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Within the framework of transverse momentum dependent factorization in combination with nonrelativistic
quantum chromodynamics (QCD), we study charmoniumand bottomonium production in hadronic collisions.
We focus on quarkonium states with even charge conjugation, for which the color-singlet production
mechanism is expected to be also dominant in the small transversemomentum region,q2T ≪ 4M2

c;b. It is shown
that the distributions of linearly polarized gluons inside unpolarized, longitudinally, and transversely polarized
protons contribute to the cross sections for scalar and pseudoscalar quarkonia in a very distinctive, parity-
dependent way, whereas their effects on higher angular momentum states are strongly suppressed. We derive
analytical expressions for single and double spin asymmetries, which would allow for the direct extraction of
the gluon transverse momentum dependent distributions, mirroring the phenomenological studies of the Drell-
Yan processes aimed at the extraction of their quark counterparts. By adopting Gaussian models for the gluon
transverse momentum dependent distributions, which fulfill without saturating everywhere their positivity
bounds, we provide numerical predictions for the transverse single-spin asymmetries. These observables could
be measured at LHCSpin, the fixed target experiment planned at the LHC.
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I. INTRODUCTION

It is well known that bound states of heavy quarks
(quarkonia) produced in proton-proton collisions can be
considered as direct probes of the gluon content of the
proton, providing detailed information about gluonmomen-
tum distributions and in particular their transverse momen-
tum dependence. Here we will focus on those quarkonium
states which are produced by the fusion of two gluons in a
2 → 1 partonic reaction at leading order in the strong
coupling constant αs, with no additional gluon emission
in the final state. Thus, in analogy to the Drell-Yan
processes, the kinematics are very simple, with gluon
momentum fractions directly related to the rapidity of the
observed quarkonium state Q. Furthermore, the charm and
bottom masses are large enough to justify the use of
perturbative QCD even when the transverse momentum

qT of the quarkonium state is small, namely q2T ≪ M2
Q. In

this kinematic region transverse momentum dependent
(TMD) factorization is expected to be applicable. In par-
ticular, we consider scalar and pseudoscalar C-even quar-
konia, i.e. states with definite total angular momentum J,
parity P and charge conjugation JPC ¼ 0�þ. Namely, using
the alternative spectroscopic notation 2Sþ1LJ, with S being
the spin and L the orbital angular momentum, we study the
1S0 states ηc, ηb and the 3P0 states χc0; χb0. The 3P2 (2þþ) χc2
and χb2 states will be investigated as well. Although wewill
refer to such states collectively asC-even quarkonia, we note
that charge parity at no point enters in our analysis and no
underlying assumption based on this property will be made.
On the other hand, χc1 and χb1 states would require a
different treatment because they suffer from the same
problem as other vector states, such as the J=ψ meson:
due to the Landau-Yang theorem, their production from two
on-shell gluons requires the emission of an additional gluon.
As pointed out in Refs. [1,2], another advantage of

dealing with 0�þ; 2þþ quarkonia is that they suffer neither
from large QCD corrections nor from the many open
theoretical issues affecting the predictions for J=ψ and
ϒ production rates and polarization [3–5]. The latter state-
ment can be understood by employing the effective field
theory approach of nonrelativistic QCD (NRQCD) [6],
according towhich quarkoniumproduction in proton-proton
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collisions is described in terms of a double power series
expansion in αs and the relative velocity v of the heavy
quark-antiquark pair in the quarkonium rest frame, with
v ≪ 1. The magnitude of the velocity is given by v2 ≃ 0.3
for charmonium and v2 ≃ 0.1 for bottomonium. Within this
framework, a heavy quark-antiquark pair can be produced at
short distances not just as a color-singlet, but also in a color-
octet configuration, which subsequently evolves into a
physical quarkonium state by radiating soft gluons. The
hadronization of the pair is encoded in universal long-
distance matrix elements (LDMEs), which are expected to
scale with a definite power of v. These matrix elements are
not calculable perturbatively and have to be extracted from
data. For S-wave quarkonia, in the limit v → 0 the heavy
quark-antiquark pair is produced directly with the same
quantum numbers of the observed bound state and the
traditional color-singlet model (CSM) [7–9] is recovered.
While the CSM fails to describe the large transverse
momentum spectra of the vector states J=ψ , ψð2SÞ and
ϒ, that should not be the case for the quarkonium states
under investigation here, for which NRQCD shows that
color-octet contributions are (at least) order v2 suppressed
with respect to the color-singlet ones [6]. This is confirmed
by the study of the low transverse momentum part of the
spectrum of χc1;2 [10]. More recently, it has been found that
the CSMprovides an excellent description of the LHCb data
on inclusive ηc production [11], probed through the pp̄
decay channel [12]. Furthermore, according to Ref. [2],
color-octet contributions can certainly be neglected for
C-even bottomonium, in agreement with the analysis on
ηb mesons of Ref. [13].
Basedon the above considerations, in this paperwe employ

the CSM in combination with TMD factorization to study the
effects of gluon distributions on 0�þ and 2þþ quarkonia
produced in proton-proton collisions, with one or both
protons being polarized. Following the same approach, in
Ref. [1] the distribution of linearly polarized gluons inside an
unpolarized proton, named h⊥g

1 , has been investigated. This
function corresponds to an interference between þ1 and −1
helicity gluon states that would be suppressed without
transverse momentum. It has been shown that it modifies
the unpolarized cross sections for the production of scalar and
pseudoscalar scalar quarkonia in different ways, while its
effect on higher angular momentum states is strongly sup-
pressed. Similarly, here we show how single and double spin
asymmetries arise from other helicity-flip distributions of
linearly polarized gluons inside transversely polarized pro-
tons (hg1, h

⊥g
1T ) and longitudinally polarized protons (h⊥g

1L ).
Furthermore, the Sivers function [14,15] needs to be taken
into account, which describes the transverse momentum
distribution of unpolarized quarks and gluons inside a
transversely polarized proton, where the transverse momen-
tum forms a sinϕ distribution around the transverse spin
direction. Using the NRQCD approach together with TMD

factorization, it has indeed been shown that the gluon Sivers
function generates a single spin asymmetry only in the CSM
in proton-proton collisions, and only in the color-octet model
in lepton-proton collisions [16].
Because of their gauge link dependence, TMDs are not

universal. For the processes under study, gauge links are
exclusively past pointing, ½−;−�, as for Higgs [17–20] or
photon pair production [21] in hadronic collisions. About
quarkonium final states at the LHC, the same gauge-link
structure holds for J=ψ-photon [22] and double-J=ψ
[23,24] production as well, assuming the dominance of
the color-singlet quarkonium formation mechanism. A
global analysis of gluon TMDs from the above reactions
would have the advantage of mapping out their scale
dependence. On the other hand, their universality properties
can be tested by relating the ½−;−� gluon TMDs to the
½þ;þ� ones, with two future-pointing gauge links, con-
tributing for instance to dijet, open heavy-quark pair [25],
inclusive J=ψ [26,27], J=ψ-jet [28,29] and J=ψ-photon
[30] production in electron-proton collisions, which are in
principle accessible at the future Electron-Ion Collider
(EIC). The ½−;−� gluon TMDs investigated in this paper
correspond to the Weiszäcker-Williams (WW) distributions
at small x. It turns out that, unlike the ½þ;−� or dipole ones,
which have one future and one past pointing gauge link, the
WW gluon TMDs for a transversely polarized proton are
suppressed with respect to the unpolarized gluon distribu-
tion by a factor of x [31]. This implies that the transverse
spin asymmetries under study will become suppressed in
the small-x limit.
The proposed measurements require the observation of

