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We work the lattice fermions and non-Hermitian formulation in the 2D Gross-Neveu-Yukawa (GNY)
model and demonstrate the numerical implementation for two flavors by the hybrid Monte Carlo. Our
approach has a notable advantage in dealing with chiral symmetry on a lattice by avoiding the Nielsen-
Ninomiya theorem, due to the nonsymmetrized finite-difference operator. We restore the hypercubic
symmetry by averaging over all possible orientations with the proper continuum limit. Our study is the first
simulation for the interacting fermion formulated in a non-Hermitian way. We compare the numerical
solution with the one-loop resummation. The resummation results matches with the numerical solution in
hϕi, hϕ2i, hTrðψ̄1ψ1 þ ψ̄2ψ2Þ=2i, and hTrðψ̄1ψ1 þ ψ̄2ψ2Þϕ=2i. We also used the one-loop resummation to
provide the renormalization group flow and asymptotic safety in the 2D GNY model.

DOI: 10.1103/PhysRevD.110.034502

I. INTRODUCTION

Gross-Neveu (GN) model describes the Dirac fermion
fields interacting via four-fermion interactions in 2D
spacetime. The Lagrangian formulation for one flavor in
the 2D Euclidean spacetime is
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SGN½ψ̄ ;ψ � ¼
Z

d2x

�
ψ̄ð=∂þmFÞψ −

g2

2
ðψ̄ψÞ2

�
; ð1Þ

where mF is the Dirac fermion mass, and g2 is a
dimensinless positive coupling constant. When consider-
ingN flavors, GN theory is asymptotically free in the large
N limit. This model has a similar property to quantum
chromodynamics (QCD). When N ¼ 1, the model is
equivalent to the massive Thirring model [1]. The partition
function of the massive Thirring model is equivalent to the
sine-Gordon model [2–8]. The sine-Gordon model has a
significant ultraviolet fixed point that results in a finite
coupling constant. As a result, the GN model for one
flavor is asymptotically safe [9]. Asymptotic safety
implies that the theory remains well-defined and finite
at arbitrarily high energies or short distances. However,
the GN model is UV finite, but it cannot be extended to
four dimensions. Therefore, we are studying the Gross-
Neveu-Yukawa (GNY) model in a two-dimensional space-
time. The GNY model is described by the action below,

SGNY½ψ̄ ;ψ ;ϕ� ¼
Z

d2x

�
ψ̄ð=∂þmF þ ϕÞψ

− ϕ□ϕþ 1

2g2
ϕ2

�
: ð2Þ

In the GNY model’s action, the term ϕ□ϕ represents the
kinetic term for the scalar field, and m2

B=2 ¼ ϕ2=ð2g2Þ
represents its self-interaction term. The coupling constant
g2 here is also positive, similar to the GN model. The GNY
model indeed introduces an additional scalar field ϕ to the
GN model, primarily to ensure renormalizability in four
dimensions. The kinetic term associated with the scalar
field allows for more control over the model’s behavior,
particularly in the UV regime. While the kinetic term for ϕ
may influence the UV behavior of the model, the expect-
ation is that the essential property of asymptotic safety,
which is characteristic of the GN model for one flavor, will
still hold in the GNY model.
Nonperturbative quantum field theory (QFT) computa-

tion in continuous spacetime involves evaluating an infinite-
dimensional path integral. Because the path integration is
computationally intractable, we work on a discrete space-
time and consider finite-dimensional path integral [10]. We
can compute the path integral by numerical techniques, like
the Monte Carlo (MC) method. The lattice formulation is a
practical simulation method used to study nonperturbative
physics. The continuum field theory is recovered in the limit
of infinite lattice size and infinitesimal spacing (a). Nielsen-
Ninomiya theorem [11–13] poses constraints on construct-
ing a Hermitian d-dimensional lattice action for fermions SF

