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We present nonperturbative results for beyond the standard model kaon mixing matrix elements in the
isospin symmetric limit (m, = m,) of QCD, including a complete estimate of all dominant sources of
systematic error. Our results are obtained from numerical simulations of lattice QCD with Ny =2 + 1
flavors of dynamical domain wall fermions. For the first time, these quantities are simulated directly at the
physical pion mass m, ~ 139 MeV for two different lattice spacings. We include data at three lattice
spacings in the range a = 0.11-0.07 fm and with pion masses ranging from the physical value up to
450 MeV. Compared to our earlier work, we have added both direct calculations at physical quark masses
and a third lattice spacing making the removal of discretization effects significantly more precise and
eliminating the need for any significant mass extrapolation beyond the range of simulated data. We
renormalize the lattice operators nonperturbatively using RI-SMOM off-shell schemes. These schemes
eliminate the need to model and subtract nonperturbative pion poles that arises in the RI-MOM scheme
and, since the calculations are performed with domain wall fermions, the unphysical mixing between
chirality sectors is suppressed. Our results for the bag parameters in the MS scheme at 3 GeV are
By = By = 0.5240(17)(54), B, =0.4794(25)(35), B; =0.746(13)(17), By =0.897(02)(10) and
Bs = 0.6882(78)(94), where the first error is from lattice uncertainties and the second is the uncertainty

due to the perturbative matching to MS.

DOI: 10.1103/PhysRevD.110.034501

I. INTRODUCTION

A. Standard model kaon mixing

Neutral kaon mixing has long been an important area
of study in standard model (SM) particle physics. Most
famously, CP violation was first observed in the Nobel-
prize-winning  Christenson-Cronin-Fitch-Turlay experi-
ment [1]. Interested readers are referred to Refs. [2—4]
and references therein. Kaon mixing is mediated by a flavor
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changing neutral current interaction, which is absent at tree-
level, whereby the neutral kaon oscillates with its anti-
particle. The leading-order SM processes are the well-
known W exchange box diagrams shown in Fig. 1.

Typically, one separates the short and long distance
contribution to this process using the operator product
expansion (OPE). This isolates the nonperturbative matrix
element which can be computed using lattice QCD,
(K°)0,|K®), of the (vector—axial) x (vector—axial) four-
quark left handed operator O; from the perturbatively
computed Inami-Lim functions [5]. Conventionally, the
hadronic contribution to the matrix element is parametrized
by the kaon bag parameter and has been the subject of
many lattice calculations [6—12]. It is now known at the
percent-level and is reported in the FLAG [13] review with
consistent results from multiple collaborations.

Published by the American Physical Society
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FIG. 1. W exchange box diagrams mediating neutral kaon
mixing in the standard model.

The SM operator matrix element is a factor in the
expression for the dominant short-distance contribution to
the indirect CP-violation parameter €. Lattice computations
of the matrix element have reached the point where isospin
and electromagnetic effects are as large as the total error
quoted in the isospin-symmetric pure QCD theory. However,
including these effects would need to be accompanied by
reduced uncertainty in the Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix element |V |, also appearing
in the SM short-distance contribution to e [13,14].

For greater precision in the short-distance contribution to
be meaningful, we would in addition need to include long-
distance effects from bilocal V-A currents where two weak
Hamilton insertions are connected by quark loops. Initial
progress has been made in Refs. [15-17]. The precision on
the computation of AM g, including all long-distance effects,
is already at the 10% level [18]. A first full computation of
the long-distance part of e at the level of 40% precision has
recently been reported in Ref. [19]. For recent broader
reviews of the status and prospects of kaon physics we refer
the interested reader to Refs. [20-22].

B. Beyond the standard model kaon mixing

Beyond the standard model (BSM), new mediating
particles could contribute to neutral kaon mixing. These
mediators are not restricted to the V-A Dirac structure of
the W boson and new four-quark operators would be
allowed in the effective Hamiltonian with Wilson coeffi-
cients suppressed by the new mass scale. Eight such four-
quark operators are allowed, but for computing their K°K°
matrix elements only five parity-even operators are needed,
shown in Eq. (2.3), which are model independent and
whose hadronic matrix elements can be calculated using
lattice QCD. Any BSM contributions to the V-A structure
would be very hard to distinguish from the SM signal in
experiments. However the new color-Dirac structure oper-
ators have no SM contribution at this order in the weak

forces and thus new physics arising from these operators
would be easier to detect in experiment. In addition, the
matrix elements of these BSM operators are enhanced in
the chiral limit compared to the SM operator, as can be seen
from their chiral expansions. Therefore our results can be
combined with the experimental value of &g to constrain
the parameter space of specific BSM theories and the scale
of new physics, see for example Ref. [23].

Lattice QCD appears as a natural candidate for comput-
ing the BSM operator matrix elements. However the
mixing pattern of these four-quark operators makes this
more challenging than the computation for By alone. We
refer the interested reader to the pedagogical review [24].
Here we take advantage of the good chiral-flavor properties
of the domain wall fermion formulation to constrain the
mixing to be the same as in the continuum theory. In
practice, this is only true up to lattice artefacts that are
exponentially suppressed in the extent of the domain wall
fifth dimension and that we must keep under control.

Early studies of BSM kaon mixing [25-27] were
performed in the quenched approximation. They were
followed by dynamical simulations with N quark flavors
by several collaborations: RBC-UKQCD (N; =2 +1)
[28,29], SWME (N,=2+1) [8,9,30], and ETM (N, =2)
[12] and (Ny =2+ 14 1) [11]. In contrast to results for
the SM operator, there are tensions between the different
collaborations’ results for some of the BSM operators,
as shown in Table [—in which we already anticipate
the results of this work—and summarized in the FLAG
report [13]. We note that a similar discrepancy is observed
in neutral B(;)-mixing [13,31].

In Refs. [29,33], it was proposed that the source of these
tensions was the choice of the intermediate renormalization
scheme. Specifically, it was proposed that the symmetric
momentum subtraction scheme RI-SMOM (which has
nonexceptional kinematics) advocated by RBC-UKQCD
has several beneficial features compared to the previously
used RI-MOM (which has exceptional kinematics). This is
likely due to the exceptional (divergent in the massless
limit), infrared nonperturbative “pion pole” behavior in the
RI-MOM vertex functions, which must be correctly mod-
eled and subtracted, while the mass is simultaneously taken
to zero to establish a mass independent scheme. This
behavior is absent in the RI-SMOM scheme, giving greater
theoretical control as it avoids the possibility of imperfect
modelling of the nonperturbative pole systematically affect-
ing the result. The results obtained from two RI-SMOM
schemes are in agreement with each other and with the
perturbatively renormalized results from the SWME col-
laboration [8,9,30], while the calculation with RI-MOM
agreed with previous RBC-UKQCD [28] and ETM [11,12]
results which also used RI-MOM.

This paper improves upon our most recent RBC-
UKQCD BSM kaon mixing calculation [29,33] by adding
a third lattice spacing and including two data points at the
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TABLE 1. Results from calculations of BSM bag parameters in MS(u = 3 GeV) from RBC-UKQCD, SWME and ETM show
tensions for B, and Bs. The results obtained by ETM, which were renormalized via RI-MOM, agree with RBC-UKQCD’s results
obtained via RI-MOM. The SWME results, obtained via a 1 loop intermediate scheme agree with RBC-UKQCD'’s results obtained via
RI-SMOM, for both y, and ¢ [32]. This suggests tensions arise from the implementation of intermediate schemes, in particular caused

by RI-MOM exhibiting exceptional infrared behavior which is absent in RI-SMOM. All results are shown in the SUSY basis.

ETMI12 [12] ETMIS [11] RBC-UKQCDI12 [28] SWMEIS [9] RBC-UKQCD16 [29] THIS WORK
Ny 2 2+1+1 2+1 2+1 2+1 2+1 2+1
Scheme RI-MOM RI-MOM RI-MOM 1 loop RI-SMOM RI-MOM RI-SMOM
B, 0.47(2) 0.46(3)(1) 0.43(5) 0.525(1)(23)  0.488(7)(17) 0.417(6)(2)  0.4794(25)(35)
B3 0.78(4) 0.79(5)(1) 0.75(9) 0.773(6)(35)  0.743(14)(65) 0.655(12)(44)  0.746(13)(17)
By 0.76(3) 0.78(4)(3) 0.69(7) 0.981(3)(62)  0.920(12)(16)  0.745(9)(28)  0.897(02)(10)
Bs 0.58(3) 0.49(4)(1) 0.47(6) 0.751(7)(68)  0.707(8)(44)  0.555(6)(53)  0.6882(78)(94)

physical light quark mass. We present results in the isospin
symmetric limit of pure Ny =2 + 1 QCD with sufficient
precision that further work on this topic must address
the strong and electromagnetic isospin breaking effects.
The status of this work has been previously reported in
Refs. [34,35]. Finally, it is worth noting that a similar
analysis performed in the pion sector allows to extract the
matrix elements which could dominate the short-distance
contribution to neutrinoless double beta decays, see for
example Refs. [36,37]. In particular, the renormalization
factors computed here could be employed for such a study.

II. BACKGROUND

A. Effective weak Hamiltonian and BSM basis

By integrating out heavy particles such as the W boson
we can separate the long- and short-distance effects into
matrix elements, (K°|0;|K?), and Wilson coefficients
respectively. Beyond the standard model a generic effective
weak AS = 2 Hamiltonian can be constructed, in which the
standard model operator, O; below, and seven additional
four-quark operators appear

5 3
M2 =30 + Y GO, (@)
i=1 i=1

where p is a renormalisation scale. The Wilson coefficients
C;(i) depend on the BSM physics, but the QCD matrix
elements (K°|0,|K°) do not. The operators O; in the so-
called “SUSY basis” introduced in Ref. [38] are

O =5,7,(1 —ys5)d,5py,(1 = vs)d,,

Oy = 5,(1 = 75)d,Sy(1 = 75)dy,
03 = 5,(1 = 75)d}Sy(1 = 75)ds.
Oy = 35,(1 = 75)d,5y(1 +75)dp.
Os = 5,(1 —y5)d5y(1 +75)dq. (2.2)

where a, b are color indices. The 01,2,3 are parity partners
of O , 5 obtained by swapping 1 — y5 — 1 4 ys, while O, 5
are parity-even. Owing to parity invariance of QCD, only
the parity even parts, denoted with a + superscript,
contribute in the (K°|0;|K°) matrix elements

OF = 5,7,d,5p7,dp + 5a¥,75d .57 75d),
03 = 5,d,5,dy + 5475d,5,75d),
03 = 5,dy5yd, + 5,75dp5p75d,,
Oy = 5,d,5pdy — 5,y5d,5p75d),

OgL = 3‘adhsvhda - EaYSdhshYSda' (23)

In practice we find it convenient to work in a different
basis, referred to as the “lattice” or “NPR” basis [33]. This
comprises color-unmixed operators obtained by Fierz
transforming the equivalent color-mixed operators, as
detailed in Appendix D, with Q; = O, and

0, = §a}/ﬂ(1 - 75)da§byﬂ(1 + yS)dlﬁ
03 = 54(1 = 75)d,Sp(1 + 75)d),
Q4 = Ea(l - 75)da§b(1 - 75)db7

1

Qs = (2.4)

Zgao-m/(l - yS)daghaﬂb(l + }'S)db'

Again we need to consider only the parity-conserving parts
which read

OF = 5.7,da5pY,dy + 527,75daSpY 75
03 = 5a¥udaSp¥udp — 5a7,75da5p7 75y,
07 =5,d,5,d), — 5,75d,5p75d),
Oy = 5,d,5,d), + 5.75d,5p75d,,

S = SarurudaSsraridy.

v>u

(2.5)
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We perform the lattice calculations and renormalization
in this basis and transform to the SUSY basis prior to
performing the required chiral and continuum limit extrap-
olations." Observe that under SU(3), x SU(3), quark

flavor symmetry, 0§+) transforms as (27, 1), 0;;) as (6,6)
and 0.7 as (8, 8), while 0\ is (27, 1), 03 are (8, 8) and
Qf:S) are (6,6).

B. Bag parameters

The conventional way to parameterise the hadronic
matrix elements of the four-quark operators is through
the so-called bag parameters, defined as the ratio of the
matrix elements over their vacuum saturation approxima-
tion (VSA) value

(K0,(u) k)
<K0|0i(ﬂ) |KO>VSA

For the standard model operator, By = B, is given by,

Bi(u) = (2.6)

(K10, () K°)

) ’
§m1<f1<

By (u) = (2.7)

where mp is the mass of the kaon and fx is the kaon decay
constant defined by the coupling of the kaon to the
renormalized axial-vector current AE,

(O[AZ (x)|K(p)) = if kpueP™, (2.8)

where p, is the 4-momentum of the kaon. The BSM bag
parameters are,

(my(u) +my(u))*
Nimé}(f%(

Bi(u)= (K°[0;(wIK°), i>1, (29)

and the factors N; in the SUSY basis are NYBY =
5 1

-3,3.2, % The corresponding factors in the parity-even

NPR basis are NN} = —2,2, -3, —1. The VSA replaces
the four-quark matrix elements with products of two-quark
matrix elements. When “chirally enhanced” matrix ele-
ments of the pseudoscalar density 3ysd appear, matrix
elements of axial vector and tensor currents are dropped.
This leads to the appearance of the square of the ratio

(my(u) +mg(u))/m%fx in the B; for i > 1.