C-even quarkonium states with small transverse momen-
tum, resulting from the transverse momenta of the partons
initiating the 2 → 1 reactions. At collider facilities like the
LHC, forward detectors such as LHCb are needed, together
with powerful particle identification for a complete study of
the different quarkonium states through their decay chan-
nels. Moreover, the possibility of having a polarized gas
target in front of the LHCb spectrometer, the so-called
LHCSpin experiment [32], will offer the unique oppor-
tunity to probe polarized gluon TMDs through the analysis
of single-spin asymmetries (SSAs).
The remainder of the paper is organized as follows. In

Sec. II we recall the definition of the gluon correlator and
the leading twist TMD distributions in terms of QCD
operators. Details of the calculation of the cross sections of
interest, together with the analytic results for the azimuthal
modulations, are presented in Sec. III. The Fourier trans-
forms in transverse position space of the expressions for the
gluon correlator and the convolutions of TMDs contribut-
ing to the azimuthal asymmetries are listed in the
Appendix. Our numerical estimates of the transverse
single-spin asymmetries obtained by adopting Gaussian
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models for the gluon densities can be found in Sec. IV.
Finally, Sec. V contains our summary and conclusions.

II. TRANSVERSE MOMENTUM DEPENDENT
GLUON DISTRIBUTIONS

Transverse momentum dependent gluon distribution
functions in a spin-1=2 hadron are defined through a
matrix element of a correlator of the gluon field strengths
Fμνð0Þ and FνσðξÞ, evaluated at fixed light-front (LF) time
ξþ ¼ ξ · n ¼ 0, where n is a lightlike vector conjugate to
the four-momentum P of the parent hadron. Decomposing
the gluon momentum as p ¼ xPþ pT þ p−n, the corre-
lator is given by [33–35]

Γ½U;U0�μν
g ðx; pTÞ ¼

nρnσ
ðp · nÞ2

Z
dðξ · PÞd2ξT

ð2πÞ3
× eip·ξhP; SjTr½Fμρð0ÞU½0;ξ�FνσðξÞU0

½ξ;0��
× jP; SicLF; ð1Þ

where S is the hadron spin vector, while U½0;ξ� and U0
½0;ξ� are

process-dependent gauge links, which make the correlator
gauge invariant. For the process under study, U½0;ξ� is a
staple-like Wilson line running from 0 to ξ, namely

U½−�
½0;ξ� ¼ U½n�

½0;−∞�U
T
½0T ;ξT �U

½n�
½−∞;ξ�, while U0

½ξ;0� runs from ξ to

0 and is given by U½−�
½ξ;0� ¼ U½−�†

½0;ξ�, as illustrated in Fig. 1.
Henceforth, the explicit dependence on the gauge links will
be omitted.
According to the hadron spin, the correlator can be split

into three parts: the unpolarized (U), the longitudinal
polarized (L), and the transversely polarized (T) compo-
nents,

Γμν
g ðx; pTÞ ¼ Γμν

gUðx; pTÞ þ Γμν
gLðx; pTÞ þ Γμν

gTðx; pTÞ: ð2Þ

At leading twist, the correlator for an unpolarized hadron
can be parametrized in terms of two gluon TMDs as
follows:

Γμν
gUðx; pTÞ ¼

1

2x

�
−gμνT fg1ðx; p2TÞ

þ
�
pμ
Tp

ν
T

M2
h

þ gμνT
p2T
2M2

h

�
h⊥g
1 ðx; p2TÞ

�
; ð3Þ

where p2
T ¼ −p2T ,Mh is the hadron mass and the symmetric

transverse projector gμνT is defined as gμνT ¼gμν−Pμnν=P·n−
nμPν=P·n. Furthermore, in Eq. (3) fg1 and h⊥g

1 are the
T-even unpolarized and linearly polarized gluon distribu-
tions, respectively. In order to write the other two corre-
lators in a convenient form, we define the longitudinal and
transverse components of the hadron spin through the
Sudakov decomposition

Sμ ¼ SL
Mh

�
Pμ −

M2
h

P · n
nμ
�
þ SμT; ð4Þ

with S2L þ S2T ¼ 1. Hence, the correlator for a longitudi-
nally polarized hadron can be written as

Γμν
gLðx;pTÞ¼

1

2x
SL

�
iϵμνT gg1Lðx;p2TÞþ

ϵpTfμ
T pνg

T

M2
h

h⊥g
1Lðx;p2TÞ

�
;

ð5Þ

where we have introduced the antisymmetric transverse
projector ϵμνT ¼ ϵαβμνT Pαnβ=P · n, with ϵ12T ¼ þ1, as well as

the notations ϵabT ≡ ϵαβT aαbβ and afμbνg ≡ aμbν þ aνbμ. In

Eq. (5) gg1L is the T-even helicity distribution, whereas h⊥g
1L

is the T-odd distribution of linearly polarized gluons inside
a longitudinally polarized hadron. Finally, for a trans-
versely polarized hadron

Γμν
gTðx; pTÞ ¼

1

2x

�
gμνT

ϵpTST
T

Mh
f⊥g
1T ðx; p2TÞ þ iϵμνT

pT · ST
Mh

g⊥g
1T ðx; p2TÞ −

ϵpTfμ
T SνgT þ ϵSTfμT pνg

T

4Mh
hg1ðx; p2TÞ

þ 4ðpT · STÞϵpTfμ
T pνg

T þ p2T
�
ϵpTfμ
T SνgT þ ϵSTfμT pνg

T

�
8M3

h

h⊥g
1T ðx; p2TÞ

�
: ð6Þ

FIG. 1. Illustration of the [−;−] gauge link structure. The
horizontal axis corresponds to the light-cone direction n−, while
the vertical one represents the two transverse directions. The two
dots denote the points 0 and ξ.
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Note that the symmetric part of the correlator,
ðΓμν

T þ Γνμ
T Þ=2, is parametrized in terms of three T-odd

distributions, namely the Sivers function f⊥g
1T and the two

helicity-flip distributions hg1 and h
⊥g
1T . On the other hand, the

TMD distribution g⊥g
1T is T-even.

Because of the lack of data on processes that could be
used for extractions, our current knowledge of gluon TMDs
is still very limited. Recently a small set of LHCb data on
double-J=ψ production at 13 TeV [36] has been used to
perform a first fit of fg1, assuming a simple Gaussian
dependence on the parton transverse momentum [23].
Theoretical computations of gluon TMDs within the color
glass condensate (CGC) framework [25,37,38] and spec-
tator models [39–42] have also been carried out.

