ja;Mν ðζ0Þ

�
: ðB5Þ

Considering a static quark at z ¼ z1 and a static antiquark at
z ¼ z2, the color current is expressed as

Ja;Mμ ¼ g½δðz − z1Þ − δðz − z2Þ�δμ0δMM0Ta; ðB6Þ
where M0 is a layer index of the layer in which the quark
and the antiquark stay. Substituting this into Eq. (B5), the
generating function is calculated as

Z2D ∝ exp

�
−
g2

2
C2δ

M0N0

×
Z

∞

−∞
dt

�Z
∞

−∞

dp
π

1

p2
ð1 − cosprÞ

��
; ðB7Þ

where C2 is the Casimir operator of SU(Nc) in the
fundamental representation and r≡ jz1 − z2j. The δN0M0

means that no interaction works between particles on
different layers in the approximation of Eq. (68). From

the generating functional, the effective potential Veff is
derived as

Z2D ∼ exp

�
−
Z

dtVeff

�
; ðB8Þ

and the tree-level potential is obtained as a linear potential,

V treeðrÞ ¼
g2

2
C2 δ

M0N0

Z
∞

−∞

dp
π

1

p2
ð1 − cosprÞ

¼ g2

2

4

3
δM0N0r: ðB9Þ

APPENDIX C: INTERQUARK POTENTIAL IN
⊥ DIRECTION WITH CRUDE APPROXIMATION

In Appendix C, we consider the ⊥-directed interquark
potential in the DR gauge with the crude approximation
shown in Sec. V. The potential is calculated from the
tz-projected Wilson loop on the t-⊥ plane. Under the
approximation (68), if two Wilson lines Lleft and Lright are
in the same layer, they are identical

Lleft ¼ Lright ðC1Þ
because CðrÞ ¼ 1 means UtðsÞ ¼ Utðsþ ra⊥Þ. Then, the
tz-projected Wilson loop on the t-⊥ plane is calculated as

Wtzðr; TÞ ¼ Tr½L†
leftLright� ¼ Tr½1�: ðC2Þ

On the other hand, if Lleft and Lright are not in the same

layer, they have no correlation and their product L†
leftLright is

completely random. In this case, the vacuum expectation
value of the tz-projected Wilson loop on the t-⊥ plane
becomes zero

hWtzðr; TÞiDR ¼ hTr½L†
leftLright�iDR ¼ 0: ðC3Þ

Thus, under the approximation (68), the Wilson loop on the
t-⊥ plane is simplified to be

hWtzðr; TÞiDR ¼


Tr½1� ðr < ξÞ
0 ðr > ξÞ ; ðC4Þ

and the interquark potential in the⊥ direction is calculated as

VðrÞ ¼ − lim
T→∞

1

T
ln hWtzðr; TÞiDR ¼



0 ðr < ξÞ
∞ ðr > ξÞ : ðC5Þ

Therefore, the approximation (68) leads to quark confine-
ment with the infinite string tension in x and y directions.
In reality, the interquark potential in the ⊥ direction is

expected to be milder than that in Eq. (C5), since the spatial
correlation CðrÞ does not decreases θ-functional, but
exponentially.
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