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In this work we present a calculation of exotic charmonium production in ultraperipheral collisions, in
which the exotic state is explicitly treated as a meson molecule. Our formalism is general, but we focus on
the lightest possible exotic charmonium state: a DþD− molecular bound state. It was proposed some time
ago, and it has been an object of experimental searches. Here we study the production of the open charm
pair in the process γγ → DþD−. Then we use a prescription to project the free pair jDþD−i onto a bound
state at the amplitude level and compute the cross section of the process γγ → B (where B is the bound
state). Finally, we convolute this last cross section with the equivalent photon distributions coming from the
projectile and target in an ultraperipheral collision and find the AA → AAB cross section, which, for
Pb − Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, is of the order of 3 μb.

DOI: 10.1103/PhysRevD.110.034037

I. INTRODUCTION

One of the most important research topics in modern
hadron physics is the study of the exotic heavy quarkonium
states [1,2]. These new mesonic states are not conventional
cc̄ configurations, and their minimum quark content is
cc̄qq̄. This leads us to the main question in the field: are
these multiquark states compact tetraquarks, or are they
meson molecules? So far there is no conclusive answer.
One can try to address this question with the help of
experiment and study the observables: masses, decay
widths, and production rates. How can multiquark states
be produced? They can be produced in B decays and in
eþe−, proton-proton, proton-nucleus, and nucleus-nucleus
collisions. We will focus on the latter, which can be divided
into central (and semicentral) and ultraperipherals (UPCs)
[3]. In UPCs the nuclei do not overlap, and there are only a
few particles produced. In these collisions the elementary
processes which contribute to particle production are
photon-photon, photon-Pomeron, and Pomeron-Pomeron
fusion. The advantage of UPCs is the low particle-
production multiplicity, thus with a reduced background
if proper detection techniques are used. Such features have

been explored at the large hadron collider (LHC) at CERN
and at the relativistic heavy ion collider at Brookhaven. In
this work we will study exotic charmonium (assumed to be
a meson molecule) in photon-photon processes in ultra-
peripheral nucleus-nucleus collisions. We will compare our
results with those obtained in previous studies [4,5] along
the same line.
Coming back to the question formulated above, the

strategy to get the answer is to compute the cross section for
production (in UPCs) of a given exotic charmonium state
assuming that it is (i) a tetraquark and also assuming that it
is (ii) a meson molecule. There are reasons to believe that
the resulting cross sections are very different from each
other, and hence, just looking at the production rate, one
could experimentally discriminate between the two con-
figurations. In Refs. [4,5], the resonance (R) production via
photon-photon fusion was studied, and several cross
sections were obtained. In that work the authors used
the Low formula, in which the γγ → R cross section is
proportional to the R → γγ decay width, Γγγ. This last
quantity depends on the value of the wave function at the
origin jψð0Þj2, which is expected to be much larger for
compact tetraquarks than for loosely bound extended
meson molecules. Based on this argument we might expect
that the production cross section of tetraquarks would be
larger than the one for molecules. In [4,5] the authors
needed Γγγ as input. Unfortunately, this width was only
measured in very few cases. In some other very few cases
the width was estimated with the help of a formalism valid
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for states dynamically generated in meson-meson inter-
actions. By construction, these are molecular states. Here
we propose a method to form the molecular state which is
more general and independent of the knowledge of the decay
width. The method employed here is applicable to all
molecular states. Another important difference is in
the definition of an ultraperipheral collision. In Refs. [4,5]
the authors use a purely geometrical definition, limiting the
integration over the impact parameter.Herewe follow [6] and
define the UPC inmomentum space. The study of tetraquark
production, which is relevant to the present work has been
done in Refs. [7,8] and will be discussed in Sec. VI.
The production of hadron molecules has been discussed

in the context of B decays [9], in eþe− collisions, in proton-
proton [10,11], in proton-nucleus, and in central nucleus-
nucleus collisions [12]. We start with the lightest charm
meson molecule: the DþD− state (also called DD̄). It was
predicted in the study of meson-meson interactions in the
charm sector in [13], where it was found to be bound by
about 20 MeV. The state was confirmed in subsequent
theoretical studies [14,15]. More recently it was also found
in lattice calculations [16]. In [17], it was shown that the
peak in the DD̄ invariant mass, observed by the BELLE
Collaboration [18], could be well explained by the exist-
ence of a hidden charm scalar resonance below the thresh-
old [13]. An updated experimental work was performed in
[19], and, again, support for the DD̄ state in the reaction
eþe− → DD̄ (and also in γγ → DD̄) was found. Recent
analyses of these data were published in [20,21]. A more
refined theoretical work of these reactions was performed
in [22–24], claiming again evidence for this bound state.
The observations of the DD̄ state in the low energy