III. AZIMUTHAL MODULATIONS AT SMALL
TRANSVERSE MOMENTUM

We consider the inclusive scattering process

pðPA; SAÞ þ pðPB; SBÞ → QQ̄½2Sþ1Lð1Þ
J �ðqÞ þ X; ð7Þ

where the two colliding protons or, more in general, two
spin-1=2 hadrons have four-momenta PA and PB and spin
vectors SA and SB, such that S2A ¼ S2B ¼ −1 and
SA · PA ¼ SB · PB ¼ 0. We assume that a heavy quark-
antiquark pair (QQ̄) is produced in an intermediate Fock
state with four-momentum q, spin S, orbital angular
momentum L, total angular momentum J and in a colorless
configuration, specified by the superscript (1). The squared
invariant mass of the resonance is M2 ¼ q2, with M twice
the heavy quark mass up to small relativistic corrections.
According to the CSM, these quantum numbers match the
ones of the outgoing observed quarkonium. Hence, smear-
ing effects in the hadron formation process encoded in the
so-called TMD shape functions [43,44] are expected to be
suppressed [17,45] and will therefore be neglected. At the
lowest order in perturbative QCD, one only has to consider
the gluon-gluon fusion process

gðpaÞ þ gðpbÞ → QQ̄
�
2Sþ1Lð1Þ

J

�ðqÞ; ð8Þ

which is described by the Feynman diagram depicted
in Fig. 2.
In the kinematic region where the transverse momentum

qT of the produced quarkonium state is much smaller than
its invariant mass, namely qT ≪ M, TMD factorization is
expected to be applicable and the cross section for the
process in Eq. (7) can be written as

dσ ¼ 1

2s
d3q

ð2πÞ32q0
Z

dxadxbd2paTd2pbTð2πÞ4

× δ4ðpa þ pb − qÞ
X
colors

Γμν
g ðxa; paTÞ

× Γρσ
g ðxb; pbTÞAμρðAνσÞ� ð9Þ

where s ¼ ðPA þ PBÞ2 is the total energy squared in the
hadronic center-of-mass frame, Γg is the gluon correlator
parametrized in Eqs. (2), (3), (5), (6) andA is the scattering
amplitude for the specific partonic process gg → Q. We
note that the partonic momenta fulfill the relation p−

a ¼
pþ
b ¼ 0 in our calculation. Moreover, for the proton with

momentum PB the role of the forward and backward light-
cone directions is exchanged as compared to the other
proton with momentum PA, hence in Eqs. (5) and (6) the
epsilon tensor should be taken with opposite sign:
ϵμνT → −ϵμνT .
It turns out that the only nonzero scattering amplitudes

correspond to the 1S0 ðηQÞ and 3P0;2 ðχQ0;2Þ states, where
Q ¼ c; b [1]:

Aμν½1Sð1Þ0 �ðpa; pb; qÞ ¼ 2i
δabffiffiffiffiffiffi
Nc

p g2sffiffiffiffiffiffiffiffiffi
πM5

p R0ð0Þϵμνρσpaρpbσ;

Aμν½3Pð1Þ
0 �ðpa; qÞ ¼ −2i

δabffiffiffiffiffiffi
Nc

p g2sffiffiffiffiffiffiffiffiffi
πM3

p R0
1ð0Þ

	
−3gμν þ 2

M2
qμpν

a



;

Aμν½3Pð1Þ
2 �ðpa; qÞ ¼ −2i

δabffiffiffiffiffiffi
Nc

p
ffiffiffiffiffiffiffiffiffi
3

πM3

r
g2sR0

1ð0ÞερσJz ðqÞ
	
4

M2
gμνpaρpaσ − gμρgνσ − gνρg

μ
σ



; ð10Þ

with Nc being the number of colors, gs the QCD coupling and ϵJz the polarization vector of the J ¼ 2 bound state.
Furthermore, RLðrÞ is the radial wave function of the quarkonium state with orbital angular momentum L and R0

LðrÞ its first
derivative, in terms of which the NRQCD LDMEs are given by

FIG. 2. Leading order diagram for the process gg → Q, where
Q is a heavy quark-antiquark bound state with quantum numbers
2Sþ1Lð1Þ

J . The crossed diagram, in which the directions of the
arrows in the fermionic lines are reversed, is not shown.
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h0jOηQ
1 ð1S0Þj0i ¼

Nc

2π
jR0ð0Þj2½1þOðv4Þ�;

h0jOχQJ

1 ð3PJÞj0i ¼
3Nc

2π
ð2J þ 1ÞjR0

1ð0Þj2½1þOðv2Þ�; ð11Þ

with J ¼ 0, 1, 2 and v being the relative velocity of the heavy quark-antiquark pair in the quarkonium rest frame. We point
out that for these quarkonium states TMD factorization has been proven at one loop level [46,47].
The differential cross section in Eq. (9) for the production of a generic C ¼ þ1 quarkonium state, in a frame where its

azimuthal angle is zero, namely ϕT ¼ 0, can be written as

dσ½Q�
dyd2qT

¼ FQ
UU þ FQ

ULSBL þ FQ
LUSAL þ F

Q;sinϕSB
UT jSBT j sinϕSB þ F

Q;sinϕSA
TU jSAT j sinϕSA

þ FQ
LLSALSBL þ F

Q;cosϕSB
LT SALjSBT j cosϕSB þ F

Q;cosϕSA
TL jSAT jSBL cosϕSA

þ jSAT jjSBT jðFQ;cosðϕSA
−ϕSB

Þ
TT cosðϕSA − ϕSBÞ þ F

Q;cosðϕSA
þϕSB

Þ
TT cosðϕSA þ ϕSBÞÞ; ð12Þ

with y and qT being the rapidity and the transverse
momentum of the outgoing quarkonium, respectively.
Furthermore, ϕSA (ϕSB ) is the azimuthal angle of the spin
vector SA (SB). The subscripts of the structure functions FQ

refer to the polarization of the incoming protons. Each
structure function in Eq. (12) can be factorized in a hard
part HQ, which is calculable as a perturbative expansion
in αs,

HQ ¼
X∞
n¼0

�
αs
π

�
n
HQ

n ; ð13Þ

and a nonpertubative part, given by one or more con-
volutions of gluon TMDs multiplied by one of the LDMEs
in Eq. (11). In momentum space, these convolutions are
defined as

C½wfg1fg2�≡ C½wðpaT; pbTÞfg1ðxa; paTÞfg2ðxb; pbTÞ�

¼
Z

d2paTd2pbTwðpaT; pbTÞfg1ðxa; paTÞ

× fg2ðxb; pbTÞδ2ðpaT þ pbT − qTÞ; ð14Þ

where fi, with i ¼ 1, 2, are the gluon TMDs and
wðpaT; pbTÞ is a proper weight function that depends on
the particular gluon distributions involved. Neglecting
terms suppressed by powers of qT=M, for the process
under study the light-cone momentum fractions are given
by

xa ¼
Mffiffiffi
s

p ey; xb ¼
Mffiffiffi
s

p e−y: ð15Þ

In the following we provide the explicit expressions of
the structure functions in Eq. (12) at the order α2s, as
obtained from the evaluation of diagrams like the one

in Fig. 2. We note that higher-order corrections will not
modify the TMD convolutions involved, but more terms
will have to be included in the αs-expansion in Eq. (13). In
particular, the fully unpolarized structure functions FQ

UU for
J ¼ 0 and J ¼ 2 quarkonia read

F
ηQ
UU ¼ HηQðC½fg1fg1� − C½wh

UUh
⊥g
1 h⊥g

1 �Þh0jOηQ
1 ð1S0Þj0i;