C. Ratios R; of BSM to SM matrix elements

The bag parameters are not the only way to parametrize
these four-quark operators; other quantities have been
defined, for example in Refs. [26,27,39]. Here we choose

'Unless stated otherwise all results in this paper are quoted in
the SUSY basis.

to consider the simple ratios of the BSM to SM matrix
elements

(P|O;(1)|P)

W, i=2,..5.

Ri(u) = (2.10)

There are some clear advantages: there is no explicit
quark-mass dependence in the expression, so that the BSM
matrix elements can be recovered from knowledge of R;,
the SM bag parameter B, and the experimentally measured
kaon mass and decay constant [cf. Eq. (2.7)]. Additionally,
the similarity of the numerator and denominator leads to
partial cancellation of systematic and statistical errors.
Another approach originally proposed in Ref. [40] is to
consider quantities in which the chiral logs cancel out
(either at all orders or at NLO). This strategy has been
employed for example in Refs. [11,29,39].

III. SIMULATION DETAILS AND ENSEMBLE
PROPERTIES

A. Simulation parameters

We use RBC-UKQCD’s Ny =2 + 1 gauge ensembles
[6,7,32,41-43] generated with the Iwasaki gauge action
[44,45] and a domain wall fermion (DWF) action with
either Mobius (M) [46—48] or Shamir (S) [49] kernel. In our
work the Mobius and Shamir kernels differ only in their
approximation of the sign function, and agree in the limit
L, — oo, where L is the size of the fifth dimension [7]. We
hence assume that the Mobius and Shamir kernels lie on
the same scaling trajectory. The set of ensembles contains
three lattice spacings in the range a = 0.11-0.07 fm,
labeled C(oarse), M(edium) and F(ine), and includes two
physical pion mass ensembles. The remaining ensembles
have heavier pion masses ranging up to m, ~ 450 MeV,
which are used to guide the small chiral extrapolation on
the finest ensemble.

On each ensemble, the light valence-quark mass (am}™)
was chosen identical to the light-quark mass in the sea.
The strange valence quark mass (am'®) was simulated
near its physical value (amb™*) which typically differs
from the sea quark mass (am*®). The main ensemble
properties and the simulated masses are listed in Table II.
Large parts of the data were generated using the grid and
hadrons framework [50-52].

The lattice scale and the physical light and strange quark
masses were set using the physical values of m,, mg and
mg [7] before the ensemble FIM was generated. This fit
was repeated including the ensemble FIM in Ref. [43]
where more details about this ensemble are described. We
also introduce two new ensembles “CIM” and “M1M,”
which are the Mdbius equivalents of the C1S and M1S.
Since they share the same gauge coupling and M&bius
scale as the COM and MOM, respectively, they have the
same lattice spacing and physical strange quark mass.

034501-4
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TABLE IL

Summary of the main parameters of the ensembles used in this work. In the ensemble name the first letter (C, M or F) stand

for coarse, medium and fine, respectively. The last letter (M or S) stands for M&bius and Shamir kernels, respectively. The column N ¢
denotes the number of de-correlated gauge field configurations, N the number of equivalent measurements per configuration.

Name L/a T/a a”' [GeV] m, [MeV] Neont X Nere ami™ ams® amy am?™*

COM 48 96 1.7295(38) 139 90 x 48 0.00078 0.0362 0.0358 0.03580(16)
CI1S 24 64 1.7848(50) 340 100 x 32 0.005 0.04 0.03224 0.03224(18)
C2S 24 64 1.7848(50) 431 99 x 32 0.01 0.04 0.03224 0.03224(18)
MOM 64 128 2.3586(70) 139 82 x 64 0.000678 0.02661 0.0254 0.02539(17)
M1S 32 64 2.3833(86) 304 83 x 32 0.004 0.03 0.02477 0.02477(18)
M2S 32 64 2.3833(86) 361 76 x 32 0.006 0.03 0.02477 0.02477(18)
M3S 32 64 2.3833(86) 411 80 x 32 0.008 0.03 0.02477 0.02477(18)
FIM 48 96 2.708(10) 232 72 x 48 0.002144 0.02144 0.02144 0.02217(16)
cim? 24 64 1.7295(38) 276 0.005 0.0362 0.03580(16)
MIM* 32 64 2.3586(70) 286 0.004 0.02661 0.02539(17)

*These ensembles only enter the analysis in order to constrain the chiral extrapolation of the renormalization constants described

in Sec. IV.

More details about these ensembles are summarized in
Appendix A.

B. Correlation functions

The quark propagators Sg(y,x), where we write
x = (x,t,), are obtained by inverting the domain wall
Dirac operators on Z, noise wall sources #(x) [53-55].
In order to improve the overlap with the ground state,
these sources are Gaussian-smeared following a Jacobi
procedure, i.e.

Zwsrc X, Y1, 4)6 40 (3.1)

X tsrc

where we omit spin-color indices for simplicity. Further
details about the smearing parameters defining @ can be
found in Ref. [43].

At the sink, we consider both the local (L) and
smeared (S) case,

S (x Zwmk x.2)S(z, )8, ..  (3.2)

where @ (X,y) = 6yy. From these propagators, we con-
struct two-point functions which are defined by

ClE (1) = Z

Sl
=] Z ) (e_Ent 4+ e_En(T_ ))’

Or,(0.0)))

(3.3)

where Of. is a bilinear with the flavor content of a kaon,
defined by

O}(x.1) = (zh(x,ozws(x,y)rql(y, r)). (3.4)
y

The Dirac structure is represented by I';. The hadronic
matrix elements are denoted by (M3), = (X,|(0%)7]0)
(so that (M3.),, = (M3.): = (0|0%|X,,)) with the nth excited
meson states |X,) with corresponding energy E,. For the
bilinear, we only consider pseudoscalars (I' =y5 = P)
and the temporal component of the axial current
(I' = yo75 = A). The smearing operator @, and the super-
scripts s1, s, label the type of smearing. In our setup, we
use local (L) and smeared (S) propagators at source and
sink. At the source, all our quark fields are smeared,
s1 = SS. We also require the smearing at the sink to be
the same for both the strange and the down quark,
s, €{SS,LL}. An exception to this is the ensemble
FIM, where we keep both the source and sink local,
S =8 = LL.

For three-point correlation functions, in contrast to the
two-point functions, we consider only pseudoscalar oper-
ators P (P) inducing the quantum numbers of a K (K) at the
source (sink). These operators are smeared (s = SS) on all
ensembles apart from the FI1M, where they are local
(s = LL). For notational convenience we drop the smear-
ing indices for the operators. Dropping around-the-world
effects, we obtain

Ci(t, AT)
= <P(AT)Q-+(t)ﬂ3’"‘(O>>

Z4E 2 (X, (1)) (M

s \* ,—(AT-1)E, ,—tE
5)5 e~ (AT=0E g=1E,

(3.5)
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TABLE IIl. Bare bag parameters on all ensembles quoted in the NPR basis.

N, B0 | pr i=1 i=2 i=3 i=4 i=5
CoOM 1.5565(17) —1.22385(96) 1.8631(15) —0.96015(86) —0.49446(43)
CIS 1.5692(28) —1.2294(18) 1.8574(27) —0.9907(17) —0.51051(86)
C2S8 1.5949(24) —1.2366(16) 1.8586(23) —1.0118(15) —0.52241(74)
MOM 1.4890(21) —1.2052(11) 1.8461(17) —0.87841(86) —0.44361(42)
MI1S 1.5038(35) —1.2066(26) 1.8374(41) —0.9051(23) —0.4577(11)
M2S 1.5101(24) —1.2119(20) 1.8409(31) —0.9133(17) —0.46219(80)
M3S 1.5223(45) —1.2129(30) 1.8380(47) —0.9252(26) —0.4684(13)
FIM 1.4776(34) —1.1901(20) 1.8218(30) —0.8691(14) —0.43601(70)

TABLE IV. Bare ratio parameters on all ensembles quoted in
the NPR basis.

R\ 1=2 i=3 i=4 i=5

COM  —23.511(30) 35.788(48) —18.439(28) —9.494(15)
C1S —20.587(55) 31.098(85) —16.592(59) —8.549(31)
C2S —18.368(35) 27.604(56) —15.001(43) —7.747(23)
MOM  —28.144(39) 43.113(60) —20.516(29) —10.361(15)
MIS  —25.125(72) 3825(11) —18.848(72) —9.531(36)
M2S  —23.505(51) 35.704(81) —17.742(67) —8.979(33)
M3S  —22.107(56) 33.501(88) —16.866(65) —8.538(33)
FIM  —28.621(80) 43.82(13) —20.929(70) —10.500(36)

Ci(1, AT) describes a three-point correlation function
with a source at t = 0, sink at t = AT and a four-quark
operator insertion Q; at z.

By placing sources on every second time plane, we
compute the above correlation functions for (7/a)/2 time
translations, where 7/a is the integer number of time
slices for a given ensemble. We time-translate and average
equivalent measurements on a given configuration into a
single effective measurement prior to any further analysis.
This helps to reduce the variance of the measured corre-
lation functions. The only exception is that we use all
available measurements to estimate the correlation matrix,
as outlined in Appendix B.

C. Combined fits to two-point and three-point functions

For each of the operators Q;, we extract the desired
masses and matrix elements from a combined fit to several
two-point and three-point functions. In particular, we
jointly fit C3k C3% and C3L (CLL and CEL on FIM)
and Ci(t; AT) for multiple choices of AT, typically para-
metrizing the ground state and the first excited state.
From these fits we extract the main quantities of
interest: the bare bag parameters B2*°; and the ratios of

2q: . .

Since we only consider cases where either both propagators
are smeared (local) at the operator “SS” (“LL”) we simplify the
notation and only use a single label per operator in the following.

operators R, They are determined and quoted in the NPR
basis (see Tables IIl and IV) but can subsequently be
translated into the SUSY basis. For completeness we also
quote the meson masses and bare decay constants at our
simulation points for the pion and the kaon in Table XII
in Appendix B.

We pursue two independent fit strategies and systemati-
cally vary the fit ranges of the two-point and three-point
functions (including the choice of which source-sink
separations enter the fit) until we see stability in all fit
parameters. Figure 2 demonstrates this stability for the
example of Q7 on the COM ensemble for the first strategy.
The superimposed dashed lines and magenta bands in
the first two panels correspond to the chosen fit if only the
two-point functions are fitted. The green bands illustrate
our preferred choice of fit. Each set of three data points
corresponds to variations in the fit range for the three-
point functions of —1,0,+1 compared to the chosen fit.
Finally, the different blocks correspond to our chosen fit;
the same fit but only to the middle (first, last) half of
the source-sink separations; additionally including an
excited-to-excited matrix element; the same fit but for a
varied choice of f,;, for the two point functions which
enter the fit. We find that the ground state fit results are
insensitive to any of these choices. Further details are
provided in Appendix B.

D. Valence strange quark correction

As is evident from Table II, the valence strange quark
mass on the FIM ensembles is slightly mistuned from the
physical strange quark mass value. We account for this
effect by repeating the simulation at the physical strange
quark mass on an eighth of the full statistics. We then
compute the appropriate correction factors as

Rs)hys . Reff(t AT)| phys

R = R‘Fm 0<<t<<AT R? f(t AT) uni

B BE (1, AT))|, pwys
ag =—— = lim —_ - (3.6)

i B“m O<i<AT B3 (t AT) mni
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where
. i(t, AT
rar) - SEAD,
Ci(t, AT)
Ci(t, AT
Bt (¢, AT) = a1, AT) (3.7)

- NGy ()G (AT —1)

We find that the effect of the ~3% mistuning of the
strange quark valence mass leads to a ~0.3-0.5%
correction for the bag parameters and a ~3% correction
for the ratio of operators—see Table V. Given that the
relative uncertainty of the correction factor is more than
an order of magnitude smaller than that of the values it
is applied to, we treat this correction factor as uncorre-
lated. Figure 3 illustrates this correction factor for the
case of Bs and Rs.

IV. NONPERTURBATIVE RENORMALIZATION

In order to obtain a well-defined value in the continuum
limit, it is necessary to renormalize the matrix elements
(K°|Q;"|K®). While it is possible to use the Schrodinger
functional to renormalize these operators nonperturbatively
(see for example Ref. [56]), in this work we determine the
matrix of renormalization factors Z;; using the Rome-
Southampton method [57] with nonexceptional kinematics
(RI-SMOM) [58]. At some renormalization scale y the
renormalized matrix element is then given by

(K°|Q IK®)X! (. a) = Zif (n. a)(K°| Q] |K?)***(a). (4.1)

R A RN R R RN

5 TS 2 F 5 g 2 F 5 T g 2t 5 g 2 F

= 82 %= c 28 %5 c A 8z 85 [SENG g2 85

o 5 a<a S EfEd o 5§ a a9 Ef i T 5 a<a Qg i 5 a<a S Ef i

8 4 CREGIEL 8 4 FREGIL 8 4 SREGIEL 8 4 CREGIE
~ ~ ~ ~

Stability of correlation function fits, illustrated on the example of the COM ensemble for Q. All numbers are quoted in lattice

Provided chiral symmetry breaking effects are negligible
the matrix Z{' (4, a) has a block diagonal structure—which
is the case for the set-up at hand [33]. The scale x4 should
fall within the “Rome-Southampton window”

2
Ajep < > < (g) , (4.2)
in which the upper limit is relevant to control discretization
effects and the lower limit ensures accurate perturbative
matching to MS.