SF ¼ ad
X

all lattice points

ψ̄ðDþmFÞψ ð3Þ

when meeting the conditions; The Dirac matrix D is
exponentially local, loss of massless doublers, and chiral
symmetry γ5DþDγ5 ¼ 0. We could avoid the no-go by
modifying the chiral symmetry condition (like overlap
fermion), but it is necessary to accept the square root
operation with a modified chiral-symmetry. One way to
avoid the “no-go” is to introduce an auxiliary term that
breaks the chiral symmetry, such as the Wilson-Dirac
fermion. However, this approach may pose difficulties
when studying a light fermion mass. The no-go acts as a
strong constraint on the creation of a lattice fermion. The
square-root operation and losing chiral symmetry all
introduce practical problems about simulation time or
error bar. Hence, we consider a naive fermion approach
with a one-sided finite-difference. This breaks the
Hermiticity but does not violate the no-go [14,15].
Because the one-sided lattice derivative breaks the hyper-
cubic symmetry [14], we may not obtain the expected
continuum field theory due to the issue of nonrenormaliz-
ability [16]. The imposition of the average over all
possible one-sided finite-differences [14] helps to elimi-
nate the nonrenormalizable terms [16] and allows for the
recovery of the continuum field theory. However, the non-
Hermitian theory generates a numerical sign problem,
which can cause the MC method to lose the powerful
prediction or the importance sampling technique from the
sign problem. Fortunately, this issue has been resolved by
considering the even flavors with the same numbers
between the fermion fields with the forward and backward
finite-differences [17]. It is important to note that while the
Lagrangian may not be hermitian, the partition function is
real [17]. Therefore, we can avoid the sign problem and
implement the hybrid Monte Carlo (HMC) method in non-
Hermitian lattice fermion field theory [17].
In this paper, we implement HMC on the non-Hermitian

lattice formulation for a 2D Gross-Neveu-Yukawa (GNY)
model with two flavors. The Lagrangian description is

SGNY2½ψ̄ ;ψ ;ϕ� ¼
Z

d2x

 X2
j¼1

ðψ̄ jð=∂þmF þ ϕÞψ jÞ

− ϕ□ϕþ 1

2g2
ϕ2

!
: ð4Þ

This model is interesting because it does not suffer from
UV divergence issues, making it suitable for exploring
non-Hermitian lattice methods. The 2D GNY model with
two flavors is utilized due to its ability to handle all
eigenmodes of the Dirac matrix, making it a suitable
testbed for the non-Hermitian lattice method. We validate
our numerical solutions by calculating correlators [18] and
comparing them with one-loop resummation, particularly
in the nonweak coupling regime. Because the GNY model
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has a three-point coupling similar to ϕ3 theory, we can use
the resummation method of Ref. [19]. The resummation
method involves an adaptive parameter determined by
minimizing energy expectation values, leading to a modi-
fied unperturbed part and a spectrum closer to the full
spectrum [20]. Therefore, we call this method adaptive
perturbation method [21,22]. This method is used for
studying the renormalization group (RG) flow [23]. It
adjusts parameters based on system behavior, allowing us
to explore aspects like condensation, bare masses, and
coupling constants. To summarize our results:

(i) We compute hϕi, hϕ2i, hTrðψ̄1ψ1 þ ψ̄2ψ2Þ=2i, and
hTrðψ̄1ψ1 þ ψ̄2ψ2Þϕ=2i in lattice simulations and
compare them with the adaptive perturbation
method up to the bare Yukawa coupling constant
λ ¼ 2. This method’s leading order matches well
with simulation results for the bare fermion mass
mF ¼ 4, the bare scalar mass mB ¼ 1, and the
lattice size ðNt; NxÞ ¼ ð16; 32Þ, where Nt (Nx) is
the temporal (spatial) lattice size with the unit
lattice spacing (a ¼ 1);

(ii) By studying the RG flow we show that the bare
Yukawa coupling constant converges to a finite
value as the momentum cutoff Λ increases, indicat-
ing asymptotic safety in the 2D GNY model. This
insight can be valuable for understanding interacting
theories in the continuum limit.