F
χQ0

UU ¼ HχQ0ðC½fg1fg1� þ C½wh
UUh

⊥g
1 h⊥g

1 �Þh0jOχQ0

1 ð3P0Þj0i;
F
χQ2

UU ¼ HχQ2C½fg1fg1�h0jOχQ2

1 ð3P2Þj0i; ð16Þ

with

H
ηQ
0 ¼ 2π3α2s

9M3s
;

H
χQ0

0 ¼ 8π3α2s
3M5s

;

H
χQ2

0 ¼ 32π3α2s
9M5s

; ð17Þ

and the weight function being given by

wh
UU ¼ 1

4M4
p
½2ðpaT · pbTÞ2 − p2aTp

2
bT �

¼ p2aTp
2
bT

4M4
p

cos½2ðϕa − ϕbÞ�; ð18Þ

with ϕa and ϕb being the azimuthal angles of paT and pbT ,
respectively. The results in Eq. (16) are in agreement with
Ref. [1] and, upon integration over qT, with Ref. [9]. Hence,
we confirm all the features discussed in Ref. [1], and in
particular the sign difference in the term C½wh

UUh
⊥g
1 h⊥g

1 � for
opposite parities of the J ¼ 0 quarkonium states, and its
absence for χQ2. Indeed, a nonzero contribution from
linearly polarized gluons for J ¼ 2 states would require
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a four-unit helicity flip, which is strongly suppressed.
Hence, at leading order in v2, the ratio of the cross sections
for χQ0 and χQ2 can be used as a direct probe of the quantity

C½wh
UUh

⊥g
1 h⊥g

1 �=C½fg1fg1�. Note that both the uncertainties
from the unpolarized gluon TMD and the hadronic matrix
elements cancel out in this ratio, see Eq. (11).
To the best of our knowledge, the explicit expressions of

the other structure functions in Eq. (12), depending on
single and double polarization effects of the initial protons,
are presented here for the first time. Due to parity

conservation, for the single-longitudinally polarized con-
tributions one has

F
ηQ
UL ¼ F

ηQ
LU ¼ 0;

F
χQ0

UL ¼ F
χQ0

LU ¼ 0;

F
χQ2

UL ¼ F
χQ2

LU ¼ 0: ð19Þ

Therefore, only the transverse polarization is relevant in the
single polarization case. We find

F
ηQ;sinϕSB
UT ¼ HηQð−C½wf

UTf
g
1f

⊥g
1T � þ C½wh

UTh
⊥g
1 hg1� − C½wh⊥

UTh
⊥g
1 h⊥g

1T �Þh0jOηQ
1 ð1S0Þj0i;

F
χQ0;sinϕSB
UT ¼ HχQ0ð−C½wf

UTf
g
1f

⊥g
1T � − C½wh

UTh
⊥g
1 hg1� þ C½wh⊥

UTh
⊥g
1 h⊥g

1T �Þh0jOχQ0

1 ð3P0Þj0i;
F

χQ2;sinϕSB
UT ¼ −HχQ2C½wf

UTf
g
1f

⊥g
1T �h0jOχQ2

1 ð3P2Þj0i; ð20Þ
with

wf
UT ¼ jpbT j

Mp
cosϕb;

wh
UT ¼ p2aT jpbT j

4M3
p

cosðϕb − 2ϕaÞ;

wh⊥
UT ¼ p2aT jpbT j3

8M5
p

cosð3ϕb − 2ϕaÞ; ð21Þ

and

F
ηQ;sinϕSA
TU ¼ HηQðC½wf

TUf
g
1f

⊥g
1T � − C½wh

TUh
⊥g
1 hg1� þ C½wh⊥

TUh
⊥g
1 h⊥g

1T �Þh0jOηQ
1 ð1S0Þj0i;

F
χQ0;sinϕSA
TU ¼ HχQ0ðC½wf

TUf
g
1f

⊥g
1T � þ C½wh

TUh
⊥g
1 hg1� − C½wh⊥

TUh
⊥g
1 h⊥g

1T �Þh0jOχQ0

1 ð3P0Þj0i;
F

χQ2;sinϕSA
TU ¼ HχQ2C½wf

TUf
g
1f

⊥g
1T �h0jOχQ2

1 ð3P2Þj0i; ð22Þ

where the weight functions in Eq. (22) can be obtained from
the ones in Eq. (21) with the replacements U ↔ T and
a ↔ b. Analogously to FQ

UU, the structure functions in
Eqs. (20) and (22) for the χQ2 mesons receive a contribution
solely from unpolarized gluon distributions, namely fg1 and
f⊥g
1T . Moreover, the convolutions involving distributions of

linearly polarized gluons, C½wUTh
⊥g
1 hg1� and C½wUTh

⊥g
1 h⊥g

1T �,
enter the structure functions for J ¼ 0 states with a sign
depending on the quarkonium parity. As will be further
discussed in Sec. IV, in principle a combined analysis of these
observables could allow to probe the gluon TMDs f⊥g

1T , h
g
1

and h⊥g
1T .

The double-longitudinally polarized structure functions
read

F
ηQ
LL ¼ HηQðC½gg1Lgg1L� þ C½wLLh

⊥g
1Lh

⊥g
1L �Þh0jOηQ

1 ð1S0Þj0i;
F
χQ0

LL ¼ HχQ0ðC½gg1Lgg1L� − C½wLLh
⊥g
1Lh

⊥g
1L �Þh0jOχQ0

1 ð3P0Þj0i;
F
χQ2

LL ¼ −HχQ2C½gg1Lgg1L�h0jOχQ2

1 ð3P2Þj0i; ð23Þ

with

wLL ¼ 4wh
UU ¼ 1

M4
p
½2ðpaT · pbTÞ2 − p2aTp

2
bT �

¼ p2aTp
2
bT

M4
p

cos½2ðϕa − ϕbÞ�: ð24Þ

We note that they turn out to be very similar to FUU, with
the role of the unpolarized gluon TMD taken by the helicity
distribution g1L. Since the magnitude of the collinear g1L
gluon distribution is much smaller than the unpolarized
one, as suggested in Refs. [48–52], we expect that the same
is valid also for its transverse momentum dependent
counterpart. Hence, measurements of observables related
to these convolutions are expected to be challenging.
Moving to the mixed double-polarized structure func-

tions, we obtain
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F
ηQ;cosϕSB
LT ¼ HηQð−C½wg