For the technical definitions, numerical values of the
renormalization constants and details of the extrapolation
of the renormalization constants to the massless limit, we
refer the interested reader to Secs. C 1-C 3 in Appendix C.
There we also discuss two choices, called y, and ¢, of the
renormalization conditions imposed to precisely define the
renormalization scheme.

A. Analysis of nonperturbative renormalization data

In practice, our data covers many values in the range
2 GeV S u <3 GeV (see Fig. 19 in Appendix C2 for
details). On the computationally most expensive ensembles
COM and MOM we simulate at am$®/2 in the valence
sector. On all other ensembles we have additional simu-
lation points at amj®® and 2amj**. We use this data
ensemble-by-ensemble to extrapolate the renormalization
constants to the massless limit in which the renormalization
constants are formally defined (see Fig. 4). The extrapo-
lation of the data on the physical pion mass ensembles is

TABLE V. Correction factors to be applied to the bare values of R; and 5; on the FIM ensemble in the NPR basis
in order to correct the observables to the physical strange quark mass.

ay i=1 i=2 i=3 i=4 i=5
X =B, 1.004983(99) 1.004231(66) 1.003036(65) 1.003193(71) 1.003583(61)
X =R, 0.97005(18) 0.96890(18) 0.96904(17) 0.96942(17)
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FIG. 3. Strange valence mistuning quark correction on the FIM

ensemble for the example of Bs (top) and Rs (bottom).
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FIG. 4. Extrapolation of the renormalization constants to
massless valence-quark limit for the example of the (11), (33)
and (23) elements of the M1S ensemble close to 2 GeV. Results
are presented in the RI-SMOMU»74) scheme in the NPR basis.

performed by applying the slope of the CIM (MIM)
ensemble to the COM (MOM) data.

In a subsequent step we extrapolate the results for each
action to zero sea light quark mass as is illustrated in Fig. 5
for the M-S ensembles at a momentum point close to
2 GeV. Since for the case of the FIM ensemble we only
have a single sea quark mass data point, in practice we first
interpolate the results on all ensembles to a common
renormalization scale and then perform the sea-light quark
mass to zero limit for each choice of distinct lattice spacing.

M-S at 1.99 GeV 102, M-S at 1.99Gev 060 M-S at 1.99 GeV
0.960 E
P E gy 101 ] 1 ey 059
) 3 t { A} )
Nﬂ 0.958 N 1.00 4 NN 0.58 i {
0954 500 0.005 093500 0.005 55000 0.005
am;** amj amj*
FIG. 5. Extrapolation of the renormalization constants to the

zero light-sea quark mass limit for the example of the (11), (33)
and (23) elements of the M-S ensembles close to 2 GeV. Results
are presented in the RI-SMOMU:7) scheme in the NPR basis.

For the F-M ensemble this is done by applying each of the
four slopes (obtained from C-S, C-M, M-S and M-M) in
turn and assigning a systematic uncertainty of half the
spread of these results.

We list the chirally extrapolated renormalization
constants for each lattice spacing at g =2 GeV in
Table VI (results for other values of u can be found in
Tables XVIII-XIX in Appendix C 3). Since these numbers
contain information from multiple ensembles and the NPR
calculations are based on a subset of the configurations,
we propagate these small uncertainties in an uncorrelated
fashion. To this end we add statistical and systematic
uncertainties in quadrature and generate bootstrap samples
for each of the Z;; by drawing from a Gaussian distribution
with the appropriate mean and width.

Finally, we use these values to renormalize the quantities
of interest. In particular we find

7.
Ri(ﬂ)ren = ZU Rj(:“? a)‘bare’
11

Zyy
Bl (M)ren = Z—%Bl (M? a)‘bare’

7z _
NiBi(/xl)ren :Z—gNij(ﬂ,aﬂbm 1= 2,...,5. (43)
Here the N; are the appropriate normalization factors
defined above and in practice we make use of the relation
Zs =~ Zp due to chiral symmetry.

B. Step-scaling

When performing the renormalization we have the
freedom to choose the renormalization scale u within
the Rome-Southampton window of our ensembles, which
includes 2 GeV < u <3 GeV. We note that higher scales
are more susceptible to discretization effects, while lower
scales face larger errors when matching perturbatively to
e.g. MS.

We can scale the value of an operator renormalized at one
scale to another with the use of a scale evolution matrix,
o, 1), in a procedure called step-scaling [59-61].
We define the continuum scale evolution matrix for the
renormalization of the four-quark operators as

o(pa. py) = 12imOZ(,uz, a)Z ' (uy, a), (4.4)

where Z(u, a) is the 5 x 5 block-diagonal matrix described
above. Therefore it is possible to scale our operators, once
renormalized and extrapolated to the continuum limit, from
i1y to p,. By renormalizing at y = 2 GeV, where lattice
artefacts are less significant, but step-scaling our results in
RI-SMOM to u = 3 GeV before perturbatively matching to
MS we also avoid the higher errors associated with
the truncation of the perturbative series at lower scales.
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TABLE VI.  Elements of Z;;/ Zi /s extrapolated to the massless limit. All results are provided in RESMOM ) at y = 2.0 GeV in the
SUSY basis. The first parenthesis is the statistical error and the second is the systematic error. More detail is provided in Appendix C 3.

a~! [GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86) 2.708(10)
Z,/22 0.93258(26)(0) 0.93444(77)(1) 0.96021(51)(2) 0.9579(12)(0) 0.97120(69)(47)
72,/ 73 1.0703(26)(0) 1.0788(37)(2) 1.1185(18)(0) 1.1237(64)(1) 1.1405(27)(18)
Z3/ 73 —0.06092(49)(8) —0.0603(10)(0) —0.04045(55)(5) —0.0387(10)(0) —0.03054(62)(27)
Zy,/ 22 0.0343(31)(3) 0.0403(74)(1) 0.1135(47)(1) 0.120(11)(0) 0.1522(57)(6)
Zy) 22 1.6094(53)(13) 1.643(13)(0) 1.9107(85)(9) 1.948(21)(0) 2.064(10)(6)
Z44) 73 1.0113(21)(2) 1.0161(35)(2) 1.0134(11)(0) 1.0160(51)(0) 1.0122(21)(16)
Z4s5) 22 —0.07270(48)(4) —0.07384(98)(6) —0.06217(46)(7) —0.06268(98)(0) —0.05774(49)(44)
Zsy) 23 —0.23507(99)(38) —0.2417(31)(1) —0.2851(20)(2) —0.2940(46)(2) ~0.3119(22)(15)
Zss/ 22 1.4762(38)(9) 1.4994(96)(6) 1.6718(64)(5) 1.699(15)(0) 1.7670(74)(55)

Since we have mapped out the region 2 GeV S u <3 GeV, we can further split (4.4) into multiple smaller steps
A = (up — uy)/N, i.e. we can compute the product

N—

—_

o(py + kA + A, py + kA). (4.5)
k=0

Alongside directly renormalizing at 3 GeV, we can also renormalize the result at 2 GeV and step scale to 3 GeV in one step,
or in multiple steps as described above. This allows us to probe the effect the scale of the renormalization has. Details of the
computation and numerical values for the step-scaling matrices are provided in Appendix C 4. The numerical values for the
step-scaling matrices in the RI-SMOM«7x)-scheme and in the SUSY basis are given by

£0.98021(53) 0.0 0.0 0.0 0.0 ]
0.0 0.9194(22)  —0.0630(16) 0.0 0.0
(3 GeV,2 GeV) = 0.0 ~0.00284(35)  0.6846(19) 0.0 00 |,  (46)
0.0 0.0 0.0 0.9988(24)  0.0784(25)
00 0.0 0.0 0.00838(59) 0.7542(24) |
0.98030(35) 0.0 0.0 0.0 0.0
0.0 0.9199(22)  —0.0634(15) 0.0 0.0
a<3 Gevﬁﬂzc}ev) - 0.0 ~0.00260(31)  0.6863(17) 0.0 00 |. 4.7
0.0 0.0 0.0 0.9990(25)  0.0778(24)
00 0.0 0.0 0.00860(44) 0.7552(23) |

V. CHIRAL CONTINUUM FITS AND FINAL RESULTS
A. Fit ansatz

To recover continuum results at physical quark masses we perform a simultaneous chiral-continuum limit fit. Our fit
ansatz is based on NLO SU(2) chiral perturbation theory (ypr), covered in more detail in Ref. [29], and includes a chiral
logarithm term. Furthermore our fit function is linear in a> and m2 and the mistuning of the strange quark mass O Itis
given by

hys m2 — (mE™)?
@ ) = ¥ (14 afan? 45

sea hys
Gupieyz 00 L me) = L (i )) : (5.1)
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where Y € {B, R} is the quantity of interest. A is a typical
QCD-scale and we take the isospin-averaged pion mass to
be md™ = (2mE +mQ)/3 ~ 138 MeV [62]. Y™, a, j
and y are fit parameters, &y = (mi® — mE™) /B
parameterizes the mistuning of the sea strange quark mass
and the chiral logarithms are given by LY(m,) =
CYm2log(m?/A?)/(167%f%). The coefficients C; are
known constants with numerical values C¥ = —0.5 for
i=1, 2, 3 and C?zO.S for i =4, 5 and we take
fz=130.41(23) MeV [62]. For the ratios R, and R;
the chiral logarithms vanish (C¥=C%=0) and finally
Ch=ck=1

As stated in Sec. III the lattice spacings were determined
in Ref. [7] (and updates thereof in Refs. [32,43]) from some
of the same ensembles included in this work, hence a
correlation between the data exists. However we perform an
uncorrelated fit to decouple this work from the previous
work. We propagate the error on the lattice spacing by
generating bootstrap samples following a Gaussian distri-
bution with width equal to the error on the lattice spacing.
Given that the errors on the lattice spacings are of order
0.5% and all extrapolated quantities are dimensionless,
we believe that neglecting these correlations has a negli-
gible effect.

Our central fit results in the two intermediate schemes
are obtained from a chiral-continuum limit fitat y = 2 GeV
performed in the SUSY basis. These results are then step-
scaled to 3 GeV [e.g. using the matrix provided in Eq. (4.6)]
and perturbatively matched to MS. In the following
sections we will present the results of the chiral-continuum
limit fits and assemble the full uncertainty budget relating
to the lattice computation in the intermediate RI-SMOM
schemes at 3 GeV. Only subsequently do we match these
results perturbatively to MS. This allows us to cleanly
separate the uncertainties due to the perturbative matching
to MS from those arising in the lattice calculation.

B. Results of the chiral-continuum limit fits

In this section we present the chiral-continuum limit fits
in the RI-SMOM« %) scheme at u =2 GeV and in the
SUSY basis. We show these fits for the ratios R; in Figs. 6
and 7 and for the bag parameters B; in Figs. 8 and 9. Since
we find that the C2S ensemble—which is at the heaviest
pion mass and the coarsest lattice spacing—is not always
well described by the fit ansatz, we remove it from
our central fits. The data is well described by the fit
function (5.1) in all cases with acceptable p-values (> 5%)
for all fits presented.
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FIG. 6. Chiral-continuum limit fit to BSM ratio parameters R, (top) and R; (bottom) in the SUSY basis, renormalized in the

RI-SMOM %) scheme.
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FIG. 7. Chiral-continuum limit fit to BSM ratio parameters R4 (top) and Rs (bottom) in the SUSY basis, renormalized in the

RI-SMOM %) scheme.

C. Error budget

In the following we quantify all relevant sources of
uncertainties. We consider variations to the data and the fit
ansatz; variations of the renormalization procedure; and
uncertainties stemming from the perturbative matching. We
quantify the uncertainties for the variations by considering

central __ yvariation
Y yyariation]

1 central variation
2 (Y i +Y; )

51 (1) = L (52

where Y € {B,R}.

1. Chiral extrapolation

The two precise data points at physical pion masses
make the mass extrapolation element of the fit very benign.
We quantify the associated uncertainty by varying the pion
mass cut to the data, removing terms from our fit form and
by repeating the fits using the alternative correlator fit
results (see Appendix B 3). For each of these variations we
compute the associated ¢ [see Eq. (5.2)] which measures
the shift in central value and list the corresponding values in
Table VII. For all ratios and bag parameters this error is
well below 1% and typically substatistical. For each
observable we assign the maximum of those values as

the systematic uncertainty associated to the chiral extrapo-
lation listed as “chiral” in Table IX.