machines are crucial to confirm the existence of the state.
However theymay be not sufficient to determine the internal
structure of the state. Here the high energy UPCs can be
useful because the intensity of the photon flux grows with
the energy, increasing the cross sections and the productions
statistics. Hence UPCs offer a complementary way to
discriminate between tetraquarks from molecules.
In the next section we present the formalism employed to

describe DþD− pair production; in Sec. III we present the
prescription to create the bound state; in Sec. IV we discuss
the equivalent photon spectrum; in Sec. V, performing a
low energy approximation, we derive an analytical formula
for the cross section of bound state production. In the final
section we present numerical results and discussion.

II. PRODUCTION OF FREE D +D− PAIRS

There are two ways to produce a DþD− from two
photons. In the first, one of the photons splits directly into
the pair γ → DþD−, where one of the mesons is already on
the mass shell, and the second photon brings the other D
to the mass shell. This process can be described by a
well-known hadronic effective Lagrangian, from which we

obtain the pair production amplitude. This amplitude is
subsequently projected onto the amplitude for bound state
formation. If the properties of the bound state are known,
the only unknown in this formalism is the form factor,
which must be attached to the vertices to account for the
finite size of the hadrons.
In the second way to produce the pair, one photon splits

into a cc̄ pair which, after interacting with the second
photon, hadronizes into the DþD− pair. Then, using a
coalescence prescription, we obtain a model for the
production of the bound state. The hadronization process
involves uncertainties related to its nonperturbative nature.
Here we cannot automatically use fragmentation functions,
which require a hard scale. Moreover, the coalescence
prescription contains some inherent arbitrariness.
In principle using hadronic or partonic degrees of free-

dom should yield the same results. This is a guiding
principle for constructing effective theories. In both
approaches there are uncertainties, and depending on the
specific observable, it may be more convenient to use one
or another approach. In the present case in each approach
there is a sequence of steps summarized as follows.

(I) In a QCD based calculation we (i) compute the
γγ → cc̄ cross section, (ii) use fragmentation func-
tions to include the hadronization of the charm
quarks c → D and c̄ → D̄, and (iii) introduce some
coalescence model to form the DD̄ bound state.
Steps (i) and (ii) were executed in the early works
[25–28]. Step (iii) was executed much later for the
DD̄� bound state in [29].

(II) In a hadronic description we (i) choose an effective
theory to describe the production of the D meson
pair, γγ → DþD−, and (ii) introduce a prescription
to form the mesonic bound state. All this was done
recently in [21] but only for low energy collisions.

In (I) we have to face the problem of properly considering
the QCD corrections in the γγ → cc̄ cross section and also
include the “resolved photon” contribution as done (only
up to the next-to-leading-order (NLO) level) in [25]. In
modern language, the photon is treated as a color dipole,
and we need to know the dipole-dipole→ cc̄ cross section,
as done in [30]. Then in both cases we have uncertainties
related to the validity of the fragmentation functions and to
the scale used in them. Finally, the prescription to bind the
mesons together is based on the proximity in phase space of
the constituents, as done in [29]. It is mostly based on
kinematics and does not include information about the
dynamics of the bound state. In all stages of the calculation
there are nonperturbative QCD contributions which are
difficult to estimate.
In (II) we do not have problems with hadronization or

with nonperturbative contributions, since we are from the
beginning at the hadronic level. The effective theory is a
version of scalar electrodynamics and is very simple.
Moreover, the prescription to bind the mesons can be
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implemented at the amplitude level and contains more
information about the bound state (uses its wave function).
The major drawback in this approach is the use of form
factors and the cutoff parameters which come along with
them. Fortunately, in the present case we could find
experimental data, which could be used to fix the cutoff,
thereby reducing the uncertainties.
To summarize, both the hadronic and partonic

approaches must be developed. Here we work with first
one just because in this case it is more convenient. Along
this line, we will study the process γγ → DþD− with the
Lagrangian densities [31]

