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Besides the ordinary hadrons, quantum chromodynamics (QCD) allows the existence of states in which
excitations of the gluonic field can play the role of valence particles, either alone in a glueball, or coupled to
quarks in a hybrid. So, hybrid baryons, made of three quarks and a gluon, can a priori exist. Till now, there
is no experimental evidence for such exotic hadrons but experimental efforts are being made to search for
them at CEBAF Large Acceptance Spectrometer. In this work, a hybrid baryon is considered as a two-body
system composed of a color octet three-quark core and a gluon, interacting via a QCD-inspired interaction.
A semirelativistic potential model is built in which the dominant interaction is a potential simulating the
flux tube confinement, and the Casimir scaling is assumed to link interactions between triplet and octet
color sources. This picture is similar to the quark-diquark description for baryons. It is chosen in order to
take properly into account the helicity of the gluon. Only cccg and bbbg states are considered because the
strong mass asymmetry between the quark core and the gluon is expected to favor the formation of the core.
As the results for heavy hybrid baryons seem relevant, we consider this paper as a proof of concept which
can be extended for the study of light hybrid baryons.
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I. INTRODUCTION

Nowadays, good experimental candidates exist for exotic
hadrons [1,2]. Besides mesons, baryons and multiquarks
states, QCD allows also the existence of states in which
excitations of the gluonic field play the role of valence
particles, either alone in a glueball, or coupled to quarks in
a hybrid. So, hybrid baryons, made of three quarks and a
gluon, can a priori exist. These exotic hadrons have already
been studied with various models: bag model [3], large-Nc
approach [4], flux-tube model [5], lattice QCD [6], and
QCD sum rules [7]. Unfortunately, though these models
predict the existence of hybrid baryons, their predictions for
masses and structures differ considerably from each other.
From the experimental side, there is no clear signal

yet as to the existence of these hybrid baryons. But, at
present, experimental efforts are being made to search for
hybrid baryons at CEBAF Large Acceptance Spectrometer
(CLAS) in the experimental Hall B at Jefferson Lab [8,9].

The experiment has been delayed, but the first data will be
available in the next few years. Identifying hybrid baryons
will be more difficult than hybrid mesons, as the latter can
have exotic quantum numbers that are forbidden for states
containing only constituent quarks. However, this is not the
case for hybrid baryons which have quantum numbers that
are also populated by ordinary baryons. So, mixings are
possible between hybrid baryons and excited three-quark
states. Hybrid baryons should then appear in terms of
overpopulation with respect to some models of baryon
excitations. Fortunately, the nature of the states produced at
CLAS can be explored by investigating the Q2 dependence
of the resonance coupling in electroproduction pro-
cesses [8,9]. Differences with ordinary baryons are
expected due to the additional gluonic component in the
wave function of hybrids. For the same reason, decay
products of hybrid baryons must differ from decay products
of ordinary baryons.
The differences between the various models of hybrid

baryons and their possible detection in the near future make
that a better understanding of these objects is of the utmost
importance for the correct identification of these new states.
This paper is intended to be a first step into the development
of a reliable model of hybrid baryons based on a semi-
relativistic potential approach (with a relativistic kinetic
energy but without full covariance) [10,11]. Potential models
have been successfully used to study masses and static
properties of ordinary hadrons [12,13] as well as more exotic
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states [14–17]. So, it seems relevant to challenge this
approach for hybrid baryons. Results obtained can shed
new light on these exotic states. If lattice QCD computations
are probably the best way to investigate the spectra of
hadrons, potential models allow to explore in detail the
various aspects of the strong interaction.
Even if heavy hybrid baryons will not be the first exotic

hadrons to be produced in planned experiments [8,9], they
will be the subject of this work because they are simpler to
study, as it will be explained below. In our model, a hybrid
baryon is assumed to be a two-body system composed of an
inert color octet core of three quarks and a constituent
gluon, both interacting via a QCD-inspired potential. The
reasons for the choice of this model are described in Sec. II.
For short, these are the helicity quantum number of the
gluon, because of its vanishing mass, and the big mass
asymmetry between the two effective constituents. Despite
the simplicity of the model, we hope to catch the main
physical properties of heavy hybrid baryons. Masses,
sizes, and quantum numbers of the color octet quark core
are computed in Sec. III. Section IV is devoted to the
description of the quark core-gluon interaction. Masses and
quantum numbers of the lowest cccg and bbbg hybrid
baryons are computed in Sec. V. Some concluding remarks
and possible outlook are presented in Sec. VI. Two
appendices give respectively general formulas about two-
body helicity states and the Lagrange-mesh method to
compute eigensolutions of two-body semirelativistic
Hamiltonians.