2. Discretization effects

The good chiral symmetry of domain wall fermions
constrains O(a) and O(a?) terms to be small. The O(a?)
effects are controlled and removed by our three lattice
spacings present in the fit. Power counting suggests that
O(a*) effects for hadronic physics scales with a 1.73 GeV
coarsest inverse lattice spacing will remain small on all data
points. However, the same is not necessarily true for hard,
off-shell vertex functions where the momenta are chosen as
the best compromise for a Rome-Southampton window.
The leading unremoved discretization effects are thus likely
to come from the nonperturbative renormalization, and may
be probed by comparing different ways of renormalizing
our data. Our central chiral-continuum limit fit is based on
data renormalized at 4 = 2 GeV which is then step-scaled
to 3 GeV by the step-scaling function ¢(3 GeV,2 GeV)
presented in Eq. (4.6) for the bag parameters. We compare
the results obtained this way to using the alternative
prescription to obtain the scaling function [cf. Eq. (4.5)]
with N =2, 3 and to performing the continuum limit to
data renormalized directly at 4 = 3 GeV. We compute and
report the associated values for o; in Table VIII.
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FIG. 8.

For our main analysis we extract the bare matrix
elements and renormalization factors in the NPR basis,
transform them to the SUSY basis and then perform the
various analysis steps. Performing the entire analysis in the
NPR basis and converting the final values to the SUSY
basis causes a reshuffling of discretization effects. The
corresponding o; are presented in the column labeled
SUSY « NPR in Table VIIIL.

We take the maximum of these variations as estimate for
the systematic uncertainties due to higher order discretiza-
tion effects, labeled “discr” in Table IX.

T T T T T T T
025 0.050 0.075 0.100 0.125 0.150 0.175  0.200

m? [GeV?]

Chiral-continuum limit fit to the standard model bag parameter 3, (top) and BSM bag parameters 53, (middle) and B; (bottom)
in the SUSY basis, renormalized in the RI-SMOMx7) scheme.

3. Residual chiral symmetry breaking

Domain wall fermions provide a good approximation to
chiral symmetry, however a small degree of residual chiral
symmetry breaking is present in the data. Chiral symmetry
restricts the allowed mixing pattern to be block-diagonal.
For our central analysis we impose this, by setting the
chirally forbidden elements of Z;; to zero which we refer to
as “masking.” To test the effect residual chiral symmetry
breaking has on our results, we repeat the entire analysis
without masking. We find that the deviations are well below
the percent level, indicating that our approximation to
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FIG.9. Chiral-continuum limit fit to BSM bag parameters B, and Bs in the SUSY basis, renormalized in the RIESMOM«7) scheme.

chiral symmetry is very well controlled. We report the
associated systematic uncertainties in Tables VIII and IX
as “rcsb.”

4. Finite volume effects

Finite volume effects (FVEs) could be neglected in our
previous studies, but at this level of precision we need to

revisit this assumption. We estimate these effects using
chiral perturbation theory and note that the finite volume
corrections appear with the same prefactors C? as the chiral
logarithms [40]. The FVEs are given by [63]

y m: 12y/2mexp(-m,L)
@ ()"

(5.3)

TABLE VII. Chiral-continuum limit fit systematics depending on choice of ansatz at 4 = 2.0 GeV in RI-SMOM»7) in the SUSY
basis. The first column shows the central value with statistical uncertainty, while the remaining columns quantify variations arising from
different choices in the data that enters the fit as well as the model to which the chiral dependences is fitted. The last column illustrates

the effect of using the alternative choice of correlation function fits

underlying the analysis.

Alternate

Central fit No 6, (%) logs (%) m, <440 MeV (%) m, <370 MeV (%) m, <350 MeV (%) fit (%)

No chiral
R, —15.106(87) 0.22 e 0.46
R3 4.643(41) 0.42 e 0.28
R, 29.22(19) 0.51 0.59 0.58
Rs 7.965(62) 0.10 0.47 0.50
B, 0.5268(13) 0.10 0.21 0.49
B, 0.5596(23) 0.05 0.17 0.06
Bs 0.856(11) 0.06 0.28 0.02
B, 0.9097(35) 0.03 0.17 0.08
Bs 0.750(19) 0.02 0.24 0.18

0.05 0.08 0.45
0.10 0.11 0.21
0.04 0.06 0.49
0.00 0.05 0.13
0.02 0.06 0.40
0.01 0.08 0.02
0.07 0.06 0.00
0.01 0.02 0.06
0.02 0.03 0.13
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TABLE VIII. Bag and ratio parameters at y = 3 GeV in RIFSMOMUx74) in the SUSY basis. Central value comes from performing the
chiral-continuum limit fit at 4 = 2 GeV and nonperturbative scaling the result to 4 = 3 GeV using (3 GeV,2 GeV). We also list
variations where the continuum step-scaling is obtained in steps, or the data is renormalized directly at 3 GeV. The central value uses Z-
factors with chirally vanishing elements removed (masked) from (PA)” before the inversion Z = F((PA)T)~!. We list the percent shift
in the result in foregoing this step, labeled residual chiral symmetry breaking (rcsb). We also compare with performing the entire analysis
in the NPR basis and then rotating to the SUSY basis.

(3 GeV,2 GeV) 6(3 GeV<—22 GeV) (%) 6(3 GeV<—22 GeV) (%) NPR at 3 GeV (%) resb (%) SUSY « NPR (%)
R, —1837(10) 0.12 0.13 0.17 0.11 0.02
Ry  5.485(36) 0.18 0.50 0.37 0.14 0.15
R,  38.60227) 0.02 0.02 0.48 0.09 0.01
Ry 10.932(47) 0.11 0.01 0.97 0.03 1.22
B, 0.5164(14) 0.00 0.01 0.01 0.04 0.01
B,  0.5150(12) 0.04 0.20 0.45 0.03 0.05
By 0.7624(52) 0.32 0.24 1.51 0.06 0.15
B,  0.9107(19) 0.02 0.16 0.02 0.01 0.02
Bs  0.7792(79) 0.11 0.24 0.38 0.00 0.26

TABLE IX. Central values and combined systematic errors for ratio and bag parameters in the SUSY basis at 4 = 3 GeV in the two
RI-SMOM schemes—(y,.7,) and (¢, ¢/)—as well as in MS. For the RI-SMOM schemes we list the errors arising from statistics, chiral
extrapolation, residual chiral symmetry breaking and discretization effects and combine them into total uncertainties. For the MS values
we list the separate conversions from (y,.7,) and (¢, ¢). The central values are defined as the average of those two numbers and the
perturbative truncation error as half their difference. The lattice error is taken from the (y,,y,) scheme (see Table XXI for scheme-wise
error budget).

Scheme R2 R3 R4 R5 Bl Bz 63 64 85
RI-SMOM (7u74) Central —18.37 5.485 38.60 10.93 0.5164 05150 0.762 0.9107  0.7792
Statistical 0.59%  0.66% 0.72% 0.44%  0.28% 0.24% 0.69% 0.22% 1.02%
Chiral 0.22%  0.42% 0.59% 047%  0.21% 0.17% 0.28%  0.17% 0.24%
rcsb 0.11%  0.14% 0.09% 0.03%  0.04% 0.03% 0.06%  0.01% 0.00%
discr 0.17%  0.50% 0.48% 1.22%  0.01% 0.45% 1.51%  0.16% 0.38%
Total 0.66%  0.94% 1.05% 1.38%  0.35% 0.54% 1.68% 0.31% 1.11%
RI-SMOM (4-4) Central —-19.53 5.818 40.99 10.49 0.5342 05155 0.765 0.9137  0.7078
Statistical 0.68%  0.90% 0.81% 0.83%  0.29% 0.42% 1.20%  0.36% 2.19%
Chiral 047%  0.77% 1.21% 1.23%  0.24% 0.27% 043%  0.28% 0.53%
rcsb 0.28%  0.20% 0.23% 0.13%  0.08% 0.19% 0.28%  0.03% 0.01%
discr 0.35%  0.66% 0.20% 2.25%  0.11% 0.63% 1.88%  0.19% 0.10%
Total 0.94% 1.37% 1.48% 2.69%  0.40% 0.83% 229%  0.49% 2.25%
MS s 74) ~18.73 5781  41.45 10.80 05185 04759 0728  0.8862  0.6977
(4. 4) —-19.07 6.059 42.43 10.49 0.5295 04829  0.764 0.9070  0.6788
Central —18.90 5.920 41.94 10.64 0.5240  0.4794  0.746 0.8966  0.6882
Lattice 0.66%  0.96% 1.06% 1.40%  0.34% 0.52% 1.75%  0.32% 1.14%
PT 091%  2.35% 1.17% 1.47% 1.05% 0.74% 2.40% 1.16% 1.38%
Total 1.12%  2.54% 1.57% 2.03% 1.10% 0.90% 2.97% 1.20% 1.79%

The leading order FVEs cancel in the ratios R, and R;.  for Ry and Rs. Noting that this is a sub-leading effect
Numerically evaluating Eq. (5.3) for our ensembles, we (cf. Table IX) and that the FVEs on the ensembles which
find that the largest effect is observed on the MIS are most constraining for the fit (COM, MOM, F1M) are
ensemble, where the estimate of finite size effects is more than a factor three smaller than this, we conclude that
1.1 per-mille for the bag parameters and 2.1 per-mille =~ FVEs remain negligible at our current level of precision.
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5. Perturbative matching

The dominant source of uncertainty arises in the con-
version of our results to MS where the matching is done in
perturbation theory to one-loop. The truncation of the
perturbative series leads to an uncertainty. We have defined
two intermediate RI-SMOM schemes, differentiated by
their projectors and use these to estimate the size of this
error. We expect results in MS to be independent of the
intermediate renormalization scheme. We take our central
value as the average between the results obtained from the
two intermediate schemes and associate a truncation
uncertainty of half their difference. For definiteness we
assign the relative error from the (y,,y,) scheme to
quantify the combined lattice uncertainty in our final
results. The estimate of the perturbative truncation uncer-
tainty is quoted as “PT” in the last column of Table IX.

D. Self-consistency check

Having determined the R; and the I5; parameters we can
perform a self-consistency check. Recalling the definitions
in Egs. (2.7), (2.9), and (2.10) we consider

. . 2
N.B; _ §(m‘(,u) +2md(/4)) B, i=2,..5.
Ri 3 mK

(5.4)

The right hand side is independent of i and hence the ratios
from each operator should give compatible results. The
black data points in Fig. 10 display this comparison for the
results at g =3 GeV in RI-SMOMU«74) (top) and MS
(bottom). The R; and B; have notably different—and
sometimes steep—approaches to the continuum limit.
The good agreement between the different results gives
us confidence that uncertainties in general and discretiza-
tion effects in particular have been well estimated.

We compare our MS results to the value obtained by
evaluating the right-hand side using external inputs. We use
|

Ny=2+41+41: m,y = 3.410(43) MeV

and run them to u = 3 GeV, allowing us to construct the
right hand side of Eq. (5.4) [the conversion of the four-
quark operators at a given scale to RGI operators is shown
in Eq. (E21)]. This is shown as the gray band in the lower
plot in Fig. 10.

Furthermore, we can use the constant value in both the

RI-SMOM and MS schemes, combining it with our
value for B;, to predict the sum of the quark masses
(see also the discussion in Ref. [27]). From our result for
i =2 we find:

0.048
.
e
~~
= 0.047
..
Q
0.046 -
2 3 4 5
i
0.044
£ T
%&N 0.043
S~
2 {
=~ 0.042 - [
2
0.041
FLAG N;=2+1
2 3 4 5

i
FIG. 10. Self-consistency check by forming the ratio Eq. (5.4)
at 4 = 3 GeV. The data points are from our calculations in the
RI-SMOM7) scheme (top) and in the MS scheme (bottom).

For the MS plot we show the expected value using FLAG inputs
as the gray horizontal band.

the isospin-symmetrized kaon mass my = (mgo +mg=)/2 =
496.144(9) MeV [62]. We take FLAG [13] values for the
N;=2+1+1 [11,64-69] and N, =2+ 1 [7,9,70-78]
isospin-symmetrized light quark mass and strange quark
mass in MS at 4 = 2 GeV, together with B, the renorm-
alization group invariant (RGI) value for B;,

my = 93.44(68) MeV By = 0.717(24),
Np=2+1: m,;=3.364(41) MeV m, =92.03(88) MeV By = 0.7625(97).

(5.5)

(m + m,)R (3 GeV) = 91.38(41) MeV,

(m + mug)MS(3 GeV) = 86.29(79) MeV. (5.6)

We compare this to the corresponding FLAG values

Ny=2+1+1: (my+m,)¥ (3 GeV) =88.18(63) MeV,
Np=241: (m;+m, )™ (3GeV) =86.34(79) MeV.
(5.7)
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FIG. 11. Comparison of the R; in RESMOM:x%) at 4 = 3 GeV to our previous work [29].
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FIG. 12. Comparison of the B; in RI-SMOMU»7:) at 1 =3 GeV to our previous work [29].

E. Comparison to our previous work

In Figs. 11 and 12 we compare our results in the RI-
SMOM scheme at u = 3 GeV to our previous determi-
nation [29]. The addition of two physical pion mass
ensembles and a third lattice spacing helps to constrain
the chiral and continuum limit extrapolations respectively,
yielding a significantly reduced uncertainty. Given the
significantly different dataset, we find good agreement
between our previous result and this work.