The organization of this paper is as follows: We start
with the discussion of the GNY model on a lattice, moving
on to the implementation of HMC, and then comparing
simulation with the adaptive perturbation method for two
flavors in Sec. II. We then use the adaptive perturbation
method to give the RG flow and show the asymptotic safe
for two flavors in Sec. III. Finally, we discuss and conclude
in Sec. IV. In Appendix, we have included the analysis of
thermalization and autocorrelation for our lattice data.

II. GNY MODEL ON LATTICE

We first review the simulation method in non-Hermitian
lattice fermion field theory for even flavors [17]. We
then introduce the 2D GNY model on the lattice with the
one-sided finite-difference and compare lattice simulation
with the adaptive perturbation method to validate and
refine computational techniques. Analyzing thermalization
and autocorrelation time in lattice data, as provided in
Appendix, is crucial evidence for understanding how well
the simulation results match theoretical expectations and
how efficiently the simulations are running.

A. Simulation method

We demonstrate the simulation method in a 1D Dirac
fermion field with a degenerate mass for two flavors for
simplicity [17],

SFD ¼ a
XN−1

n¼0

ðψ̄1ðnÞðDðnÞ þmFÞψ1ðnÞ

þ ψ̄2ðnÞð−D†ðnÞ þmFÞψ2ðnÞÞ; ð5Þ

where N is the number of Dirac fermion fields. The
derivative operator of ψ1 is defined by the forward
finite-difference

ψ1ðnþ 1Þ − ψ1ðnÞ
a

: ð6Þ

The derivative operator of another field ψ2 is defined using
the backward finite-difference. After integrating out the
fermion fields, we obtain a non-negative determinant [17],

detðDþmÞ detð−D† þmFÞ
¼ detðDþmFÞ detðγ5ð−D† þmFÞγ5Þ
¼ jdetðDþmFÞj2: ð7Þ

We then introduce the pseudofermion field (bosonic field
ϕf) to rewrite the partition function as in the following:

Z
Dψ̄Dψ expð−SFDÞ

∼
Z

Dϕf;RDϕf;I expð−ϕ†
fððDþmFÞðD† þmFÞÞ−1ϕfÞ;

ð8Þ

where

ϕf ≡ ϕf;R þ iϕf;I: ð9Þ

Although it is a non-Hermitian fermion field theory, the
partition function is real. Hence we can implement the HMC
algorithm to compute the observables avoiding the sign
problem [17].
When considering the GNY model, it is necessary to

restore the hypercubic symmetry by averaging over four
possible orientations [14,16]. We consider forward-
forward (þþ) and forward-backward (þ−) 2D finite-
difference for ψ1 field and simultaneously consider
backward-backward (−−) and backward-forward (−þ)
finite-difference in ψ2 field. When using forward-forward
(or forward-backward) finite-difference in ψ1, it is the
same as using backward-backward (or backward-forward)
finite-difference. Therefore, to restore hypercubic sym-
metry, we can only average two orientations. As for
the scalar field, we always use forward-forward finite-
difference on the lattice. The fermion and scalar fields
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satisfy the boundary conditions,

ψ jðtþ Nt; xÞ ¼ −ψ jðt; xÞ; ψ jðt; xþ NxÞ ¼ ψ jðt; xÞ;
ϕðtþ Nt; xÞ ¼ ϕðt; xÞ; ϕðt; xþ NxÞ ¼ ϕðt; xÞ: ð10Þ

B. Adaptive perturbation method

We do the one-loop resummation as in ϕ3 theory [19]. For one flavor case, we obtain the constant condensation,

ϕ0 ¼
1

γ2Bð0Þ
Tr

�Z
d2p
ð2πÞ2 λRðp; pÞ

1

i=pþ γFðpÞ
�
; ð11Þ

the renormalized mass parameters,

γFðpÞ ¼ mF þ λRðp; pÞϕ0 −
Z

d2q1
ð2πÞ2 λRðp; q1Þ

1

i=q1 þ γFðq1Þ
1

ðp − q1Þ2 þ γ2Bðp − q1Þ
λRðp; q1Þ;