L ¼ ðDμϕÞ�ðDμϕÞ −m2
Dϕ

�ϕ −
1

4
FμνFμν; ð1Þ

and

L ¼ −igγDþD�−Fμνϵ
μναβðD�−

α ∂β

↔
Dþ þD−

∂β

↔
D�þ

α Þ; ð2Þ

where

Dμϕ ¼ ∂μϕþ ieAμϕ; Fμν ¼ ∂μAν − ∂νAμ;

and ϕ, D�, and Aμ represent the Dþ (or D−), the D�þ (or
D�−), and the photon fields, respectively. The Feynman
rules can be derived from the interaction terms, and they
yield the Feynman diagrams for the process γγ → DþD−

shown in Fig. 1. In the figure we also show the quad-
rimomenta of the incoming photons kμ ¼ ðEp; 0; 0; kÞ,
k0μ ¼ ðEk0 ; 0; 0; k0Þ and of the outgoing mesons
pμ ¼ ðEp; 0; 0; pÞ, p0μ ¼ ðEp0 ; 0; 0; p0Þ. The total

amplitude is given by

iM ¼ iMðaÞ þ iMðbÞ þ iMðcÞ þ iMðdÞ þ iMðeÞ; ð3Þ

where

iMðaÞ ¼ 2ie2gμνFðq̄2ÞFðq̄2Þε�μðkÞε�νðk0Þ; ð4Þ

iMðbÞ ¼ ε�μðkÞieFðt̂Þð−2pμ þ kμÞ
i

ðk − pÞ2 −m2
D
ieFðt̂Þð2p0

ν − k0νÞε�νðk0Þ; ð5Þ

iMðcÞ ¼ ε�μðk0ÞieFðûÞð−2pμ þ k0μÞ
i

ðk0 − pÞ2 −m2
D
ieFðûÞð2p0

ν − kνÞε�νðkÞ; ð6Þ

iMðdÞ ¼ ε�μðkÞ½−2gϵσμαρkσðkρ − 2pρÞFðt̂Þ�

2
64−i

�
gαβ −

ðk−pÞαðk−pÞβ
m2

D�

�
ðk − pÞ2 −m2

D�

3
75½2gϵδνβλk0δð−k0λ þ 2p0

λÞFðt̂Þ�ε�νðk0Þ; ð7Þ

iMðeÞ ¼ ε�μðk0Þ½−2gϵσμαρk0σðk0ρ − 2pρÞFðûÞ�

2
64−i

�
gαβ −

ðk0−pÞαðk0−pÞβ
m2

D�

�
ðk0 − pÞ2 −m2

D�

3
75½2gϵδνβλkδð−kλ þ 2p0

λÞFðûÞ�ε�νðkÞ; ð8Þ

where q̄2 ¼ ½ðk − pÞ2 þ ðk0 − pÞ2�=2 and g ¼ gγDþD�− ¼ −0.035 [31]. We have introduced the Mandelstam variables of the
elementary process, which are ŝ ¼ ðkþ k0Þ2, t̂ ¼ ðk − pÞ2, and û ¼ ðk0 − pÞ2. As usual, we have included form factors,
FðqÞ, in the vertices of the above amplitudes. We shall follow [32] and use the monopole form factor given by

Fðq2Þ ¼ Λ2 −m2
Dð�Þ

Λ2 − q2
; ð9Þ

FIG. 1. Feynman diagrams for the process γγ → DþD−.
a) Contact term. b) D exchange in the t-channel. c) D exchange
in the u-channel. d)D� exchange in the t-channel. e)D� exchange
in the u-channel.
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where q is the 4-momentum of the exchanged meson and Λ
is a cutoff parameter. This choice has the advantage of
yielding automatically Fðm2

DÞ ¼ 1 and Fðm2
D� Þ ¼ 1 when

the exchangedmeson is on shell. The above form is arbitrary,
but there is hope to improve this ingredient of the calculation
using QCD sum rules to calculate the form factor, as done in
[33], thereby reducing the uncertainties. The form factors
needed for our calculation are those associated to thevertices
DDγ and D�Dγ and can be calculated with the Shifman-
Vainshtein-Zakharov QCD sum rules [34] or with the QCD
light cone sum rules [35]. Technical details of themethod are
given in [33]. The calculation consists of the evaluation of
the three point correlation function of three currents,
representing the two mesons and the photon. All the
ingredients are known, but the calculations, to the best of
our knowledge,were never done so far. Other form factors of
vertices with photons and mesons (or baryons) were
performed, for example, in [36–39].
Taking the square of the amplitude, Eq. (3), and the

average over the photon polarizations it is straightforward
to calculate the differential cross section:

dσ
dΩ

¼ 1

64π2
1

E2
CM

jpj
jkj jMðγγ → DþD−Þj2: ð10Þ

In the center-of-mass reference frame we have k ¼ −k0
and hence p ¼ −p0, ECM ¼ Ek þ Ek0 ¼ 2jkj, and ECM ¼
Ep þ Ep0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