LTg
g
1Lg

⊥g
1T � − C½wh

LTh
⊥g
1Lh

g
1� − C½wh⊥

LTh
⊥g
1Lh

⊥g
1T �Þh0jOηQ

1 ð1S0Þj0i;
F

χQ0;cosϕSB
LT ¼ HχQ0ð−C½wg

LTg
g
1Lg

⊥g
1T � þ C½wh

LTh
⊥g
1Lh

g
1� þ C½wh⊥

LTh
⊥g
1Lh

⊥g
1T �Þh0jOχQ0

1 ð3P0Þj0i;
F

χQ2;cosϕSB
LT ¼ HχQ2C½wg

LTg
g
1Lg

⊥g
1T �h0jOχQ2

1 ð3P2Þj0i; ð25Þ
with

wf
LT ¼ wf

UT ¼ jpbT j
Mp

cosϕb;

wh
LT ¼ 2wh

UT ¼ p2aT jpbT j
2M3

p
cosðϕb − 2ϕaÞ;

wh⊥
LT ¼ 2wh⊥

UT ¼ p2aT jpbT j3
4M5

p
cosð3ϕb − 2ϕaÞ; ð26Þ

and

F
ηQ;cosϕSA
TL ¼ HηQð−C½wg

TLg
⊥g
1T g

g
1L� − C½wh

TLh
g
1h

g
1L� − C½wh⊥

TLh
⊥g
1T h

g
1L�Þh0jOηQ

1 ð1S0Þj0i;
F

χQ0;cosϕSA
TL ¼ HχQ0ð−C½wg

TLg
⊥g
1T g

g
1L� þ C½wh

TLh
g
1h

g
1L� þ C½wh⊥

TLh
⊥g
1T h

g
1L�Þh0jOχQ0

1 ð3P0Þj0i;
F

χQ2;cosϕSA
TL ¼ HχQ2C½wg

TLg
⊥g
1T g

g
1L�h0jOχQ2

1 ð3P2Þj0i; ð27Þ
where the weight functions in Eq. (27) can be obtained from Eq. (26) performing the substitutions T ↔ L and a ↔ b.
The double-transverse polarization completes the picture. In this case, we find two separate structure functions

corresponding to two different azimuthal modulations. Explicitly, these are

F
ηQ;cosðϕSA

−ϕSB
Þ

TT ¼ HηQh0jOηQ
1 ð1S0Þj0ið−C½wTTf

⊥g
1T f

⊥g
1T � þ C½wTTg

⊥g
1T g

⊥g
1T � þ C½wh

TTh
g
1h

g
1� þ C½wh⊥

TTh
⊥g
1T h

⊥g
1T �Þ;

F
χQ0;cosðϕSA

−ϕSB
Þ

TT ¼ HχQ0h0jOχQ0

1 ð3P0Þj0ið−C½wf
TTf

⊥g
1T f

⊥g
1T � þ C½wg

TTg
⊥g
1T g

⊥g
1T � − C½wh

TTh
g
1h

g
1� − C½wh⊥

TTh
⊥g
1T h

⊥g
1T �Þ;

F
χQ2;cosðϕSA

−ϕSB
Þ

TT ¼ HχQ2ð−C½wf
TTf

⊥g
1T f

⊥g
1T � − C½wg

TTg
⊥g
1T g

⊥g
1T �Þh0jOχQ2

1 ð3P2Þj0i; ð28Þ

with

wTT ¼ jpaT jjpbT j
2M2

p
cosðϕa − ϕbÞ;

wh
TT ¼ jpaT jjpbT j

4M2
p

cosðϕa − ϕbÞ;

wh⊥
TT ¼ jpaT j3jpbT j3

16M6
p

cos½3ðϕb − ϕaÞ�; ð29Þ

and

F
ηQ;cosðϕSA

þϕSB
Þ

TT ¼ HηQh0jOηQ
1 ð1S0Þj0iðC½w̄TTf

⊥g
1T f

⊥g
1T � þ C½w̄TTg

⊥g
1T g

⊥g
1T � þ C½w̄hh⊥

TT hg1h
⊥g
1T � þ C½w̄h⊥h

TT h⊥g
1T h

g
1�Þ;

F
χQ0;cosðϕSA

þϕSB
Þ

TT ¼ HχQ0h0jOχQ0

1 ð3P0Þj0iðC½w̄f
TTf

⊥g
1T f

⊥g
1T � þ C½w̄g

TTg
⊥g
1T g

⊥g
1T � − C½w̄hh⊥

TT hg1h
⊥g
1T � − C½w̄h⊥h

TT h⊥g
1T h

g
1�Þ;

F
χQ2;cosðϕSA

þϕSB
Þ

TT ¼ HχQ2ðC½w̄f
TTf

⊥g
1T f

⊥g
1T � − C½w̄g

TTg
⊥g
1T g

⊥g
1T �Þh0jOχQ2

1 ð3P2Þj0i; ð30Þ
with

w̄TT ¼ jpaT jjpbT j
2M2

p
cosðϕa þ ϕbÞ;

w̄hh⊥
TT ¼ jpaT jjpbT j3

8M4
p

cosð3ϕb − ϕaÞ;

w̄h⊥h
TT ¼ jpaT j3jpbT j

8M4
p

cosð3ϕa − ϕbÞ: ð31Þ
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Unlike the previously discussed structure functions,

F
Q;cosðϕSA

þϕSB
Þ

TT and F
Q;cosðϕSA

−ϕSB
Þ

TT for χQ2 production
involve two different TMD convolutions. However, since
we expect to extract the gluon Sivers function from
(transverse) SSAs, a measurement of the double-polarized
structure functions for J ¼ 2 could be useful to isolate the
contribution from g⊥g

1T . Interestingly, the two structure
functions for the J ¼ 0 states provide complementary

information: F
cosðϕSA

−ϕSB
Þ

TT is mainly sensitive to the mag-
nitude of the distributions since it always involves the
convolutions of the “square” of two gluon TMDs, whereas

F
cosðϕSA

þϕSB
Þ

TT could probe the relative sign of hg1 and h⊥g
1T

because it contains the convolutions of these two TMDs.
We note that the convolutions in Eqs. (16)–(30) are

calculated in momentum space. In the Appendix we present
instead, for a general spin-1=2 hadron, all the above
convolutions in bT-space [see Eqs. (A6)–(A22)], where
bT is the Fourier conjugate of qT . Such expressions are
particularly useful for future implementations of TMD
evolution, which is multiplicative in bT-space. To this aim,
a thorough calculation at the one-loop level of the so-called
matching coefficients for all leading-twist gluon TMDs is
underway [53].

IV. ESTIMATE OF THE UPPER BOUNDS OF THE
TRANSVERSE SINGLE-SPIN ASYMMETRIES

The angular modulations of the cross section for the
process pp → QX, presented in Eq. (12), can be singled
out by taking average values of appropriate circular
functions of ϕSA and ϕSB , denoted as WðϕSA ;ϕSBÞ,

hWðϕSA ;ϕSBÞi ¼
R
dϕSAdϕSBWðϕSA ;ϕSBÞdσR

dϕSAdϕSBdσ
; ð32Þ

where we have used the notation dσ ¼ dσ=ðdyd2qTÞ. In the
following we focus on the specific configuration where
only the proton with momentum PB is transversely polar-
ized, whereas the proton with momentum PA is

unpolarized, see Eq. (7). Such processes could be in
principle accessible at LHCSpin, the fixed target experi-
ment planned at the LHC. In this case, we can define the
azimuthal moments as

A
Q;sinϕSB
N ¼ 2

R
dϕSB sinϕSB ½dσðϕSBÞ − dσðϕSB þ πÞ�R

dϕSB ½dσðϕSBÞ þ dσðϕSB þ πÞ�

¼ F
Q;sinϕSB
UT

FQ
UU

¼ 2hsinϕSBi; ð33Þ

where we have assumed that the initial proton is fully

polarized, namely jSBT j ¼ 1, while FQ
UU and F

Q;sinϕSB
UT are

given in Eqs. (16) and (20), respectively.
In order to provide an estimate of the upper bounds of the