F. Correlation between the different fit parameters

We provide the statistical correlation matrix between the
B;, R; and (K|O;|K) as an ancillary hdf5 file and show
the resulting correlation matrix in Fig. 13. For complete-
ness we include results for RI-SMOMU«7x) (2 GeV),

Ry Ry Ry Rs By By By By Bs (01X02)(03X04)(0s)

-0.25

-0.50

-0.75

FIG. 13. Heat-map of the statistical correlation matrix between
the B;, R; and the (K|O;|K) in MS at 3 GeV.

RI-SMOM»7) (3 GeV), RI-SMOM®#4) (2 GeV) and RI-
SMOM4)(3 GeV) as well as MS < RI-SMOMx7x)
(3 GeV) and MS « RI-SMOM#4) (3 GeV).

VI. CONCLUSIONS

In this paper we have performed the first calculation of
the nonstandard model neutral kaon mixing matrix ele-
ments with data directly simulated with physical quark
masses. Using an increased level of volume averaging,
with many Z, wall sources on each configuration, we have
been able obtain much reduced statistical errors compared
to our previous publications, even with physical quark
masses.

All sources of systematic uncertainties have been esti-
mated. For each of the bag parameters and ratios of matrix
elements a simultaneous fit has been performed to the
mass and lattice spacing dependence. Direct simulation at
physical quark masses leaves the mass dependence of this
extrapolation a negligible systematic. With the inclusion of
a third lattice spacing we can test the validity of a? scaling
and find that in the range covered by our data it works well.
We assess discretization uncertainties by considering
different renormalization points and/or different ways of
obtaining the nonperturbative scaling matrix. The self-
consistency check of comparing ratios N;B3;/R; increases
our confidence that the discretization effects have been well
estimated, since those ratios approach the continuum limit
in notably different ways.

The dominant systematic error comes from perturbative
matching from the RI-SMOM scheme to MS at the 3 GeV
renormalization point. This key error was assessed by
comparing two different intermediate RI-SMOM schemes
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after continuum extrapolation. If the matching were
nonperturbative the intermediate scheme would be irrel-
evant, but with truncated, perturbative matching the
results differ due to the truncation error. The differences
are of the order 1%-3%.

Our final results in the MS scheme at 3 GeV, where the
first error is the RI-SMOM error and the second is the
uncertainty from the matching to MS, are

BYS = 0.5240(17)(54)
BYS = 0.4794(25)(35)
BYS = 0.746(13)(17)
BYS = 0.897(02)(10)
BYS — 0.6882(78)(94)
RYS — —18.90(12)(17)
RYS = 5.92(05)(13)
RYS = 41.94(44)(46)

RYS — 10.64(14)(15). (6.1)

Figure 14 shows a comparison of our BSM bag parameters
with previous lattice results.

Our value for the SM bag parameter By = 3; shows
good consistency with our collaboration’s most-recent

previous result, BYS=SMOMYY (3 Gey) = 0.530(11) [7].
A different fitting procedure in which the physical point
data was over-weighted was employed in Ref. [7] and,
while it also included the coarse and medium ensembles

included in this work, it included a different third lattice
spacing with a heavier pion mass. Further, it combined
additional coarser ensembles with a different gauge action
in a global fit, and reweighting factors to adjust the sea
strange mass to the physical values. In this work we instead
leave the sea-strange mass dependence as a fit parameter.
Given the differences in the underlying correlator data and
the various fitting procedures, the consistency of the results
is reassuring.

We convert our result above for By at scale 4 = 3 GeV
to the RGI value By = 0.7436(82) [the conversion factor is
the 11 element of the matrix in Eq. (E21)]. A comparison of
our By with previous lattice results is shown in Fig. 15,
where good agreement is seen. Values for By and the BSM
B, estimated in a large-N_. (number of colors) expansion
may be found in Refs. [79,80].

The prospects for further improvements of this calcu-
lation are as follows: We believe that the RI-SMOM
scheme results are sufficiently precise that there is no
purpose in further reduction in the error within the isospin
symmetric pure QCD approximation. Instead, strong iso-
spin breaking and QED must be addressed if greater
accuracy is required. For our final results a significant
source of error stems from the perturbative matching to MS.
This could be addressed by raising the matching scale at
which we convert operators. The convergence is logarith-
mic in the energy scale and this will not lead to a rapid
improvement in the calculation. It would be better to
accompany this with a two-loop calculation of the scheme
change factors presented in Ref. [33]. The quadratic
suppression in @, would be more beneficial than an increase
in the renormalization scale toward the b-threshold.

B> B3 By Bs
ol —o— [} [} l®1 RBC-UKQCD24
—— : : - = b4 RBC-UKQCDI6
—— —— —— —4—| 1 SWMEI5

e —— | & o A ETM15

—— —— (o | (! M ETMI12
FLAG21 Ny=2+1

0.45 0.50 0.55 0.7 0.8 0.8 1.0 0.6 0.8

FIG. 14. Comparison of our results for the BSM bag parameters in MS at 3 GeV with previous results (RBC-UKQCDI16 [29],

SWMEIS [9], ETM12 [12], ETM15 [11]).
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FIG. 15. Comparison of our results for the RGI SM bag

parameter BK with previous results.

Consequently we believe our results are a robust deter-
mination that in the short term may only be further
improved with an additional loop in the perturbative
matching, or by the inclusion of isospin breaking effects.

This work is an important step toward the determination
of the same observables in the B}, ~B{, systems which is
also being pursued by our collaboration [81,82].
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APPENDIX A: C1IM AND M1M ENSEMBLES

RBC-UKQCD 2 + 1f configurations initially used the
standard domain wall fermion action with L, = 16 [84],
but when substantially lighter quark masses at physical
values were introduced [7], it was desirable to reduce the
level of residual chiral symmetry breaking and the Mobius
domain wall fermion framework [48] was adopted with
fixed independent Mobius parameter b = 1.5 and ¢ = 0.5.
We take Hy = ysDy as the hermitian Wilson operator at
negative domain wall mass, and with this choice of b and ¢
this yields a kernel H,,; entering the overlap sign function
that is identical to the kernel H of standard domain wall
fermions in the large L, limit, with

(A1)

entering the four dimensional effective overlap action via
an approximate sign function which (if exact) removes the
rescaling factor

1+4m 1-m
D, =——
ov 2 + 2

rs€(Hy). (A2)

Here the sign function approximation e(Hy,) is the tanh
approximation to the exact sign function,

( )_ (1+HM)LY_(1_HM)L'V
M) = T =) + (1= Hyp)E

= tanh (Lstanh™' H ). (A3)
The four dimensional effective action of two actions
coincide exactly when the extent of the fifth dimension
is infinite, and at finite L, differ only by terms that
are exponentially suppressed in the fifth dimension extent,
a scale which can by measured by the residual
mass measured as the defect of the Mobius chiral Ward
identity [7]. Indeed on these two new ensembles, we obtain
residual masses which are very close to those of the
corresponding physical pion mass ensembles [7] as can
be seen from Table XI.

Previously RBC-UKQCD have directly combined cal-
culations on ensembles with the Shamir formulation of
domain wall fermions at heavier quark masses with
physical quark mass ensembles using the about Mobius
action. This cost saving measure is reasonable at the
percent scale level accuracy sought at the time, with
residual chiral symmetry breaking effects being of lower
magnitude and around 3 x 1073 in the worst-case coarsest
ensemble. In these initial ensembles, since the input quark
mass that corresponds to the physical strange quark mass is
determined by simulation, the strange quark mass could
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TABLE X. Simulation and HMC parameters for the C1M and

MIM ensembles.

Integrator

Force gradient

Ensemble CIM MIM
Volume 243 x 64 323 x 64
p 2.13 2.25

b 1.5 1.5

c 0.5 0.5
L, 24 12
M; 1.8 1.8
m; 0.005 0.004
my 0.0362 0.02661
my, {0.02,0.2,0.6} {0.02,0.2,0.6}
Ny 1990 1950
Fermion steps 12 10
Sexton-Weingarten ratio 8 8

Force gradient

only be approximately tuned in advance of their gen-
eration and so differed from the physical value. However,
longer term there is great simplicity in generating new
ensembles so that comparisons can be made and extrap-
olations performed with fewer variables changing (vol-
ume, residual chiral symmetry breaking, strange quark
masses), while increased computing power made this now
relatively easily affordable.

0.59
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FIG. 16. Plaquette molecular dynamics time history for the
CIM (top) and M1M (bottom) ensembles.

TABLE XI. Average plaquettes for the new MIM and C1M
ensembles are more than adequately consistent with the (more
precise) values obtained on the corresponding large volume and
physical quark mass ensembles, given the volume and mass differ.

Ensemble Plaquette Residual mass
CoOM 0.5871119(25) 0.0006102(40)
CIM 0.587091(7) 0.000604(11)

MOM 0.6153342(21) 0.0003116(23)
MIM 0.615337(4) 0.0003063(53)

To an extent chiral effective approaches and other
methods can both estimate finite volume effects to be
small and allow to correct for them. We therefore continue
to use smaller volumes 24> x 64 for C1M and 323 x 64 for
MI1M, but took the opportunity to eliminate two of these
three confounding effects that arise when using the older
ensembles. The first is to keep the same residual chiral
symmetry breaking approximation to the overlap operator,
and the second is to retune the dynamical strange quark
mass to its physical value on each ensemble, matching that
used in the physical point ensembles COM and MOM.

The new ensembles were generated using the GRID library
[50], with simulation parameters and intermediate two flavor
determinant Hasenbusch masses [85] that are given in
Table X. The exact one flavor algorithm [86] was used
for the strange quark using the implementation in GRID [87].

For M1M, a two level nested integrator was used in the
HMC with the force gradient integrator [88,89], all pseu-
dofermion action fragments taking ten steps with time step
ot = %, and eight gauge steps for each fermion step. For
C1M, a two level nested integrator was used in the HMC
with the force gradient integrator, all pseudofermion action
fragments taking twelve steps with time step ot = 1—12, and
eight gauge steps for each fermion step.

The first 200 trajectories were discarded from a hot start
before measurements. The plaquette histories are shown in
Fig. 16, and the average values are more than adequately
consistent with those obtained more precisely in a larger
volume at physical quark mass, Table XI, given that the
quark mass and volume differ.

APPENDIX B: CORRELATION FUNCTION FITS

This section discusses the choices required in the corre-
lation function fits. We commence by illustrating the quality
of our data. In Sec. B 1 we discuss the construction of the
covariance matrix used in these fits. To mitigate any bias
stemming from fit range choices, two of the authors
independently did the analysis of the correlation function
fits. This resulted in two different fit strategies which will be
outlined in Appendixes B 2 and B 3.

Figure 17 shows the bare effective ratios RST(z, AT)
[cf. Eq. (3.7)] in the NPR basis for the COM (left) and MOM
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FIG. 17. llustration of the quality of our data for the COM (left) and MOM (right) ensembles. We show the bare effective ratios

RS(¢, AT) in the NPR basis as defined in Eq. (3.7).

(right) ensembles for various typical source-sink separa-
tions AT. For sufficiently large AT values these ratios
plateau to the same value, indicating ground-state
saturation.

1. Correlated fits to data

In all of this paper, our fits are correlated frequentist
minimizations of the y?-function

= Z(f(a;xi) - )’i)COV(yi’)’j)_l(f(CCXj) -vj), (B1)

ij

where y; are our data, f(a; x;) is the model with parameters
a that is being fitted and cov(y;, y;) is the covariance matrix
of the data. Resampling N statistical estimators into Ny
bootstrap samples y; and denoting the mean of y; by y,, we
define the covariance matrix cov(y;,y;) as

cov(ys ;) = ﬁif«mk 3G e-5,).  (B2)
oot f—1

We relate the covariance matrix to the standard deviation ¢

via 6; = y/cov(y;, y;). Furthermore we define the normal-
ized covariance matrix or correlation matrix cor(y;, y j) as

COT()’h)’j) = diag(l/o'i)COV(yi?yj)diag(l/"j)- (B3)

Since we jointly fit multiple two-point and three-point
functions, it is important to be able to accurately invert the
covariance matrix that appears in the y2-function.

On a given ensemble, we have N .. = Neont X Ny
estimators for the y; (compare Table II). When estimating
the correlation matrix and the standard deviations, we
therefore need to choose whether we treat measurements
on different time translations on the same configuration
as independent or whether we bin them into an effective
measurement. From these two choices we obtain
(0. cor(y;, y;)) mmmed and (o, cor(y;, y;))"™¢ based on
Neont X N measurements and N, effective measure-
ments, respectively. Our reasoning is based on stochastic
locality [90], i.e. the fact that observables measured in
sufficiently distant regions of a gauge field configuration
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Binning study on MOM
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FIG. 18.
the text.

can be treated as independent. The separation that is
required for this statement to hold, strongly depends on
the observable under consideration. Since we only have
access to measurements with sources shifted in the time
direction, we are not pursuing a master field analysis [91]
but instead use binning studies to gain insight into the
level of independence of different measurements on the
same configuration. When considering the covariance
matrix that enters the y> function, we consider two parts:
the overall normalization, stemming from the estimate of
the variances, and the normalized correlation matrix
that measures the degree of correlations between different
time slices. This separation is motivated by the following
observation. If each measurement of a dataset with N ¢
independent measurements is duplicated and (falsely)
assumed to constitute a dataset with 2N, independent
measurements then the mean values and the correlation
matrix will remain unchanged, while the variance of the
mean will be underestimated by a factor 2. The variance is
hence far more sensitive to the assumption of statistical
independence which causes us to assess the properties
of the covariance of the mean and the correlation
matrix separately.