D

p
. It is then easy to see that

jpj
jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

CM − 4m2
DÞ=4

E2
CM=4

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
D

E2
CM

s
: ð11Þ

Inserting Eq. (11) into Eq. (10) and using E2
CM ¼ ŝ we find

σ ¼ 1

64π2
1

ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
D

ŝ

r Z
jMðγγ → DþD−Þj2dΩ: ð12Þ

The angular integral can be done using the relations

t̂ ¼ m2
D −

ŝ
2
þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ

�
ŝ
4
−m2

D

�s !
cosðθÞ;

û ¼ m2
D −

ŝ
2
−

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ

�
ŝ
4
−m2

D

�s !
cosðθÞ;

where θ is the angle between k and p. We emphasize that
the only unknown in our calculation is the cutoff parameter
Λ. In what follows, we will determine it fitting our cross
section to the large electron-positron collider (LEP) data on
the process eþe− → eþe−cc̄.

III. PRODUCTION OF BOUND STATES

Now we describe the method to construct a bound state
(denoted B) from the DþD− pair. As in [10], we impose
phase space constraints on the mesons, forcing them to be

“close together.” Here we do this through the prescription
discussed in [40]. The bound state jBi is defined as

jBiffiffiffiffiffiffiffiffi
2EB

p ≡
Z

d3q
ð2πÞ3 ψ̃

�ðqÞ 1ffiffiffiffiffiffiffiffi
2Eq

p 1ffiffiffiffiffiffiffiffiffiffi
2E−q

p jq;−qi; ð13Þ

where EB is the bound state energy, q is the relative three
momentum between Dþ and D− in the state B, E�q are the
energies of Dþ and D−, and ψ̃ðqÞ is the bound state wave
function in momentum space, which has the following
properties:

ψ̃ðqÞ ¼
Z

d3xeiq·xψðxÞ;
Z

d3q
ð2πÞ3 jψ̃ðqÞj

2 ¼ 1: ð14Þ

From Eq. (13), we can write the following relation between
the amplitudes:

Mðγγ → BÞffiffiffiffiffiffiffiffi
2EB

p ¼
Z

d3q
ð2πÞ3 ψ̃

�ðqÞ 1ffiffiffiffiffiffiffiffiffiffiffi
2EDþ

p

×
1ffiffiffiffiffiffiffiffiffiffiffi
2ED−

p Mðγγ → DþD−Þ: ð15Þ

We assume that the p ≃ p0 and hence EDþ ≃ ED− ¼ ED and
also q ¼ p − p0 ≃ 0. Therefore the energy ED and the
amplitudeMðγγ → DþD−Þ can be taken out of the integral.
Moreover, since the binding energy is small we have EB ≃
2ED and hence

Mðγγ → BÞffiffiffiffiffiffiffiffi
2EB

p ¼ Mðγγ → DþD−Þ
EB

Z
d3q
ð2πÞ3 ψ̃

�ðqÞ;

Mðγγ → BÞ ¼
ffiffiffiffiffiffi
2

EB

s
Mðγγ → DþD−Þ

×
Z

d3q
ð2πÞ3

Z
d3xψ�ðxÞeiq·x;

¼
ffiffiffiffiffiffi
2

EB

s
Mðγγ → DþD−Þ

Z
d3xψ�ðxÞδð3ÞðxÞ;

¼ ψ�ð0Þ
ffiffiffiffiffiffi
2

EB

s
Mðγγ → DþD−Þ: ð16Þ

With the amplitude above we calculate the cross section for
bound state production:

dσ ¼ 1

H
d3pB

ð2πÞ3
1

2EB
ð2πÞ4δð4Þðkþ k0 − pBÞjMðγγ → BÞj2;

ð17Þ
where pB is the momentum of the produced bound state
and H is the flux factor. Now we will work in the center of
mass frame of the AA → AAB collision, in which the
momenta of the incoming photons may be different. In this
frame we have
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k ¼ ðω1; 0; 0;ω1Þ; k0 ¼ ðω2; 0; 0;−ω2Þ; pB ≡ pþ p0 ¼ ðEB; 0; 0;ω1 − ω2Þ; ð18Þ

where EB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω1 − ω2Þ2 þm2

B

p
and ω1 and ω2 are the energies of the colliding photons. The flux factor is then given by

H ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · k0Þ2 −m2

km
2
k0

q
¼ 4k · k0 ¼ 4ðk0k00 − k · k0Þ ¼ 4ðω1ω2 − ω1ð−ω2ÞÞ ¼ 2ð4ω1ω2Þ: ð19Þ

Inserting this expression into Eq. (17) and integrating, the cross section reads as

σðω1;ω2Þ ¼
2π

2ð4ω1ω2Þ
Z

d3pB

2EB
δðECM − EBÞδð3Þðkþ k0 − pBÞ

�
2

EB
jψð0Þj2jMðγγ → DþD−Þj2

�
;

¼ πjψð0Þj2
4ω1ω2E2

B
jMðγγ → DþD−Þj2 4ω

2
1 þm2

B

8ω2
1

δ

�
ω2 −

m2
B

4ω1

�
; ð20Þ

where we have used that E2
CM ¼ 4ω1ω2.

To proceed with the calculation we need to know the
bound state wave function at the origin jψð0Þj2.
Fortunately, in [41] a similar bound state of open charm
mesons was studied with the Bethe-Salpeter equation, and
an expression for the wave function was derived. In the first
part of their paper the authors present a formalism which is
general and can be adapted to our system. Formally, the
Bethe-Salpeter equation reads as T ¼ V þ VGT, where T
is the two-body amplitude, and V is a matrix with elements
Vij which are the amplitudes of the i → j transitions and
which are calculated from a given effective Lagrangian.
Finally G is a loop function, which can be regularized with
a cutoff. Here we will just quote the main formulas needed
to calculate ψð0Þ, which is given by

ψð0Þ ¼ g

ð2πÞ3=2G; ð21Þ

where

G¼−8μπ
�
Λ0−γarctan

�
Λ0

γ

��
;

γ¼
ffiffiffiffiffiffiffiffiffiffiffi
2μEb

p
; g2¼ γ

8πμ2
�
arctan

�
Λ0

γ

�
− γΛ0

γ2þΛ2
0

� : ð22Þ

In the above expressions μ is the reduced mass
(μ ¼ mD=2), Λ0 is a cutoff parameter, and Eb is the binding
energy. We shall follow [22] and assume that Λ0 ¼ 1 GeV.
From the above equations we see that one can compute the
(dynamically generated) mass of a bound state and then
determine its binding energy. Knowing μ, Eb and fixing Λ0,
we can use the above formulas to calculate ψð0Þ. In what
follows our reference value will be obtained using mD ¼
1870 MeV and the mass of the bound state equal to
MB ¼ 3723 MeV, as found in [22]. With these numbers
we get Eb ¼ 17 MeV and jψð0Þj2 ¼ 0.008 GeV3. These

will be the values used to obtain all results, unless stated
otherwise.

IV. EQUIVALENT PHOTON APPROXIMATION
AND THE NUMBER OF PHOTONS

The equivalent photon approximation is well known, and
it is described in several papers [6,42]. In general, when the
photon source is a nucleus one has to use form factors, and
the calculation becomes somewhat complicated. Here we
will follow [6] and define an UPC in momentum space. The
distribution of equivalent photons generated by a moving
particle with the charge Ze is [6]:

nðqÞd3q ¼ Z2α

π2
ðq⊥Þ2
ωq4

d3q ¼ Z2α

π2ω

ðq⊥Þ2
ððq⊥Þ2 þ ðω=γÞ2Þ2 d

3q;

ð23Þ

where α ¼ e2=ð4πÞ, q is the photon 4-momentum, q⊥ is its
transverse component, ω is the photon energy and γ is the
Lorentz factor of the photon source (γ ¼ ffiffiffi

s
p

=2mp and mp

is the proton mass). To obtain the equivalent photon
spectrum, one has to integrate this expression over the
transverse momentum up to some value q̂. The value of q̂ is
given by q̂ ¼ ℏc=2R, where R is the radius of the projectile.
For Pb, R ≈ 7 fm, and hence q̂ ≈ 0.014 GeV. After the
integration over the photon transverse momentum the
equivalent photon energy spectrum is given by

nðωÞdω ¼ 2Z2α

π
ln

�
q̂γ
ω

�
dω
ω

: ð24Þ

Because of the approximations the above distribution is
valid when the condition ω ≪ q̂γ is fulfilled. Using
Eq. (24) we can compute the cross sections of free pair
production, σP, and of bound state production, σB. They are
given by

PRODUCTION OF MESON MOLECULES IN ULTRAPERIPHERAL … PHYS. REV. D 110, 034037 (2024)

034037-5



σPðAA → AADþD−Þ

¼
Z

q̂γ

m2
D=q̂γ

dω1

Z
q̂γ

m2
D=ω1

dω2σPðω1;ω2Þnðω1Þnðω2Þ; ð25Þ

σBðAA → AABÞ

¼
Z

q̂γ

m2
D=q̂γ

dω1

Z
q̂γ

m2
D=ω1

dω2σBðω1;ω2Þnðω1Þnðω2Þ; ð26Þ

where σPðω1;ω2Þ and σBðω1;ω2Þ are given by Eq. (12)
(with ŝ ¼ 4ω1ω2) and (20) respectively.