SSAs, we assume that the unpolarized gluon TMD has the
following Gaussian form [18,23],

fg1ðx; p2TÞ ¼
fg1ðxÞ
πhp2

Ti
exp

	
−

p2T
hp2

Ti


; ð34Þ

with fg1ðxÞ being the collinear gluon distribution. The width
hp2

Ti could in principle depend on the energy scale, which
is set by the quarkonium mass M. Furthermore, we take
hp2

Ti to be independent of x. The effect of the other
unknown TMDs will be maximal when they saturate the
following, model-independent, positivity bounds [33]

jf⊥g
1T ðx; p2TÞj; jhg1ðx; p2TÞj ≤

Mp

jpT j
fg1ðx; p2TÞ;

1

2
jh⊥g

1 ðx; p2TÞj ≤
M2

p

p2T
fg1ðx; p2TÞ;

1

2
jh⊥g

1T ðx; p2TÞj ≤
M3

p

jpT j3
fg1ðx; p2TÞ: ð35Þ

These bounds are always fulfilled, although not everywhere
saturated, if we take, along the lines of Refs. [1,18],

f⊥g
1T ðx; p2TÞ ¼ N 0ðxÞ

fg1ðxÞ
πhp2

Ti3=2
Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ρ0Þ

ρ0

s
exp

	
1

2
−

1

ρ0

p2T
hp2

Ti


;

hg1ðx; p2TÞ ¼ N 1ðxÞ
fg1ðxÞ

πhp2
Ti3=2

Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ρ1Þ

ρ1

s
exp

	
1

2
−

1

ρ1

p2T
hp2

Ti


;

h⊥g
1 ðx; p2TÞ ¼ 2N 2ðxÞ

fg1ðxÞ
πhp2

Ti2
M2

p
ð1 − ρ2Þ

ρ2
exp

	
1 −

1

ρ2

p2T
hp2

Ti


;

h⊥g
1T ðx; p2TÞ ¼ 2N 3ðxÞ

fg1ðxÞ
πhp2

Ti5=2
M3

p

	
2ð1 − ρ3Þ

3ρ3



3=2

exp

	
3

2
−

1

ρ3

p2T
hp2

Ti


; ð36Þ
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where the free parameters ρi are such that 0 < ρi < 1
and

N iðxÞ ¼ Nixαið1 − xÞβi ðαi þ βiÞαiþβi

ααii β
βi
i

; ð37Þ

with jNij ≤ 1. The functions N iðxÞ account for a different
x-dependence of the gluon TMDs in Eq. (36) with respect

to the unpolarized one. Since in this section we aim at

providing only the upper bounds of A
sinϕSB
N , we take

N iðxÞ ¼ 1 and let the x-dependence saturate the positivity
bounds. Moreover, we note that all TMDs are taken to be
positive.
Hence, the ratios of TMD convolutions entering the

SSAs are given by

RUU ¼ C½wh
UUh

⊥g
1 h⊥g

1 �=C½fg1fg1�

¼ 1

16hp2
Ti2

ð1 − ρ2Þ2
ρ2

ðq4T − 8ρ2hp2
Tiq2T þ 8ρ22hp2

Ti2Þ exp
	
2 −

1 − ρ2
ρ2

q2T
2hp2

Ti


; ð38Þ

Rf
UT ¼ C½wf

UTf
g
1f

⊥g
1T �=C½fg1fg1�

¼ 2

hp2
Ti1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ρ0Þ

ρ0

s �
ρ0

1þ ρ0

�
2

jqT j exp
	
1

2
−
1 − ρ0
1þ ρ0

q2T
2hp2

Ti


; ð39Þ

Rh
UT ¼ C½wh

UTh
⊥g
1 hg1�=C½fg1fg1�

¼ 1

hp2
Ti3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ρ1Þ

ρ1

s
ð1 − ρ2Þ

ρ1
2ρ22

ðρ1 þ ρ2Þ4
jqT jðq2T − 2ðρ1 þ ρ2Þhp2

TiÞ exp
	
3

2
−
2 − ρ1 − ρ2
ρ1 þ ρ2

q2T
2hp2

Ti


; ð40Þ

Rh⊥
UT ¼ C½wh⊥

UTh
⊥g
1 h⊥g

1T �=C½fg1fg1�

¼ 1

hp2
Ti5=2

	
2ð1 − ρ3Þ

3ρ3



3=2

ð1 − ρ2Þ
ρ22ρ

4
3

ðρ2 þ ρ3Þ6
jqT jðq4T − 6ðρ2 þ ρ3Þhp2

Tiq2T þ 6ðρ2 þ ρ3Þ2hp2
Ti2Þ

× exp

	
5

2
−
2 − ρ2 − ρ3
ρ2 þ ρ3

q2T
2hp2

Ti


; ð41Þ

with each of them varying between zero and one. Note that,
while RUU ≠ 0 at qT ¼ 0, RUT ¼ 0 independently of the
convolution considered. The azimuthal moments in
Eq. (33) can therefore be rewritten as

A
ηQ;sinϕSB
N ¼ −Rf

UT þ Rh
UT − Rh⊥

UT

1 − RUU
;

A
χQ0;sinϕSB
N ¼ −Rf

UT − Rh
UT þ Rh⊥

UT

1þ RUU
;

A
χQ2;sinϕSB
N ¼ −Rf

UT: ð42Þ

In the following numerical study we focus on charmo-
nium production. From existing phenomenological analy-
ses, the value hp2

Ti ¼ 1 GeV2 turns out to be a reasonable
choice for the Gaussian width of the unpolarized gluon
TMD at the scale μ2 ¼ 4M2

c [54–56]. Because of TMD
evolution of the gluon densities, larger values of hp2

Ti are
expected for bottomonium production. Moreover, we show
our prediction for qT ≤ 2 GeV, to guarantee that our

analysis is restricted in the kinematic region where TMD
factorization is expected to be applicable.
In Fig. 3 the ratio RUU, contributing to the transverse

momentum spectrum of the unpolarized cross section and
the denominators of the SSAs for (pseudo)scalar quarkonia,
is shown as a function of qT and for different values of the
parameter ρ2, in the range 0.1 < ρ2 < 0.9. Moreover, for
comparison, we have shown the ratio RUU derived by
allowing h⊥g

1 to saturate its positivity bound in Eq. (35) for
every qT. Note that for certain values of qT , due to the
modulation of the Bessel functions, the ratio involving the
saturated TMDs may be smaller than that in Eq. (38),
employing the Gaussian parametrization. Similarly, Rf

UT ,
Rh
UT and Rh⊥

UT , appearing in the numerators of the SSAs (the
last two only for ηQ and χQ0) are presented in Fig. 4 for
several values of ρ0, ρ1, ρ2, ρ3, as described in the caption.
The same ratios, calculated with the TMDs saturating their
positivity bounds, are presented as well. These quantities
measure the relative magnitude of the linearly polarized
distributions and the Sivers function to the unpolarized
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gluon TMD. We note that our predictions are rather stable
with respect to the choice of hp2