The left-hand plot of Fig. 18 shows a binning study on
the MOM ensemble. In the top panel the relative uncertainty
of the pseudoscalar-pseudoscalar kaon two-point function
is shown as a function of the inverse bin-size. The right-
most data points correspond to considering every meas-
urement as independent, whereas the left-most data point
corresponds to the “fully binned” case, i.e. where all
measurements on a given configuration are averaged into
a single effective measurement. We find that the uncertainty
only mildly depends on the bin size, but take the
conservative approach of taking the variance from the
maximally binned version of the dataset, in order to ensure
that the uncertainties are not underestimated.

—0.2 n .
0 10 20 30 40 50 60 70

t/a

Investigation of binning choices for a typical Kaon two-point function on the MOM ensemble. Further details are provided in

We now turn our attention to the correlation matrix.
The right hand plot of Fig. 18 shows a slice of the
correlation matrix where one time index is fixed to be
t/a = 12. The blue solid line shows the estimate of the
correlation matrix based on the “fully binned” case. The
green dashed line with the circles on it, shows the “fully
unbinned” estimate of the correlation matrix. The faint
red lines correspond to estimates based on a single
source plane, i.e. only include one measurement per
configuration and are therefore based on a substatistic of
1/Ng. measurements. Comparing these N estimators
of the correlation matrix, allows us to obtain an
indication of the uncertainty of the correlation matrix
elements which is indicated by the red error bars. We
note that the “fully unbinned” estimate agrees very well
with this average.

In the bottom panel of the left-hand plot we perform
the binning study for three representative elements of
the correlation matrix and superimpose the uncertainty
obtained from the N, estimates as horizontal bands. In
each case, we find that for sufficiently small number of
sources per bin the values stabilize. We therefore conclude
to use “fully unbinned” estimates for the correlation matrix,
while using the “fully binned” estimate of the variance. We
now construct the covariance matrix we use in the fit to the
correlation functions as

COV(y[, yj) — diag(G?inned)COI’(yi, yj)unbinneddiag(abyinned)'

(B4)

This has the benefit that it resolves the correlations
but estimates the statistical uncertainties without any
assumption of independence for measurements from differ-
ent source positions on the same configurations.
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2. Correlation function fits—Strategy and stability

We jointly fit several two-point and three-point functions
directly to their functional forms given by Egs. (3.3)
and (3.5). In a first step, we start by only fitting the
two-point functions. We determine fit ranges tiﬁ; and fa0s,
for the two-point functions which produce stable ground
and first excited state results for masses and overlap factors.
For each four-quark operator Q;” we then perform a joint fit
to the same two-point functions but also the corresponding
three-point functions Ci(z, AT) for several values of AT.
As a first step, we keep tfrﬁ;, tzmp;X from above for the two-
point functions. For the three-point functions we use

irrespective of AT. This is determined by

=7 45 and

the same tif’i;
choosing an integer 6 to set ..
= AT — tiﬁ;. Typically we have §€ {0, 1}. We then

vary 6 by %1, vary the choice of which values of AT enter

the fit and vary tiﬁi‘ by 4-1. We adjust these choices until we
see stability in all fit parameters.

For completeness we summarize the meson masses
mp = E, and the bare decay constants f% for the pion

and the kaon in Table XII.

3. Alternative strategy

We define the ratios of two-point functions (3.3) and
three-point functions (3.5)

TABLE XII. Masses and bare decay constants of the pion and
kaons for all of the ensembles used in this work.

Ensembles am, afbue amg af l}(""e
COM 0.08048(10) 0.10654(12) 0.28696(13) 0.126852(89)
CIS 0.19052(40) 0.11902(27) 0.30630(39) 0.13201(22)
C2S 0.24159(38) 0.12743(20) 0.32518(35) 0.13737(18)
MOM 0.059078(74) 0.074620(86) 0.21065(10) 0.089081(60)
MI1S 0.12750(35) 0.08292(28) 0.22491(36) 0.09379(20)
M2S 0.15123(36) 0.08680(22) 0.23208(35) 0.09578(17)
M3S 0.17238(42) 0.09023(25) 0.23994(40) 0.09775(20)
FIM 0.08581(16) 0.06768(15) 0.18810(19) 0.07821(15)
Cim* 0.15987(50) 0.11659(60) 0.30560(51) 0.13261(52)
MIM* 0.12116(52) 0.07943(39) 0.22778(62) 0.09193(32)

“These ensembles only enter the analysis in order to con-
strain the chiral extrapolation of the renormalization constants
described in Sec. IV.

which are constructed to asymptotically approach the bag
parameters

Fi(1, AT) ——> N,B;.

O ATT

(B6)

For simplicity we omit the smearing labels s, s,, which are
chosen to ensure that only local matrix elements remain.

) Cl(1,AT) Expanding numerator and denominator of the first line of
ri(t,AT) = Con()Cap(AT — 1) Eq. (BS) using Egs. (3.3) and (3.5) taking into account the
Cilr A ground state (|0)) and first excited state (|1)) contributions
ri(t, AT) = 5(.AT) , i> 1 (B5) (n =0, 1) (but neglecting the excited-to-excited matrix
Cpp(t)Cpp(AT —1) | elements) yields
0]04]0
ri(t,AT) = 010, 1|v121| ) (14X, (1, AT)e™2EAT/2 oy (1, AT) e 2EAT], (B7)
A0
where we defined
Mp E 0|01) M
X, (1, AT) = 2L cosh [AE(t — AT/2)] (w - A) ,
poEi (0[O10) My
M3 E? 0|0 |1) M
Y, (t,AT) = 4210 cosh’ [ AE(r — AT/2)] wﬁ (B8)
M3 oEy (010410) M4
and AE = E, — E,. The expression for r (i > 1) is very similar. Defining a summed version of the ratio
AT,
ri(te. AT) = > ri(t.AT) (B9)
=1,
and using the identity
pa sinh[AE/2(AT =21, +1)]
> cosh[AE(r— AT/2)] = ¢ (B10)

t=t,

sinh[AE/2]
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the summed ratio can be expressed as

YA
2 .
MA,O MP,OEI Slnh[AE/Z}

ri(t,, AT) =

MP,IEO e—AEAT/Z Slnh[AE/Z?] <<O|Ol|1> MA,1>:| (Bll)

(0[010) My

where 7 = AT — 2t, + 1. For a given operator O; and value of 7. we then jointly fit the correlation functions and C35 (1),
CSL(1),C85,(t) and ratios ri(f,,AT) (and the LL equivalent for FIM). The fit ranges of re[rr:, t,zlf;x] and
AT e [Aqut AT ax] are chosen such that all fit parameters remain stable when these ranges are varied by small amounts.

min’

APPENDIX C: RENORMALIZATION FACTORS

1. Definitions

We closely follow Ref. [32] in which the reader will find more details. The renormalization factors are defined by
imposing the renormalization condition that the projected renormalized amputated-vertex Green’s function, in the Landau
gauge, for some chosen external momenta, is equal to its tree level value (denoted by F). Using the SMOM kinematics

(p1=p2)® = pi =p3 =4, (C1)
the Z-factors are defined in the massless limit (m, — 0) and extracted by imposing
RISMOM () )

lim Py | — e (a, p,, — P, C2
mzllr-r’lo ¢ (ZELSMOM(%G))Z ! (a P1-p2) SMOM k[ ' ] (€2)

and the tree-level value F;, = Py [Hfm] is obtained by replacing the propagators by the identity in color-Dirac space.
Explicitly, for a given four-quark operator Q;, the vertex functions is defined as (with X; = x; — x)

= (a, py, p2)° % = (G(p2)™")%(G(p1) ™ YT(G(p2) ™ YPH(G(p1) ™) (ME )2 (a, py, ), (C3)

where

(MP)re(g) = 3 (015 (eg)a (13) Q)]s (x2) 8 (xy[O) i ima i ity

X, X500 Xy

= 22 (PTG ()] [Go(p)T? G (p1))P) = ([Go(p)T' G (p))] (G (p2) TG (1)) (C4)

Here G,(p) represents an incoming quark with momentum p and G,(—p) an outgoing quark with momentum p. In
addition we have also introduced the inverse of the “full momentum” propagators

=Y Gudp) and G(p) =3 G.(p). (C5)

X

In Eq. (C4), the Dirac structure of the four-quark operator Q; is encoded in I'" x I'%.

In this work we use two different sets of projectors, P+ and P, as defined in Ref. [32]. The P+ follow the same
structure as the four-quark operators. We split them in three groups according to their chiral-flavor properties. For the
standard model, we have

P s = (") gal7)sy + (77 g7 51876, (C6)
For the (8, 8) doublet we define
Y s = 1) g5y = (77 g7 585
P ey = by = a7 )00 ()
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and similarly for the (6,6):

") basdce a sde
[Pé(ty )]ﬂa;éy = {5&166}/ + (ys)ﬁa(ys)éy]éh 5d ’

#) baidce a sde
[ng )]ﬂa;é}/ = [Z(yﬂy )/31(?” ) :|6b 5d

U>u

(C8)

To define the P projectors we replace 7, by 4/4¢* in the
previous equations [6]. When there is no explicit y,, we
take advantage of some Fierz identities, which relate the
color-unmixed four-quark operators of certain Dirac struc-
ture to color-mixed four-quark operators of a different
Dirac structure [92]. Following Refs. [33,93] we define

ba:dc 1 o ede
[PE%)]ﬂa;ﬁy = ?[(ﬁ)/}(l(ﬁ)ﬁy + (ﬁys)/}a(¢y5)5y]6b 5d ’
badc 1 .
P2 sy = 3 )y = (") )07 5%
basdc 1 ¢ da
P sy = -3 1) ey = ()t )07 5%
() bade 1 M v v P c o be sda
Py pasy = 77—z [(P1(6" PL) P3) s (P (677 PL) PS5, 1676,
4 Peor P%Pz (p1-p2)? l B Lo
P = [(Ph(0™PL) P PR (P ) p5) 75 (C9)
o pips = (p1-p2)?
where we used the standard definition o = [y, y"].
|
In order to eliminate the explicit Z -dependence in VAS PpLA[ybare FA
o pheit - 2,-dep A (ﬂ’a)x lim £A 3" (a, p1, p2)] _Ia
Eq.' (C2), it is custqmary to divide the (amputated- Zs(u,a) ~ me=0 PS[I™(a. p1. ps)] lsmom Fy
projected) vertex function of the four-quark operators by (1)

the one of a bilinear operator. Here we choose the axial-
vector current and we denote Iy, P4, F 4 the corresponding
vertex function, projector and tree level value, respectively.
Finally, the choice of projectors completes the definition of
the nonperturbative scheme. Using A to indicate y,, or § we

define the renormalization factors Z / Zz as’

AA A are
7 (. a) PYI(a, py, py)]
27 N 1m (A)
Zila)  m=0 (PR (a, py. py)])?lsvom
(A)
F'k
=— 05" C10)
) (
(F{V)?

Our conventions are such that from Eq. (C10) we can
define Zz =Zg_= Z;;/Z3. Finally, to obtain the bag
parameters we also need to renormalize the quark mass.
Making use of Z,, = 1/Zs we impose

*We can also define Z§AB> with A # B, but in this work we
consider only (y,.7,) and (4, 4).

The use of two schemes provides a way of estimating
systematic errors in the renormalization by examining
the spread of the results. The vertex function’s external
momenta p% are chosen to ensure nonexceptional SMOM
kinematics given in Eq. (Cl). Using a combination of
Fourier momenta and partially twisted boundary condi-
tions, the behavior of the renormalization factors as a
function of the momentum scale y is mapped out in the
range y € [2-3] GeV. In the original exceptional kinematics
(used in RI-MOM), infrared effects fall only as p~2 and
pion pole subtraction is required to tame these. Using
nonexceptional kinematics (used in RI-SMOM), the infra-
red effects are far more suppressed falling with p~® as has
been shown in Ref. [94]. Alternative renormalization
schemes such as the massive RI-SMOM [95,96] and
interpolating MOM-schemes [97] are currently being
explored by the collaboration. Their application to kaon
mixing is left for future studies.

2. Numerical results for the renormalization factors
ensemble by ensemble

On each ensemble we simulate the NPR data points at a
range of choices for the renormalization scale y. These are
depicted in Fig. 19. We furthermore repeat the simulation at
multiple quark masses, in particular at amj®, 2amj** and

034501-24



KAON MIXING BEYOND THE STANDARD MODEL ..

PHYS. REV. D 110, 034501 (2024)

C-M ¢ ¢ ¢ ¢ ¢ ¢ ¢
C-SF ¢ ¢ o o 0 o 0 4
M-M - ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
M-S| ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4
F-M

T
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>

20 22 24 26 28 3.0
1 [GeV]

FIG. 19. Simulation values of the scale y on the various
ensembles.

am$*® /2 with the exception of the most expensive COM and
MOM ensembles where we only simulate at am$/2.

