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We present a global analysis of the transhelicity worm-gear distribution function, g⊥1T , by fitting the
longitudinal-transverse double-spin asymmetry data of the semi-inclusive deep inelastic scattering. The
analysis is performed within the framework of transverse momentum dependent factorization and
evolution. It is found that the u-quark favors a positive distribution and the d-quark favors a negative
distribution, which is consistent with previous model calculations and phenomenological extractions.
Based on the fit to existing world data, we also study the impact of the proposed Electron-Ion Collider in
China and conclude that it can significantly improve the precision of the worm-gear distribution function
and hence enhance our understanding of nucleon spin structures.
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I. INTRODUCTION

Understanding the internal structure of nucleons is
pivotal for comprehending the strong force that binds
quarks and gluons within nucleons, and for shedding light
on the fundamental properties of the matter. In recent years,
the pursuit of multidimensional tomography of the nucleon
has emerged as a cutting-edge approach to probe distribu-
tions of quarks and gluons within the nucleon, offering a
deeper understanding of its internal dynamics. Transverse
momentum dependent (TMD) parton distribution functions
(PDFs) contain the information of the parton transverse
momentum with respect to the parent nucleon, and hence

provide three-dimensional imaging of the nucleon in the
momentum space.
At the leading twist, there are eight TMDs for quarks [1–4].

Among them, the worm-gear-T distribution g⊥1Tðx; k2TÞ,
also known as the transhelicity distribution [5,6] or the
Kotzinian-Mulders function [7,8], describes the probability
density of finding a longitudinally polarized quark with
longitudinal momentum fraction x and transverse momen-
tum kT in a transversely polarized nucleon. As well as the
worm-gear-L, or longi-transversity, distribution h⊥1L that
describes the probability density of finding a transversely
polarized quark in a longitudinally polarized nucleon, it can
be expressed as the overlap between wave functions differ-
ing by one unit of orbital angular momentum [9–13], and
many efforts have been devoted to the worm-gear TMDs to
understand nucleon spin and flavor structures.
Although the two worm-gear distributions are defined

as independent quantities from the decomposition of the
quark-quark correlator, some relation, such as g⊥1T ¼ −h⊥1L,
is suggested based on quark model-like calculations
[5,6,11,14–16]. Following the SU(6) spin-flavor structure,
the g⊥1T distribution of the up quark was predicted to be
positive and with a greater magnitude than the negative
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down-quark distribution, and explicit calculations have been
done in the light cone constituent quark model [11,17–20],
the spectator diquark model [10,14,20,21], the MIT bag
model [16], and the covariant parton model [15]. On the
other hand, the large-Nc approximation [22] states that the
worm-gear distributions of up quark and down quark
only differ by a sign and have the same magnitude, i.e.,
g⊥u
1T ¼ −g⊥d

1T . Besides, if taking the Wandzura-Wilczek
(WW)-type approximation [7,8,23–26], which neglects the
contribution from quark-gluon-quark correlations, one may
relate the transhelicity worm-gear distribution to the helicity
distribution as

g⊥ð1Þ
1T ðxÞ ≈WW

x
Z

1

x

dy
y
g1ðyÞ; ð1Þ

where

g⊥ð1Þ
1T ðxÞ≡ π

Z
dk2T

k2T
2M2

g⊥1Tðx; k2TÞ; ð2Þ

is the first transverse moment that has also been studied in
lattice QCD [27–29].
In experiment, the semi-inclusive deep inelastic scatter-

ing (SIDIS) is one of the main processes to study TMDs.
According to the TMD factorization, the transhelicity
distribution g⊥1T contributes to a double spin asymmetry
ALT with azimuthal modulation as cosðϕh − ϕSÞ. With
the development of polarized beams and targets, this
asymmetry has been measured by HERMES [30],
COMPASS [31–33], and Jefferson Lab (JLab) [34]. In
some recent phenomenological analyses [35,36], it was
found that the extracted worm-gear distributions supported
the positive result for the up quark and the negative result
for the down quark as suggested by the model calculations.
However, due to the limited accuracy of existing world
data, one has to introduce some bias in the fit to obtain
reasonable results and almost no constraint is put on sea
quarks.
The Electron-Ion Collider in China (EicC) is proposed as

a future facility in nuclear physics, and one of its main
physics goals is to precisely measure nucleon TMDs via the
SIDIS process. It is designed to deliver a 3.5 GeV electron
beam with 80% polarization colliding with various types
of ion beams. The designed energy of the proton beam is
20 GeVand correspondingly the energy of the 3He beam is
40 GeV. Both the proton and the 3He beams can be
longitudinally or transversely polarized with 70% polari-
zation. The instantaneous luminosity can reach about
2 × 1033 cm−2 s−1. The EicC kinematic coverage will fill
the gap between multihall SIDIS program at the 12 GeV
upgraded JLab, which covers relatively large-x region
dominated by valence quarks, and the Electron-Ion
Collider (EIC) to be built at the Brookhaven National
Laboratory (BNL), which can reach the small-x region

down to about 10−4 [37,38]. Therefore, a combination of all
these facilities is expected to provide precise determination
of TMDs in a full kinematic coverage [39], towards a
complete three-dimensional imaging of nucleon spin
structures.
In this paper, we perform a global analysis of trans-

helicity TMDs by fitting the longitudinal-transverse double
spin asymmetry data from HERMES, COMPASS, and
JLab. Taking the world data fit result as the baseline, we
further study the impact of the EicC SIDIS program on the
determination of the worm-gear distribution. The rest of the
paper is organized as follows. In Sec. II, we briefly review
the theoretical framework. In Sec. III, we present the
parametrization of the transhelicity worm-gear distributions
and the fit results to world data. In Sec. IV, we study the
EicC impact on the extraction of the worm-gear distribu-
tions by adding simulated pseudodata in the fit. A summary
is drawn in Sec. V.