Ti: the curves are shrunk to
lower values of qT as hp2

Ti decreases, while they broaden as
hp2

Ti increases, with the size of the ratios staying practically
unchanged.
Our main results on the upper bounds of the azimuthal

moments in Eq. (42) for the J ¼ 0 and J ¼ 2 charmonium
states are shown in Fig. 5 as a function of qT . The
parameters ρi have been chosen in order to maximize
the asymmetries in the TMD region. The red full lines
indicate the SSAs for χQ2 production, which are entirely
driven by the gluon Sivers function. By comparing the
SSAs for ηQ (green dashed lines) and χQ0 states (blue

dash-dotted lines) with those for χQ2 it would be possible,
in principle, to assess the relevance of the combined effects
of the linearly polarized gluon TMDs. The additional
modulations in the asymmetries for (pseudo)scalar mesons
as compared to the ones for spin-2 states are due to the
presence of hg1 and h

⊥g
1T in the numerators, but also of h⊥g

1 in
the denominators. For this reason, we also present the
former asymmetries with hg1 ¼ h⊥g

1T ¼ 0, corresponding to
the pink dashed (ηQ) and gray dash-dotted (χQ2) lines in
Fig. 5. A comparison between either the pink and green
dashed lines for ηQ or the gray and blue dash-dotted lines

for χQ0 displays that the effect from hg1 and h
⊥g
1T may still be

experimentally accessible, in case the data will show
modulations exceeding the ones expected from h⊥g

1 .
Moreover, according to our Gaussian model, the maxi-
mized impact of hg1 and h⊥g

1T is significantly large in the
kinematic region qT ≤ 1 GeV, which is therefore expected
to play an important role in accessing these completely
unknown gluon TMD distributions.
Finally, the asymmetries presented in Fig. 5 have also

been calculated at a different value of hp2
Ti. In particular, in

Fig. 6 we have taken hp2
Ti ¼ 3 GeV2, which we consider a

reasonable choice for the bottomonium production since
the energy scale of this process would be similar to that
explored in di-J=ψ production in Ref. [23]. At variance
with the previous figure, we show our results up to
qT ¼ 3 GeV, since the transverse momentum region where
TMD factorization is applicable becomes wider for higher
scales. From a direct comparison between Figs. 5 and 6, we
see that the predictions driven by the Gaussian paramet-
rizations of the TMDs are completely analogous to each
other and present the same features, but at different values
of qT . More specifically, the SSAs at hp2

Ti ¼ 3 GeV2 are
broader in qT , as expected from the nature of the Gaussian
parameterizations employed.

(a) (b) (c)

FIG. 4. The three ratios contributing to the numerators of the transverse SSAs as a function of qT . The TMDs are evaluated according
to a Gaussian ansatz, with the average of the transverse momentum squared set at 1 GeV2. Different curves are drawn by varying each
parameter in its space. In particular: in (a) the green lines correspond to 0.1 < ρ0 < 0.9with steps of 0.01; in (b) the thicker orange lines
are obtained by taking ρ2 ¼ 1=3 and ρ2 ¼ 2=3 and varying 0.1 < ρ1 < 0.9 with steps of 0.01, while for the thinner ones we have varied
both ρ2 and ρ1 independently with larger steps (for visualization reasons); in (c) thicker and thinner red lines are evaluated as in (b), but
with ρ3 replacing ρ1. In each of the three panels we have highlighted two curves in black that correspond to the ratios obtained with two
specific choices of the parameters (see the legend boxes in each figure). In addition, the dashed lines are obtained by letting the TMDs
saturate their positivity bounds in Eq. (35).

FIG. 3. The ratio RUU as a function of qT . The gluon TMDs h⊥g
1

and fg1 are evaluated according to a Gaussian ansatz, with the
average of the transverse momentum squared set at 1 GeV2.
Different blue lines are obtained by varying the parameter ρ2 in
Eq. (38) from 0.1 to 0.9 with steps of 0.01. We have highlighted
the ratios obtained with two specific values of ρ2, namely ρ2 ¼
1=3 (solid black line) and ρ2 ¼ 2=3 (dash-dotted line). Finally,
for illustration, a dashed line is also shown, which has been
obtained by letting h⊥g

1 saturate its positivity bound in Eq. (35).
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V. SUMMARY AND CONCLUSIONS

In this paper we have investigated the production of
C-even quarkonium states in (un)polarized proton-proton
collisions within the framework of TMD factorization.
Supported by NRQCD arguments, we have adopted the
color-singlet model to describe the quarkonium formation
mechanism. We have derived the analytical expressions for
the azimuthal modulations of the cross sections, arising
from the convolutions of different leading-twist gluon
TMDs. We therefore suggest that a phenomenological
investigation of these quantities would provide direct
access to the WW-type gluon distributions, in strong

analogy with the studies of the Drell-Yan processes for
the extraction of quark TMDs [57].
A striking, model-independent feature of our results is

that all the linearly polarized gluon TMDs inside unpolar-
ized, longitudinally and transversely polarized protons,
namely h⊥g

1 ; h⊥g
1L ; h

g
1 and h⊥g

1T , contribute to the production
of parity-odd ηQ states with opposite signs with respect to
the parity-even χc;b0 states. On the other hand, their effects
on higher angular momentum quarkonia like χQ2 are
strongly suppressed. As a consequence, as already pointed
out in Ref. [1], by only looking at unpolarized scattering,
the χQ2 cross section could be used to probe the distribution

FIG. 5. SSAs for different C-even quarkonia as a function of qT . More specifically, the red solid line corresponds to χQ2, the green
long-dashed line to ηQ, and the blue dash-dotted line to χQ0 states. The gluon TMDs are evaluated according to Eqs. (34) and (36) for
different values of their parameters ρi (check the text boxes in each panel for more details). The dark blue dashed and dark green dash-
dotted thin lines represent the SSAs of ηQ and χQ0, respectively, with the TMDs hg1 and h⊥g

1T set to 0.

FIG. 6. Same as in Fig. 5, but for hp2
Ti ¼ 3 GeV2.
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of unpolarized gluons fg1, while a combined study of ηQ
and χQ0 would shed light on h⊥g

1 .
Moreover, by employing simple Gaussian parameter-

izations for the gluonTMDs,which fulfill without saturating
everywhere the well-known positivity bounds, we have
estimated the maximal values of the transverse single-spin
asymmetries, showing that they could be measured in
principle at LHCSpin, the fixed target experiment planned
at the LHC. Such observables for χQ2 are driven by the gluon
Sivers function f⊥g

1T . Once this is known, SSAs for ηQ and

χQ0 can be used to determine hg1 and h
⊥g
1T . Measurements of

other observables, such as transverse and longitudinal
double-spin asymmetries would be needed to have a full
knowledge of the gluon distributions of the proton.
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APPENDIX: TMD CONVOLUTIONS
IN FOURIER bT-SPACE

In this appendix we present the gluon correlator and
the convolutions of TMDs in bT-space, with bT being the
Fourier conjugate of the transverse momentum pT . The
Fourier transform of the correlator is defined as

Γ̃μν
g ðx; bTÞ≡

Z
d2pTeibT ·pTΓ

μν
g ðx; pTÞ; ðA1Þ

which leads to [35,58]