γ2BðpÞ ¼ m2
B þ Tr

�Z
d2q1
ð2πÞ2 λRðq1; q1 − pÞ 1

ið=p − =q1Þ þ γFðp − q1Þ
λRðq1; q1 − pÞ 1

i=q1 þ γFðq1Þ
�
; ð12Þ

the renormalized coupling constant

λRðp1; p2Þ ¼ λþ Fðp1; p2Þ; ð13Þ

where

Fðp1; p2Þ ¼
Z

d2q1
ð2πÞ2 λRðp1; p1 − q1Þ

1

q21 þ γ2Bðq1Þ
1

ið=p1 − =q1Þ þ γFðp1 − q1Þ
× λRðp1 − q1; p2 − q1Þ

1

ið=p1 − =q1Þ þ γFðp2 − q1Þ
λRðp2 − q1; p2Þ: ð14Þ

We note that γFðpÞ and λR are matrices, not scalars. Our notation for the gamma matrices is

γ1 ≡ σx ¼
�
0 1

1 0

�
; γ2 ≡ −σy ¼

�
0 i

−i 0

�
: ð15Þ

C. Comparison

To compare the lattice simulation with the adaptive perturbation method, we consider two flavors with degenerate
fermion masses. After adopting the discretization with the infinite lattice size limit and the unit lattice spacing, the formula
of propagators becomes

Z
d2p
ð2πÞ2

1

i=pþ γFðpÞ
→
Z

d2p
ð2πÞ2

1P
2
μ¼1 ϵμγμðexpðiϵμpμÞ − 1Þ þ γFðpÞ

; ð16Þ

Z
d2p
ð2πÞ2

1

p2 þ γ2BðpÞ
→
Z

d2p
ð2πÞ2

1

γ2BðpÞ þ
P

2
μ¼1ð2 − 2 cosðpμÞÞ

: ð17Þ

We can use a similar way to obtain the correlation function on the lattice and use the result to compare it with the lattice
simulation. ϵμ can be 1 or −1 for each μ. We only need to do the quenched averaging for two choices, ðϵ1; ϵ2Þ ¼ ð1; 1Þ and
ðϵ1; ϵ2Þ ¼ ð1;−1Þ, because another two choices give the same result.
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To simulate the one-sided lattice fermion theory without the sign problem, we use distinct finite-difference operators for
ψ1 and ψ2. It is possible for the renormalized fermion masses, γF;1 and γF;2, as well as coupling constants, λR;1 and λR;2, to
differ. However, our numerical solutions have shown that the matrices have the same real eigenvalues across different
fermion fields, which is an interesting observation. The constant condensation is given by

ϕ0 ¼
1

γ2Bð0Þ
Tr

�Z
d2p
ð2πÞ2 λR;1ðp; pÞ

1P
2
μ¼1 ϵ1;μγμðexpðiϵ1;μpμÞ − 1Þ þ γF;1ðpÞ

�

þ 1

γ2Bð0Þ
Tr

�Z
d2p
ð2πÞ2 λR;2ðp; pÞ

1P
2
μ¼1 ϵ2;μγμðexpðiϵ2;μpμÞ − 1Þ þ γF;2ðpÞ

�
; ð18Þ

the renormalized fermion masses are

γF;1ðpÞ ¼ mF þ λR;1ðp; pÞϕ0 −
Z

d2q1
ð2πÞ2 λR;1ðp; q1Þ

1P
2
μ¼1 ϵ1;μγμðexpðiϵ1;μq1;μÞ − 1Þ þ γF;1ðpÞ

×
1

γ2Bðp − q1Þ þ
P

2
μ¼1ð2 − 2 cosðpμ − q1;μÞÞ

λR;1ðp; q1Þ;