V. THE LOW ENERGY APPROXIMATION

A. Free pairs

At low photon energies and close to theDþD− threshold,
the produced mesons are nonrelativistic, and we can use the
approximation k − p ≈ ð0; 0; 0; mDÞ in the heavy meson
propagator, i.e.,

1

ðk − pÞ2 −m2
D
≈

1

0 −m2
D −m2

D
¼ −1

2m2
D
:

An analogous expression can be written for the D�
propagator. From the above relation we can see that in
this low energy regime the amplitudes with propagators are
proportional to ∝ 1=m2

D [Figs. 1(b) and 1(c)] and ∝ 1=m�2
D

[Figs. 1(d) and 1(e)] and can be neglected when compared
to the amplitudes without propagators, such as the one of
the contact interaction in Fig. 1(a). With this approximation
the amplitude for DþD− production in the process γγ →
DþD− is given by

iMðγγ → DþD−Þ ≈ 2ie2F2ð−m2
DÞgμνε�μðkÞε�νðk0Þ: ð27Þ

Taking the square and performing the average over the
photon polarizations we have

jMðγγ → DþD−Þj2 ¼ 1

4

X
pol

2ie2F2ð−m2
DÞgμνε�μðkÞε�νðk0Þð−2ie2ÞF2ð−m2

DÞgσρεσðkÞερðk0Þ;

¼ e4F4ð−m2
DÞgμνgσρgμσgνρ ¼ 4e4F4ð−m2

DÞ: ð28Þ

Inserting this amplitude into Eq. (10) we find

dσ
dΩ

¼ e4F4ð−m2
DÞ

16π

1

E2
CM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
D

E2
CM

s
: ð29Þ

Performing the integral over the solid angle and using the
definitions α≡ e2=4π and E2

CM ¼ 4ω1ω2, we find

σðω1;ω2Þ ¼
πα2F4ð−m2

DÞ
ω1ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
D

ω1ω2

s
; ð30Þ

which is then substituted in Eq. (25) to give the final cross
section for AA → AADþD−.

B. Bound states

In the low energy approximation the produced bound
state is nonrelativistic, and then Eq. (16) reduces to

Mðγγ → BÞ ¼ ψ�ð0Þ
ffiffiffiffiffiffiffi
2

mB

s
Mðγγ → DþD−Þ: ð31Þ

Inserting Eq. (28) into the above equation and then using it
in Eq. (20) we have

σðω1;ω2Þ¼
32π3α2F4ð−m2

DÞjψð0Þj2
mB

1

ω1ω2

δð4ω1ω2−E2
BÞ:

ð32Þ

Substituting the above expression into Eq. (26) and
integrating we obtain the final analytical expression:

σBðAA → AABÞ ¼ 256πjψð0Þj2Z4α4F4ð−m2
DÞ

3m5
B

×

�
ln

�
sq̂2

m2
pm2

B

��
3

: ð33Þ

We emphasize that “low energy” here refers to the energy
released by the projectiles, i.e., the invariant mass of the
photon pair. The nuclear projectiles themselves may have
very high energies.

VI. NUMERICAL RESULTS AND DISCUSSION

Having derived all the main formulas and discussed the
numerical inputs, now we present our numerical results. In
Fig. 2 we show the cross sections for free pair production
and compare it to the existing experimental data from LEP
[43]. In fact, the LEP data are for eþe− → eþe−cc̄, i.e., the
measured final states areDþD− andD0D̄0. We assume that
these two final states have the same cross section, and, in
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order to compare with the data, we multiply our cross
section σðeþe− → eþe−DþD−Þ by a factor of 2. In order to
fit these data we will adapt expression (25) to electron-
positron collisions. The γγ → DþD− cross section is the
same, but the photon flux from the electron (and also from
the positron) and the integration limits are different.
The adaptation of Eq. (25) is performed in the
Appendix. Comparing our formula with these data, we
determine the only parameter in the calculation, which is
the cutoff Λ. In the figure, the curves are obtained
substituting Eqs. (12) and (A3) into (25). In the latter
q̂ ¼ me. We did not attempt to perform a least chi square fit.
Instead we will carry on some uncertainty and work with
the band 0.35 < Λ < 0.49 GeV.
In Fig. 3 we show the cross section for DþD− produc-