We follow the procedure outlined in Appendix C 1 to
calculate the four-quark matrix elements’ renormalization
constants Z;;/ Z3%. We then normalize these to build the
appropriate renormalization constants listed in Eq. (4.3).

In order to ensure reproducibility, we provide numerical
values of the renormalization constants at some choice of
lattice momenta on the lightest pion mass ensemble for
each distinct lattice spacing in Tables XIII-XVII.

3. Extrapolation of the renormalization factors
to the massless limit

Formally the renormalization constants are defined in the
massless (zero quark mass) limit. In order to perform this limit
lattice-spacing-by-lattice-spacing we proceed as follows. We
first extrapolate the valence quark mass to zero ensemble-by-
ensemble as described in Sec. IVA. We then interpolate the
renormalization constants on all ensembles to a fixed scale u.
We either perform a linear fit to the two closest simulated
values of y or a quadratic fit to the three closest points. We
then perform a chiral extrapolation in (am,, )? to all ensembles
that share an identical lattice spacing (C1S and C2S; COM and
CIM; M1S, M2S and M3S; MOM and M1M). Since we only
have data on a single ensemble (F1M) for the finest lattice

TABLE XIII.  Values of Z;;/Z3 for chirally nonvanishing matrix elements for a subset of the simulated momenta

(in lattice units) on the COM ensemble for am

in the SUSY basis.

g =

val = (.0181. All values are given in the RILSMOM«7+) scheme and

au 1.11072 1.3884 1.66608 1.94376
71 /Z/z4 0.93224(13) 0.923561(68) 0.915757(54) 0.907465(34)
75/ 73 0.74937(13) 0.82424(16) 0.877220(37) 0.917178(57)
Z23/Z/24 —0.041062(66) —0.056518(65) —0.071844(45) —0.087583(32)
Z32/Zi 0.03145(13) —0.010829(52) —0.043507(40) —0.071655(36)
Z33/Zi 1.154966(63) 1.106912(37) 1.079801(38) 1.063261(10)
Z44/Zi 0.70331(20) 0.79997(14) 0.867628(12) 0.918149(54)
Z45/Zi —0.050481(64) —0.060964(52) —0.073113(41) —0.086769(28)
Zs4/) 74 —0.171645(50) —0.149960(37) —0.139921(39) —0.137573(37)
ZSS/Zf‘ 1.051566(66) 1.049023(33) 1.049000(28) 1.050999(11)
Zu]Zs 1.197636(71) 1.129805(84) 1.088466(26) 1.061227(33)
TABLE XIV. Same as Table XIII but for the C1S ensemble for am;“' = 0.005.

au 1.11072 1.3884 1.66608 1.94376
Zy /Zf‘ 0.93303(13) 0.924165(55) 0.916271(66) 0.907958(58)
Z]73 0.75249(61) 0.82630(28) 0.87856(11) 0.91832(12)
Z23/Zf‘ —0.04129(15) —0.056775(74) —0.071886(82) —0.087656(88)
73,/ 73 0.03059(21) —0.01137(10) —0.043656(74) —0.071733(95)
Z33/ 74 1.15504(28) 1.10673(11) 1.079562(84) 1.063174(48)
Zas] 73 0.70746(75) 0.80253(30) 0.86921(11) 0.91939(13)
Z4s/ 743 —0.05062(20) —0.06120(10) —0.073071(83) —0.086787(86)
Z54/Zf‘ —0.17065(21) —0.149293(88) —0.139280(88) —0.137090(68)
Z55/Z/§ 1.05273(21) 1.049571(82) 1.049163(54) 1.051141(43)
Zi]Zs 1.19361(86) 1.12820(21) 1.08753(10) 1.060548(76)
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TABLE XV. Same as Table XIII but for the MOM ensemble for am;“' = 0.0133.

ap 0.83304 1.0413 1.24956 1.3884

Z1 /Z/% 0.958988(97) 0.948999(54) 0.941580(40) 0.937357(31)
222/2,24 0.701561(98) 0.774046(79) 0.826662(61) 0.854299(47)
Z23/Z/% —0.023850(59) —0.034541(40) —0.044346(40) —0.050758(38)
Z32/Z/24 0.075307(47) 0.034965(33) 0.005582(30) —0.010480(23)
Z33/Z% 1.212886(87) 1.149630(45) 1.111072(35) 1.093473(27)
Z44/Z% 0.63286(11) 0.727410(91) 0.796468(58) 0.832571(45)
Zus) 22 —0.038240(46) 0.043612(32) —0.049903(29) —0.054545(30)
2,/ 72 —0.182166(54) ~0.154917(30) ~0.137278(21) —0.129566(23)
Z55/Z% 1.057128(68) 1.050256(31) 1.045950(24) 1.044326(22)
ZulZg 1.26232(13) 1.181992(83) 1.131563(41) 1.107811(22)
TABLE XVI.  Same as Table XIII but for the M1S ensemble for amy™ = 0.004.

ap 0.83304 1.0413 1.24956 1.45782
le/Zi 0.95866(27) 0.94835(17) 0.94111(13) 0.93495(10)
Zzz/Z% 0.70006(63) 0.77412(33) 0.82662(14) 0.86644(13)
Zn) 22 ~0.02394(22) ~0.034736(81) —0.044604(78) —0.054232(65)
Z32/Z/% 0.07552(21) 0.03452(10) 0.005247(63) —0.018170(55)
Z33/Z% 1.21448(44) 1.14967(17) 1.111076(76) 1.086321(33)
Z44/Z/% 0.63178(68) 0.72810(36) 0.79677(14) 0.84859(14)
Z45/Zf‘ —0.03853(25) —0.043920(89) —0.050118(52) —0.057240(60)
24/ 22 ~0.18333(20) ~0.15511(13) —0.137472(66) —0.126927(60)
Z55/Z/% 1.05863(24) 1.05060(10) 1.046175(54) 1.044027(36)
Zi]Zs 1.2629(14) 1.18148(46) 1.13157(10) 1.09803(10)

TABLE XVII. Same as Table XIII but for the FIM ensemble for amzal = 0.0021.

ay 0.74048 0.87932 1.01816 1.43468
0722 0.97098(29) 0.96182(11) 0.955127(87) 0.941078(33)
Z0,) 22 1.06173(45) 1.05453(10) 1.049270(35) 1.041636(15)
Z23) 72 0.37422(52) 0.32971(35) 0.29528(14) 0.239419(67)
Zy) 72 0.01748(19) 0.018812(88) 0.020455(43) 0.026601(18)
Zy/ 22 0.61015(69) 0.68079(75) 0.73890(33) 0.85407(11)

Zu) 22 0.69653(77) 0.75380(76) 0.80124(37) 0.89759(12)

Z4s) 22 —0.00933(14) ~0.01280(13) ~0.015992(62) ~0.025037(17)
Zs4) 72 —0.36177(54) —0.31116(28) ~0.27401(16) ~0.215021(71)
Zss) 22 1.23079(76) 1.17174(16) 1.130128(97) 1.058518(33)
Za/Zs 1.28592(66) 1.22090(96) 1.17291(37) 1.093643(58)

extrapolation. We provide numerical values of these
chirally extrapolated renormalization constants for each of
the lattice spacings at 4 = 2 GeV (Table VI), u = 2.5 GeV
(Table XVIII), and u = 3 GeV (Table XIX).

spacing, we apply each of the slopes with m2 in turn. On F-M,
we assign the central value to be the mean of these
four extrapolated results and take half the spread of the
results as a systematic uncertainty associated to the chiral
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TABLE XVIIIL

Same as Table VI but at mass scale u = 2.5 GeV.

a~! [GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86) 2.708(10)
zZn/22 0.9227329)(1)  0.92491(52)(0)  0.94913(20)(0)  0.94752(86)(2)  0.95950(43)(33)
Z2 |22 1.05048(77)(4) 1.0519(13)0)  1.08128(96)(1)  1.0830(21)(0) 1.0964(11)(6)
723/ 22 —0.07511(48)(3)  —0.07280(82)(2) —0.04932(29)(0) —0.04900(66)(1) —0.04007(40)(17)
Z3/ 72 —0.0228(16)(1)  —0.0162(45)(0)  0.0447(28)(1)  0.0465(63)(1) 0.0746(37)(0)
Zy/ 22 1.3816(30)(7) 1.4014(83)(2) 1.5913(50)(6) 1.603(11)(0) 1.6981(67)(17)
Za) 72 1.0245844)3)  1.0230397)4)  1.01873(49)7)  1.0201(14)0)  1.01595(76)(71)
Z4s) 73 —0.07967(51)(2)  —0.07835(69)(1) —0.06134(25)(1) —0.06193(46)(0) —0.05599(23)(24)
Zs/7%  —0.18458(58)(19) —0.1880(18)(0)  —0.2130(11)(1)  —0.2162(26)(1)  —0.2305(15)(5)
Zss/ 73 1.317021)(5) 1.3310(60)(1) 1.4581(36)(3) 1.4673(80)(5) 1.5267(46)(17)

TABLE XIX. Same as Table VI but at mass scale y = 3.0 GeV.

a~! [GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86) 2.708(10)

Zn/ 73 0.91427(17)0)  0.91641(55)(0)  0.94123(17)(1)  0.94044(67)(0)  0.95157(31)(27)
20|72 1.03795(18)(4)  1.03874(73)(2)  1.05744(45)(5)  1.0596(10)0)  1.06947(54)(36)
223/ 22 —0.08818(26)(2) —0.08564(98)(0) —0.05786(22)(0) —0.05804(54)(0) —0.04741(25)(25)
Z3/ 22 —0.0589(10)(0)  —0.0532(31)(0)  0.0036(18)(0) 0.0052(44)(0) 0.0300(24)(1)
Zy3/ 22 1.2568(19)(2) 1.2711(59)(2) 1.4093(34)(4) 1.4206(79)(1) 1.4919(44)(11)
Z1) 22 1.03009(18)(0)  1.02856(45)(0)  1.02098(20)(0)  1.02223(60)(0)  1.01811(29)(38)
Z4s) 73 —0.08895(23)(2) —0.08683(80)(0) —0.06453(14)(1) —0.06486(36)(0) —0.05716(16)(22)
Zs4/ 22 —0.16199(30)(9)  —0.1636(11)(0)  —0.17286(72)(9)  —0.1757(17)(0)  —0.1842(10)(3)
Zss/ 22 1.2268(12)(1) 1.2368(41)(1) 1.3299(24)(2) 1.3389(57)(1) 1.3852(31)(10)

TABLE XX. Chirally-allowed elements of the nonperturbative scaling matrix ¢(3 GeV,2 GeV) using chirally
extrapolated Z-factors.

a~! [GeV] 1.7848(50) 1.7295(38) 2.3833(86) 2.3586(70) 2.708(10)
o 1.1866(15) 1.18862(99) 1.2055(27) 1.1980(16) 1.2047(16)
03 —0.020560(36) —0.02201(14) —0.01408(33) —0.01294(22) —0.01165(18)
o3 —0.09661(26) —0.09870(19) —0.09318(55) —0.09034(41) —0.08994(17)
o3 0.94800(88) 0.95149(38) 0.92958(89) 0.93208(35) 0.92586(49)
Ous 1.2441(30) 1.2447(15) 1.2844(46) 1.2748(21) 1.2910(23)
Gas —0.00982(21) ~0.01235(22) —0.00146(54) —0.00159(23) 0.00067(30)
s 0.0439(12) 0.04063(45) 0.0711(17) 0.06801(83) 0.0774(10)
oss 1.017341(75) 1.018409(16) 1.00827(44) 1.00994(39) 1.00838(48)

4. Step-scaling matrices

We choose a lower scale u for nonperturbative renorm-
alization to reduce cutoff effects, and a higher scale y for
matching to MS. This distance is bridged using non-
perturbative running

OV (') = RSN (o (u . ) O (), (C12)

O; being any of the quantities in Eq. (4.3). The matching
factors RY/S“R! are computed in next-to-leading order per-
turbation theory and presented in Ref. [33] for both schemes.