II. THEORETICAL FORMALISM

We consider the SIDIS process,

lðlÞ þ NðPÞ ⟶ lðl0Þ þ hðPhÞ þ X; ð3Þ

where l represents the lepton, N represents the nucleon,
and h represents the detected hadron. The four-momenta
of corresponding particles are given in parentheses. The
commonly used kinematic variables for the SIDIS process
are defined as

Q2 ¼ −ðl − l0Þ2 ¼ −q2; ð4Þ

x ¼ Q2

2P · q
; y ¼ P · q

P · l
; z ¼ P · Ph

P · q
; ð5Þ

γ ¼ 2xM
Q

¼ MQ
P · q

; ð6Þ

where q ¼ l − l0 is the transferred momentum andM is the
nucleon mass.
For the SIDIS process with a transversely polarized

target and a longitudinally polarized lepton beam, one can
write the differential cross section within the one-photon-
exchange approximation as [40]

dσ
dxdydzdϕhdϕSdP2

hT

¼ σ0
n
FUU þ λejS⊥j

h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
cosðϕh − ϕSÞFcosðϕh−ϕSÞ

LT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
cosð2ϕh − ϕSÞFcosð2ϕh−ϕSÞ

LT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
cosðϕSÞFcosϕS

LT þ � � �
io

; ð7Þ

where
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σ0 ¼
α2

xyQ2

y2

2ð1 − εÞ
�
1þ γ2

2x

�
; ð8Þ

α is the electromagnetic fine structure constant, jS⊥j
represents the transversal component of the nucleon spin
vector, λe represents the helicity of the lepton beam, and ε is
the ratio of longitudinal and transverse photon flux,

ε ¼ 1 − y − 1
4
γ2y2

1 − yþ 1
2
y2 þ 1

4
γ2y2

: ð9Þ

As shown in Fig. 1, we follow the Trento conven-
tions [41], in which the momenta of the virtual photon and
the nucleon are chosen along the ẑ direction. One can
express the transverse momentum PhT of the hadron
and the azimuthal angles ϕh and ϕS in Lorentz invariant
forms as

PhT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν⊥ PhμPhν

q
; ð10Þ

cosϕh ¼ −
lμPhνg

μν
⊥

l⊥PhT
; sinϕh ¼ −

lμPhνϵ
μν
⊥

l⊥PhT
; ð11Þ

cosϕS ¼ −
lμS⊥νg

μν
⊥

l⊥S⊥
; sinϕS ¼ −

lμS⊥νϵ
μν
⊥

l⊥S⊥
; ð12Þ

where l⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν⊥ lμlν

q
and S⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν⊥ SμSν

q
with Sμ

being the spin vector of the nucleon. The transverse metric
and the transverse antisymmetry tensor are defined as

gμν⊥ ¼ gμν −
qμPν þPμqν

P · qð1þ γ2Þ þ
γ2

1þ γ2

�
qμqν

Q2
−
PμPν

M2

�
; ð13Þ

ϵμν⊥ ¼ ϵμνρσ
Pρqσ

P · q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ; ð14Þ

where ϵμνρσ is the totally antisymmetric tensor with the
convention ϵ0123 ¼ 1.
The worm-gear distribution g⊥1T can be extracted from the

longitudinal-transverse double spin asymmetry, which is

given by the ratio between the structure functions

Fcosðϕh−ϕSÞ
LT and FUU. According to the TMD factorization

[40], the structure functions at low transverse momentum,
i.e., small δ ¼ jPhT j=ðzQÞ, can be approximated in terms of
TMD PDF and TMD fragmentation function (FF) as

FUU ¼ jCVðQ2;μÞj2x
X
q

e2q

Z
∞

0

bTdbT
2π

J0

�
bTPhT

z

�

× f1;q←Hðx;bT ;μ;ζÞD1;q→hðz; bT ;μ; ζ̄Þ þO
�
P2
hT

Q2

�
;

ð15Þ

Fcos ðϕh−ϕSÞ
LT ¼ jCVðQ2; μÞj2x

X
q

e2qM
Z

∞

0

b2TdbT
2π

× J1

�
bTPhT

z

�
g⊥1T;q←Hðx; bT ; μ; ζÞ

×D1;q→hðz; bT ; μ; ζ̄Þ þO
�
P2
hT

Q2

�
; ð16Þ

where eq is the electric charge of the quark with flavor q,
CV is the hard factor that can be calculated via perturbative
QCD, and J0 and J1 are the first kind Bessel functions.
Here the unpolarized TMD PDF f1, the worm-gear TMD
PDF g⊥1T, and the unpolarized TMD FF D1 are given in bT
space. They are related to corresponding functions in the
transverse momentum space through Fourier transforms,

f1ðx; kT ;μ; ζÞ ¼
Z

∞

0

bTdbT
2π

J0ðbTkTÞf1ðx;bT ;μ;ζÞ; ð17Þ

kT
M

g⊥1Tðx; kT ;μ; ζÞ ¼
Z

∞

0

b2TdbT
2π

MJ1ðbTkTÞg⊥1Tðx;bT ;μ; ζÞ;

ð18Þ

D1ðz; pT ; μ; ζÞ ¼
Z

∞

0

bTdbT
2π

J0ðbTpTÞD1ðz; bT ; μ; ζÞ;

ð19Þ

where kT represents the quark transverse momentum with
respect to the nucleon and pT represents the quark trans-
verse momentum with respect to the produced hadron.
The details of the Fourier transformation are given in
Appendix A.

A. Evolution of TMD PDFs and FFs

The energy scale dependence on μ and ζ of the TMD
functions are given by the evolution equations,

μ2
d
dμ2

Fðx; bT ; μ; ζÞ ¼
γFðμ; ζÞ

2
Fðx; bT ; μ; ζÞ; ð20Þ

FIG. 1. Trento conventions of the transverse momentum and
azimuthal angles.
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ζ
d
dζ

Fðx; bT ; μ; ζÞ ¼ −Dðμ; bTÞFðx; bT ; μ; ζÞ; ð21Þ

where γF is the anomalous dimension, andD is the rapidity
anomalous dimension (RAD), also known as the Collins-
Soper kernel. The F represents some TMD PDF or
TMD FF, i.e., f1, D1, and g⊥1T in this study. One may
have the formal solution,