γF;2ðpÞ ¼ mF þ λR;2ðp; pÞϕ0 −
Z

d2q1
ð2πÞ2 λR;2ðp; q1Þ

1P
2
μ¼1 ϵ1;μγμðexpðiϵ1;μq1;μÞ − 1Þ þ γF;2ðpÞ

×
1

γ2Bðp − q1Þ þ
P

2
μ¼1ð2 − 2 cosðpμ − q1;μÞÞ

λR;2ðp; q1Þ; ð19Þ

the square of renormalized scalar mass is

γ2B ¼ m2
B þ Tr

�Z
d2q1
ð2πÞ2 λR;1ðp; q1Þ

1P
2
μ¼1 ϵ1;μγμðexpðiϵ1;μðp − q1;μÞÞ − 1Þ þ γF;1ðp − q1Þ

× λR;1ðq1; q1 − pÞ 1P
2
μ¼1 ϵ1;μγμðexpðiϵ1;μq1;μÞ − 1Þ þ γF;1ðq1Þ

�

þ Tr

�Z
d2q1
ð2πÞ2 λR;2ðp; q1Þ

1P
2
μ¼1 ϵ1;μγμðexpðiϵ1;μðp − q1;μÞÞ − 1Þ þ γF;1ðp − q1Þ

× λR;2ðq1; q1 − pÞ 1P
2
μ¼1 ϵ1;μγμðexpðiϵ1;μq1;μÞ − 1Þ þ γF;1ðq1Þ

�
; ð20Þ

the renormalized coupling constants are

λR;1ðp1; p2Þ ¼ λþ F1ðp1; p2Þ; λR;2ðp1; p2Þ ¼ λþ F2ðp1; p2Þ; ð21Þ

where
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F1ðp1; p2Þ ¼
Z

d2q1
ð2πÞ2 λR;1ðp1; p1 − q1Þ

1

γ2Bðq1Þ þ
P

2
μ¼1ð2 − 2 cosðq1;μÞÞ

×
1P

2
μ¼1 ϵ1;μγμðexpðiϵ1;μðpμ;1 − qμ;1ÞÞ − 1Þ þ γF;1ðp1 − q1Þ

λR;1ðp1 − q1; p2 − q1Þ

×
1P

μϵ1;μγμðexpðiϵ1;μðpμ;2 − qμ;1ÞÞ − 1Þ þ γF;1ðp2 − q1Þ
λR;1ðp2 − q1; p2Þ;

F2ðp1; p2Þ ¼
Z

d2q1
ð2πÞ2 λR;2ðp1; p1 − q1Þ

1

γ2Bðq1Þ þ
P

2
μ¼1ð2 − 2 cosðq1;μÞÞ

×
1P

2
μ¼1 ϵ1;μγμðexpðiϵ1;μðpμ;1 − qμ;1ÞÞ − 1Þ þ γF;2ðp1 − q1Þ

λR;2ðp1 − q1; p2 − q1Þ

×
1P

μϵ1;μγμðexpðiϵ1;μðpμ;2 − qμ;1ÞÞ − 1Þ þ γF;2ðp2 − q1Þ
λR;2ðp2 − q1; p2Þ: ð22Þ

We can use the condensation and the renormalized
parameters to write the leading-order result of the adaptive
perturbation method and compare the result to the lattice
simulation in Fig. 1. The difference between the numerical
solution and the perturbation solution becomes clear at
λ ¼ 0.5. However, the difference is still within 10%, and

the next-order perturbation correction of hϕi is positive.
Therefore, we expect that the difference is due to the loss of
the higher-order correction of the perturbation solution. We
also show the comparison before averaging the orientations
in Fig. 2. The result is similar to the quenched averaging
in Fig. 1.

FIG. 1. We compare the perturbation result to the HMC simulation in hϕi, hϕ2i, hTrðψ̄1ψ1 þ ψ̄2ψ2Þ=2i, and hTrðψ̄1ψ1 þ ψ̄2ψ2Þϕ=2i
for mF ¼ 4 and m2

B ¼ 1 with the lattice size ðNs; NtÞ ¼ ð16; 32Þ and the number of molecular dynamics steps Nsteps ¼ 32, 64. The
number of measurements is 211 sweeps with thermalization 26 sweeps and measure intervals 25 sweeps.
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FIG. 2. We compare the perturbation result to the HMC simulation in hϕi, hϕ2i, hTrðψ̄1ψ1 þ ψ̄2ψ2Þ=2i, and hTrðψ̄1ψ1 þ ψ̄2ψ2Þϕ=2i
without the quenched averaging formF ¼ 4 andm2