The nonperturbative scale evolution matrix is given by
Gij(ﬂ/vﬂ) = }lig(l)ﬂij(ﬂ/aﬂa a)

= 1111(1)Zik(u’,a)ij(u,a)'l. (C13)
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FIG. 20. Comparison of the scale evolution matrix (3 GeV, u) [see Eq. (4.4)] in the RESMOM{+7+) scheme and NPR basis
evaluated nonperturbatively (blue circles), perturbatively at leading order (orange dashed lines) and next-to-leading order (green
solid lines).
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We perform this continuum limit including the chirally extrapolated renormalization constants (numerical values listed in
Table XX) from all lattice spacings as a fit linear in a”. In the few cases where the quality of fit does not lead to an acceptable

p-value, we rescale the uncertainty by 1/ x> /d.o.f. In Fig. 20 we compare our nonperturbative step-scaling results to leading and
next-to-leading order perturbation theory. For completeness we also provide the step-scaling matrices, oy, for the R;

[1.0 0.0 0.0 0.0 00 ]
00 12153(28)  —0.08396(60) 0.0 0.0
or(3 GeV,2 GeV) = | 0.0 —0.00426(52)  0.90868(42) 0.0 0.0 , (C14)
0.0 0.0 0.0 1.3186(42)  0.1018(15)
0.0 0.0 0.0 0.00976(68)  0.99984(59) |
(1.0 0.0 0.0 0.0 00 ]
00 12149(25) —0.08315(50) 0.0 0.0
ox(3 GeV =222 GeV) = | 0.0 —0.00374(43)  0.90889(40) 0.0 0.0 . (C15)
0.0 0.0 0.0 1.3190(35)  0.1023(14)
0.0 0.0 0.0 0.01083(44)  0.99940(59) |

APPENDIX D: RELATIONS BETWEEN BASIS CONVENTIONS

We distinguish between operators O; in the “SUSY” basis, defined in Eq. (2.2), and operators Q; in the “NPR” or
“lattice” basis, in Eq. (2.4). The SUSY basis contains both color-unmixed and color-mixed operators, while the NPR basis
comprises only color-unmixed operators, more convenient for lattice computations. For the KK matrix elements of these
operators we need only the parity-even parts, O; or Q;, shown in Egs. (2.3) and (2.5). Since we work with the Q; on the
lattice, we quote here the matrix T which relates the O} to the O}

1 0 0 0 O of of
0 0 0 1 0 05 of
Ot*=TQ0 =0 0 0 -1 3 [0" or [OF |=|(0F-00)/2]. (D1)
0 0 1 0 0 of 07
0 -3 0 0 0 ot ~075/2

We perform our nonperturbative calculations of the matrix elements and renormalization constants in the NPR basis and
subsequently convert to the SUSY basis. Matrix elements of the renormalized Q;" in some scheme X at scale y are given by,

(KIQ/[K)Y () = Z35 (1) (K| Q pare | K) - (D2)

When chiral symmetry is maintained, Zl’-g- (1) is block-diagonal and the matrix elements of the renormalized operators O} in
the SUSY basis in scheme X at scale y are related to matrix elements of the bare operators in the NPR basis by,

<K|OT|I_{> Zfl 0 0 0 0 <K|beare\1_(>
(k|05 1K) 0 0 0z Z5 || (KIOfulK)
KIOHR) [ =] 0 0 0 T | (kof 1K) . (D3)
(K|Og|K) 0z 7% 0 0 (K104 bare | K)
(K|03|K) 0 -Z & 9 0 (K1 Q5 pare K)
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The NPR-basis operators are written in color-unmixed
form. They are related by Fierz transformations to the
same operators written in color-mixed form by QM* =
F;;Q4mmxed | where

1 0 0 0 0
o 0 -2 0 0
F=|0 -1 0 0 o0 (D4)
0 0 0 -L1
o0 o0 ¥ !

The matrix F' is used when working out the matrix 7 which
transforms from the NPR basis to the SUSY basis.

APPENDIX E: PERTURBATIVE SCALING

We compare our nonperturbative scaling results with
perturbation theory in Fig. 20 and hence include here our
notation and definitions for the perturbative computations
to next-to-leading order. Full details are provided in a
Mathematica [98] notebook as Supplemental Material .
This is well-covered ground [99-102], but by explicitly
including both ¢? and ¢? log(g) terms at NLO we are able to
avoid having to take a limit to compute the scaling matrix
at NLO.

The (matrix) operator renormalization constants and
scaling matrix are related by

Z(W) = oW, w)Z(p). (E1)
The anomalous dimension matrix, y is defined by

dz

g E2
W=7 (E2)

Using udg/du = p(g), we have

9w) —y(g)
o(u',p) = Tyexp < / dg . (E3)
! 9(u) £(9)
where T, denotes g-ordering. We let
2
__a g
=—= E4
“Tar T 16n (E4)
and expand
Blg) = —’9a - p'9a* +
r(g) =rla+y'a+-- (E5)

so that

W ) a0 da (Ot e
/M dg’y(g)Z/”j@ +y1a_,+ ) (E6)
9(u) B(J) aw @ 200 +pla+--)

With our conventions, ° = 11 — 2N /3 for N flavors. We
work with the operators Q; defined in Eq. (2.5). They are
related to the positive parity parts of the basis Qgvy =
{OYH, Q'R O5R, O3, O3} used in Ref. [100] by
0" = R - Qfyy with R = diag(4,4,4,4,1). This changes
the off-diagonal elements of the anomalous dimension
matrices in the bottom-right 2 x 2 block. In Ref. [102],
the anomalous dimension is defined with the opposite
sign and expanded as yPP? = —g? (yOFPP 4y LPPP o2 4 )
which means that y*FPP = 49/ (167?).

1. LO scaling

If we diagonalize °,
VIOV =0, (E7)

where y9 is the diagonal matrix of eigenvalues, then the
scaling matrix at leading order is

O ) = V(ﬁ(&/)))w v (ES)

To match notation from Ref. [100], we write
70
(V=9OV),; = 2p°a;6;; where a = 2—50. (E9)

Under SU(3), x SU(3) flavor, Q7 is (27, 1) and renorm-
alizes multiplicatively, Q3 ; are (8, 8) and mix, and Q5 are
(6,6) and also mix. When we diagonalize y° we permute
the eigenvalues and eigenvectors to preserve the block-
diagonal structure of the 5 x5 anomalous dimension
matrix. Our choice leads to

2 2
yOD:diag(4,2,—16,3(1+\/241),3(1—\/241)>. (E10)

2. NLO scaling

Beyond leading order we write

o(u' ) = K)o (W' . u)K~" (). (E11)
The equation satisfied by K is
oK 1[y° 0
= [%K} - _<@+%>K, (E12)
99 g P9 Py
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where K = K(u) and g = g(u). Expanding to NLO in the
coupling and writing

2 2

g g
K=1 J log(g)L, El3
o2’ T 162 08l) (E13)
we find that J and L satisfy
0
L= 1L
260
AN A I B A (E14)
27 27 T Tty

Using the matrix V from Eq. (E7) which diagonalizes y°,
we define

G=Vlly
S=v-1lv
T=VILV (E15)
and recalling the a; from Eq. (E9), we find
Tij = (ai - aj)le <E16)

This shows that T;; vanishes, except when a; —a; = 1. We
also have

1 p
- a,)S,/ = z—ﬁOG” —ﬁ—oaiélj.

If a; —aj; =1 then §;; drops out of this equation and its
value is arbitrary (we choose to make it zero), but then T';; is
nonzero from the previous equation and its value is
determined by this equation. If a; —a; # 1, then T;; =0
and the equation determines S;;. Once we know § and 7' we
can find J and L and hence determine the K matrix and the
NLO expression for the scaling matrix o.

The leading order anomalous dimension matrix for the
4-quark operators has a, —az; = 1 when the number of
flavors is N = 3. This means that 753 # 0 and there is a

1
Sij+5Tij — (a

5 (E17)

g* log g term in K 3. Including the ¢” log g term allows us to
avoid expanding the solution for the scaling matrix around
Ny =3. We checked that either method gives the same
result for o. For our check we shifted a, — a, + 6,
computed the scaling matrix ¢ and took the limit 6 — 0.
As an additional check we also did the limiting procedure
by shifting p° — 11 —2(3+5)/3 when constructing
a =y%/24° in Eq. (E9) and again found the same result.
We also learn and checked that we can add an arbitrary shift
to S,3 or J,3 without changing the result for o.

From Eq. (E14) we know that the only nonzero element
of T in any scheme is Tp; = G,3/f° and hence in any
scheme,

(V'r'V)yy 40

_ P s T 48148
» LV )V3s 27

(E18)

We checked this for MS, RI-MOM, RI-SMOMx7x)
and RI-SMOM“4),

For ' in MS we used Ref. [100] and for RI-MOM we
used Ref. [102] (that paper does not give the 11 element; for
this we used the value in Ref. [6]). For the RI-SMOM
schemes we used yMS! together with the conversion factors
Ar from RI-SMOM to MS in Ref. [33] and applied
Eq. (E27) below.

To evaluate the perturbative scaling numerically, we used
the 5-loop expression for the running strong coupling to
evolve its value from the Z-mass to the charm mass, with
quark-flavor thresholds at im,(in,) and (i), the MS
bottom and charm masses evaluated at their own scales
[103-114]. We then evaluated a,(u) for 2 GeV < pu <
3 GeV for three flavors, corresponding to our 2 4 1 flavor
simulations. Our inputs were [62]

a, (M) = 0.1180,
M, =91.1876 GeV,
iy () = 4.18 GeV,

m.(m.) = 1.28 GeV, (E19)
and we determine
a,(2GeV)=0.293347, a,(3GeV)=0.243580. (E20)

Changing from operators Q" () renormalized in some
scheme at scale i to RGI operators O, is done by [102]:

A

0" = [alW)] 7K () Q" (w). (E21)
The 11 element of this relation converts the kaon bag
parameter By (u) to the RGI By (see for example the
discussion in the 2019 FLAG review [115]). To compute
RGI B,’s for the BSM operators, we would in addition
have to take into account the quark-mass combination
mg(u) + my(u) appearing in the B;(u)’s definition.

3. Logarithmic term in NLO scaling expression

Here we will let ¢ = g(/), & = a(y') and g = g(u),
a = a(u). From Egs. (E11) and (E13), the log(g) terms in
o(u', u) at NLO are

1
1 (@logg Lo’ (W) - aloggo® (W' p)L)

1 af a /\ a
:—V<a’logg’T<—> —alogg(g> T)V‘l. (E22)
4 a a
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From above, the only nonzero element of T is T3, so the
term in parentheses becomes

ANG o\ @
T3 <a’ log ¢ (—> —alogg <—) >
a a
N 1/9
) ol
a g

where we have used a, = 1/9 and a3 = —8/9. Switching
back to L and expressing everything in terms of « and «
we find

(E23)

N 1/9 /
NLO logs ino (4, 1) = ——— (ﬁ> alog (“ > . (B24)

(277) \ a a
We checked explicitly for MS, RI-MOM, RI-SMOM (»7x)
and RI-SMOM4) that the same term arises when we
calculate the NLO scaling by the o-shift and limit
procedure.

4. Scheme conversion

Following Ref. [33] we define the matrix R to convert
from renormalization scheme A to scheme B by

78 = RBAZA = (1 —aArP=M)ZA,  (E25)
where @ = ¢*/16x%. From B(g)dZ®/dg = —y®(g)Z® we
find

B<A
[ dRPA

i (B9

},A — (RB<—A>—1]/BRB<—A +ﬂ(RB<—A)—

TABLE XXI.

Expanding to O(a?) and noting that y° is universal, we can
relate the NLO anomalous dimensions in schemes A and B

using the 1-loop conversion factor Arf<4,

yA =Bl — [0 APBA] 4 289A B4 (E27)
In particular we can determine the NLO anomalous dimen-
sions where A is RIESMOMx74) or RI-SMOM#4) respec-
tively, from the MS NLO anomalous dimension and
A rmﬁA

A= MST [0 APMSSA] L opOAMSSA L (E28)
By combining the scheme conversion equation (E27) with
Eq. (E14) for J and L, we can show that

JA _ JW =A rmeA

except for the23 element  (E29)

and that LA = LMS. We checked Eq. (E29) when A is RI-
MOM, RI-SMOM»74) or RI-SSMOM ¥4,

APPENDIX F: FURTHER DETAILED
NUMERICAL FIT RESULTS

Our central value for the B; and R; in MS at y = 3 GeV
is taken as the mean of the conversion from
RI-SMOM " 7x) and RI-SMOM4) to MS. For complete-
ness we also separately list these conversions with their full
uncertainty budget in Table XXI.

Central values and combined systematic errors for ratio and bag parameters at y = 3 GeV in MS after converting from

the two RI-SMOM schemes—(y,,,y,) and (¢, ¢), in the SUSY basis. We list the errors arising from statistics, chiral extrapolation,
residual chiral symmetry breaking, and discretization and combine it into total uncertainties.

Scheme R2 R3 R4 R5 Bl BZ 63 84 85
MS « RI-SMOMw7x) Central -18.73 57781 4145 10.80 0.5185 0.4759 0.728  0.8862 0.6977
Statistical 0.60%  0.69% 0.72% 0.43% 028% 024% 0.72% 021% 1.02%
Chiral 021% 042%  0.61%  0.46% 020% 0.17% 029% 0.17% 0.25%
rcsb 0.10% 0.15%  0.09%  0.03% 0.04% 0.03% 0.06% 0.01% 0.00%
discr 0.16%  0.53% 0.49% 123% 0.01% 044% 161% 0.16% 0.38%
Total 0.66% 0.98% 1.07% 1.38% 035% 0.53% 1.79% 032% 1.12%
MS < RI-SMOM ) Central —-19.07 6.059 4243 10.49 0.5295 0.4829 0.764  0.9070 0.6788
Statistical 0.68% 0.92% 0.81% 0.83% 029% 043% 124% 036% 221%
Chiral 0.48%  0.78% 1.25% 1.26% 024% 027% 044% 029% 0.51%
rcsb 029% 021%  023%  0.13% 0.08% 0.19% 029% 0.03% 0.01%
discr 0.34%  0.65% 0.20% 230% 0.10% 0.64% 1.92% 0.19% 0.10%
Total 095% 1.39% 1.52%  2.75% 0.40% 0.83% 234% 0.50% 2.27%
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