Fðx; bT ; μ; ζÞ ¼ R½ðbT ; μi; ζiÞ → ðbT ; μ; ζÞ�Fðx; bT ; μi; ζiÞ;
ð22Þ

which relates the TMD PDF (or FF) at ðμ; ζÞ to that at the
initial point ðμi; ζiÞ. The evolution factor R½ðbT ; μi; ζiÞ →
ðbT ; μ; ζÞ� can be expressed as

R½ðbT ; μi; ζiÞ → ðbT ; μ; ζÞ�

¼ exp

�Z
P

�
γFðμ; ζÞ

μ
dμ −

Dðμ; bTÞ
ζ

dζ

��
; ð23Þ

where P represents the path connecting the scales ðμi; ζiÞ
and ðμ; ζÞ. As a common choice, we set the energy scales
as μ2 ¼ ζ ¼ Q2.
According to the integrability condition [42]

ζ
d
dζ

γFðμ; ζÞ ¼ −μ
d
dμ

Dðμ; bTÞ ¼ −ΓcuspðμÞ; ð24Þ

the evolution factor R½ðbT ; μi; ζiÞ → ðbT ;Q;Q2Þ� is in
principle path independent. However, it differs from path
to path when truncating at some fixed order in perturbation
theory. As suggested in Ref. [43], the condition (24)
allows one to construct a two-dimensional field F ðμ; ζÞ,
of which the gradient is given by E ¼ ðγF=2;−DÞ. Then
Fðx; bT; μ; ζÞ remains unchanged if the path is along the
equipotential line of E, referred to as a null-evolution line.
In the ðμ; ζÞ plane, there is a unique saddle point ðμ0; ζ0Þ
defined by

Dðμ0; bTÞ ¼ 0; γFðμ0; ζ0Þ ¼ 0: ð25Þ
Among the null-evolution lines, only the one passing
through the saddle point has finite ζ at all values of μ.
Hence, the Fðx; bTÞ≡ Fðx; bT ; μ0; ζ0Þ is referred to as the
optimal TMD PDF or FF [43]. Owing to the good
properties of the null-evolution line and the saddle point,
we firstly evolve the F from the saddle point along the null-
evolution line to the point with μ ¼ Q; secondly, we evolve
the F along the straight line keeping μ ¼ Q fixed until
reaching the point with ζ ¼ Q2. The result for the evolution
factor R½ðbT ; μi; ζiÞ → ðbT ;Q;Q2Þ� along this path is [43]

R½ðbT ; μi; ζiÞ → ðbT ;Q;Q2Þ� ¼
�

Q2

ζμðQ; bTÞ
�−DðQ;bTÞ

:

ð26Þ

The expressions for DðQ; bTÞ and ζμðQ; bTÞ can be found
in Appendix B. The precision for the perturbative calcu-
lation of various factors in powers of αs in this work is
summarized in Table I. Here we take the NNLL para-
metrization from the SV19 article, considering the existing
asymmetry data are not accurate enough.

B. Unpolarized TMD PDF and FF

For unpolarized TMD PDFs and FFs, we adopt the SV19
parametrization [43]. The optimal unpolarized TMD PDF
and FF are expressed as

f1;f←hðx; bTÞ ¼
X
f0

Z
1

x

dy
y
Cf←f0

�
y; bT; μPDFOPE

�

× f1;f0←h

�
x
y
; μPDFOPE

�
fNPðx; bTÞ; ð27Þ

D1;f→hðz; bTÞ ¼
1

z2
X
f0

Z
1

z

dy
y
y2Cf→f0

�
y; bT; μFFOPE

�

× d1;f0→h

�
z
y
; μFFOPE

�
DNPðz; bTÞ; ð28Þ

where f1;f0←h and d1;f0→h are collinear PDFs and FFs.
f1ðx; μÞ (D1ðz; μÞ) is the collinear unpolarized PDF (FF)
and we choose the NNPDF31 [44] (DSS [45–47]) para-
metrizations. The scales μPDEOPE and μFFOPE are chosen as

μPDEOPE ¼ 2e−γE

bT
þ 2 GeV; ð29Þ

μFFOPE ¼ 2e−γEz
bT

þ 2 GeV; ð30Þ

where γE is the Euler-Mascheroni constant. The 2 GeV shift
is introduced to keep the PDFs and FFs in perturbative
region when bT is large. The nonperturbative functions
fNPðx; bTÞ and DNPðz; bTÞ are to be parametrized.
For unpolarized TMD PDF, the coefficient function C

can be written as

TABLE I. Orders of perturbative calculations for anomalous
dimensions and the CðCÞ functions in the optimal TMD PDF and
FF. The evolution factor in the calculation is at the next-to-next-
to-leading-logarithmic (NNLL) accuracy.

Γcusp γV Dresum ζpertμ ζexactμ

R α3s α2s α2s α1s α1s

f1 D1 g⊥1T
CðCÞ α1s α1s α0s
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Cf←f0 ðx; bT; μÞ ¼ δð1 − xÞδff0
þ asðμÞ

	
−LμP

ð1Þ
f←f0 þ Cð1;0Þ

f←f0



; ð31Þ

up to next-to-leading order (NLO), where as ¼ g2ðμÞ
ð4πÞ2 and

gðμÞ is the QCD coupling constant. Lμ is defined as

Lμ ¼ ln

�
b2Tμ

2

4e−2γE

�
: ð32Þ

Pð1Þ
f←f0 is the coefficient of the PDF evolution kernel, which

reads,

Pð1Þ
q←q0 ðxÞ ¼ 2CF

�
1þ x2

1 − x

�
þ
δqq0 ; ð33Þ

Pð1Þ
q←gðxÞ ¼ 1 − 2xþ 2x2: ð34Þ

The “þ” prescription is defined asZ
1

x0

dx½gðxÞ�þfðxÞ ¼
Z

1

0

dxgðxÞ½fðxÞΘðx − x0Þ − fð1Þ�;