B ¼ 1with the lattice size ðNs; NtÞ ¼ ð16; 32Þ and the number of molecular dynamics
steps Nsteps ¼ 32, 64. The number of measurements is 211 sweeps with thermalization 26 sweeps and measure intervals 25 sweeps.
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FIG. 3. We show the RG flow of the condensation, bare scalar mass, and bare fermion mass for the γF ¼ 4, γ2B ¼ 1, and λR ¼ 1=32,
1=16, 1=8, 1=4, 1=2, from the adaptive perturbation method.

FIG. 4. We show the RG flow of the bare coupling constant for the γF ¼ 4, γ2B ¼ 1, and λR ¼ 1=32, 1=16, 1=8, 1=4, 1=2 from the
adaptive perturbation method. The bare coupling constant approaches a finite constant as Λ increases. Therefore, the 2D GNY model is
asymptotic safety.
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III. RG FLOW

We use the leading-order result of the adaptive perturba-
tion method to obtain the RG flow of the constant con-
densation, bare scalar mass, bare fermion mass, and bare
coupling constant. At the leading-order result, we can
identify the renormalized parameters as physical parameters
when the square of momentum equals the negative square of
physical mass. This means that these parameters can now be
used to make predictions about observable phenomena. The
bare parameters at Λ ¼ 0 are identified as the renormalized
parameters. For simplicity, we denote γB, γF, and λR as the
physical parameters without writing the momentum depend-
ence in this section. We assume that γF and λR are propor-
tional to an identity matrix. The flow of the condensation,
bare scalar mass, and fermion mass is illustrated in Fig. 3.
We show that the 2D GNY model is asymptotic safety from
the RG flow of the bare coupling constant (Fig. 4).

IV. DISCUSSION AND CONCLUSION

We implemented HMC on the non-Hermitian lattice
interacting fermion fields within a 2D GNY model with
two flavors. It is the first lattice simulation for the inter-
acting field theory with a large lattice size ðNt; NxÞ ¼
ð16; 32Þ. Comparing our numerical results with the adaptive
perturbation method up to a coupling constant of
λ ¼ 2 is a thorough approach to validation. Furthermore,
utilizing the adaptive perturbation method to derive the RG
flow and demonstrate asymptotic safety. This suggests that
the 2D GNY model with two flavors avoids UV divergence.
The interaction that persists in the lattice formulation even at
the continuum limit is intriguing. Our research could have
significant implications for understanding the behavior of
fermion fields in non-Hermirian lattice formulation, particu-
larly within the context of lattice simulations and QFT.
The study of lattice fermion field theory, particularly in

the context of the GNY model, offers fascinating insights
into QFT and its applications in various dimensions. Our
approach to not truncating the eigenmodes of the Dirac
matrix in the 2D lattice fermion field theory is intriguing. By
retaining all eigenmodes, we are likely aiming for a more
accurate representation of the system’s behavior, albeit at the
cost of increased computational complexity. The GNY
model’s property of being renormalizable in both 2D and
4D makes it particularly valuable for theoretical investiga-
tions. It provides a platform for studying fundamental
aspects of QFT, such as renormalization and phase tran-
sitions, in different dimensionalities. We point out that
simulating 4D lattice fermion fields within a reasonable
time frame by considering only low-lying eigenmodes is
crucial for practical computational purposes. This approach
allows researchers to focus computational resources on the
most relevant aspects of the system, potentially paving the
way for more efficient simulations and deeper insights into
the behavior of higher-dimensional systems. Indeed,

utilizing the 2D GNY model as a laboratory for testing
truncation errors before extending the analysis to the 4D
GNY model is a wise strategy. It enables researchers to
refine their computational techniques and gain confidence in
the validity of their results before tackling more challenging
and resource-intensive simulations.
We discuss theoretical physics concepts related to lattice