tion. The black solid lines show the result with our central
parameter choice. Figure 3(a) shows the sensitivity of the
result to the value of q̂. In Fig. 3(b) we vary the values of Λ
in the range defined in Fig. 2. In this sense we propagate the
uncertainty from the fit of the data to our results. Taking
this as the error in our result, the obtained cross section for

FIG. 2. Cross section for the process eþe− → cc̄ as a function
of the energy

ffiffiffi
s

p
measured by the LEP Collaborations. Data are

from Ref. [43]. The purple stars are from TASSO, the pale red
single star is from JADE, the bright orange stars are from TOPAZ,
AMY, and VENUS, the triangles are from L3, the squares and the
green star are from ALEPH, the single diamond is from DELPHI,
and the circle is from OPAL. The curves are calculated with
Eqs. (12) and (25).

(a) (b)

FIG. 3. Cross sections for freeDþD− pair production as a function of the energy
ffiffiffi
s

p
. (a) Dependence on q̂ for fixedΛ. (b) Dependence

on Λ for fixed q̂.

(a) (b) (c)

FIG. 4. Cross sections for DþD− bound state production as a function of the energy
ffiffiffi
s

p
. (a) Dependence on q̂ for fixed Λ.

(b) Dependence on Λ for fixed q̂. (c) Dependence on the binding energy for fixed Λ and q̂.
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the reaction PbPb → PbPbDþD− at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV is

σðPbPb → PbPbDþD−Þ ¼ 0.75þ0.4
−0.4 mb: ð34Þ

Assuming that the reaction PbPb → PbPbD0D̄0 has the
same cross section as the one given above for charged states
and neglecting other final states, such as D�, the total cross
section for charm production in photon-photon exclusive
processes, we have

σexclusiveðPbPb → PbPbcc̄Þ ¼ 1.5þ0.4
−0.4 mb: ð35Þ

In Ref. [30] a similar calculation was performed. The
authors studied open charm production in ultraperipheral
PbPb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.5 TeV. They considered the
mechanisms of cc̄ production mentioned above, i.e., direct
production, NLO QCD corrections, and the resolved
photon contribution. They did not include the hadroniza-
tion of the charm quarks, i.e., c → D and c̄ → D̄. The final
cross section was found to be 2.47 mb. Given that they
considered more processes and also that they used an
energy

ffiffiffiffiffiffiffiffi
sNN

p
higher than ours, we can conclude that both

cross sections are compatible with each other.
In Fig. 4 we present the cross section for bound state

production and study its dependence on q̂ [Fig. 4(a)], on Λ
[Fig. 4(b)], and on the binding energy Eb [Fig. 4(c)]. As
expected, it is much smaller than the cross section for open
free pair production. However, it is encouraging to see that
at

ffiffiffiffiffiffiffiffi
sNN

p ≈ 5.02 TeV we have

σðPbPb → PbPbBÞ ¼ 3.0þ0.8
−1.2 μb: ð36Þ

This number could be compared with results found in [4]
and in [5]. In those papers, the production cross section of
the scalar molecular states in PbPb at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.5 TeV
were calculated, and the results are shown in Table I.
The work [4] (and also [5]) is relevant for us because

there the multiquark states were also treated as molecules.
Indeed, the widths listed in Table I were theoretically
calculated in a formalism in which the constituent mesons
interact and a resonance (or bound state) is dynamically
generated. However there are important differences. First,
the energy used in [4] is higher than the one used here, and
hence the cross sections are higher. Also, the states
Xð3940Þ and Xð3915Þ are significantly heavier than the
DþD− molecule, whose mass is 3723 MeV. Moreover, in
[4] the equivalent photon calculation was done in the
impact parameter space with the use of nuclear form
factors. In spite of these differences the obtained cross
sections are of the same order of magnitude.
Another interesting comparison can be made between

the cross section (36) and the result obtained in [7], where
the authors study the JPC ¼ 0þþ state (which they call X0

with mX0
¼ 3770 MeV) which was predicted by the

tetraquark (diquark-antidiquark) model in Ref. [8]. They
use the same formalism as in [4,5], and the X0 production
cross section turns out to be σX0