ð35Þ

where Θðx − x0Þ is the Heaviside step function. CF ¼ 4=3
is the quadratic Casimir eigenvalue of the fundamental

representation of SUð3Þ. The expressions of Cðn;0Þ
f←f0 can be

found in Ref. [48], and their NLO terms are

Cð1;0Þ
q←q0 ðxÞ ¼ CF

�
2x̄ − δðx̄Þ π

2

6

�
δqq0 ; ð36Þ

Cð1;0Þ
q←g ðxÞ ¼ 2xx̄; ð37Þ

and x̄ ¼ 1 − x.
For unpolarized TMD FF, one should replace

Cf←f0 ðx; bT; μÞ, Pð1Þ
f←f0 and Cðn;0Þ

f←f0 ðxÞ by Cf→f0 ðz; bT; μÞ,
Pð1Þ
f→f0 , and Cðn;0Þ

f→f0 ðzÞ, which at NLO are expressed as

Pð1Þ
q→q0 ðzÞ ¼

2CF

z2

�
1þ z2

1 − z

�
þ
δqq0 ; ð38Þ

Pð1Þ
q→gðzÞ ¼ 2CF

z2
1þ ð1 − zÞ2

z
; ð39Þ

Cð1;0Þ
q→q0 ðzÞ ¼

CF

z2

�
2ð1 − zÞ þ 4ð1þ z2Þ ln z

1 − z
ð40Þ

− δð1 − zÞ π
2

6

�
δqq0 ; ð41Þ

Cð1;0Þ
q→g ðzÞ ¼ 2CF

z2

�
zþ 2ð1þ ð1 − zÞ2Þ ln z

z

�
: ð42Þ

C. Worm-gear asymmetry

The longitudinal-transverse double spin asymmetry of
the SIDIS process is defined as

ALT ¼ 1

jS⊥jjλej
½dσLTðþ;↑Þ − dσLTð−;↑Þ� − ½dσLTðþ;↓Þ − dσLTð−;↓Þ�
dσLTðþ;↑Þ þ dσLTð−;↑Þ þ dσLTðþ;↓Þ þ dσLTð−;↓Þ

; ð43Þ

where þ (−) represents the positive (negative) helicity state of the electron beam and ↑ (↓) represents the transverse spin
direction of nucleon S⊥ to be parallel (antiparallel) to the designated positive transverse axis. The worm-gear asymmetry is
defined as cos ðϕh − ϕSÞ modulation of the double spin asymmetry,

Acos ðϕh−ϕSÞ
LT ¼ h2 cos ðϕh − ϕSÞσLTiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ε2
p

hσUUi
¼ Fcos ðϕh−ϕSÞ

LT

FUU
: ð44Þ

and one can express it with functions we defined above as

Acos ðϕh−ϕSÞ
LT ¼ M

P
qe

2
q

R
∞
0

b2TdbT
2π J1

�bTPhT
z

�
R2½ðbT ; μi; ζiÞ → ðbT ;Q;Q2Þ�g⊥1T;q←Nðx; bTÞD1;q→hðz; bTÞP

qe
2
q

R∞
0

bTdbT
2π J0

�bTPhT
z

�
R2½ðbT ; μi; ζiÞ → ðbT ;Q;Q2Þ�f1;q←Nðx; bTÞD1;q→hðz; bTÞ

; ð45Þ

where N is the target and h is the detected hadron.
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III. EXTRACTION OF THE WORM-GEAR
DISTRIBUTIONS

With the formalism above, we perform a global analysis
of world SIDIS data to extract the worm-gear distributions
g⊥1T of the nucleon. The results will also serve as the
baseline for the impact study of the EicC.
We parametrize the optimal worm-gear distributions of

the proton at the initial scale as

g⊥1T;q←pðx; bTÞ ¼ Nq
ð1 − xÞαqxβq

Bðαþ 1; β þ 1Þ exp ð−rqb
2
TÞ ð46Þ

for u and d quarks and

g⊥1T;q←pðx; bTÞ ¼ Nqf1ðx; μ0Þ exp ð−rqb2TÞ ð47Þ

for ū, d̄, s, and s̄ quarks with μ0¼ 2 GeV. Here Bðαþ 1;
β þ 1Þ is the Euler Beta function, introduced to reduce the
correlation among parameters. Assuming the isospin sym-
metry, we can express corresponding distribution functions
of the neutron as

g⊥1T;u←nðx; bTÞ ¼ g⊥1T;d←pðx; bTÞ; ð48Þ

g⊥1T;ū←nðx; bTÞ ¼ g⊥
1T;d̄←p

ðx; bTÞ; ð49Þ

g⊥1T;d←nðx; bTÞ ¼ g⊥1T;u←pðx; bTÞ; ð50Þ

g⊥
1T;d̄←n

ðx; bTÞ ¼ g⊥1T;ū←pðx; bTÞ; ð51Þ

g⊥1T;s←nðx; bTÞ ¼ g⊥1T;s←pðx; bTÞ; ð52Þ

g⊥1T;s̄←nðx; bTÞ ¼ g⊥1T;s̄←pðx; bTÞ: ð53Þ

For unpolarized TMD PDFs and FFs, we adopt the SV19
fit [43], in which the nonperturbative functions fNP and
DNP are parametrized as

fNPðx; bTÞ ¼ exp

�
−
λ1ð1 − xÞ þ λ2xþ xð1 − xÞλ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ3xλ4b2T
p b2T

�
;

ð54Þ

DNPðz; bTÞ ¼ exp

�
−

η1zþ η2ð1 − zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η3ðbT=zÞ2

p b2T
z2

��
1þ η4

b2T
z2

�
:

ð55Þ
The values of the parameters λi and ηi are listed in Table II,
which can be also found in [43,48]. For the FFs to charged
hadrons, we approximate them as

D1;f→hþ ¼ D1;f→πþ þD1;f→Kþ þD1;f→p; ð56Þ

D1;f→h− ¼ D1;f→π− þD1;f→K− þD1;f→p̄: ð57Þ
In this analysis, we include the SIDIS longitudinal-

transverse double spin asymmetry data from HERMES
[30], COMPASS [31–33], and JLab [34], as summarized
in Table III. Since the TMD factorization is only valid at
small δ ¼ jPhT j=ðzQÞ, only data with δ < 0.5 are included
in the fit.

TABLE III. The SIDIS double spin asymmetry data by HERMES [30], COMPASS [31–33], and JLab [34]. The SFA refers to
h2 cos ðϕh − ϕSÞσLTi=ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
hσUUiÞ, and the CSA refers to h2 cos ðϕh − ϕSÞσLTi=hσUUi.