2xΓ̃μν
gUðx; bTÞ ¼ −gμνT f̃g1ðx; b2TÞ −

1

2
M2

h

�
bμTb

ν
T þ gμνT

b2T
2

�
h̃⊥gð2Þ
1 ðx; b2TÞ;

2xΓ̃μν
gLðx; bTÞ ¼ SL

�
iϵμνT g̃1Lðx; b2TÞ −

M2
h

2
ϵbTfμT bνgT h̃gð2Þ1L ðx; b2TÞ

�
;

2xΓ̃μν
gTðx; bTÞ ¼ iMhg

μν
T ϵbTSTT f̃⊥gð1Þ

1T ðx; b2TÞ −MhðST · bTÞg̃⊥gð1Þ
1T ðx; b2TÞ − iMh

bTρϵ
ρfμ
T SνgT þ STρϵ

ρfμ
T bνgT

4
h̃gð1Þ1 ðx; b2TÞ

− iM3
h
4ðbT · STÞϵbTfμT bνgT þ b2T ½ϵbTfμT SνgT þ ϵSTfμT bνgT �

48
h̃⊥gð3Þ
1T ðx; b2TÞ; ðA2Þ

where we recall thatMh is the mass of a general spin-1=2 hadron (Mh ¼ Mp for protons). Furthermore, we have introduced
the Fourier transform of the generic TMD f

f̃ðx; b2TÞ≡
Z

d2pTeibT ·pT fðx; p2TÞ ¼ 2π

Z
∞

0

djpT jjpT jJ0ðjbT jjpT jÞfðx; p2TÞ; ðA3Þ

and its derivatives with respect to b2T

f̃ðnÞðx; b2TÞ≡ n!

�
−

2

M2
h

∂

∂b2T

�
n
f̃ðx; b2TÞ ¼

2πn!
ðM2

hÞn
Z

∞

0

djpT jjpT j
�jpT j
jbT j

�
n
JnðjbT jjpT jÞfðx; p2TÞ: ðA4Þ

Moreover, Jn in the above equations is the Bessel function of the first kind of order n, defined as

JnðzÞ ¼
1

2πin

Z
2π

0

dφeinφeiz cosφ: ðA5Þ
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By means of Eqs. (A3) and (A4), we find the following convolutions in bT-space

C½fg1fg1� ¼
1

2π

Z
∞

0

djbT jjbT jJ0ðjbT jjqT jÞf̃g1ðxa; b2TÞf̃g1ðxb; b2TÞ; ðA6Þ

C½wh
UUh

⊥g
1 h⊥g

1 � ¼ M4
h

32π

Z
∞

0

djbT jjbT j5J0ðjbT jjqT jÞh̃⊥gð2Þ
1 ðxa; b2TÞh̃⊥gð2Þ

1 ðxb; b2TÞ; ðA7Þ

C½wf
UTf

g
1f

⊥g
1T � ¼

Mh

2π

Z
∞

0

djbT jb2TJ1ðjbT jjqT jÞf̃g1ðxa; b2TÞf̃⊥gð1Þ
1T ðxb; b2TÞ; ðA8Þ

C½wh
UTh

⊥g
1 hg1� ¼ −

M3
h

16π

Z
∞

0

djbT jb4TJ1ðjbT jjqT jÞh̃⊥gð2Þ
1 ðxa; b2TÞh̃gð1Þ1 ðxb; b2TÞ; ðA9Þ

C½wh⊥
UTh

⊥g
1 h⊥g

1T � ¼
M5

h

192π

Z
∞

0

djbT jb6TJ1ðjbT jjqT jÞh̃⊥gð2Þ
1 ðxa; b2TÞh̃⊥gð3Þ

1T ðxb; b2TÞ; ðA10Þ

C½gg1Lgg1L� ¼
1

2π

Z
∞

0

djbT jjbT jJ0ðjbT jjqT jÞg̃g1Lðxa; b2TÞg̃g1Lðxb; b2TÞ; ðA11Þ

C½wLLh
g
1Lh

g
1L� ¼

M4
h

8π

Z
∞

0

djbT jjb5T jJ0ðjbT jjqT jÞh̃gð2Þ1L ðxa; b2TÞh̃gð2Þ1L ðxb; b2TÞ; ðA12Þ

C½wg
LTg

g
1Lg

⊥g
1T � ¼

Mh

2π

Z
∞

0

djbT jb2TJ1ðjbT jjqT jÞg̃g1Lðxa; b2TÞg̃⊥gð1Þ
1T ðxb; b2TÞ; ðA13Þ

C½wh
LTh

g
1Lh

g
1� ¼ −

M3
h

8π

Z
∞

0

djbT jb4TJ1ðjbT jjqT jÞh̃gð2Þ1L ðxa; b2TÞh̃gð1Þ1 ðxb; b2TÞ; ðA14Þ

C½wh⊥
LTh

g
1Lh

⊥g
1T � ¼

M5
h

96π

Z
∞

0

djbT jb6TJ1ðjbT jjqT jÞh̃gð2Þ1L ðxa; b2TÞh̃⊥gð3Þ
1T ðxb; b2TÞ; ðA15Þ

C½wf
TTf

⊥g
1T f

⊥g
1T � ¼ −

M2
h

4π

Z
∞

0

djbT jjbT j3J0ðjbT jjqT jÞf̃⊥gð1Þ
1T ðxa; b2TÞf̃⊥gð1Þ

1T ðxb; b2TÞ; ðA16Þ

C½wg
TTg

⊥g
1T g

⊥g
1T � ¼ −

M2
h

4π

Z
∞

0

djbT jjbT j3J0ðjbT jjqT jÞg̃⊥gð1Þ
1T ðxa; b2TÞg̃⊥gð1Þ

1T ðxb; b2TÞ; ðA17Þ

C½wh
TTh

g
1h

g
1� ¼ −

M2
h

8π

Z
∞

0

djbT jjbT j3J0ðjbT jjqT jÞh̃gð1Þ1 ðxa; b2TÞh̃gð1Þ1 ðxb; b2TÞ; ðA18Þ

C½wh⊥
TTh

⊥g
1T h

⊥g
1T � ¼ −

M6
h

1152π

Z
∞

0

djbT jjbT j7J0ðjbT jjqT jÞh̃⊥gð3Þ
1T ðxa; b2TÞh̃⊥gð3Þ

1T ðxb; b2TÞ; ðA19Þ

C½w̄f
TTf

⊥g
1T f

⊥g
1T � ¼

M2
h

4π

Z
∞

0

djbT jjbT j3J2ðjbT jjqT jÞf̃⊥gð1Þ
1T ðxa; b2TÞf̃⊥gð1Þ

1T ðxb; b2TÞ; ðA20Þ

C½w̄g
TTg

⊥g
1T g

⊥g
1T � ¼

M2
h

4π

Z
∞

0

djbT jjbT j3J2ðjbT jjqT jÞg̃⊥gð1Þ
1T ðxa; b2TÞg̃⊥gð1Þ

1T ðxb; b2TÞ; ðA21Þ

C½w̄hh⊥
TT hg1h

⊥g
1T � ¼ −

M4
h

96π

Z
∞

0

djbT jjbT j5J2ðjbT jjqT jÞh̃gð1Þ1 ðxa; b2TÞh̃⊥gð3Þ
1T ðxb; b2TÞ: ðA22Þ
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