models, specifically the GNY model and its similarities to
QCD in terms of phase diagrams, the sign problem, and
analytical continuation techniques. The lattice fermion fields
with even flavors and imaginary chemical potentials being
free from the sign problem is an interesting observation, as it
suggests a potential workaround for numerical simulations.
Analytical continuation is indeed a powerful tool in theo-
retical physics, allowing researchers to infer real-chemical
potential behavior from calculations done in more tractable
regimes, such as imaginary chemical potentials.
The comparison between analytical and numerical results,

as we suggested, is crucial for validating theoretical
approaches and numerical methods. If the results align, it
strengthens confidence in both the theoretical framework
and the computational techniques used. This process can
shed light on the phase diagram of the system and potentially
uncover features like the tricritical point. Developing new
tools to probe such intricate phenomena is at the forefront of
theoretical physics research, especially in fields like QFT
and condensed matter physics. The interplay between
theoretical insights, numerical simulations, and experimental
data is vital for advancing our understanding of complex
systems.
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APPENDIX: ANALYSIS OF THERMALIZATION
AND AUTOCORRELATION TIME

We discuss a scientific analysis of thermalization from
the time-history and autocorrelation time from the error bar.
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1. Thermalization

We show the time history of ϕ2 without the quenched averaging in Figs. 5 and 6. The time history justifies the
approximate thermalization after 64 weeps.

FIG. 5. The time-history of ϕ2 for mF ¼ 4, m2
B ¼ 1, and λ ¼ 1=32; =16; 1=8; 1=4; 1=2, 1, 2, with the lattice size ðNs; NtÞ ¼ ð16; 32Þ

and the number of molecular dynamics steps Nsteps ¼ 32, 64 in the 2D GNY model with the forward-forward finite-difference.
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FIG. 6. The time-history of ϕ2 for mF ¼ 4, m2
B ¼ 1, and λ ¼ 1=32; =16; 1=8; 1=4; 1=2, 1, 2, with the lattice size ðNs; NtÞ ¼ ð16; 32Þ

and the number of molecular dynamics steps Nsteps ¼ 32, 64 in the 2D GNY model with the forward-backward finite-difference.
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2. Autocorrelation time

We show the error bar of ϕ2 without the quenched averaging in Figs. 7–10. The analysis of the error bar justifies the small
autocorrelation by the measure interval, 32 sweeps.

FIG. 7. The error bar of ϕ2 for mF ¼ 4, m2
B ¼ 1, and λ ¼ 1=32; =16; 1=8; 1=4; 1=2, 1, 2, with the lattice size ðNs; NtÞ ¼ ð16; 32Þ and

the number of molecular dynamics steps Nsteps ¼ 32 in the 2D GNY model with the forward-forward finite-difference.
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FIG. 8. The error bar of ϕ2 for mF ¼ 4, m2
B ¼ 1, and λ ¼ 1=32; =16; 1=8; 1=4; 1=2, 1, 2, with the lattice size ðNs; NtÞ ¼ ð16; 32Þ and

the number of molecular dynamics steps Nsteps ¼ 64 in the 2D GNY model with the forward-forward finite-difference.
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FIG. 9. The error bar of ϕ2 for mF ¼ 4, m2
B ¼ 1, and λ ¼ 1=32; =16; 1=8; 1=4; 1=2, 1, 2, with the lattice size ðNs; NtÞ ¼ ð16; 32Þ and

the number of molecular dynamics steps Nsteps ¼ 32 in the 2D GNY model with the forward-backward finite-difference.

XINGYU GUO, CHEN-TE MA, and HUI ZHANG PHYS. REV. D 110, 034502 (2024)

034502-14



FIG. 10. The error bar of ϕ2 for mF ¼ 4, m2
B ¼ 1, and λ ¼ 1=32; =16; 1=8; 1=4; 1=2, 1, 2 with the lattice size ðNs; NtÞ ¼ ð16; 32Þ and

the number of molecular dynamics steps Nsteps ¼ 64 in the 2D GNY model with the forward-backward finite-difference.
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