Dataset Target Beam
Original data

points

Data points
after cut

δ < 0.5, Q > 1 GeV

Data points
after cut

δ < 0.3, Q > 1 GeV Process Measurement

HERMES [30] H2 27.6 GeVe� 64 26 11 e�p → e�πþX SFA
64 26 11 e�p → e�π−X SFA
64 26 12 e�p → e�KþX SFA
64 26 12 e�p → e�K−X SFA
64 30 15 e�p → e�pX SFA

COMPASS [31] NH3 160 GeVμþ 66 28 9 μþp → μþhþX SFA
66 26 8 μþp → μþh−X SFA

JLab [34] 3He 5.9 GeVe− 4 2 1 e−n → e−πþX CSA
4 2 1 e−n → e−π−X CSA

Total 460 192 80

TABLE II. The parameters for nonperturbative functions of the
optimal unpolarized TMD PDF and FF. The units are in GeV2

except that λ4 is dimensionless.

λ1 λ2 λ3 λ4 λ5
0.198 9.3 431 2.12 −4.44

η1 η2 η3 η4
0.260 0.476 0.478 0.483
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For the HERMES data, experimental results are provided
in both one-dimensional binning and three-dimensional
binning. We only use the three-dimensional bins in this
study, because they are supposed to contain more infor-
mation for the study of TMDs, which are multidimensional
functions. For the COMPASS data, the experimental results
are provided in one-dimensional binning but on x, z, and
PhT respectively. Since they tell the dependence on differ-
ent variables, we include all these bins in the fit. However,
to avoid double counting, we multiply a factor of 1=3 when
calculating the χ2 from the COMPASS data. Then the total
χ2=N to be minimized in the fit is defined as

χ2=N ¼
1
3
χ2COMPASS þ χ2HERMES þ χ2JLab

1
3
NCOMPASS þ NHERMES þ NJLab

; ð58Þ

where Ndata set represents the number of points for each
dataset. For each dataset, we have

χ2data set ¼
X
i;j∈

data-points

ðti − aiÞV−1
ij ðtj − ajÞ; ð59Þ

where i and j run over all points in each set, ti represent the
theoretical values, and ai represent experimental values.
The V-matrix is given by

Vij ¼ δijðσuncori Þ2 þ σcori σcorj ; ð60Þ

where σuncori and σcori stand for uncorrelated and correlated
uncertainties, respectively.
As the existing world data are not precise enough to

constrain all parameters introduced in Eq. (46), we practi-
cally reduce the number of parameters by imposing the
conditions,

αu ¼ αd ¼ α; βu ¼ βd ¼ β; ru ¼ rd ¼ r; ð61Þ

and assume vanishing distributions for sea quarks, ū, d̄, s,
and s̄. In the end, we have five free parameters to be
determined as listed in Table IV.
To estimate the uncertainties, we create 1000 replicas of

the data by smearing the central values of each data point
according to a Gaussian distribution with data uncertainties
being the widths. For each replica, we perform a fit. Then
the central values of all physical quantities are evaluated
from the average of the 1000 fits. More details of this
approach are described in Ref. [48].
In this study, we achieve total χ2=N ¼ 0.84 as listed in

Table V, together with χ2 values for each dataset. The
expectation values and uncertainties of the parameters are
summarized in Table IV. In Figs. 2–6, we show the
comparison between the fit results and experimental data,
in which the filled points are included in the fit while the

open points are not. The extracted worm-gear distribution
functions g⊥1Tðx; kTÞ are shown in Fig. 7 at several x-slices.
As one can observe from the results, the u quark distri-
bution is positive, while the d quark favors a negative
distribution though still consistent with zero. This finding
qualitatively agrees with the predictions from the quark
model [11,17–20]. In addition, we also evaluate the trans-
verse moments of the worm-gear distributions,

g⊥ð0Þ
1T ðxÞ ¼ 2π

Z
kmax
T

0

kTdkTg⊥1Tðx; kTÞ; ð62Þ

g⊥ð1Þ
1T ðxÞ ¼ 2π

Z
kmax
T

0

kTdkT

�
k2T
2M2

�
g⊥1Tðx; kTÞ; ð63Þ

where the truncation is chosen as kmax
T ¼ 1 GeV. The results

are shown in Figs. 8–12. The comparison between our
results and those in Refs. [35] and [36] is shown in Fig. 8.

TABLE IV. Results of parameters for world data fit. The values
and uncertainties are provided in two forms. The second column
presents 68% CL indicated by upper and lower boundaries and
the central values as the average of results within the ranges. The
third column corresponds to the central values evaluated from
the average of 1000 replicas and the uncertainties given by the
standard deviations (STD) in two sides. The value of r is provided
in unit of GeV2 and all other parameters are dimensionless.

Parameter Value within 68% CL Average value with STD

Nu 0.0206þ0.0058
−0.0050 0.0213þ0.0100

−0.0056

Nd −0.0073þ0.0079
−0.0082 −0.0082þ0.0092

−0.0175
α 16.59þ65.88

−10.11 36.96þ135.39
−27.30

β 5.57þ28.65
−3.87 14.68þ59.12

−11.30
r 1.52þ9.25

−1.49 × 10−9 0.0055þ0.1621
−0.0055

TABLE V. The list of results of χ2=N of world data fit for each
world dataset.

Dataset Data points χ2=N

HERMES πþ [30] 26 1.01
HERMES π− [30] 26 0.75
HERMES Kþ [30] 26 1.09
HERMES K− [30] 26 0.68
HERMES P [30] 30 0.90

COMPASS hþ [31] 28 0.44
COMPASS h− [31] 26 0.65

JLab πþ [34] 2 0.61
JLab π− [34] 2 1.15

Total 192 0.84
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Our result are compatible with Ref. [36] but with larger
uncertainties. This comes from the parametrization of the x
dependence, which is fitted with free parameters in our
analysis but is fixed in Ref. [36]. Compared with Ref. [35],
the worm-gear distributions in our analysis are smaller.
Such a difference arises from different choices of the

unpolarized distributions f1. We adopt the SV19 TMD
parametrization of f1, which after kT integration is smaller
than the collinear f1 utilized in Ref. [35]. Since the analyses
of g⊥1T are based on asymmetry data, which correspond to
the ratio g⊥1T=f1, it is expected that our extracted g⊥1T
distributions are smaller.

FIG. 2. Comparison between the fit results and the experimental data by COMPASS [31] from the proton target with charged hadron
h� measured in the final state. The filled points are within the kinematic cuts, δ < 0.5 and Q > 1 GeV, and included the fit, while the
open points are not included in the fit. The green lines and the bands are the mean values and the standard deviations (1 − σ) calculated
from the fits to 1000 replicas.
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We also test the effect of the weighting factor for
COMPASS data in our analysis. The results of an
unweighted fit are consistent with the weighted fit within
error bands, while the unweighted fit shows slightly smaller
peak value than the weighted fit.

Additionally, we also perform a world data fit including
sea quarks, which as expected leads to larger uncertainties
of u and d quarks. However, the sea quark distributions are
largely unconstrained with error bands surrounding zero.
Considering the purpose of this study is to estimate the

FIG. 3. Comparison between the fit results and the experimental data by HERMES [30] from the proton target with π� measured in the
final state. The data points and the fit bands follow the same notations as Fig. 2.
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impact of the future EicC experiment, we generate the EicC
pseudodata assuming vanishing worm-gear distributions of
sea quarks.

IV. EICC PROJECTIONS

The EicC events are generated at the vertex level using
the SIDIS Monte Carlo generator, which has been used in

previous studies [48,49]. To select events in the DIS region,
we apply the cuts,

Q2 > 1 GeV; 0.3 < z < 0.7; ð64Þ

W > 5 GeV; W0 > 2 GeV; ð65Þ

FIG. 4. Comparison between the fit results and experimental data by HERMES [30] from the proton target with K� measured in the
final state. The data points and the fit bands follow the same notations as Fig. 2.
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where W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ PÞ2

p
is the invariant mass of the

hadronic system, andW0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ P − PhÞ2

p
is the missing

mass. According to the detection conditions of the designed
EicC detector, we further require the scattered electron
momentum Pe > 0.35 GeV and the hadron momentum
Ph > 0.3 GeV. In the simulation, we take the 3.5 GeV
polarized electron beam with 80% polarization, the 20 GeV
transversely polarized proton beam with 70% polarization,
and the 40 GeV transversely polarized 3He beam with 70%
polarization. Aiming at a complete separation of contribu-
tions from all light flavor quarks, we take into account both
π� and K� data.

To quantify the impact, we assume 50 fb−1 integrated
luminosities of ep and e3He collisions, which can be
achieved with about one-year run according to the proposed
instantaneous luminosity. For the systematic uncertainties,
we assign 2% relative uncertainty to the polarization of the
electron beam, 3% relative uncertainty to the polarization
of the ion beam, and 5% relative uncertainty to the 3He
nuclear effect. These are expected the dominant sources of
systematic uncertainties based on our current knowledge
from existing polarized SIDIS measurements. Because the
detailed design of the detectors are still unavailable, we
leave more realistic estimation of systematic uncertainties
to future studies.
The central values of the worm-gear asymmetry for the

EicC pseudodata are evaluated from world data fit, which
only include nonvanishing contributions from u and d
quarks. Owing to the considerable amount of the expected
EicC data, we can adopt stricter criteria to select data in the
TMD region. Hence we set the cut as δ < 0.3, and
5008 pseudodata points are included. Besides, we also
free the parameters Nq for sea quark distributions and
choose the same rq for ū, d̄, s, and s̄ as

rs ¼ rū ¼ rd̄ ¼ rs̄ ¼ ðru þ rdÞ=2: ð66Þ

Then there are 12 free parameters in our fit summarized in
Table VI. Following the same procedure, we perform a

FIG. 5. Comparison between the fit results and the experimental data by HERMES [30] from the proton target with a fragmented
proton measured in the final state. The data points and the fit bands follow the same notation as Fig. 2.

FIG. 6. Comparison between the fit results and the experimen-
tal data by JLab [34] from the effectively polarized neutron target
with π� measured in the final state. The data points and the fit
bands follow the same notation as Fig. 2.
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FIG. 8. The left (right) one show the results of optimal worm-gear functions (first transversal moment) of up quarks and down quarks.
We also compare them with existing extractions. The bands of our results are correspond to 68% confidence level (CL) while bands of
comparison counterparts are taken from Refs. [35,36].

FIG. 9. The zeroth transverse moment of the worm-gear functions, g⊥ð0Þ
1T ðxÞ as defined in Eq. (62), for u and d quarks at the scale

Q ¼ 2 GeV. The uncertainty bands correspond to 68% CL estimated from the fits to 1000 replicas. The green bands are extracted
distributions by fitting the world SIDIS data, the red bands are EicC projections with only statistical uncertainties, and the blue bands are
EicC projections with both statistical and systematic uncertainties. R is the ratio of uncertainty of the result of pseudodata data fit to that
of world fit.
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FIG. 7. The worm-gear distributions g⊥1Tðx; kTÞ at the scale Q ¼ 2 GeV. The uncertainty bands correspond to 68% CL estimated from
the fits to 1000 replicas. The green bands are extracted distributions by fitting the world SIDIS data, the red bands are EicC projections
with only statistical uncertainties, and the blue bands are EicC projections with both statistical and systematic uncertainties.
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simultaneous fit to the world data and the EicC pseudodata.
This analysis gives χ2=N ¼ 1.09 with corresponding val-
ues and uncertainties of the parameters listed in Table IV,
which are evaluated from the fits to 1000 replicas. The EicC
projections of the worm-gear distributions g⊥1Tðx; kTÞ are
shown in Fig. 7. The zeroth transverse momentum

moments g⊥ð0Þ
1T ðxÞ are shown in Figs. 9 and 10, and the

first transverse momentum moments g⊥ð1Þ
1T ðxÞ are shown in

Figs. 11 and 12. Our results provide a proof of principle that
it becomes possible to extract information on worm-gear
functions of the sea quarks once has more data.

FIG. 10. EicC projections of the zeroth transverse moment of the worm-gear functions, g⊥ð0Þ
1T ðxÞ as defined in Eq. (62), for ū, d̄, s, and s̄

quarks at the scale Q ¼ 2 GeV. The uncertainty bands correspond to 68% CL estimated from the fits to 1000 replicas. The red bands
only contain statistical uncertainties, and the blue bands contain both statistical and systematic uncertainties.

FIG. 11. The first transverse moment of the worm-gear functions, g⊥ð1Þ
1T ðxÞ as defined in Eq. (63), for u and d quarks at the scale

Q ¼ 2 GeV. The uncertainty bands correspond to 68% CL estimated from the fits to 1000 replicas. The green bands are extracted
distributions by fitting the world SIDIS data, the red bands are EicC projections with only statistical uncertainties, and the blue bands are
EicC projections with both statistical and systematic uncertainties. R is the ratio of uncertainty of the result of pseudodata data fit to that
of world fit.

EXTRACTION OF TRANSHELICITY WORM-GEAR … PHYS. REV. D 110, 034036 (2024)

034036-13



V. SUMMARY

In this work, we perform a global fit to the worm-gear
asymmetries from SIDIS in small transverse momentum
region, including the TMD evolution effect at the next-to-
next-to-leading-logarithmic (NNLL) accuracy. Due to the
fact that the existing experimental uncertainties are too
large to determine the worm-gear distributions of sea
quarks, only up and down quarks are considered in the
global fit. Then an impact study is performed by including
the EicC pseudodata in our global fit. For EicC pseudodata,
the statistical uncertainties and dominant systematic uncer-
tainties are taken into account. The latter is mainly due to
the uncertainties from beam polarimetry and the uncer-
tainties of 3He nuclear effects.

Once the precise data are available from EicC, the
precision of the worm-gear distributions for up and down
quarks will be significantly improved. Meanwhile, it will
also provide the opportunity to extract the worm-gear
distributions of sea quarks. With much more expected
precise data from EicC, one can extract the TMDs utilizing
more flexible parametrizations and thus less biased deter-
mination of the nucleon spin structures. Owing to the high
precision and a wide phase space coverage of EicC
pseudodata, a more strict cut of δ, W, and W0 will be
feasible. It allows us to have cleaner selection of data
required by the TMD factorization. On the other hand, the
events in the transition region are also valuable to test the
matching between TMD and collinear regions [50–57].
The combination of polarized ep and e3He data at similar

FIG. 12. EicC projections of the first transverse moment of the worm-gear functions, g⊥ð1Þ
1T ðxÞ as defined in Eq. (63), for ū, d̄, s, and s̄

quarks at the scale Q ¼ 2 GeV. The uncertainty bands correspond to 68% CL estimated from the fits to 1000 replicas. The red bands
only contain statistical uncertainties, and the blue bands contain both statistical and systematic uncertainties.

TABLE VI. Results of parameters for EicC pseudodata fit. The central values are the average of the results from 1000 replicas, and the
uncertainties correspond to 68% CL. The values of ru and rd are provided in unit of GeV2 and the others are dimensionless. Results with
only statistical (Stat.) uncertainties are listed in the second and fifth columns, and those with both statistical and systematic
(Stat.þ Syst.) uncertainties are listed in the third and sixth columns.

Parameter Stat. Stat.þ Syst. Parameter Stat. Stat.þ Syst.

Nu 0.0209þ0.0006
−0.0006 0.0209þ0.0006

−0.0006 αu 12.46þ0.72
−0.67 12.47þ0.67

−0.64
Nd −0.0077þ0.0008

−0.0009 −0.0077þ0.0008
−0.0008 αd 13.01þ4.68

−2.70 12.94þ6.22
−2.83

Ns −0.00023þ0.00044
−0.00046 −0.00026þ0.00042

−0.00047 βu 4.46þ0.26
−0.25 4.46þ0.23

−0.23

Nū 0.00019þ0.00023
−0.00022 0.00020þ0.00024

−0.00021 βd 4.31þ1.47
−0.88 4.29þ1.80

−0.90

Nd̄ 0.00021þ0.00032
−0.00031 0.00022þ0.00034

−0.00032 ru 0.0067þ0.0050
−0.0048 0.0067þ0.0053

−0.0050
Ns̄ 0.00038þ0.00045

−0.00037 0.00038þ0.00045
−0.00037 rd 0.016þ0.025

−0.016 0.016þ0.024
−0.016
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kinematics are essential for a complete flavor separation.
It is important to remark that the kinematic coverage of
EicC will fill the gap between the on-going JLab-12 GeV
program and the approved Electron-Ion Collider to be built
at BNL. With all these facilities, we will be able to have a
complete physical picture of nucleon three-dimensional
structures, towards a profound understanding of strong
interactions.
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APPENDIX A: FOURIER TRANSFORMS
FOR TMDS

The Fourier transforms for TMDs are

f1ðx; kTÞ ¼
Z

d2bT

4π2
eibT ·kT f1ðx; bTÞ

¼
Z þ∞

0

bTdbT
2π

J0ðbTkTÞf1ðx; bTÞ; ðA1Þ

f1ðx; bTÞ ¼
Z

d2kTe−ibT ·kT f1ðx; kTÞ

¼ 2π

Z þ∞

0

kTdkTJ0ðbTkTÞf1ðx; kTÞ; ðA2Þ

kT
M

g⊥1Tðx;kTÞ¼
Z

d2bT

4π2
eibT ·kT ð−ibTMÞg⊥1Tðx;bTÞ;

g⊥1Tðx;kTÞ¼
M2

kT

Z þ∞

0

b2TdbT
2π

J1ðbTkTÞg⊥1Tðx;bTÞ; ðA3Þ

ð−iMbTÞg⊥1Tðx; bTÞ ¼
Z

d2kTe−ibT ·kT
kT
M

g⊥1Tðx; kTÞ;

g⊥1Tðx; bTÞ ¼
2π

M2bT

Z þ∞

0

k2TdkTJ1ðbTkTÞ

× g⊥1Tðx; kTÞ; ðA4Þ

D1ðz; kTÞ ¼
Z

d2bT

4π2
e−ibT ·kTD1ðz; bTÞ

¼
Z þ∞

0

bTdbT
2π

J0ðbTkTÞD1ðz; bTÞ; ðA5Þ

D1ðz; bTÞ ¼
Z

d2kTeibT ·kTD1ðz; kTÞ

¼ 2π

Z þ∞

0

kTdkTJ0ðbTkTÞD1ðz; kTÞ: ðA6Þ

APPENDIX B: EXPRESSIONS FOR ENERGY
EVOLUTION FACTOR

The DðQ; bTÞ is the rapidity anomalous dimension
(RAD). At large values of bT , the DðQ; bTÞ behaves like
a linear function of bT , which is suggested by some models
such as [58,59]. Therefore, we parametrize the RAD as

Dðμ; bTÞ ¼ Dresumðμ; b�TðbTÞÞ þ c0bTb�TðbTÞ; ðB1Þ

where the Dresumðμ; b�TðbTÞÞ is the resummed perturbative
expansion of RAD, and b�TðbTÞ take the form

b�TðbTÞ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=B
2
NP

p : ðB2Þ

At small values of bT , the term c0bTb�TðbTÞ can be ignored
and the termDresum is dominant, while at large values of bT ,
the D behave like c0BNPbT . We take BNP ¼ 1.93 GeV−1

and c0 ¼ 0.0391 GeV2 as determined in SV19 model [43].
The Dresum can be represented as

Dresumðμ; bTÞ ¼ −
Γ0

2β0
lnð1−XÞ þ as

2β0ð1−XÞ
�
−
β1Γ0

β0
ðlnð1−XÞ þXÞ þΓ1X

�
þ a2s
ð1−XÞ2

�
Γ0β

2
1

4β30
ðln2ð1−XÞ−X2Þ

þ β1Γ1

4β20
ðX2 − 2X − 2 lnð1−XÞÞ þΓ0β2

4β20
X2 −

Γ2

4β0
XðX − 2ÞþCFCA

�
404

27
− 14ζ3

�
−
112

27
TRNfCF

�
; ðB3Þ
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where X ¼ β0asLμ, βi are coefficients of anomaly dimen-
sion of strong coupling constant, which satisfies

μ2
dasðμÞ
dμ2

¼ −βðasÞ ¼ −
X∞
i¼0

aiþ2
s ðμÞβi: ðB4Þ

CA ¼ 3 and TR ¼ 1=2 are color factors of the SUð3Þ.
The Γi are coefficients of expansion of CUSP anomaly
dimension ΓcuspðμÞ, which is related with the integrability
condition (24) of the evolution equation. The Γi are
defined by

ΓcuspðμÞ ¼
X∞
i¼0

aiþ1
s Γi: ðB5Þ

With the CUSP anomaly dimension, the anomaly dimen-
sion γV can be written as

γFðμ; ζÞ ¼ ΓcuspðμÞ ln
�
μ2

ζ

�
− γVðμÞ; ðB6Þ

and the γVðμÞ can be expanded as

γVðμÞ ¼
X∞
i¼1

ansγi: ðB7Þ

The Γi and γi can be determined perturbatively, and up to
two-loop level,

Γ0 ¼ 4CF;

Γ1 ¼ 4CF

��
67

9
−
π2

3

�
CA −

20

9
TRNf

�
;

γ1 ¼ −6CF;

γ2 ¼ C2
Fð−3þ 4π2 − 48ζ3Þ

þ CFCA

�
−
961

27
−
11π2

3
þ 52ζ3

�

þ CFTRNf

�
260

27
þ 4π2

3

�
; ðB8Þ

where Nf is the number of active quark flavors and have
different values at different energy scales (see Table VII),
ζ3 ≈ 1.202 is the Apéry’s constant.
Due to that the nonperturbative corrections to the RAD

can not be ignored at large-bT , we need to use the exact
solution of ζμ at large-bT ; while at very small-bT , we use
the perturbative solution. In order to connect these two
region, we introduce a e−b

2
T=B

2
NP factor, and the ζμ is

expressed as [43]

ζμðbTÞ ¼ ζpertμ ðbTÞe
−

b2
T

B2
NP þ ζexactμ ðbTÞ

 
1 − e

−
b2
T

B2
NP

!
: ðB9Þ

Therefore, at b2T ≪ B2
NP, ζμ is dominantly given by per-

turbative solution, and at other regions, it will turn to exact
solution. We express the ζpertμ and ζexactμ here,

ζpertμ ðμ; bTÞ ¼
2μe−γE

bT
e−vðμ;bTÞ; ðB10Þ

ζexactμ ðμ; bTÞ ¼ μ2e−gðμ;bT Þ=Dðμ;bT Þ; ðB11Þ

where

vðμ; bTÞ ¼
γ1
Γ0

þ as

�
β0
12

L2
μ þ

γ2 þ d2ð0Þ
Γ0

−
γ1Γ1

Γ2
0

�
; ðB12Þ

and

gðμ; bTÞ ¼
1

as

Γ0

2β20

�
e−p − 1þ pþ as

�
β1
β0

�
e−p − 1þ p −

p2

2

�
−
Γ1

Γ0

ðe−p − 1þ pÞ þ β0γ1
Γ0

p

�

þ a2s

��
Γ2
1

Γ2
0

−
Γ2

Γ0

�
ðcoshp − 1Þþ

�
β1Γ1

β0Γ0

−
β2
β0

�
ðsinhp − pÞ þ

�
β0γ2
Γ0

−
β0γ1Γ1

Γ2
0

�
ðep − 1Þ

��
: ðB13Þ

In the gðμ; bTÞ, the p is

p ¼ 2β0Dðμ; bTÞ
Γ0

; ðB14Þ

and in the vðμ; bTÞ, the d2ð0Þ is

d2ð0Þ ¼ CFCA

�
404

27
− 14ζ3

�
−
112

27
TRNfCF: ðB15Þ

TABLE VII. Values of Nf at different values of energy scale.

μ ≤ 1.27 GeV Nf ¼ 3

1.27 < μ ≤ 4.18 GeV Nf ¼ 4

μ > 4.18 GeV Nf ¼ 5
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