≃ 0.18 μb. This a is an
order of magnitude smaller than (36). This difference is a
direct consequence of the two-photon decay width, which
in [7] was estimated to be Γγγ ≃ 6.3 eV, a value 100 times
(or more) smaller than those quoted in Table I. This
discrepancy challenges the expectation described in the
Introduction and deserves further studies.
For completeness, in Fig. 5(a) we compare the cross

sections for free pair and bound state production, and in
Fig. 5(b) we compare the exact numerical evaluation of σB
with the approximate analytical expression, Eq. (33). We
observe that the cross section obtained with the analytical
formula is accurate only at low energies. At higher energies

TABLE I. Cross sections for exotic meson production in
ultraperipheral Pb − Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.5 TeV obtained
in [4]. The three cross sections refer to the use of three different
nuclear form factors, as explained in [4].

State Mass Γtheor
γγ ðkeVÞ σbmin

ðμbÞ σFðμbÞ σRðμbÞ
X(3915), 0þþ 3919 0.20 5.1 7.3 6.7
X(3940), 0þþ 3943 0.33 8.2 11.8 10.8
X(4140), 0þþ 4143 0.63 12.9 18.7 17.1

(a) (b) (c)

FIG. 5. Cross sections as a function of
ffiffiffi
s

p
. (a) Comparison between the free DþD− pair and bound state B cross sections.

(b) Comparison between the complete numerical solution and the approximate analytical cross section. (c) Ratio between the cross
section.
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it becomes larger than the complete numerical formula. We
can understand this behavior noticing that in Eq. (33) we
assumed that both EB and the form factor Fðq2Þ did not
depend on ω1 nor on ω2 at low energies and therefore
resulted in a smaller denominator (mB where it should have
been EB) and a constant argument of the form factor,
which, as we can see from Fig. 4(b), is crucial to our
numerical results. Nevertheless, the exact and the analytical
formula differ essentially only by a multiplicative factor
close to 10. Dividing Eq. (33) by 10, it reproduces the exact
formula within 20% accuracy in the relevant LHC range
and can thus be useful for practical applications. This is
shown Fig. 5(c).
To summarize, we have calculated the cross section for

the production of a heavy meson molecule in ultraper-
ipheral collisions. We have combined a effective
Lagrangian to compute the amplitude of the process γγ →
DþD− with a prescription to project this amplitude onto the
amplitude for bound state formation. The resulting γγ → B
cross section was then convoluted with the equivalent
photon fluxes from the projectile and target, and the final
cross section σBðAA → AABÞ was obtained. For ffiffiffiffiffiffiffiffi

sNN
p ¼

5.02 TeV it is 3.0þ0.8
−1.2 μb. This number is consistent with

the results obtained for other scalar exotic charmonium
molecules in [4,5]. The parameters of the calculation are Λ,
q̂, and Eb, which are the hadronic form factor cutoff, the
maximummomentum of an emitted photon and the binding
energy, respectively. All these parameters can be con-
strained by experimental information and by calculations.
Thus, we believe that in the future it will be possible to
increase the precision of our calculation.
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APPENDIX: CROSS SECTION OF THE PROCESS
e+ e − → e + e−D +D−

In this appendix we will adapt Eq. (25) to the eþe− →
eþe−cc̄ process. We start from Eq. (23) with Z ¼ 1:

nðqÞd3q ¼ α

π2ω

ðq⊥Þ2
ððq⊥Þ2 þ ðω=γÞ2Þ2 d

3q: ðA1Þ

First we recall that d3q ¼ dqxdqydqz ¼ q⊥dq⊥dθdqz ¼
1=2dq2⊥dθdqz → πdq2⊥dqz. Then we make the following
change of variables:

dq2⊥dqz ¼
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − q2⊥
p dq2⊥dω:

After changing the variables we integrate Eq. (A1) over q2⊥:

nðωÞ ¼ α

π

Z
ω2

0

q2⊥
½q2⊥ þ ðω=γÞ2�2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − q2⊥

p dq2⊥: ðA2Þ

The solution of this integral is

nðωÞ ¼ α

π

1

ω

γ

ð1þ γ2Þ3=2

×
h
2γ2arcsinhðγÞ þ arcsinhðγÞ− γ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q i
: ðA3Þ

After these changes in Eq. (25), we can write the cross
section for the process eþe− → eþe−DþD− inserting
Eq. (A3) into Eq. (25) and recalling that for electrons
we use γ ¼ ffiffiffi

s
p

=2me and also q̂ ¼ me.
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