II. POTENTIAL MODELS WITH HELICITY

The gluon is a vector particle. Due to its massless
character, it is characterized by a helicity, that is to say
only two projections�1 of its intrinsic angular momentum,
and not by a spin with a third projection 0. In [14], it is
shown that a semirelativistic potential model of two-gluon
glueballs is possible provided that the helicity of gluons is
correctly taken into account. This is confirmed in [18].
So, it is expected that the same constraint must be imposed
on a semirelativistic potential model of hybrid baryons. If
the helicity formalism is well known and manageable in
practice for two-body systems [19], this is not true for three
particles [20,21] or more [22], for which a lot of work must
be done to make the theory usable in potential models. In
order to keep a correct treatment of the helicity for a hybrid
baryon manageable, the particle is considered here as a
two-body system formed by two color octet sources: a
pointlike massless gluon with helicity interacting with an
inert extended core of quarks in its ground state with a
defined spin. The quark core is described as inert because
no excitation is allowed. This simplification will be dis-
cussed in Sec. VI. This model is similar to the quark-
diquark description of baryon in which two quarks form
a cluster interacting with the third one. This model has a
long history but it is still quite popular nowadays [23,24].

This description is interesting to study the internal structure
of baryons, but it is also used to compute properties of
multiquark systems as tetraquarks [15] and penta-
quarks [16]. The quark-diquark structure in a baryon is
favored by the presence of two heavy quarks forming a very
tied cluster in its ground state which interacts with a third
quark lighter than the other ones [23,24]. That is why we
focus in this paper on hybrid baryons containing three
heavy quarks in order to maximize the probability of
formation of a strongly tied quark core, very little disturbed
by the dynamics of the massless gluon.

III. QUARK CORE DESCRIPTION

As excitations are generally better reproduced than
absolute masses, we will focus on the mass difference
between heavy hybrid baryons and the ground state of the
ordinary baryon made with the same quark content as the
one of the quark core. In this paper, we only consider clus-
ters with three identical heavy quarks, qqq ¼ ccc or bbb.
The semirelativistic three-body problem can be accurately
solved by an expansion in oscillator bases [25–27]. All
quantities are given in natural units ℏ ¼ c ¼ 1.

A. Ordinary baryons

With three identical quarks, the flavor state of a baryon is
completely symmetrical. As we consider only the system in
its ground state with zero total orbital angular momentum
LB, the spatial wave function is also completely symmet-
rical. For a baryon, that is to say a colorless state completely
antisymmetrical, this implies a completely symmetrical
spin state SB ¼ 3=2 in order that the total wave function be
completely antisymmetrical. So, baryons used as references
are characterized by JPB

B ¼ 3=2þ. Our Hamiltonian relies
on the simple Cornell potential for mesons developed
in [28]. No spin effect is taken into account within this
model, but such a contribution is small with respect to those
coming from the spin-independent central part of the
interaction. With the notations of [28], the qq̄ potential
for a meson is written

Vqq̄ ¼ Ar −
κ

r
: ð1Þ

A precise meaning must be given to parameters A and κ in
order to extend this interaction for three-quark systems. The
linear term is a good approximation for the energy of the
flux tube in a meson and A is the string tension (or the linear
energy density). It is natural to interpret the Coulomb term
as due to the one-gluon exchange. In this case, κ is assumed
to be given by hFq · Fq̄iαS ¼ −ð4=3ÞαS, where αS is the
strong coupling constant and Fi · Fj is the usual two-body
color operator. Then αS ¼ ð3=4Þκ ¼ 0.328. For heavy
quarks, this potential has also the advantage not to
necessitate the presence of constants whose possible color
dependence is not clear and thus not easily transposable to
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three-body systems. A nonrelativistic and a semirelativistic
versions exist and both provide a good description of the
spin centers of gravity of a large set of heavy and light
mesons. The values of the parameters for the semirelativ-
istic version used in this work are given in Table I. It is
worth noting that there is only a gap of about 10–20 MeV
between the masses of three-quark systems computed with
the nonrelativistic and the semirelativistic versions. But we
prefer to use the semirelativistic one to be coherent with the
Hamiltonians associated with systems containing gluons.
The Hamiltonian for a baryon with three identical quarks

with a mass mq is then given by

HB ¼
X3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i þm2

q

q
þ 1

2

X3
i<j

�
fArij −

κ

rij

�
; ð2Þ

with the usual notation rij ¼ jri − rjj. The 1=2 factor in the
potential part has two different origins. For the Coulomb
part, hFq · Fqi ¼ hFq · Fq̄i=2 ¼ −2=3 in a baryon. The

more realistic confinement in a baryon is the Y-junction,
that is to say three flux tubes, each generated by quark,
connecting into a point r0 minimizing the potential energy.
As this interaction is very difficult to treat, it is replaced
here by a good two-body approximation

Amin
r0

X3
i¼1

jri − r0j ≈ A
f
2

X3
i<j

rij; ð3Þ

with f ¼ 1.086 [29]. The ground state masses of ccc and
bbb are given in Table II. No experimental data are
available for a comparison.

B. Octet quark core

For the LC ¼ 0 color octet qqq quark-core in its ground
state, the flavor-space wave function is identical to the one
for the baryon and so completely symmetrical. As the color
octet state is a mixed symmetric one, it must be combined
with a spin state with a mixed symmetry, that is to say
SC ¼ 1=2, in such a way that the total wave function be
completely antisymmetrical. If χ is a 3-body spin-1=2 state
and ϕ a 3-body color octet state, the completely antisym-
metrical spin-color state is written [10]

1ffiffiffi
2

p �
χMSϕMA − χMAϕMS

�
; ð4Þ

where MS (MA) stands for mixed symmetric (mixed
antisymmetric). So, quark cores under study are charac-
terized by JPC

C ¼ 1=2þ.
In the flux tube picture of the confinement, the dominant

interaction for the three quarks and the gluon can be
described by the part (a) of Fig. 1 [30]. This is a very
complicated interaction which is not relevant in the frame-
work of our model. So, it is replaced by the configuration
presented on the part (b). In this case, each quark produces

TABLE I. Parameters for baryon and quark-core Hamiltonians
(2) and (5) [28,29].

mc 1.320 GeV A 0.203 GeV2

mb 4.731 GeV κ 0.437
f 1.086

TABLE II. Ground state masses for baryons (mB) and color
octet quark cores (mC), mass gap Δ ¼ mC −mB, and size
parameter λ in (7) for quark cores (all quantities are in GeV).

State mB mC Δ λ

ccc 4.822 5.119 0.297 0.825
bbb 14.401 14.894 0.493 1.261

FIG. 1. Color flux-tube structures for a hybrid baryon with three quarks (circles) and a gluon (square): (a) full description; (b) quark
core-gluon approximation. The color representations of non-fundamental flux-tubes are indicated.
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a flux tube with the same energy density than in a baryon,
and the connection into a color octet configuration is
possible thanks to the color neutralization achieved by
the octet flux tube generated by the gluon (see Sec. IV). For
the Coulomb part, it is necessary to compute the value of
hFq · Fqi for the qq pairs. The mean value is 1=3 for the
symmetric representation 6 and −2=3 for and the anti-
symmetric representation 3̄. Finally, the Hamiltonian for
the quark core is written

HC ¼
X3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i þm2

q

q
þ 1

2

X3
i<j

�
fArij −

1

4

κ

rij

�
; ð5Þ

where the factor 1=4 comes from the mean value of
hFq · Fqi for the spin-color state (4).
The quark core is not a pointlike particle. It is thus

necessary to compute the density of color (that is to say the
density of quarks) inside the core to compute the correct
quark core-gluon interaction (see Sec. IV). A natural
definition for a normalized N-body density is [31]

ρðrÞ ¼ 1

N

XN
j¼1

Z
…

Z
jψ j2δðr − rjÞdr1…drN; ð6Þ

where ψ is the N-body wave function. Accurate compu-
tations in oscillator bases show that the probability of the
first component of the expansion (the product of two
ground states of oscillator functions in Jacobi coordinates)
amounts for more than 90% of the wave function for
ground state cores. Let us note that, with a trial state
reduced to this unique component, the masses are repro-
duced with a relative error of 0.1%. We decided to use this
approximation to compute the density of the core that then
takes the simple form

ρðrÞ ¼ λ3

π3=2
e−λ

2r2 : ð7Þ

This allows to keep an analytical form for the final quark
core-gluon interaction (see Sec. IV). The parameter λ is
easily determined with the numerical method. Results for
the masses of the ground states of ccc and bbb baryons and
octet cores are given in Table II. The reduction of the
Coulomb attraction produces a significant increase for the
quark core mass with respect to the corresponding baryon.
This contributes to the mass of hybrid baryons.

IV. GLUON-GLUON AND QUARK CORE-GLUON
INTERACTIONS

Assuming that the Casimir scaling hypothesis is valid
[32,33], the relation between the interaction Vgg for two
gluons and Vqq̄, both for singlet color systems, is given by

Vgg ¼
9

4
Vqq̄; ð8Þ

where the factor 9=4 is given by the ratio between the
values of the quadratic QCD Casimir operator for octet
(hF2

gi ¼ 3) and triplet (hF2
qi ¼ 4=3) configurations. That is

the assumption used in [14] to build the semirelativistic
Hamiltonian for a two-gluon glueball

Hgg ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

g

q
þ 9

4
σr − 3

αS
r
; ð9Þ

where the notations of [14] are used: mg is the gluon mass
and σ is the string tension of the mesonic flux tube
[parameter A in potential (1)]. hFg · Fgi ¼ −3 for a two-
gluon glueball. Two sets of parameters are determined
in [14], a first one for gluon with a spin and a second one
for gluon with a helicity. These parameters are gathered in
Table III and compared with the corresponding ones for
potential (1). The agreement between the glueball masses
computed with (9) and the predictions from a lattice QCD
calculation is only possible with two different values of αS,
but the mass hierarchy is far better reproduced for the gluon
with a helicity. One may wonder why test the spin status for
a gluon when one knows very well that it must be false
since the gluon is massless. This is actually because the
gluon can gain an effective mass inside the hadron due to
the confinement [11]. So, it seems relevant to check if the
gluon could lost its helicity to gain a spin. The conclusion
of [14] is that the helicity is preserved and must be used in a
potential model.
It could seem strange that different values for the string

tension and the strong coupling constant are assigned
according to the particles, quarks or gluons, considered.
We preferred to keep different sets of parameters for two
reasons. First, it is difficult to find common values which
give good results for all systems, taking into account the
simplicity of the models. Second, we have then the
possibility to compare masses of hybrid baryons according
to the choice of the spin or the helicity made for the gluon.
We assume the universality of the interaction between

two color octet sources. So, the potential between the gluon
and the color octet quark core is the same as the one
between two gluons, since the internal structure of the core
is irrelevant at this level, but with the difference that the
quark core is not pointlike. The interaction between two

TABLE III. Parameters for glueball and hybrid baryon Ham-
iltonians [14]. Corresponding parameters for the qq̄ systems
taken from Table I are also indicated.

Spin Helicity qq̄

mg 0 0
σ 0.185 GeV2 0.185 GeV2 0.203 GeV2

αS 0.200 0.450 0.328
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pointlike sources must then be convoluted with the density
of the extended source according to the formula [24]

ṼðRÞ ¼
Z

ρðrÞVðjRþ rjÞdr: ð10Þ

Let us note that our definition of ρðrÞ is different compared
to the one in [24], but we must deal with three quarks,
instead of two. No normalization is necessary in (10)
since ρðrÞ is already normalized. Using relation (7), the
Hamiltonian for hybrid baryons is written

HHB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

g

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

C

q

þ 9

4
σ

�
e−λ

2r2ffiffiffi
π

p
λ
þ
�
rþ 1

2λ2r

�
erfðλrÞ

�

− 3αS
erfðλrÞ

r
; ð11Þ

where mC is the quark core mass, λ its size parameter
computed with Hamiltonian (5), and erf is the usual error
function. The eigensolutions for this Hamiltonian must be
found for spin or helicity quark core-gluon states. With a
purely central potential without orbital nor spin depend-
ence, the main difficulty is to compute the action of the
square of the relative angular momentum operator L2

contained in the operator p2. For helicity quark core-gluon
states, this is a very similar problem to the one in [14], but
with the difference that couplings can appear between
helicity states (see Sec. V B).

V. MASSES OF HEAVY HYBRID BARYONS

Accurate eigenvalues and eigenstates of Hamiltonian
(11) can be easily computed with the Lagrange-mesh
method [34,35] (see Sec. B). We consider two cases: a
gluon with a spin and a gluon with a helicity. In both cases,
masses mHB of states with the lowest JP numbers are
computed. It seems to us more relevant to present the mass
gap mHB −mB with respect to the lowest corresponding
baryon mass mB given in Table II. We do not expect that
results with spin are relevant for the physics, but we found
interesting to compare them to the results with helicity, as it
is done for two-gluon glueballs in [14].

A. Gluon with spin

The parameters σ and αS are taken from the “spin”
column in Table III. The octet quark core is a JPC

C ¼ 1=2þ

state while the gluon is a J
Pg
g ¼ 1− state. The total spin S

of a hybrid baryon is a good quantum number with 1=2
and 3=2 possible values. The relative angular momentum L
is also a good quantum number and the total parity is
P ¼ ð−1ÞLþ1. A tower of degenerate JP ¼ 1=2− and 3=2−

hybrid baryons can be formed for L ¼ 0. With L ¼ 1,

another tower of degenerate JP ¼ 1=2þ, 3=2þ, and 5=2þ
states is possible. The degeneracies appear because the
interaction is purely central. Results for cccg and bbbg are
given in Table IV. The mass gap is nearly the same for both
flavors.

B. Gluon with helicity

With a helicity for the gluon, things are very different,
not only because the parameters σ and αS are taken from the
“helicity” column in Table III, but also because of the very
different structure for the spin-orbital wave functions of
hybrid baryons. If a spin could be assigned to the gluon,
the two-body quark core-gluon states representing hybrid
baryons should be “ordinary” two-body spin states usually
noted j2Sþ1LJi. As gluons are characterized by a helicity,
the two-body states are in fact the states jH�; JP;�Jc1i
built in Sec. A, with a given spin JC for the quark core,
in the same spirit of [14]. These helicity states can be
expanded in states j2Sþ1LJi that are easier to manipulate

jH�; JP;�Jc1i ¼
X
L;S

CL;S;Jj2Sþ1LJi: ð12Þ

In general, S and L are not good quantum numbers. This
decomposition is a pure mathematical trick to allow a direct
computation of the action of various operators on the
helicity states. We list here the states with the lowest JP

quantum numbers that can be formed with a spin JC ¼ 1=2.
We use a simplified notation jJP; αi where the index α
allows to distinguish the different possible internal struc-
tures. The value of wβα ¼ hJP; βjL2jJP; αi is also indicated.
The two 1=2� states are

j1=2−; 1i ¼
ffiffiffi
2

3

r
j201=2i −

ffiffiffi
1

3

r
j421=2i with w11 ¼ 2;

ð13Þ

j1=2þ; 1i ¼
ffiffiffi
2

3

r
j211=2i −

ffiffiffi
1

3

r
j411=2i with w11 ¼ 2:

ð14Þ

It is possible to write w11 ¼ leffðleff þ 1Þ where leff is a
natural number and can be considered as an effective orbital

TABLE IV. Mass gap mHB −mB in GeV for some cccg
and bbbg hybrid baryons for a gluon with a spin. The number
nr ¼ 0ð1Þ indicates the ground state (the first radial excitation)
for the given value of L.

JP L nr cccg bbbg

1=2−, 3=2− 0 0 1.652 1.635
1=2þ, 3=2þ, 5=2þ 1 0 2.194 2.220
1=2−, 3=2− 0 1 2.469 2.444
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angular momentum. 1=2� states are then characterized by
leff ¼ 1. There are two 3=2− states

j3=2−; 1i ¼
ffiffiffi
2

3

r
j223=2i þ

ffiffiffi
1

6

r
j403=2i −

ffiffiffi
1

6

r
j423=2i; ð15Þ

j3=2−; 2i ¼
ffiffiffi
1

2

r
j403=2i þ

ffiffiffi
1

2

r
j423=2i; ð16Þ

which are coupled with the matrix

wαβ ¼
�

5 −
ffiffiffi
3

p

−
ffiffiffi
3

p
3

�
: ð17Þ

For this matrix, it is not possible to assign a value of leff
neither to w11 nor to w22. But its eigenvalues are 2 and 6,
which correspond to leff ¼ 1 and 2 respectively. There are
also two 3=2þ states

j3=2þ;1i ¼
ffiffiffi
2

3

r
j213=2iþ

ffiffiffiffiffi
1

30

r
j413=2iþ

ffiffiffiffiffi
3

10

r
j433=2i; ð18Þ

j3=2þ; 2i ¼
ffiffiffiffiffi
9

10

r
j413=2i þ

ffiffiffiffiffi
1

10

r
j433=2i; ð19Þ

which are coupled with the same matrix (17). So states
3=2− and 3=2þ are degenerate in our model.
The comparison between Tables IVand V shows that the

ground states contain 1=2− states in both cases but that the
mass gaps differ. Moreover, the hierarchy of the states is
also very different. In particular, positive and negative
parity states are degenerate in Table V. This demonstrates
that the assignation of a spin or a helicity to the gluon has
significant implications on the properties of hybrid bary-
ons. As more physical results are obtained with the helicity
status for two-gluon glueball, we also consider that the
relevant results are presented in Table Vand not in Table IV.
The main results that can be taken from Table V are

(i) The hierarchy is the same for cccg and bbbg states.
(ii) The common value leff ¼ 1 for 1=2� and some 3=2�

states causes their degeneracy. We checked that the

same results are obtained by working directly with
eigenstates of the operator L2.

(iii) The lowest states have JP ¼ 1=2� and 3=2�, and
have a common mass around 1.8 GeVabove the one
of the ground state baryon.

(iv) As in the case of gg systems, no states with leff ¼ 0
exist [14].

For reasons that we present in Sec. VI, it is not obvious to
compare these masses computed in the heavy sector with
masses obtained in the light sector, which is the target of
future experiments. For instance, in the lattice QCD work
[6] with computations performed with mπ ¼ 396 MeV,
only positive parity spectra are presented. 1=2þ and 3=2þ
hybrid baryons have masses close to each others and the
hybrid-Δ is around 1.5 GeV above the baryon Δ. Some
similarities exist but an extension of our model to the
light sector is needed to draw reliable conclusions. Let us
remind that the interactions considered in this work are
purely central. For instance, light JPB

B ¼ 1=2þ and 3=2þ
baryons are degenerate with our Hamiltonian (2). With
spin dependent contributions some degeneracies would be
raised.
The heavy hybrid baryons computed have quantum

numbers compatible with ordinary baryons. So, the
question of mixing between these configurations can be
examined. In a large-Nc approach of hybrid baryons, it
appears that this mixing vanishes in the heavy quark
limit [4]. Assuming this result is valid in the real world
with Nc ¼ 3, it seems then reasonable that such mixing has
very small effects for cccg and bbbg states and can be
ignored.

VI. CONCLUDING REMARKS AND OUTLOOK

In this work, a heavy hybrid baryon is considered as a
two-body system composed of a quark core and a gluon
interacting via a simple QCD-inspired potential, a picture
similar to the quark-diquark approximation for baryons.
The dominant interaction is a potential simulating the flux
tube confinement, and the Casimir scaling is assumed to
differentiate interactions between triplet or octet color
sources. A one-gluon exchange potential is also added.
The main ingredient of this model is that the helicity of the
gluon is correctly taken into account. Masses of cccg and
bbbg hybrid baryons are computed by assuming the quark
core in its ground state. Results obtained seem reasonable
and are by some aspects similar to the ones obtained for
light hybrid baryons computed within a lattice QCD calcu-
lation. So, we consider this paper as a proof of concept
which can be extended for the study of light hybrid
baryons, more interesting from an experimental point of
view. But three aspects of our model must be improved.
First, it is necessary to use a universal potential model

that can provide good spectra for ordinary and exotic
hadrons. The seminal works [12,13] can be a good starting
point. The semirelativistic Hamiltonians developed in these

TABLE V. Mass gapmHB −mB in GeV for the lowest J ¼ 1=2
and J ¼ 3=2 cccg and bbbg hybrid baryons for a gluon with a
helicity. The number nr ¼ 0ð1Þ indicates the ground state (the
first radial excitation) for the given values of JP.

JP nr leff cccg bbbg

1=2� 0 1 1.842 1.784
3=2� 0 1 1.842 1.784
3=2� 0 2 2.350 2.336
1=2� 1 1 2.552 2.469
3=2� 1 1 2.552 2.469
3=2� 1 2 2.938 2.880
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papers contain relativized potentials and sophisticated spin
contributions. An improved version with a screening effect
for the linear confinement has been recently proposed [36].
Using the Casimir scaling, a version for glueballs and
hybrid hadrons could be tested.
Second, the formation of a diquark inside a baryon is

favored by a strong mass asymmetry between the quarks
or the presence of a high angular momentum [23]. This
indicates that the formation of a compact three-quark
cluster is probably not favored in ground states of light
hybrid baryons. We nevertheless think that this difficulty
can be overcome by allowing the quark core to be in a
superposition of different states with a mixing controlled by
the dynamics of the gluon. The coupling interaction could
be computed as a perturbation arising from the difference
between the full four-body Hamiltonian and the quark-core
gluon one.
Third, if the mixing between hybrid and ordinary

baryons is suppressed in the heavy quark limit [4], the
question must be seriously considered for light quarks.
However, in a lattice QCD work [6], it is remarked that
hybrid states have been easily identified within a dense
spectrum of qqq states. This is a possible indication that the
mixing is not as strong as expected. Nevertheless, within a
potential model, a scheme to treat this problem can be used
which could be similar to the one developed to treat the
quark-diquark mixing in the quark core.
An analytic scheme to study the phenomenology of

hadrons, whose connection with QCD is clearly stated, can
be obtained starting from the large number of colors (Nc)
limit of QCD [37,38]. It is particularly fruitful in the light
baryon sector. This approach can be combined with poten-
tial models to gain new insights into the structure of
hadrons [39–42]. So, we plan to use a combined potential
and Large-Nc approach to study light hybrid baryons.
It will then be possible to track down the properties of
hybrid baryons from large values of Nc to 3, the value for
the physical world. But a difficulty appears because the
color wave function of the quark core has a mixed
symmetry of the form ½21…1�. This means it is, for
instance, symmetrical under 1 ↔ 2 and antisymmetrical
under 1 ↔ 3; 4;…; Nc. It is a priori not possible to build a
totally antisymmetrical wave function above Nc ¼ 3, since
there are not enough spin-flavor quark states. Except, if we
work in the so-called Venezanio limit with a great number
of flavors (Nf) [43], where Nc → ∞, Nf → ∞, and the
ratio Nc=Nf stays finite. Another difficulty is that the
quark core becomes then a Nc-body system. This quan-
tum many body problem can be solved with the envelope
theory [44,45] which relies on the known exact solutions
for the many-body harmonic oscillator Hamiltonian [46].
Within this method, the computational cost is independent
from the number of particles and the accuracy reached is
sufficient to obtain relevant results for the baryon spec-
troscopy [39–42].

ACKNOWLEDGMENTS

L. C. would thank the Fonds de la Recherche
Scientifique—FNRS for the financial support. This work
was also supported under Grant No. 4.45.10.08. All authors
would thank Cyrille Chevalier for providing accurate
masses for the quark-cores. All authors would also thank
the anonymous referee for his careful reading of our text
and many relevant remarks, as well as the detection of a
serious misprint.

APPENDIX A: SPIN-HELICITY TWO-BODY
STATES

1. Helicity states

A particle with mass m, spin s, and helicity λ, moving in
the direction specified by the polar angles ðθ;ϕÞ with
momentum magnitude p, is described by a helicity state
jpθϕ; sλi or jp; sλi. Helicity is defined as the projection of
the spin along the direction of momentum and can take the
following values depending on the mass of the particle

λ ¼
	−s;−sþ 1;…; s − 1; s if m ≠ 0

�s if m ¼ 0
: ðA1Þ

The set of helicity states with all allowed values of λ and p
forms a complete set, known as the helicity basis [19].
A helicity state can be constructed from a state with a
reference 4-momentum p̄ by applying a Lorentz boost
along the z-axis, denoted LzðχÞ with χ being the
rapidity, followed by a suitable rotation Rðα; β; γÞ ¼
e−iαJze−iβJye−iγJz , where ðα; β; γÞ are the Euler angles and
J ¼ ðJx; Jy; JzÞ are the angular momentum operators [47]

jpθϕ; sλi ¼ Rðϕ; θ;−ϕÞLzðχÞjp̄; sλi: ðA2Þ

The reference 4-momentum is typically chosen as p̄ ¼
ðm; 0; 0; 0Þ for massive particles, and p̄ ¼ ð1; 0; 0; 1Þ for
massless particles.
A helicity state with opposite momentum −p, corre-

sponding to polar angles ðπ − θ; π þ ϕÞ, can be constructed
as follows

j−p; sλi ¼ ð−1Þs−λRðϕ; θ;−ϕÞe−iπJyLzðχÞjp̄; sλi; ðA3Þ

where the rotation along the y-axis ensures the momentum
has opposite angles to the original state, and the phase
ð−1Þs−λ is added for convenience [19]. Using this relation, a
two-body helicity state in the center-of-mass frame can be
constructed

jp; s1λ1s2λ2i ¼ jp; s1λ1i ⊗ j−p; s2λ2i; ðA4Þ

since only particles carry momentum, not the interaction, in
a potential model. The state (A4) has a well-defined relative
momentum p but not a total angular momentum, as it is not
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an eigenstate of J2 and Jz. The following state

jp;JM;λ1λ2i¼
�
2Jþ1

4π

�
1=2

Z
dΩ

×DJ�
Mλ1−λ2ðϕ;θ;−ϕÞjpθϕ;s1λ1s2λ2i; ðA5Þ

with dΩ ¼ sin θdθdϕ and DJ
MM0 ðα; β; γÞ the Wigner

D-matrices, transforms as a state with total angular
momentum J and projection M

Rðα; β; γÞjp; JM; λ1λ2i ¼
X
M0

DJ
M0Mðα; β; γÞjp; JM0; λ1λ2i:

ðA6Þ

The coefficient in front of the integral is chosen so that the
state has a standard Lorentz-invariant normalization

hp0; J0M0; λ01λ
0
2jp; JM; λ1λ2i

¼ 4W
p

δðp0 − pÞδJJ0δMM0δλ1λ01δλ2λ02 ; ðA7Þ

with W ¼ ðp2 þm2
1Þ1=2 þ ðp2 þm2

2Þ1=2 being the total
energy. Note that the state jp; JM; λ1λ2i still has well-
defined individual masses mi and spins si, but these are
omitted in the notation for brevity. From the properties of the
Wigner D-matrices, the following selection rule emerges

J ≥ jλ1 − λ2j: ðA8Þ

2. Canonical states

One- and two-particle states can also be described in the
canonical basis fjp; sμicg, which is defined as an eigenstate
of the operator Jz with eigenvalue μ. Starting from the
reference state jp̄; sμi, a canonical state is constructed as
follows

jpθϕ; sμic ¼ Rðϕ; θ;−ϕÞLzðχÞR−1ðϕ; θ;−ϕÞjp̄; sμi:
ðA9Þ

A two-body canonical state jpθϕ; s1μ1s2μ2ic is then built
in a similar fashion to (A4). A total angular momentum J is
provided to the canonical state by using the usual L − S
coupling

j2Sþ1LJi ¼
X
μ1;μ2

ðLmLSmSjJMÞðs1μ1s2μ2jSmSÞ

×
Z

dΩYL
mL
ðΩÞjpθϕ; s1μ1s2μ2ic; ðA10Þ

where ðabcdjefÞ is a Clebsh-Gordan coefficient and
Yl
mðΩÞ is a spherical harmonics. The transformation from

the helicity basis to the canonical basis is given by

jJM; λ1λ2i ¼
X
S;L

�
2Lþ 1

2J þ 1

�
1=2

ðL0Sλ1 − λ2jJλ1 − λ2Þ

× ðs1λ1s2 − λ2jSλ1 − λ2Þj2Sþ1LJi; ðA11Þ

where the sum runs over all values of L and S such that
js1 − s2j ≤ S ≤ s1 þ s2 and jJ − Sj ≤ L ≤ J þ S.

3. Parity

Helicity states, as defined in Eq. (A5), are not eigenstates
of the parity operator, as it should be for a physical state
of the strong interaction. This requirement is fulfilled by
the following linear combination, with the same notation
as in [14]

jH�; JP; λ1λ2i ¼
1ffiffiffi
2

p ½jJM; λ1λ2i � jJM;−λ1 − λ2i�;

ðA12Þ

which has the parity eigenvalue given by

P ¼ �η1η2ð−1ÞJ−s1−s2 ; ðA13Þ

where ηi denotes the intrinsic parity of the particle i. Each
state is now characterized by the quantum numbers JP.

4. Helicity states for hybrid baryons

In our quark core model, a hybrid baryon can be modeled
as a two-body system consisting of a massive quark core
with spin JC and parity PC, and a massless gluon with
helicity λg ¼ �1 and parity Pg ¼ −1. Following the dis-
cussion of Sec. III B, the two body helicity states are built
for JC ¼ 1=2 and a positive parity quark core. Considering
the selection rule on the total angular momentum (A8) and
the parity eigenvalue (A13), the hybrid baryon is described
by a basis of four states



Hþ;

�
kþ 1

2

�
P
;
1

2
1

�
with P ¼ ð−1Þk ⇒ 1

2

þ
;
3

2

−
;
5

2

þ
;…

ðA14aÞ




H−;

�
kþ 1

2

�
P
;
1

2
1

�
with P¼ −ð−1Þk ⇒ 1

2

−
;
3

2

þ
;
5

2

−
;…

ðA14bÞ




Hþ;

�
kþ 3

2

�
P
;−

1

2
1

�
with P ