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Polarization analysis of two baryons with various spin combinations
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We develop a systematic approach to analyze polarization correlations of two baryons B, B, produced in
the electron-positron annihilation process. With spin density matrices for arbitrary spin particles established
in the standard, the Cartesian, and the helicity forms, we provide analyses of polarization correlations for
two baryons with various spin combinations. This framework can be applied to determine the spin and the
parity of excited baryons, and therefore offers opportunities for the investigation of baryon spectrum and
transition form factors in present and future electron-positron annihilation experiments.
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I. INTRODUCTION

Quantum chromodynamics (QCD), as the accepted theory
for strong interactions, has been widely tested at high-energy
scales, where the strong coupling constant is small and one
can apply perturbation theory. However, nonperturbative
properties of QCD at low-energy scales continue to chal-
lenge our understanding [1]. The phenomenon of color
confinement obstructs the direct observation of elementary
degrees of freedom, i.e., quarks and gluons, making the
exploration of the spectrum and interactions of hadrons a
crucial and formidable frontier in modern particle physics.

The quark model is proven successful in describing
ordinary mesons and baryons as ¢gg and gqq states.
However, other configurations, including multiquarks,
glueballs, and hybrids, are not excluded by QCD.
Recently, some exotic mesons, which exhibit quantum
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numbers that cannot be constructed in a pure gg state,
were observed in experiments. These states have been
widely pursued and survive as candidates of glueballs or
hybrid mesons [2—16]. On the other hand, hybrid baryon
candidates [17-24] received much less attention because
of the lack of exotic properties for their spin and parity, J.
These baryons can be identified by investigating their
unique strong decay amplitudes or distinct production
patterns in processes like J/yw hadronic decays [25-29].

Currently, there is a gap between experimental measure-
ments and theoretical predictions of the baryon spectrum
[30-37], particularly concerning hyperons with increased
strangeness, such as the Z baryons. The identified =
baryons are markedly fewer than their X and A counter-
parts. Furthermore, for most discovered excited Z=*
states, the precise determination of spin and parity are
missing [16]. This is due to lower production rates
of E* and prior measurements focusing on individual =¥,
hindering simultaneous determinations of spin and parity
[38—45]. Electron-positron annihilation into two baryons
with opposite strangeness ensures strangeness conserva-
tion and generates adequate production cross sections.
Analyzing the polarization correlations of the two-baryon
system allows for concurrent assessment of both spin and
parity. Investigations into these processes at facilities like
BABAR [46], BESIII [47,48], Belle II [49] and the proposed
STCEF [50], offers valuable opportunities to study properties
of excited baryons.
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Previous studies on polarization correlations have
focused on baryons with spins of 1/2 or 3/2 and estab-
lished parity [51-61]. Building on these, the BESIII
Collaboration has reported a series of measurements on
ground-state octet and decuplet baryons [62—70]. For other
excited baryons, determining both parity and whether spin
exceeds 3/2 is essential. Spin density matrices, where we
decompose the polarization information, are developed in
two primary formats; the standard form [71-74] and the
Cartesian form [54,75-80]. The standard form allows for
the straightforward decomposition of matrices for high
spins but lacks clarity in interpreting spin components
(parameters). Conversely, the Cartesian form provides
clearer physical interpretations of spin components but
lacks a general method for decomposing matrices for high
spins. Although these forms are intrinsically consistent, a
direct method to associate their expressions remains absent.

Besides the spin and parity quantum numbers of indi-
vidual baryons, more information can be obtained from the
study of effective transition form factors, which describe
the production of various baryons via a virtual photon or
some resonance states [31,81-87]. Within the helicity
formalism, transition form factors are captured in the
helicity transition amplitudes and reflected in the polari-
zation correlation coefficients of two-baryon systems [88].
The electron-positron annihilation process, with its rich
two-baryon production channels, offers a fertile ground for
studying these form factors. Furthermore, it is possible to
search for CP violation by comparing the production
processes of B; B, and its conjugate B, B,, which is directly
linked to the asymmetry between matter and antimatter.

In this paper, we explore the polarization dynamics of the
ete™ — BB, process, where BB, are two baryons with
various potential spin combinations and parity combina-
tions. We decompose density matrices for any spin particles
in both standard and Cartesian formats and connect these
two forms by linking their expressions. We then give the
application of the spin density matrix in the helicity
formalism and represent the polarization correlations of
a two-baryon system with the polarization correlation
matrix. We outline the method to derive the polarization
correlations for baryons produced in electron-positron
annihilation. We introduce a parameter as the product
of the parities of the two baryons and detail the polarization
correlation matrices for the spin combinations of
(1/2,1/2), (1/2,3/2), and (1/2,5/2). In this connection,
it is also interesting to note that the polarization correlation
of baryons can be used to test the Bell’s inequality [§9-97].
This paper will spur studies of the Bell’s inequality for
high-spin baryons.

The polarization of baryons is usually deduced from decay
processes. The representations of baryon decays have been
widely discussed, e.g., in Refs. [51-54,73,74,88,98—108]. In
this paper, we present a systematic approach for expressing

the decay of any J” baryon with polarization transfer
matrices. For two-baryon systems with established spins
and parities, specific polarization correlation matrices and
decay formulas enable the measurement of polarization
correlations and transition form factors. Our analysis
extends to excited baryons with unknown spins and parities,
particularly the Z*. Taking the e e~ — Z~E*T process as an
example, we introduce a technique to identify the spin and
parity of the Z*F(Z*7).

In Sec. II, we introduce the methodology for decom-
posing spin density matrices for high spins, focusing on the
spin-5/2 case. In Sec. III, we present the production density
matrix of two baryons and detail the polarization correla-
tion matrices for the spin combinations of (1/2,1/2),
(1/2,3/2), and (1/2,5/2). In Sec. 1V, we outline the
general steps for calculating polarization transfer matrices
for baryon decays and demonstrate how to determine the
spin and parity of the Z*~ using the e* e~ — E~E** process
as an example. In Sec. V, we establish the correspondences
between helicity amplitudes and transition form factors for
the processes under consideration. In Sec. VI, we give a
brief summary.

I1. SPIN DENSITY MATRIX

In this section, we provide the general expressions for
polarization correlations of a two-baryon system. We
decompose the spin density matrix for any spin particles
in both standard and Cartesian forms, focusing on
constructing orthogonal and complete spin projection
matrices and the complete set of spin components
(parameters). We establish the association between these
forms by linking the matrices and their components.
As an example, we present the spin density matrix for
spin-5/2 particles. Moving to the application of the spin
density matrix within the helicity formalism, we express
it with polarization expansion coefficients and polariza-
tion projection matrices. We refine the selection of
polarization projection matrices to directly connect the
polarization expansion coefficients in the helicity for-
malism with spin components in the Cartesian form.
Finally, we present the spin density matrix for a two-
baryon system, capturing polarization information within
the polarization correlation matrix.

A. Decomposition of the spin density matrix

First, we review the decomposition of the spin density
matrix in the standard form. Using spherical tensor oper-
ators, the spin density matrix for any spin particles can be
represented as [74]

1 < 2s L . .
ps =57 (1+2s i Qu ) (1)
Tl (PO
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L are real multipole parameters and Q denote Hermitian
basm matrices. These matrices are defined as follows:

(=DM 2L+1
Mzl Oif =)
2L+1
L L
M=0, o5t =\[Z Tk,
-H)M 2L+1 L+
m<-1, gy =00 22 V(e @)

Here, (Tl]i.dL)mm’

Gordan coefficients. Then, we have Tr[Q}f Q5] =
(2s +1)/(2s). This approach enables the straightforward
decomposition of the spin density matrix for any spin
particles, where polarization information of particles is
contained in the multipole parameters rM In this form,
we can easily obtain the algebraic structure of the spin
projection matrices Q3. For M = 0, the projection matrices
are diagonal. As the absolute value of M increases, the
nonzero components of the matrices move further away from
the diagonal elements. Moreover, the value of M is directly

= (sm|sm'; LM) represent the Clebsch-

related to the rotation properties of Qf‘,'IL , which will be
discussed in more detail in the next section. Nonetheless,
the physical interpretations of these spin components are not
intuitive in this form.

We decompose the spin density matrix in the Cartesian
form to provide physical interpretations for spin compo-
nents. In Refs. [54,75-80], the decomposition of spin
density matrices for spin 1/2,1, and 3/2 particles has
been established. We introduce a universal method for
decomposing the density matrix for any spin particles.

For the spin density matrix of spin-s particles, a
(25 + 1) x (25 + 1) matrix satisfying the Hermiticity con-
dition p = pT, its general expression can be written as

P, = aol + alsilzil 4 a2Ti1izziliz + ...
+ astl'liz'“izgziliz"‘iZs, (3)

where X127 are traceless matrices and symmetric under
index permutation, and ay,...,a,, denote normalization
coefficients. We note that a summation is implied over
repeated indices. This convention applies to all formulas in
this paper. In the z-representation, £t can be expressed as

1
(zx)mm’ = 5 (ém,murl + 5erl,m’)\/(s + 1)(1’}’1 +m' = 1) - mm/’
i
(Zy)mm = E (5111,m’+1 - 5m+1.m’)\/(s + 1)(m +m' = l) - mml’
(Z) e = (5 + 1= m)8y 0, (4)
where m and m' run from 1 to 2s+ 1. These matrices satisfy algebraic relations XY/ — ¥/¥/ = jg;; Z* and

Yi%/§" = s(s + 1). The matrices £'1>» with different numbers of indices are designed to be orthogonal to each other.

They are constructed from X!, given by

1
(2n)!
1
(2n +1)!

Ziliz'“iZn —

Sitiaingl —

(z{ilziz CoSin) 4 gl g i) L Sl .5:'2,,_.,1'2"}),

(2{11212 N JAYREE S Clé{ilvizziszl& N Y CVRRE Cn5{i1’i25i3’i4 .. .5i2n—lvi2nzi2n+l}) , (5)

where {---} denotes the symmetrization of the indices, and the coefficients b; and c¢; are determined by the following

relations:

Tr[Z"I"Z'"i%} — O,
Tr[ziliZ‘“iz"“zjl} — O,

Tr[2i1i2“'i2n2jlzj2] =0,.
Tr[ziliz'“iZnHZle]Zzh] =0,.

[21117 EEYS YD Y-
{21112 RS YD W

. Zj2n—2] — 0’
szrl—]] — O' (6)

All indices in the above formulas can be taken as z in calculations for simplicity and without loss of generality. Moreover,

these matrices adhere to the relation §'t-2Xi12in = (),

The rank-n spin tensor T is constructed from 2n + 1 independent spin components,

X y
SL---LL? SL---LT’ SL---LT’ CEED)

ST ST (7)
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We use the convention that the y index appears at most
once. For any component, the total number of the subscripts
L and T is n, and the total number of the superscripts x and
y corresponds to the number of 7" subscripts. This notation
system indicates the symmetry of specific spin compo-
nents, directly reflected in the associated project matrices.

The spin components in Eq. (7) are defined using a set of
orthogonal spin projection matrices,

SeE=(mEE). SE=CED. ®)
where (Z0'"In) = Tr[p,X)' 7] and the matrices | 7 are
linear combmatlons of Z" n, For X related to ¥ 7%,

the z superscripts match the L subscripts, while the x and y
superscripts correspond to the 7' subscripts, with y appear-
ing an even number of times. For £'1» linked to ; 7, the
conditions are similar, but y occurs an odd number of times.

This notation system highlights the correlation between the
|

S’Ii’;{‘ — <2x' T> <ZX'"XZ"'7 +d ST
Sz)CTy _ <Z)1ixT)> _ <(_1)t—12y---yz-~z T NI

indices of spin components and those of the corresponding
matrices, indicating the dependencies of the physical
interpretations of the spin components on the orientation
of coordinate axes. For instance, the axis-dependent physi-
cal interpretations of the spin-3/2 components are detailed
in Ref. [54], revealing potential nonzero polarization
correlations for the spin-3/2 baryon pairs producing in
annihilation.

We then detail the specific expressions of the project
matrices. For longitudinal spin components, the represen-
tation is direct,

Sperr = (Zperr) = (Z¥75). )

For spin components with 2¢ — 1 transverse indices, the
project matrices are combinations of the X'1"» matrices
with 2¢ — 1 transverse indices,

. + d,_IZXymyZmZ>,
TIPS (10)

The coefficients for these expressions are determined by ensuring orthogonality with matrices X1/» that potentially have
{1,3,...,2t — 3} transverse indices,

TI‘[Z’Z'_':,XTXZZZXMXZWZ] — 0’
Tr[Z,Z::IX%ZZZ}“..);Z..AZ] _ 0’

TI‘[Z’Z xxzz7zzx~~-xz~-~z] 0
Tals) Eeeeae] = ..

[Zx xxzz ZXZ z] 0’
{Z)LC X)’zz ZyZ z] 0. (11)

For spin components with 2¢ transverse indices, the project matrices derive from combinations of the £/t *i» matrices with 2¢
transverse indices,

Si)%),c — < )lcd.x%> — <2x...xz...z + d zx.xyyzz + .. + d zy.yzz>’
Sz)fl} — <2{XT\’> — <( l)t ]ny--wz-"z + e FXXXY e YZT 4+ el_le-~xyz--~z>' (12)

The coefficients for these expressions are determined by ensuring orthogonality with matrices 1 that potentially have
{0,2,...,2t =2} or {2,4,...,2t — 2} transverse indices,

Tr[Zi':'XTXZZmexZ'“Z} _ O,
Tr[Zi:-..x%szzy...yz.uz} _ O,

Te[E e s = ), ...,
Tr[E) Y Ewsayed] = 0, ..,

Te[S} W seaee) =, (13)

In the last step, we derive the normalization coefficients a; in Eq. (3). The spin density matrix is typically normalized as
Tr[p,] = 1, resulting in ay = 1/(2s + 1). The determination of the normalization coefficient a, relies on the para-
metrization of 7%, We suggest a scheme as follows:

TS
= Z Tr[zll szll Jm]SLI"'T ’ (14)

.....

'To establish a more intuitive connection, we use the same subscript and superscript notation for the projection matrix X7 % and the

spin component S7. To avoid confusion between the subscript L in X7 and the superscript L in Q , one can alternatively use
2,..x to denote the prOJectlon matrix.
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where the summation ensures that SZ'T can cover all
possible spin components as detailed in Eq. (7). Then, the
normalization coefficient before 771" is given by

Dy, (Tr[Zhizes])2

The total degree of polarization from the spin density
matrix is given by

(15)

a, =

-7 \/ 25 + DTrlp?] -

B V2s + 1
V2s

b ay T i) (16

(alsilsil + azTilizTiliz 4+ ...

where d €0, 1].

The methodology above provides a generalized approach
for decomposing the spin density matrix of any spin
particles in the Cartesian form. To bridge it with the
standard form, we establish connections for projection
matrices between these forms,

M>1,  ay M*Z)Ii)%’
MZO, a(S)L 0 :ZL .L»
M<-1, afoyF =3, (17)

The total number and the transverse (7)) number of the
subscnpts of matrices X} % and ¥, 7 match the indices L,

M of Q}}. The coefficients a}/" are determined by
s,L 2s xxx S L
M>1, ay —2S+1TT[ZL...TQM},

) 2
M =0, a‘(‘)‘L —_

s,.L
il [ZL'"LQB ]

2
—melsiyei] as)

M<-l =5 T

Then, we obtain the relations of the spin components
(parameters) between these two forms, given by

s,L s.L

M>1,  ayfef =S5,
M:O, af)Lt(S)L —SL..L,
M<-1, ayfof =572 (19)

B. Spin density matrix of spin-5/2 particles

As an example and for later use, we present the spin
density matrix for spin-5/2 particles. The standard form
expression, directly derived from Eq. (1), is omitted for

brevity. We focus on the expressions in the Cartesian form
and link them with counterparts in the standard form.

In the Cartesian form, the spin-5/2 density matrix is
represented as

1 2 1 |
.y Slzt szzu Tzﬂczz]k
Psp =351 350 T5g T T g
+LTijklzijkl_|__Tijklm2ijklm (20)

360 450

where X/, XU, 3k ikl and kM are complete, ortho-
normal, and Hermitian basis matrices. the matrices X! in
the S, representation are determined by Eq. (4), detailed
in Appendix A. Following Eq. (5), the remaining basis
matrices are constructed from X,

o1, 35 ..
Y= —yliygjy — = slidiy, (21)
2 24
Sijk — z{lzjzk} - 5{112k} 22
6 12 (22)
Sijkl — Z{zzjzkzl} _ 95 5{1]2k2[} b= 27 5{1/5k l}[
24 336 128
(23)
. 1 . 29 ..
ijkim — _~  s{ivjykyiym} _ =7 s{ijykylym}
z 202 PIDIDIDN 4325 PRDIDY
11567
——gliigkiymt, 24
120960 (24)

Coefficients in these formulas are derived according to
Eq. (6). The polarization information is defined through
the spin vector S’ and the spin tensors T/, Tk, Tk and
Tiikm constituting 35 independent spin components. These
spin components include,

S8, 8%, S, (25)
TY:Spp. Sir Sirs S¥r. Strs (26)
Tijk SLLL’ SLLT’ SLLT’ SLTT’ SLTT’ )TC")?T’ S)TC"?T’ (27)

ijkl . X Y XX Xy
T Spire,s SLLLT! SLLLT’ SLLTT’ SLLTT’

XXX XXy XXXX XXXY
SLTTT’ SLTTT’ STTTT’ ST’I‘TT’ (28)

ijkim . X y xXx xy XXX
T . SLLLLL? SLLLLT’ SLLLLT’ SLLLTT’ SLLLTT’ SLLTTT’

XXy XXXY XXXXY
Siirrrs SCitrrs Scrrrrs Stitir Strrrr- - (29)
The indices of these spin components indicate the relation
between their physical interpretations and the orientations
of the coordinate axes. Detailed definitions and physical
interpretations of these spin components are provided in

034034-5
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Appendix A. The coefficients in Eq. (20) are determined
by Eq. (15).

The relations between the spin projection matrices in
the standard form and those in Cartesian form are deter-
mined by Eq. (17), and the correlations of spin components
are inferred by Eq. (19). The coefficients a};" are presented
in Appendix A.

C. Application of the spin density matrices
in helicity formalism

This paper focuses on analyzing the polarization of
particles within the helicity formalism. Here, the spin
density matrix is generally expressed as

4s(s+1)

Z Sz, (30)

where S, denote the polarization expansion coefficients,
and X, are the polarization projection matrices. In Sec. Il A,
we note that spin projection matrices are more explicitly
defined in the standard form, whereas the Cartesian form
offers clearer physical interpretations for spin components.
To deepen our understanding of the spin density matrix
within the helicity formalism, we aim to establish con-

nections between X, and Q‘,‘QL . Additionally, we present the|

ZO’ Zl’ 225 235 I’

Seo 5 % I | 1) V3e)*
4 3/2.2

28’ 29’ Z1()7 Z117 4 Q_2 s

Z127 Z137 Z147 Z15 ;/2.3

where Q%z

correlations between S,
components.

For a particle with spin 1/2, the formulation in Eq. (30)
includes,

and the Cartesian form spin

S/l - {50751,52,53}, (31)
1
25{10 0y.0,}, (32)

where o,, 6,, and o, are the Pauli matrices. Then, the

relation between %, and QMZL is given by

——{I QI/ZI’QI/IZI (1)/2.1}. (33)
The trace of the density matrix, Tr[p,|, equals S, and
corresponds to the cross section, usually not normalized
to 1. To align with conventional spin components in the
Cartesian form, the polarization expansion coefficients are
divided by S, resulting in

{51.55.83}/So = {S7.57. 5.} (34)

For spin-3/2 particles, X, can be chosen from the basis

matrices 13‘4/2‘L [53]. However, we prefer the refined

selection scheme [54,109],

2\/_ Q3/2 I 2\/_ Q3/2 L @Qi/lz,l’

?/2,2’ Q3_/12‘2, ;/2.2’ .
2\/‘ Q3/2 3, \/—Qz/z 3, in/lz.37 ’
Q3_/22,3’ \/' Q%/2 3 %5 Q3_/32,3

L are defined in Eq. (2). The specific expressions of %, are provided in Appendix B. In this scheme, S,

correspond directly to the Cartesian form spin components, expressed as

SO, Sl? S27 S37
i S4e S50 Se. 87,

So | Ss. So.  Si0. Su.
Si2, 813, S Sis

15 SL? S)]C"v S)]"v

X y XX
SLL’ SLT’ SLT’ STT’

(36)

y
SLLT’
YXX

STTT

X
SLLT’
XXX
STTT’

Xy
Srrs Siie

XX Xy
SL TT> SL TT>

For higher spin states, we also aim to establish direct correspondences between S, and the spin components in the
Cartesian form. For this purpose, the projection matrices can be chosen as

2Ly m =

(25 + Day,

2s
T O (37)

where a‘}i,'IL is derived from Eq. (18). The correspondences between S, and the Cartesian form spin components are then

given by

EO{SL(L+I)—L7

SL(LH)a Y SL(L+1)+L} = {S;XTy’ e

Sy oo SEEEY, (38)

034034-6
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The total degree of polarization is

-5 \/ 25 + 1)Tr[p?] —

Z > (SLQ%*M)Z- (39)

=1 M=-L

In the method above, we introduce coefficients between
¥ and Q , which allows us to establish a direct
correspondence between S, and the spin components in
the Cartesian form Additionally, an alternative approach

aligns ¥ with Q , as demonstrated in the analysis for
spin-3/2 particles detailed in Ref. [53]. This method
introduces specific coefficients to bridge S, with the
Cartesian form spin components. Our selection scheme
simplifies their application across different research areas,
as polarization expansion coefficients or spin components

often emerge as outcomes in various studies.

Using the coefficients a%u in Appendix A, one can

detail all polarization projection matrices for spin-5/2
particles, achieving a full decomposition of the spin density
matrix. The polarization description of spin-5/2 particles is
much more complex than that of spin-1/2 particles with
only three polarization coefficients or spin-3/2 particles
with 15 polarization coefficients. We will focus on a
selected subset of these spin components.

In this study, we investigate the decay of a spin-5/2
excited baryon into a spin-1/2 baryon and a pseudoscalar
meson, a common decay mode for these baryons. We
average over the azimuthal angle ¢ of the daughter baryon
to evaluate the influence of the parent baryon polarization
on the polar angle @ distribution of the daughter baryon. In
this case, only the longitudinal spin components S;, S;;,
Srirs Sprrr, and Sy, are relevant. Consequently, for
spin-5/2 baryons, we concentrate primarily on these
components. According to Eq. (37), the corresponding
polarization projection matrices are defined as

L J_ V70

Y=ol % — 5/2.1. s, —= 5/22
0= 1= Q 9
:5\/’Q5/23 :V210Q5/2.4 :VZIOQS/ZS
== T08 T T 44 20 0 0 <0
(40)
where QS/ L is defined in Eq. (2). The specific expressions of

these matrices are presented in Appendix B. The associated
polarization expansion coefficients are expressed as

1
S_O{SleZv S37S47SS } = {SLv SLL7SLLL7SLLLLv SLLLLL}'

(41)

In the preceding analysis, we have already outlined the
polarization representation for individual particles. We
concentrates on the polarization description for the pro-
duction of two baryons, B, B,. The spin density matrix of a
two-baryon system is represented by

> SuE L,
u.v=0

where S, is the polarization correlation matrix, ¥, and %,
are the polarization projection matrices for the baryon B,
and antibaryon B,, respectively.

PBB, = (42)

III. PRODUCTION PROCESS

In this section, we provide the method to calculate S, for
BB, produced in ete~ annihilation. Within the helicity
formalism, we detail the production density matrix of B, B,.
This matrix depends on the helicity amplitudes A, ; and
corresponds to the spin density matrix of the two-baryon
system. We identify nonzero polarization correlation com-
ponents based on their physical properties. For the con-
jugate process B, B,, we derive the polarization correlations
by detailing the behavior of helicity amplitudes under CP
transformation. This enables the research for the CP-
violation signals by comparing helicity amplitudes between
these conjugate processes. In this paper, we only discuss
the two-body baryon production processes. For three-body
production processes involving two baryons, the polariza-
tion correlations between two baryons are more compli-
cated [110,111]. We leave the analysis of three-body or
multibody production processes involving high-spin bary-
ons to future studies.

In experimental searches for excited baryons, the process
typically involves detecting one ground state baryon while
reconstructing the invariant mass spectrum of the recoiled
baryon. Therefore, we conduct detailed analyses for spin
combinations of (1/2,1/2), (1/2,3/2), and (1/2,5/2)
in two-body productions. We derive specific expressions
of A, ;, introduce parametrization schemes for them, and
detail the corresponding polarization correlation matrices.
Then we establish numerical boundaries for the polariza-
tion correlation coefficients.

A. General framework

Firstly, we introduce the coordinate systems and related
angles in the helicity formalism, as shown in Fig. 1. We
consider the production of BB, in the c.m. frame of the
initial electron and positron. The positron moving direction
is taken as the z-axis of the c.m. frame. The helicity angle
of By, 05, is defined as the angle between the B; and the
positron. For the B; coordinate system, where we project its
polarization components, zp, aligns with its moving direc-
tion, yp, is defined by the cross product of the moving
directions of the positron and By, and xp, is determined by
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B, rest frame

FIG. 1.

Definition of coordinate systems and angles in the helicity formalism. The helicity angle 6 for the B, B, production process is

the angle between B, and the positron. The decay angles 0p, and ¢y, for the decay process, B; — Bz, are the polar and azimuthal

angles of Bj in B, rest frame.

the right-hand rule. For the B, coordinate system, we
have {%3,.95,.25,} = {%5,. —95,. 25}

The coordinate systems and decay angles for baryon
decay processes are defined in the rest frame of the parent
particle. Taking the decay process B; — Bsz as an exam-
ple, the decay angles 0 and ¢p, represent the polar and
azimuthal angles of Bj; in the rest frame of B;. The
coordinate system for Bj is defined as follows. Zp is
aligned with the direction of its motion, 5, is the cross
product of Z and Zp,, and xp, is determined using the
right-hand rule. This approach to define helicity systems
and angles is similarly applied to multistep decays or the
decays of B,, see for instance in [54].

Under the one-photon exchange approximation, the
production density matrix is given by [53]

A ,%2;1’1 A
BB,

PRy !
® 1—A2 A =4
< Ay Ay 1P ; (43)

where A; ; and A 2.4, Tepresent the transition amplitudes

with helicities 4,, 4} for By and A,, 2 for B,. The matrix p,
is given by

pi(05) = > DL(0.05.0D1(0.05.0).  (44)
k==+1

where D} (0,05, 0) denotes the Wigner D-matrix. k = %1
is the helicity difference between the positron and electron.
For unpolarized electron-positron beams, a summation over
k ensures the helicity conservation in the e~e™ annihilation
into a virtual photon.

We focus on the production of B;B, via intermediate
states with JP» = 17, such as y* or vector mesons like .
Considering parity conservation in the decay process
v*(w) — B, B,, the transition amplitudes A, ;, as defined
in Eq. (43), follow the relationship,

J?

Ay, = PBlPBZPm(_I)J_S]_S2A—/11,—Az’ (45)

where J, 51, and s, denote the spins of y*(y), B;, and B,
respectively.

The production matrix corresponds to the two-baryon
spin density matrix detailed in Eq. (46). So that, we can
obtain the polarization correlation matrix as follows:

() 05)
Sw = Tr[(%, ® %), ® L)

(46)

where %, and X, are detailed in Egs. (33), (35), and (37).

We formulate the selection rule for the possible compo-
nents of S, based on their properties. This is an extended
analysis for the method provided in Ref. [54]. When
examining the properties of projection matrices, the sub-
script M of Q;,‘IL represents the rotation properties, as
mentioned in Sec. Il A. The production of B,B, can be
treated as the Wick helicity rotation or Wigner rotation
from the intermediate states into B;B, [74,77,88]. In our
analysis, we consider the spin-1 intermediate states. The
rotation difference is limited to a maximum of 2. So certain
components are forbidden when the associated matrices

W satisfy the condition ||Mp |—|Mp,||>2. Using
Egs. (33), (35), and (37), we can systematically exclude
these prohibited components. Furthermore, according to the
established coordinate systems in Fig. 1, parity conservation
aligns with the y-axis, whereas the x- and z-axes are
associated with parity violation [54]. Based on the corre-
spondence between the polarization coefficients and the
Cartesian form spin components, detailed in Egs. (34), (36),
and (38), when the total number of the longitudinal and x
indices is even, the components satisfy parity conservation
and are allowed; otherwise, they are prohibited.

The properties of S, could be understood from the
perspective of the spins of B;B,. As spins increase, we
obtain a greater variety of A; ; and an enriched collection of
%, and X,. According to Eqs. (43) and (46), it results in a
broader array of S, with more complex dependencies on
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the production angle. This mechanism is crucial for
identifying the spin and parity of excited baryons through
polarization correlations.

For the conjugate process et e~ — B, B,, similar results
can be obtained by applying a CP transformation to the
previously analyzed process. The behavior of the helicity
amplitudes under the CP transformation is represented by

B, B, CPtransform B B
R ! (#7)

A
For processes where CP is conserved, this formula
becomes an equality. CP-violation tests can be conducted
by comparing helicity amplitudes between these conjugate
production processes.

B. Baryons with spin combination of (1/2, 1/2)

We consider the production process that the J* of B, and
B, are taken as ()P and (1)”% respectively. The anti-
baryon B, has an opposite parity to its corresponding
baryon B,, P, = —Pp,. The product of parities of B, and

B, is defined as
PBIBZZPB]PBZZ_PB]PBZ‘ (48)

Considering parity conservation, as detailed in (45), out of
the four possible helicity transition amplitudes, two are
independent,

hy = A1 = Ppg,A1/2-1)2,
hy =Ay2_172 = Pp,s,A-1)2.1)2- (49)

The transition amplitude matrix is given by

hy hy
Pg p,hy  Pgph

When B, is the corresponding antibaryon of B, Py B, =1
and Eq. (50) is reduced to the form presented in Ref. [53].

By substituting Eq. (50) into Egs. (43) and (46), one
can identify the polarization correlations. With the

parametrization h; = /1 —aq, /2 and hy, = \/1 +a,, X

exp[—iqﬁ]]/ﬂ, we obtain,

for u =0, 3,

o C;w
Sy = (51)
PBIBQC;HJ for//l: 1,2,

where the coefficients C,, are functions of the angle 05
and parameters a,, and ¢;. The nonzero components are
given by

Coo = 1 + a,cos%0p,

a
j=)
I

1 — aj, cos O sin G sin ¢y,

Cl.l = Sin293,

Ci;= \/It;icos 65 sin G5 cos ¢y,

Cyo = —Coa.

Crp =a,Cyy,

Gy =—-Ci3.

Cs; = —a, — cos’0p. (52)

For the conjugate process e*e~ — B B,, similar results
can be obtained by applying a CP transformation to the
previously analyzed process. Considering both CP and
parity conservation, as detailed in Egs. (47) and (45), we
obtain the helicity amplitude matrix for B, B, production as

A = P gAY I
zation correlation matrix for B, B,, where coefficients have
the similar expressions as those for B;B,, except for
substituting €z with 63. Here, 03 is the angle between
the antibaryon B, and the positron. Under CP conservation,
the parameters @, and ¢, should remain consistent for
these conjugate production processes. By comparing these
parameters in B;B, and BB, production processes, one
can precisely test CP violation. For example, the BESIII
Collaboration reported the first measurement of CP vio-
lation by comparing the processes ete” — AL and
ete” —» AX [70].

It is worth mentioning that we apply a uniform
parametrization scheme for the helicity amplitudes in
both BB, and B,B, production processes. This method
ensures consistency in parameters @, and ¢; across
them. This differs from Ref. [70], where helicity amplitudes
for AX? and AZX" were parametrized differently.
Specifically, 7™ = ,/T+ a, exp[-i$}*'] and hy* =
1+ a,expl—i(z - 4)’1\20)], leading to a phase relation
=+ =

Considering the range of a,,, whichis -1 < a,, < 1, one
can determine the boundaries for the polarization correla-
tions in Eq. (51). We define the following normalized
polarization coefficients,

Sy = 820/S00 = —S02/S0.0

Se = S13/800 = =S83.1/S00-

See = S1.1/S00-

Syy = 822/S00-

Sez = 833/S00- (53)

The boundaries for these normalized components are
illustrated in Fig. 2. These boundaries show the natural

B This allows us to derive the polari-
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FIG. 2. Boundaries of the normalization polarization coefficients for the spin combination of (1/2,1/2).

constraints for the polarization correlations and would
broaden our understanding of the polarization-related
physical mechanisms in this process.

C. Baryons with spin combination of (1/2, 3/2)

For the case where B; is spin 1/2 and B, is spin 3/2, the
one-photon approximation constrain the helicity transitions
|4 — 45| < 1. Considering parity conservation, as detailed
in (45), only three independent transition amplitudes are
obtained,

hy =Ay212 = —Pp,,A1/2-1)2,
hy =Aya-172 = —Pp,B,A1)21)2,
hy = A3 = —Ppp,A_1/2,-3/2- (54)

In terms of the transition amplitude matrix form, we have

h h
Ay = ( 3 1
0 _PBlehZ

h 0
: > (55)
—Pg g,hi  —Pgp,h3

The polarization correlation matrix can be obtained by
substituting Eq. (55) into Egs. (43) and (46). With the
following parametrizations,

1
h] :E\/ 1 —awexp[iqﬁ,],

V2

]’l2 = 7 1 + (IW -y,
V2 .

hy = —=/arexp i3], (56)

where =1 <, <1 and 0 < <1+ a, we have
C. for u=0,3,
Sw=13 " 8 (57)

PB]BQCMD fOI',u: ],2,

where coefficients C,,, are functions of the angle 65 and
parameters @, a1, @1, ¢,

Coo = 1 + a,cos?0p,

Cos = 41‘1 (2D§ + \/§D;) sin 20,
Coa =—(1—ay) + (a1 — &, )cos*Op,
Cos = ?Dg sin 20,

Co7 = V3D5sin%0y,

1
Con=-15 (301 = V3D3 ) sin 20
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Co.13 = —V/3D3sin?0,

Ci,= —%Df sin 265,

Cir= —%(2 — a)sin’@ — \ng'(3 + cos 20;),
Cig= ?Dg@ + cos 203),

Cig = ——= D} sin 205,

Ci9 = == Df sin 20y,

Ci1o %(2 — ay)sin“fy _1_\/0§D§(3 + cos203),
Ci12 = ——D§sin 20,

C| 14 = —=a;sin’fp,

1 3
Caz = = (o — 2a,,)sin*0p + £D§(3 + cos203),

2 4
|
C2.4 = —EDi sin 293,
3
C2,5 = {Dé(:& + cos 293),

3
Cry=— %D; $in 205,

3 3
C2,11 = E (20,,, — (11>Sin293 + \1/—0_D§(3 + cos 263),
3
Cyps = *2[ ¢ sin 20,

3
C2’15 = E(Z]Sil’lzgg,
1 1 5
G = _E(a"’ —2ay) —5(1 —2a)cos*Op,
1
Cyn = v (2Df - \@DE) sin 260,

3
Cr = gz); sin 20,

Csg = —V/3D3sin’6y,

3 3

Cso = m (3 — a;)cos?Oz + 0 (Ba, —ay),
|

Cii0=15 (3D§ + \/§D§> 5in 20,

Cs.1p = V3D5sin%0;.

The D-type functions above are defined as

(58)

D} =/(1-a,)(1 +a, - a)singy,

Df = /(1 -a,)(1+a, —ar)cos i,

D = /(1 —a,)sin (g1 = ¢3),

D5 = \Jan(1 =) cos (hy = b3).

Dy = \/ay(1 + a, — ) sin s,

D§ = \Jay (1 + @, — @) cos . (59)

For the conjugate process ee™ — B B,, the helicity
amplitude matrix is obtained by using Af}Bz =—Py, BzAf}Bz
due to the CP and parity conservation, as detailed in
Eqs. (47) and (45). Correspondingly, the polarization
correlation coefficients for B, B, are consistent with those
for B, B,, where 0 should be replaced by @p. Parameters,
@y, ay, ¢y, ¢, for these conjugate processes should be
consistent under CP conservation.

Normalizing the polarization correlations in Eq. (57)
by the cross section term S, one can obtain normalized
polarization correlation coefficients. By considering the
ranges of a,, and , specified in Eq. (56), we determine the
boundaries for these normalized correlations. In Fig. 3, we
illustrate the boundaries for the components only associ-
ated with the polarization of B,. We can find that the
constraints for polarization of the spin-3/2 baryons
differ from those in the spin-3/2 baryon pairs production
process [54]. This difference shows the unique polarization
transfer mechanisms for the production of the spin-3/2
baryons with different associated baryons.

D. Baryons with spin combination of (1/2,5/2)

For the production process of two baryons with spin 1/2
and spin 5/2, the analysis is similar to that in the above
subsections. Considering parity conservation, as detailed
in (45), there are three independent helicity transition
amplitudes under the constraint of helicity transitions
4= A| <1,

hy = Ay212 = Pgs,A-1/2-125
hy = Ayp-172 = Ppp,A121)2:
hy = A1pp30 = Py p,A1/2.-3)2- (60)
The transition amplitude matrix can be expressed as

0 hy Iy h, 0 0
' 0 O PBleh2 PB]B?_hl PBleh3 0

For simplicity, we are focusing solely on the longitudinal
polarization components of the spin-5/2 baryon. By
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FIG. 3. Boundaries of the normalization polarization coefficients only associated with the polarization of B, for the spin combination
of (1/2, 3/2), where S = So3/S00, S = So4/S0.0s Sir = Sos5/S00> S¥r = S0.1/S0.0> St = Soa1/S00» and Sprr = So.13/So00-

substituting Eq. (61) into Egs. (43) and (46), the polari- 1 .
zation correlation matrix is given by Cra= _7Df sin 20,
1 1
Cu for u =0, 3, Csy = —= (1 =2a;)cos’0g — = (a, — 2a;),
S;w—{ W H (62) 3.1 2( 1) B 2( w 1)
PB]BZCﬂD for//l = 1,2, 3 3
C3 3= = (8 — 110!1)C08293 + — (80(1,, - 11&1),
. . ’ 10 10
where the coefficients C,, are functions of 0p, a,, a, 100 75
and ¢1, given by C3’5 :i(l —ay,) —5(4—01)(3 +C0$293>, (63)
Coo=1+ awCOSZQB’ where the D-type functions are defined in Eq. (59). For the
1 1 conjugate process eTe~ — B;B,, the helicity amplitude
Con = —= (8 = 3ay) — = (8a, — 3a)cos?0y, Jnede p e P
' 3 3 matrix follows the relation A;;™* = Pp p,A;’;”*. So polari-
Cou = 9( 4—5a,) + 6 (4a, — 5a;)c 05205, zation cqnelation coefficients for BIBZ align with those for
T 7 BB, with the replacement of # with 3. Under the CP
1 .
C1\ = ~D¢ sin 205, conselzrvatlon_, the parameters ay,, ar, ¢, and ¢, should
T4 remain consistent across these conjugate processes.
6 . . Taking into account the ranges of a,, and «;, one can
Cis = ‘gD 1 5in 20, determine the boundaries for the normalized polarization
o correlations in Eq. (62). In Fig. 4, we show the boundaries
Cis= ﬁDi sin 20p, for components solely related to the polarization of B,.
1 .
Coo = =5 Dysin20p. IV. DECAY CHAINS
Cyy = 4 D? sin26, In this section, we explore the technique for experimental

measurements of polarization correlations through the
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FIG. 4. Boundaries of the normalization polarization coefficients only associated with the polarization of B, for the spin combination

of (1/2,5/2), where SLL = S0,2/SO.O and SLLLL = S0’4/S0.0.

decay processes. Baryon decay has been widely dis-
cussed, and the expressions can be categorized into three
types: Cartesian spin components [54,99,100], multipole
parameters [51,73,101-104] or real multipole parameters
[53,74], and spin density matrix elements [52,105-108].
We follow the first type, and one can transform the
expressions into other types according to the relations
given in Sec. II. The analysis presented in this section is
an extension of the work in Refs. [53,54]. Within the
helicity formalism, baryon decay can be represented with
the polarization transfer matrix [53,54]. We outline the
general steps to calculate the polarization transfer matrix
for the spin-J parent baryon, focusing on the predominant
decay pathway involving a transition to a spin-1/2 baryon
and a spin-0 pseudoscalar meson. We present the helicity
amplitudes for the decay process, analyze their parity, and
relate them to the canonical amplitudes. We detail decay
expressions for baryons with spin 1/2, 3/2, or 5/2 within
this decay mode.

For two-baryon systems with established spins and
parities, we give the joint angular distribution of all
products, enabling the measurement of the associated
parameters. Our analysis extends to excited baryons with
unknown spins and parities, particularly the Z*. Identifying
spin and parity is crucial. Taking the ete™ — E-E*F
process as an example, we introduce a technique to identify
the spin and parity of the H**(”* ). Variations in spin and
parity lead to distinct changes in the joint angular distri-
bution of the final products. We specify the moments of the
angular distributions sensitive to the spin and parity.

In the moment analysis, different moments are projected
onto the polarization correlations of two baryons through
the corresponding polarization transfer matrices. We note
that there are other forms of moment analysis for single-
baryon decays [51,73,101-104], in which the angular
distribution of final-state particles is described with multi-
pole and decay multipole parameters multiplied by the
corresponding Wigner-D functions. These parameters
thus represent the independent moments of the angular

distribution, which can be projected using the corre-
sponding Wigner-D functions. This method of moment
analysis is widely used in spin and parity analysis via
the decay of a single particle [38—44,112—-116]. In our
approach, we focus on the polarization correlations of
two baryons, which allows for the projection of numerous
moments and accurate determination of the spin and the
parity of excited baryons. An alternative approach to the
moment analysis using multipole and decay multipole
parameters in the polarization correlations of two baryons
is left for future studies.

A. General description

For the decay process J*# —1/2% +07, the spin density
matrix of the daughter baryon is expressed as [53,54]

pln =" S,a,%, (64)
y7R%

where S, denote the polarization coefficients of the parent
baryon. a,, represents the polarization transfer matrix,
which describes the polarization transfer from a spin-J
parent baryon to a spin-1/2 daughter baryon. Typically,
different symbols are assigned to the polarization transfer
matrices based on the spin of the parent particle. For
instance, b, is used for parent particles with spin 3/2 [54],
while d,, is introduced for those with spin 5/2. In the above
formula, a,, is used as a universal symbol, with specific
substitutions made according to the spin of the parent
particle.

In general, the polarization transfer matrix a,,

expressed as

can be

2J—|—1
Ay =

)i/irDJ*( )sz/W(Q),
Kk AN

(65)

034034-13



ZHANG, PING, LIU, SONG, YANG, and ZHOU

PHYS. REV. D 110, 034034 (2024)

where D/, (Q) =D/,(0.0.¢) denotes the Wigner
D-matrix with J is the spin of the parent baryon, and
B,, B, represent the helicity amplitudes for this decay
process. The variables x, x” and 4, A’ denote the helicities of
the parent and daughter baryons, while ¥, and %, are their
polarization projection matrices respectively.

We explore the properties of polarization transfer matri-
ces from the perspective of spins. In our analysis, the spins
of the final products are limited to 1/2 and 0. B, and B are
distinctly constrained. However, the calculation of polari-
zation transfer matrices involves the polarization projection
matrices of the parent particle and the Wigner D-matrices,
which are dependent on the spin of the parent particle. An
increase in the spin enriches the transfer matrix with more
elements and more dependencies on the angles of the final
products. This, combined with the effects in the production
process, establishes a basis for identifying the spins and
parities of excited state particles by analyzing the angular
distribution of all products.

The relation between the helicity amplitudes B, and the
canonical amplitudes A; is given by [88]

2L+ 1\1/2
B, = L,0;S,AJ, )AL, 66
=Y () s 6

where (L,0;S,4|J,4) denotes the Clebsch-Gordan coef-
ficients, which involve spin of the parent particle J, the spin
of the daughter particle S, and the orbital angular momen-
tum L. Canonical amplitudes, labeled as Ag, Ap, Ap, Ap...,
represent different angular momentum states. For the decay
process J5 — 1/2% + 07, we have

B_yjy =— (A1 +Asii))s

o5 S

Bip =~ (A1 —Asir)2)- (67)

These amplitudes account for both parity-conserving and
parity-violating effects. The conservation of parity in these
decays is determined by the relationship,

By, = PPy P, (-1)"""2B_, ), (68)

with Pg, Pg, and P,, being the parities of the parent and
daughter particles, and J, s, and s, being their spins. In our
case, this means that,

By = (=1)/T12PyB_ 5. (69)

This relation indicates that A;_,/, aligns with the parity-
conserving aspect for (—1)’*1/2P5 =1 and the parity-
violating aspect for (—1)/+!/2P = —1. Meanwhile, A,
corresponds to parity-conserving aspect for (—=1)/+1/2Py =
—1 and the parity-violating aspect for (—=1)’+1/2P; = 1.

Under the normalization condition |A;_ 5> +[A 12> =
|B_12*+|Bi)2|* =1, we parametrize these amplitudes as
follows [99]:

= —2Re|:Aj_1/2AJ+1/2] = |B1/2|2 - ‘B_l/2|2’
Bp = _2Im[Aj_l/2A,+1/2] = 21m[31/23i1/2}’
YD = |Aj—1/2|2_ |AJ+1/2|2 :2Re[Bl/ZB*_1/2j|7 (70)

where fp = /1 — a3 singp, and yp, = /1 — a2 cos ¢p.
By substituting Egs. (33), (35), and (40) into Eq. (65)
respectively, we derive specific expressions for the polariza-
tion transfer matrices. The matrices a,, and b, for parent
particles with spins 1/2 and 3/2 are already provided in
Refs. [53,54] and are included in Appendix C. Additionally,
we provide expressions for the polarization transfer matrix
d,,, which relates to the longitudinal polarization components
of the spin-5/2 parent baryons, also detailed in Appendix C. It
is worth noting that ap, fip, and yp serve as hyperon decay
parameters in weak decay processes. In strong decay proc-
esses, where parity is conserved, these parameters are set to
ap =0, pp=0,and yp = (=1)/+1/2Pg.

Combining the polarization correlations with the decay
transfer matrices, the joint angular distribution of the final
products can be represented as

We S S spPabialy, (71)

#=0 v=0

B]Z

where S, and ayo are determined according to the

;40’
spin comblnatlons of B;B,. When dealing with cascade

decays one can simply extend the decay chains, such as

- Zﬂz Ha aW‘Z T
splns and parities, applying the relevant formulas allows for
the measurement of the corresponding polarization corre-
lation coefficients, form factors, decay parameters, and
SO on.

In our analysis, we also encounter excited states with
unknown spins and parities, especially when studying the
production of the E*. By substituting the polarization
correlation matrices into Eq. (71) and applying the maxi-
mum likelihood fit method, one can identify the specific
matrix that best fits the experimental data. As the spin of the
excited baryon increases, the underlying physical mecha-
nism results in a more complex angular dependence pattern
of the joint angular distribution of the final products.
Intuitively, this complexity enables us to extract a broader
range of moments of angular distribution. In the following
subsection, we will explicitly detail the moments sensitive
to the spins and parities of the excited baryons.

B . .
‘ a,'y- For processes with determined
n
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B. Determination of the spin and parity of E*

Taking the process ete™ — ZE*" as an example, we
show how to determine the spin and parity of the Z** (Z*7).
The primary decay mode of a Z** generally falls into two
cases; =7 — Ex below the AK production threshold, or
E* — AK above this threshold. For simplicity, we focus
on the decay mode Z*t — Ztz°. Using the possible
polarization correlation matrices of E-E* as detailed
in Egs. (51), (57), and (62), along with the polarization
transfer matrices a,,, b,,, and d,, in Appendix C, we derive
the polarization correlation matrix for 2~=*. For spin-5/2
bartons, we focus solely on the components related to
longitudinal polarization, necessitating averaging over the
azimuthal angle ¢z of the daughter baryon =*. To ensure
comparability, we utilize the same approach for cases
where the spin of the Z** is either 1/2 or 3/2.

When the 2 is spin 1/2, the polarization correlation
matrix for 2=2" can be expressed as

/ ZS“* a5, dgs. (72)

1
< H]I

For the =Z** with spins 3/2 or 5/2, we can obtain the
polarization correlation matrix of Z~=% by replacing Ay

with b, or d,,, respectively. The general expression for S;;
can be wntten as

Soo 0 0 0O

- 0 S, 0 S

Si;,:: 1,1 1,3 (73)
S5 0 0 0
0 Sy 0 Sy

The explicit expressions of polarization correlation coef-
ficients Soy, ..., S3.3 depend on the spin of the E**. If the
E*F is spin 1/2, the expressions for these coefficients are
given by

S0.0 = Coos
Sl,l = C1’3 sinﬁg,
Si13=PzCi5c050z,

$20 = P=:Cy,
S3'1 = PE*C3!3 Sil’leg,
S35 = C35c0s 0z, (74)

*—

where Pz is the parity of the =
are detailed in Eq. (52).

and these coefficients C,,

When the E* is spin 3/2, the expressions for these
coefficients are given by

1
So0=Coo—7 (1+3c0s20z)Coq,

4 1
S]A,l = —gsinegcu +Z(Sln93 —+ 5 Sin39§)C1y9,

2 1
Si3 = Pz gcos9;C1,1 —1(3 cos 0z + 5 cos 39§)C1.9},

1
Sy0 =Pz |Gy — 1 (I+3cos 293)@,4] .

4 1
S3,l = PE* —gsin GEC3,1 + Z(Sm@g + 5sin 393)C3y9:| N

2 1
S35 = 5 cos 0=C3, — 2 (3cosfz + 5¢c0s302)C39.  (75)

These coefficients C,,, are shown in Eq. (58).
When the E** have a spin 5/2, these coefficients are
given by

3
— (1 +3c0s205)Cy»

So0 = Coo — 1

3
t5 (9 +20c0s 260z + 35c0s460z)C 4.

18
Si1 =7z

1
T sinfzC, | — 1 (sinfz + 5sin360z)C; 5

4
3—5(2 sin@z + 7sin 360z + 21sin56z)C 5,

6 1
81’3 = PE* gCOS GECLI - 8 (3 COSQE + 5 cos 393)6‘1'3

15
ﬁ (30 cos Oz + 35 cos 30z + 63 cos 50= )Q,s} ,

3
S0 =Pz [Crp——(1+3cos0z)Cy,

14t

3
+ 7 (9 +20cos 26z + 35 cos 49;)C2.4} ,

18 1
S3, = Pz gsin 0=Cs, — 1 (sinfz + 5sin3605)Cs 3

45
+ n (2sin Oz + 7sin 30z + 21 sin 59§)C3’5} ,

6
S3$3 = —COS QEC:;.]

1
T _6(3 cos Oz + 5c0s30z)Cs 5

15
3— (30cos Oz + 35 cos 30z + 63 cos 50z)C; s.

(76)

These coefficients C,, are shown in Eq. (63).
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We observe that changes in the spin and parity of the Z**
alter the specific formulation of the SEDE As the spin of the
=+t increases, the polarization correlation matrix exhibits
more complex angular dependences. Additionally, the
parity of the Z*~(Z*") influences the signs of the polari-
zation coefficients S, 3, S, o, and S5 ;. These changes in the
polarization correlation matrix are evident in the angular
distribution of the products in Z~E* decay processes.

We focus on their primary decay channels, = — Az~
and ¥ — Az, The joint angular distribution for the decay
products is given by

[I]
[11\

n=0 v=0

anDO’ (77)

where @ denotes the set of parameters associated with
helicity amplitudes. For the ="t with spin 1/2, & =
{a,.#1.az.az}, and for the £ with spins 3/2 or 5/2,
o = {0‘.,/’01’4151,055’03}- n={0=,0z,0\, b, 0, Px}
represents the angles of all products. By analyzing the
angular distributions of A and A, we can extract the

coefficients of the polarization correlation matrix Sji,

1 = =
Ky = 16”2/W(0)7 ﬂ)a;Oa;OdQAdQ/-\

= Ey (aE)Eu(aE)S/%?’ (78)

where E,(az) and E,(az) are functions of decay param-
eters az and az respectively, given by

e 1 u=20,
H(aE)_ laé /“’:1’2’3~

Furthermore, we analyze the spin and parity of the Z** by
examining the angular distribution of the polar angle 5. We
investigate the following moments of angular distributions,

(79)

My, = ——
W 64n

1
- / i Q. (80)

/ Wi(w.n)aZdl, a%dQ2dQ;dQz

where dj,, denotes a modified version of d,,, in Appendix C,
where we omit decay parameters and unnecessary coeffi-
cients. The nonzero coefficients are detailed as follows:

dyy =1,

dyy =1+ 3cos 20z,

d) o =9+ 20cos 20z + 35 cos 40z,

! — o _
d|, = sinfz,

dj | = sinfz + 5sin 360z,

d | = 2sin @z + 7sin 30z + 21 sin 56z,

d} 5 = cos ),

dj 3 = 3 cos Oz + 5cos 30z,

d} 5 = 30cos Oz + 35cos 30z + 63 cos 50z.  (81)

In Table I, we detail the potential moments for all
products when E**(Z*7) possesses spins of 1/2, 3/2,
or 5/2. As the spin of the 7 (") increases, there is a
noticeable expansion in the range of potential moments.
This provides us with a method to verify the high spin of
the = (E*7) by observing these additional moments.
Additionally, the parity of the E*~ affects the sign corre-
lation between moments M, ;; and M, 3, as well as
between M, 5 ; and M, 5 ;. For instance, when the Z*~ has a
spin of 1/2", the moments M, ; ; and M, | 5 share the same
sign. In contrast, when the spin is 1/27, these moments
exhibit opposite signs. Additionally, every increase in
spin by 1, while parity remains unchanged, alters the sign
correlation between these moments. These contrasts show

TABLE 1. The potential moments corresponding to angular
distribution as defined in Eq. (80). When the spin state of the
B (E*)is 1/2,3/2, or 5/2, the coefficients C,, are determined
by Eqgs. (52), (58), and (63), respectively.

J? for the

baryonE*~  (1/2)"= (3/2)"= (5/2)"=
Moo Coo Coo Coo
Mjo00 0 -%Co4 -2 Co,
My 0 0 %
My, 1Ci3  —psazaiCy, o5 02k Cy
M, 0 Ha2akCg - S5 akakC 5
Ms 4 0 0 12§4a2a2 Cis
Mi,s 3; P=a2akiCi; 13 P=a2aiChy 555 PzakakiCy
M, 5 0 — 8 P=akalCiy — 5 P=akakCis
Ms 3 0 0 BYOP.aZalCs
My 1Pz-aCyp 1P=atCyp $P=aZCy
M 0 —£Pz0a2Cry -2 PzaCy)
Mysp 0 0 ZBpoakCyy
M5, 2 5 Pa- aaZ 2Cs3 —mP~ azal 2C3, 105P akal 2C3
Ms 5, 0 5 Pza2aiCsy — 35 PeratalCss
Mss, 0 0 194 P=a2akCys
M5 5 AR =C33 %aéaécm %a%aécm
M55 0 —8akalCsy - {%0kakCys
Ms 5 0 0 B00LalCss
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the underlying reasons to determine the spin and parity of
the 2~ (E*T) effectively.

Considering the cascade decays of Z~E*, analysis
for the moments of angular distributions is similar. For
instance, in the cascade decay of 27, 2~ — Az, followed
by A — pz~, we simply replace a, with Zf/:o afﬂ, a/’},O in
Egs. (77), (78), and (80), and include an additional phase
space integral dQ,/(4x) in Eqgs. (78) and (80).

Correspondingly, in Eq. (78), E,(ag) is substituted with

E,(as,ay), which is given by
Baman = L Eh A0
A=, Ap ) =
’ CHB 202k p=12.3.

This modification enhances the magnitude of the coeffi-
cients but preserves their sign. Consequently, resulting in
Table I, this adjustment only affects the magnitude of the
coefficients for the projected moments, without altering
their sign. Thus, our prior analysis remains valid.

C. Discussion

In Sec. III, we present an analysis of the polarization
correlations of two baryons with various spin combinations
produced in the annihilation process. Specifically, we
provide detailed formulas focusing on spin combinations
of (1/2,1/2), (1/2,3/2), and (1/2,5/2). Following this,
we introduce the method used to determine the spin and
parity of excited baryons in Sec. IV B. Several important
aspects are highlighted for clarity.

For baryons with spins lower than 5/2, which constitute
the majority of the predicted baryon spectrum, the absence
of moments unique to spin 5/2 helps exclude the possibil-
ity of higher spins. In the experiment, this approach has
been used in analysis of the spin of E(1530) [45].
Combined with the measured mass and width, this method
helps to identify new baryons. For example, a penta-quark
>* state with J© = 1/27 near 1360-1380 MeV may exist,
and it is around the decuplet X*(1385) state [117-119].

For baryons with spins of 5/2 or higher, the method
effectively rules out their presence in lower spin states of
1/2 or 3/2, but does not exclude the possibility of them
having higher spins beyond 5/2. This limitation arises
because the potential moments of angular distribution for
higher-spin baryons can overlap those for lower spin
particles, as shown in Table I. When considering the effect
of parity, we can find that identifying a baryon with spin
5/2% does not preclude the possibility of it being a particle
with spins as 7/27, 9/2%, and so on. Likewise, a baryon
identified as having a spin of 5/27 could still be a particle
with spins as 7/2%, 9/27, and so on. To confirm a baryon
with spin J, it is necessary to construct polarization
coefficients for baryons with potential spins J -1, J,
and J + 1, and ensure that the fit for the baryon with spin
J surpasses those for the other two spin cases.

In our analysis, we consider two baryons produced in the
e"e” annihilation process via spin-1 intermediate states,
and one of the baryons is constrained to spin 1/2. In cases
where the other baryon has a spin of 5/2 or higher, it is
necessary to maintain sufficient angular momentum
between the two baryons. This could potentially lead to
a reduction in the production cross section [120].
Therefore, exploring these high-spin excited baryons
may require examining other spin combinations, such as
(3/2,5/2), (5/2,5/2), and so on.

For simplicity, our analysis focuses solely on detailing
the longitudinal polarization components for baryons
with spin 5/2. To ascertain the spin and parity of the
E*H(E*7), we average over the azimuthal angle ¢z in the
decay Z*F — =70 Once the spin and parity are deter-
mined, the entire polarization correlations should be used
to analyze the transition form factors. We have already
provided the complete expressions for spin combinations
of (1/2,1/2) and (1/2,3/2) in Egs. (51) and (57).
Additionally, in Sec. II, we provide a detailed method-
ology for constructing polarization projection matrices
for baryons with spins 5/2 or higher, making the
derivation of the associated polarization correlation matri-
ces a straightforward process.

From the discussion above, it is evident that the study of
the baryons with any spin can be conducted. For particle
identification, focusing solely on the longitudinal polari-
zation components of the excited baryons is effective.
However, for measuring transition form factors or other
parameters, the complete polarization correlation matrix
should be used.

V. TRANSITION FORM FACTORS
AND HELICITY AMPLITUDES

The polarization correlations of two baryons produced
in the e'e™ annihilation process can be described using
either helicity amplitudes A; ; or transition form factors.
These approaches are essentially equivalent. Following
the definition of the transition form factors in
Refs. [53,81,121,122], we clarify the direct relationship
between the helicity amplitudes and transition form factors,
bridging these two methods. The spinors used in this
section, u and v for spin 1/2, u* and v* for spin 3/2,
and u® and v* for spin 5/2, are detailed in Appendix D.

A. Baryons with spin combination of (1/2,1/2)

When the baryon B; has J¥ = (%)PBI with mass M|,

and the antibaryon B, has J” = (1)"% with mass M,, the

transition form factors are introduced by [81]

(B1(p1.51)Bo(p2.52)17,(0)|0) = (py. 51)T,0(p2. 52).,
(83)
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where p;, p, and s, s, denote momenta and spins of B,
and B, respectively, J,(0) is the electromagnetic current.
The transition form factors are contained in the vertex I',.
For Pg 5, = 1, the vertex can be decomposed as (811

U, = Fi(q*7, — d4q,) + F2(P - qr, — Pud). (84)

For Py 3, = —1, we have

U, =Gi(q*r, — 449,)vs + G2(P-qr, — Pud)ys.  (85)

Here, P =1 (p1 — p2), ¢ = p1 + pa. We classify the tran-
sition form factors associated with y5 as G;, and those
unrelated to ys as F;. When the sign of Pg p, shifts, a swap
of F; <> G, is required, along with the multiplication of I',
by —ys from the left.

For the conjugate process, the transition form factors are
defined similarly by

(B1(p1.51)Ba(p2.52)|7,(0)[0) = t(ps. 5:)T,0(py. 51)-
(86)

For Pg g, = 1, the vertex can be decomposed as

U, = Fi(q*7, — da,) + F2(P - qr, — Pud).  (87)

For Pg 5, = —1, we have

T, =-Gi(¢*, — 49.)vs — G2(P - qr, — Puff)vs.  (88)

When the sign of Pp p changes, it requires a swap of
F; <> G;, along with the multiplication of I, by —ys from
the right.

To transform the B;B, production process into its
conjugate BB, production process, the following substi-
tutions for the transition form factors are necessary,

Fl—)Fl, Fz—)Fz, (89)

G1 = —Gl, G2 g —Gz. (90)
The analysis of the conjugate process in later subsections
mirrors the approach taken here. Thus, detailed expressions
are not repeated. Instead, we detail how to perform
substitutions for the transition form factors.

Since polarization correlations can be expressed using
either helicity amplitudes or form factors, we link these two

’In this paper, we focus on discussing the production processes
of two baryons with different masses and F is the transition form
factor for these processes. For the baryon pair production
processes, there are different conventions for the form factors.
These form factors have been widely studied and can be found
e.g., in [53,81].

forms for both BB, and B,B, production processes. For
Pg g, = 1, we establish the following relationships:

1
=3\ OT2(M, + Ma)F, + (M, — My)F),

V2
hZZTQl_[zqul + (M} = M3)F,). (91)
For Pg g, = —1, the relations are

1
hy = E\/;QHZ(Mz - MG, = (M, + M,)G,],

V2

h2:2

0/ 24°G, + (M} - M3)G>). (92)

Here QF = \/q” — (M, + M,)?. In relation to these equa-
tions, if the sign of Py p, changes, a simple substitution is
required: M| - —M.

B. Baryons with spin combination of (1/2,3/2)

For the case where B, has J* = (})# with mass M,
and B, has J” = (3)"% with mass M,, the transition form
factors are introduced by [81]

(B1(p1.51)Ba(p2.52),(0)[0) = @t(py, 51) T 0 (P2, 52)-
(93)

When Pg 5, = 1, the vertex Iy, is decomposed as

au
Lo = G1(qu¥y = 49au)7s5 + G2(qaPoy = P2 - 490475
+ G3(9aqy — 4°Ga)75- (94)

For Py p, = —1, we have

Faﬂ =F, (qayﬂ - dgaﬂ) - Fl(anZ,u — D2 qga/t)
- F3 (Q(Xqﬂ - ngau)' (95)

For the conjugate process, the substitutions for the tran-
sition form factors are as follows:

Gl d le G2 d Gz, G3 g G3, (96)

Fl—)—Fl, F2—)F2, F3—)F3. (97)

For Pg p, =1, the relationships between the transition
form factors and the helicity amplitudes are

V0T

I 2M,Gy + 2M3G, + 0,G3).
! \/gMz [ 2 . ’ 3]
Ql_ - 2
hy, =—= 207G, + M>0-G, + 2¢*M,G5],
: 2\/§M2[ el 0 o 3]
Q_
hy = 71 2(M, + M,)G, + 0,G, + 2¢*G3). (98)
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For Py p, = —1, the relations are
2+
q-Q, 2
= 2MsF | +2M5F, + Q5 F5),
1 VoM, 2M,F, 5F> + 0, F5]
of
hy = ——=—[203F, + M,Q,F, + 2¢*M,F5],
2 2\/§M2[Q3 1 200 F) q°M,F5]
of 2
h3:—2 [2(My — M\)F, + QyF, +2q°F3]. (99)

Here, 0, = ¢* = M? + M3 and Q5 = ¢> — M? + M| M,.

C. Baryons with spin combination of (1/2,5/2)

For the case where B has J© = (1)’ with mass M,
and B, has J¥ = (%)P B with mass M,, the transition form
factors are introduced by [81]

(Bi(p1,51)Ba2(p2,52)14,(0)[0) = @t(py, 51)Capuv™ (P2, 52).

(100)

For Pg g, = 1, the vertex Iy, is decomposed as

apu

Faﬁy = quﬂ(Qayy - d«g(lﬂ) - F2qﬂ(Qap2;¢ — P2 qg(lﬂ)
- F3qﬂ(qaql4 - ng(ly)' (101)

For Py 3, = —1, we have

Faﬂy = quﬁ(qa},ﬂ - %g(m)YS + G2‘]/f(%xp2;4 — D2 61911;4)7’5
+ G345(qay — 4% 9a)75- (102)

For the conjugate process, the substitutions for the tran-
sition form factors are as follows:

G1 d Gl? Gz g G2, G3 d G3, (103)

Fl—)—Fl, F2-)F2, F3—)F3. (104)

For Pg p, =1, the relationships between the transition
form factors and helicity amplitudes are

2—(+)2
h _M[ZMZFI +2M3F, + O, F3],

L 2 y/10M2

01 (1)
hy === DOTF, + M,Q,F, + 2M,4F],
2 4\/§M§ [ 05 Fy 202 F) 2q°F3]

07 (07)’ 2
hy = ——"—[2(My, — M,)F, + Q,F, +2q°F]. (105
3 2r-10M2[(2 DF1+ Oy F, g F3]. (105)
For Pp , = —1, the relations are

Vi (07)20f

hy=Y2"= =1L OM,G, +2M3G, + 0,G-],
1 2\/1_6;‘% [ 2Y] 2492 Q2 3}

(07)207 ., - 2
hy=——"-~-"—"020;G,+M G, +2M,q-G;],
2 IS 205G, 20,6, 29°G3]

(01’07
hy =22 =L12(M, +M,)G,+ Q0,G,+24¢*G;]. (106
3 ZNMzul 2)G1+ 0,6, +2¢°G3). (106)

VI. SUMMARY

This paper presents a polarization analysis of the process
e"e™ — B|B,, involving the baryon B, and the antibaryon
B, with a variety of potential spin combinations. This
analysis aims to investigate baryon properties, including
spin, parity, decay parameters, and form factors.

We present a universal methodology for decomposing
spin density matrices for high-spin particles in both
standard and Cartesian forms. The key step involves
establishing complete sets of orthogonal spin projection
matrices and spin components for each form. These two
forms offer varied insights into the spin density matrix. The
standard form clarifies the algebraic structure and rotation
properties of spin projection matrices, while the Cartesian
form offers a clearer physical interpretation of spin com-
ponents. By linking spin projection matrices and spin
components across these two forms, we unify them.
Following this, we present the complete decomposition
of the spin density matrix for spin-5/2 particles. Then we
analyze the application of the spin density matrices within
the helicity formalism, where the matrices are expressed
with the polarization projected matrices and polarization
expansion coefficients. We introduce a refined selection
scheme for polarization projection matrices, linking them
to spin projection matrices in the standard form through
specific coefficients. This scheme ensures a direct match
between the polarization expansion coefficients in the
helicity formalism and the spin components in the
Cartesian form. Subsequently, we present the spin density
matrix for the two-particle system, where spin information
is captured within the polarization correlation matrix S,,, .

Next, we outline the method to calculate the polarization
correlations of two baryons, BIBQ, produced in electron-
positron annihilation. Within the helicity formalism, we
present the general expressions of the production density
matrix of B, B,. This matrix is formulated based on helicity
amplitudes A; ; and corresponds to the spin density matrix
of the two-baryon system. We analyze the selection rule for
the possible correlation components based on their physical
properties. Then, our analysis focuses on spin combinations
of (1/2,1/2), (1/2,3/2), and (1/2,5/2), for which we
identify the nonzero helicity amplitudes and link them to
transfer form factors F; or G;. We present parametrization
schemes for these amplitudes, detail the polarization
correlation coefficients, and establish boundaries for the
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normalized coefficients. For the conjugate production
process B B,, the polarization correlation coefficients have
similar expressions, except for replacing 8 with 8. These
conjugate production processes offer new avenues to search
for CP violations.

Finally, we elaborate on the technique for the exper-
imental measurement of polarization correlations via the
decay processes. Within the helicity formalism, the decay
expressions are represented by polarization transfer matri-
ces. We outline the steps to calculate these matrices. Then
we provide explicit expressions for a,,, b,, and d,,,
corresponding to the transfer matrices for parent baryons
with spins 1/2, 3/2, and 5/2, respectively. For baryons
with established spins and parities, employing the relevant
polarization correlation matrices and polarization transfer
matrices allows for exploring associated parameters in
specific processes. Our research further extends to the
baryons with undetermined spins and parities, particularly
the excited E* baryons. Through the analysis of the
ete™ — E7E*T process, we present a method to ascertain
the spin and parity of the Z**(Z*~). The crucial part of
this approach is identifying the potential moments of the
angular distributions that are sensitive to the spin and parity
of the Z*F(2*7).

The electron-positron annihilation process, which is
abundant in two-baryon production channels, offers excel-
lent opportunities to investigate the spins and parities of
excited baryons, as well as to study the transfer form factors
or the so-called effective transfer form factors between
various baryons. This process enables a comprehensive
understanding of the properties of baryons, consequently
enhancing our knowledge of QCD properties at low-energy
scales.
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APPENDIX A: THE DEFINITION AND
PROBABILITY OF THE SPIN COMPONENTS
FOR SPIN 5/2

In Eq. (20), we provide the general decomposition of
the spin density matrix for spin 5/2. Here, we clarify the
definitions and the physical interpretations of the 35
independent spin components.

The spin vector S’ consists of three components

T=E.  Sp=(En. S=(Z). (Al

According to Egs. (9)—(13), the corresponding projection
matrices are defined as

X =25 =%, X, = X*. (A2)
Based on Eq. (4), the matrices X' in the S, representation
are given by

0 V5 0 0 0 0
Vi o0 2v2 0 0 0
se_ 1] 0 22 0 3 0 0
2 0 o 3 0 2v2 0 |
0 0 0 22 0 V5
0 0 0 0 V5 0
0 -5 0 0 0 0
Vi 0 =2v2 0 0 0
sr_i] 0 2V2 0 -3 0 0
20 o0 3 0o -2v2 o |
0 0 0 22 0 /5
0 0 0 0 V5 0
500 0 0 0
030 0 0 0
1001 0 0 0
= (A3)
210 0 0 -1 0 0
000 0 =3 0
000 0 0 -5
The relationship of these matrices to Q%z‘l is established in

Egs. (17) and (18), where coefficients t%z’] have values

5 5 5
e g g {6\/5,6\/5,6@}, (Ad)

The spin vector S’ is determined by Eq. (14), and
represented as

S = (8%, 85.5,). (A5)

The rank-two spin tensor 7%/ comprises five spin components,

SLL = <2’LL>7

Str = (Zrr),

SiT = <22T>7
(A6)

Sir = (Zir),

Str = (E7r)-
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The projection matrices corresponding to these components,
as defined in Egs. (9)—(13), are
T = X%, Zpr =25, T =%,

TEo=TE -3, B =39 (A7)

/23 . . .
is spemﬁed in
5/22 5

The association of these matrices with Q5
Egs. (17) and (18), where the coefficients £,

2P [3VAT0AVATO 3V,
t5/2,2 5/2.2 %\/ZTO,%\/m

—1 ’ t_2

(A8)

The matrix representation of the rank-two spin tensor 7%/
is derived using Eq. (14) and is expressed as

| Str—SiL 257 2817
V=3 28570 =Sfr—Sw 25 (A9)
285, 280, 28,

The rank-three spin tensor T/ includes seven spin
components,

Sirr = <ZLLL>’ S};LT = <Z{LT>’
Strr = (Elrr)s

Strr = (Errr),

Sior = (Ziir)
S?TT = <Z?TT>’
Strr = (rrr)-
The corresponding projection matrices are determined by
Egs. (9)-(13) and given by

(A10)

— Y2z zz y — 44

Xppp = X Zir=2" T =2,
XX YXXZ __ Z Xy X z
Xir =X PREN X = 2%

Si =IO -3EM Iy =3 oD (AL

The relation of these matrices to Q%Z'S

and (18), where the coefficients 7,>

is defined in Egs. (17)
are given by

5/23 /23, 5/2 3
9

5700 615,310, 6,
5/23 ti/lz 3, ={ 3v6.6. (A12)
t5_/22’3, ti/32’3 $/10,6V/15

The rank-three spin tensor 7/¥ is defined using Eq. (14), and
the calculation process is similar to that for S’ and T%.
Although not difficult to calculate, the expressions for T/
and higher orders like T"/% and T"/¥™ are lengthy and thus are
not presented with the details.

The rank-four spin tensor T/ comprises nine polari-
zation components, represented as follows:

Seeee = (Zrrer)s Steer = Eliir),
S)LLLT < LLT): Stirr = (ELirr),
Strr = (Crirr): Strrr = (ELrr)
Scrrr = (Errrr) rrrr = (Errrr),
Strrr = (Errir)- (A13)

The corresponding projection matrices for these compo-
nents are defined in Egs. (9)—(13), and their expressions are

Xy = X, Zipr = 2,

X =TV, Lpppr = 0 - BV,

Z)I?LTT = X%, Iiprr = ZH = 359,

ZiXTyTT 33XV 3YYYI s

TR FOX _ GO0V 4TI

T SRR SO, (Al4)
5/2.4

The relationship between these matrices and Q)

detailed in Eqs. (17) and (18), where the coefficients £y,
are specified as

is
5/2.4

5/24 t§/24 5/24’ 20v/6.10v/3,10 /42,
P T S S P

t5_/22,4’ t5_/32’4, t5_/42,4

2V/42,10V3,5v6
(A15)

Similarly, the rank-five spin tensor T"/*™ consists of
eleven spin components, expressed as

SLLLLL - z“LLLLL s SLLLLT - z“LLLLT ’

X
SLLLLT - Z:LLLLT ’ SLLLTT - z:LLLTT ’

XXY Zxx)’ §rxxx — (Zxxxx
LLTTT - LLTTT/> LTTTT — LTTTT/>
xxxy Zxxﬂ Gxxxxx yrxxcx
LTTTT - LTTTT/> TTTTT — TTTTT/>

xxxxy
TTTTT

SRy
TTTTT/*

{ ) ( )
{ ) { )

LLLTT - <2’LLLTT>’ LLTTT - <2‘LxLxTTT>’
= ) ( )
= ) = )
= Errrrr)

(A16)

The relevant projection matrices for these components are
outlined in Egs. (9)—(13), with their expressions being
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ZLLLLL = ¥z EZLLLT = yxez

Z)IiLLLT = Yz, Z)LCXLLTT = YL _ FYyIRL
E?LLTT = vz ZE%TTT = PRXNIZ _ JPAYIL
ZJI?Z)TTT — SZxxyzz _ Zyyyzz’

Zf?])gTT = YNNT _ GFNNYT | FIIIE

Z)Ii)?%TT — Zxxxyz _ nyyyz’

ZI;XTXZ)%T SRR [ (OTIYY o §TIYY

Ty = SEXY QTR0 T, (A17)

The association of these matrices with QS/ 23 is determined

in Eqgs. (17) and (18), and the coefficients f;; S/ A

tg/zs ti/zs 5/25’ 20/15. 10\/5’@@
t;/ZS t?/ZS 5/25’ B 5\/5’ 10\/_72]
PRSP P L\14.3v2 ,@ﬁ,
R 31/6.20v/15

(A18)

The total degree of polarization is determined by Eq. (16),
given by

\/_\/ (25 + 1)Tr[p?] —

V6 (2 | SEPREVR R
_ SlSl —TUT - Tl]lejk
\5(35 56 62

+ L Tijleijkl + L Tijklm Tijklm 12
450

3]
()
()3
Suri = [pz @ ip (_ §>} i
()

(A19)

10
S =—
LL 3

[\.)

[\

10

SLLLLL 21

()]
ot
(
n(2) +r (-
46

Following the approach presented in Ref. [78], we offer
the probabilistic interpretation for these spin components.
We introduce the spin projection operator along the (6, ¢)
direction as

Yif; = ¥sinfcos ¢ + XV sin@sing + Zcosh.  (A20)

The probability of finding this specific eigenstate from the
spin density matrix can be expressed as

P(mgg)) = Trlp|mg 4))(mg gl (A21)

We focus on providing the physical interpretations for the
following longitudinal polarization components,

Sy = <zz>,

<zzzzz>

Sie = <Zzz>v Seer =

Srrrer = <ZZZZZZ>-

<Zzzz>’

Sirrr = (A22)

Similar methods can be employed to determine other spin
components. While the calculations for these components
are direct, their expressions can be lengthy. To maintain
focus and conciseness, we have chosen not to present the
specifics of these additional components. Using the short-
hand notation, |m.) = |m()), the probabilistic interpre-
tation of longitudinal spin components can be represented
as follows:

QORI
HAGES)
|-21)-~(3)
%P0
()]

|
()
()

(A24)

—~

A25)

—~

A26)

100
21

—~

A27)

The domains for these polarization components can be obtained from these probability interpretations,

NS

55 8 10
_57§:|7 SLLE |:__?_:|9 SLLLE |:_

3’3 5°5

21 21

—} . SiLiL€ {—

36 24
—,—}, Srrrrr € [— (A28)

100 100
71 ’

21721
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APPENDIX B: SPIN-3/2 AND SPIN-5/2 POLARIZATION PROJECTION MATRICES

In this section, we present explicit expressions of the polarization projection matrices for spin-3/2 and spin-5/2 particles
in the helicity formalism.
For spin 3/2 particles, we follow the matrix basis set selection in Refs. [54,109],

1000 300 O 0 V3 0 0
110100 1101 0 0 11vV3 0 2 0
20:— ,21:— 722:_ P
410010 1000 -1 0 10f 0o 2 0 V3
0001 00 0 -3 0 0 V3 0
0 —vV/3 0 0 10 00 01 0 0
g V3 0 -2 0 1{0-1 00 V3100 0
1000 2 0 =30 T 4loo —1o| T 12l00 0 -1 |
0 0 V3 0 00 01 00-10
0-1 00 0010 00 -1 0
iWv3l1 0 00 V310001 iv3l00 0 -1
26:7 7277 5 S — 1A )
12100 01 1211000 21100 0
00 -10 0100 010 0
1000 0 1 0 0 0 -1 0 0
g _1|0-300 . V3l 0 =30 s _iV3[1 0 V3 0
“6loozo | T e6lo-v3 0 1| " 6 lo=v3 0 -1]|
00 0-1 0 0 1 0 0 0 1 0
0010 -10 0001 000 -1
V3|0 0 0 -1 iv3l0 0 01 0000 iflooo o
Xp=—% s X3 =— , 15=7 (BI)
121100 0 12110 00 0000 6000 0
0-10 0 0-1 00 1000 100 0

For spin-5/2 particles, the matrix basis subset associated with longitudinal polarization components is given by

100000 5000 0 O 50 0 0 0O
010000 030 0 0 O 0-1 0 0 0O
11001000 11001 0 0 O 110 0 -4 0 0O
20—— ’ 21:— s 22_— ’
6/l000100 35{000-1 0 O 56{0 0 0 -4 00
00001O0 000 0 -3 0 00 0 0 -10
000001 000 0O 0 -5 00 0 0 05
50 0000 1000 00 10 0 0 0O
0-7 0 00 O 0-300 00 0-50 0 00O
1100 —4000 110 0 20 0 O 1 100 10 0 0O
Ly = o Ta=oo s =1 (B2)
10810 0 0 40 O 4810 0 02 0 0 12000 0 0 =100 O
00 0070 00 00-30 00 0 0 50
00 0 00-5 00 0001 00 0 0 0-1
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APPENDIX C: POLARIZATION TRANSFER MATRIX

In Sec. IV, we describe the decay processes of baryons using transition matrices a

b

and d,,. These matrices are

(AR

crucial for understanding the polarization dynamics in baryon decays, and we provide detailed expressions for each matrix.
For the decay process 1/2 — 1/2 + 0, the polarization transition matrix a,, contains 14 nonzero elements. Among these,

10 terms do not involve ap, given by [53]

ao’o = ],
ay; =ypcosfcos¢g — fpsing,
ay, = —Ppcosfcosd —ypsing,

a,; = sinfcos ¢,

a ) = Ppcose + ypcos@sing,
ay, = ypcosg — fpcosfsing,
a,3 = sin@sin @,

az) = —ypsin6,

a3‘2 = ﬁD Sin 9,

as3 = cos 0. (C1)
The remaining four terms, which are dependent on ap, are expressed as
{aos. ai0, 20, a30} = aplage. a13. 423, a33}, (C2)

where the items in the left-hand list are equal to the corresponding items in the right-hand list multiplied by «p, for

example, a3 = apa .

For the decay process 3/2 — 1/2 + 0 the polarization transition matrix b, includes 52 nonzero elements. Of these, 36

terms do not involve ap, given by [54]
boo =1,
b= —gyD sin @,
by, = gﬂD sin @,
b5 = %cos 0,

4
by, = ~z (—ypcos@cos g+ fpsing),

4
by = ~3 (Bpcos@cos + ypsing),

2

by3 = gSiH@COS ¢,
4 .

by, = 5 (Ppcos + ypcosBsing),
4

b, = 5 (ypcosg — ppcos@sing),
2

b3‘3 = gSl 0 sin ¢,
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1
by = _Z(l + 3co0s20),

bsy = —sinfcoscos ¢,

bgy = —sinfcos O sin ¢,
1
by = -5 sin’f cos 2¢,
bg o = —sin’0 sin ¢ cos @,
1 . .
by, = Zy,;(st + 5sin 30),
1
by, = —ZﬂD(sinG + 5sin 30),
1
bys = =3 (3cosf + 5cos 30),
[28p(3 4+ 5c0s20)sin¢g — yp(cos @ + 15 cos 30) cos @],

blO,l =

bios =< [2yp(3 4+ 5c0s26) sin¢g + pp(cos + 15 cos 30) cos @],

0| = 00| =

3
bios =— 3 (sin @ + 5 sin 30) cos ¢,

1
by, = ~3 [28p(3 + 5c0s20) cos ¢ + yp(cos @ + 15 cos 36) sin @],

1
8

3
bi;= ~3 (sin @ + 5sin 30) sin ¢,

by, = [2yp(3 4+ 5c0s20) cos ¢ — fp(cos @ + 15 cos 36) sin @],
1
by, = Zsin 0[4pp cosOsin2¢ — yp(1 + 3 cos 20) cos 2¢],
1
biyy = Zsin O[4yp cosOsin2¢ + fp(1 + 3 cos20) cos 2¢],
birsz = —%Sinzecosecos 24,
1
bi3; = —Zsin 0[4pp cosOcos2¢ + yp(1 + 3 cos 260) sin 2],

1
bz = -3 sin @4y cos O cos 2¢p — fp(1 + 3 cos 26) sin 2],
b33 = —3sin’@ cos @ sin ¢ cos ¢,

by = %sin29(ﬁD sin 3¢p — yp cos @ cos 3¢),
bis = %SinZQ(}/D sin3¢ + By cos O cos 3¢h),
bz = —%sin36 cos 3¢,

bis, = —%sinze(ﬂD cos 3¢ + yp cos O sin 3¢),
bis, =— % sin?0(yp cos 3¢p — fp cos Osin 3¢h),

1
b15’3 = — 5 sin36 sin 3¢
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The remaining 16 terms, which depend on ap, are
expressed as

b0,3’ bl,Ov b2,0’ b0,0v bl,3’ b2,37
b3o, bsz, bs3, b33, bap, bsy,
be3, byz, bgs, beo, b7o, bso,

b9.01 b]0.0’ bll,()’ b9,37 b10,3’ bll,3

blZ,O’ bl3.0’ bl4,0’ b12,3’ bl3,3’ b14,3’

bis bis3

For the decay process 5/2 — 1/2 + 0, when focusing
only on the longitudinal polarization components of the
parent particle, the polarization transition matrix d,, con-
tains 18 nonzero elements. Among these, 12 terms do not
involve ap, given by

doo =1,

3
dzﬁo = _ﬁ(l + 3COS29),

3

dyo = 7 (9 +20cos 26 + 35 cos 46),
6

d1.3 = gCOS 0,

1
dy5 = _6(3 cos @ + 5cos 30),

15
ds3 = 7 (30cos @ + 35 cos 30 + 63 cos 50),

18
d171 = _EyD sin6’,

1
ds) = Zy,;(sin@—i—SsinBH),
45 . . .
ds) = —3—2]/D(251n6+751n39+21 sin 50),
18
dir=—
12 =35
1
d3$2 = —ZﬂD(Sln9+ 5Sin39),

Ppsinb,

4
ds.» :3—2/)’D(25in0+75in36+21 sin 50). (C5)

The remaining 6 terms, which depend on ap, are
described as

dos, dig, dr3, doo, dis, drg,
{ 03> dig, dr3 }ZGD{ 0,0, d13, dog } (C6)
ds, dy3, dsg d33, dy, ds3

APPENDIX D: CONVENTION FOR THE SPIN-1/2,
SPIN-1, SPIN-3/2, SPIN-5/2 SPINORS

In this section, we present the field spinors for particles
with spins 1/2, 1, 3/2, and 5/2 in the Pauli-Dirac
representation. We denote the mass of particle as m and
the four-momentum as

p* = (E,|p|sin@cos ¢, |p|sinOsin ¢, |p| cosH). (D1)

For spin 1/2 fields, which satisfy the Dirac equation
[123], the polarization vectors with helicity 4 = 1 are
given by

u(p, &) = VE+my.
p= +VE-—my, ’

VE—my,
v(p.£)= :
FVE+myL

where y. are the two-component spinors defined as

[%
e cos§
+=1 . o |
s1n%)e"”
_qin?
. sin§
N cos§ e

For spin-1 fields, which are solutions to the Proca
equation [124], the polarization vectors for helicities
A= =%1,0 are given by

(D2)

(D3)

0
“(p.4) = 1 | F cosfOcosg+ ising
&P, _\/i F cosOsin¢g — icos ¢
+sind
1P|
1 | Esinfcos
e(p,0) = ’ (D4)

m Esin@sin ¢

FEcos@

For higher-spin spinors, solutions are obtained using
Klein-Gordon equations for integer spins, and Rarita-
Schwinger equations [125] for half-integer spins. We
follow conventions in Ref. [126].

For spin 3/2, the polarization vectors with helicities
A= 43/2,4+1/2 are given by
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v=(p) + V/2/3€5" (p)v(p). (D5)

For spin 5/2, the polarization vectors with helicities A = £5/2, £3/2,+1/2 are given by

(p.£3) = e (P 0),

u (p,i%> = V1/5¢L(p)et. (p)uz(p) + V/2/5¢6(p)es (p)us(p) + v/2/5¢, (p)ef (p)u=(p),

o (p3) = VIOt (P () + v/ T7T06% () () + /T (p)ek ()
+V/1/5¢4(p) p)+ \/2/_58’6(p)80(p)ui(p),

o (p.43) = )et (s,

(. 23) = VI (D)2 (D) + VAT (D) (P (0) + VTS (e (s ().

o (g ) = VITIOCE (p)e () (1) + V/TTT0CS (p)e (P () + v/ T756 () () )

I (e +ﬁ S () () (). (06)
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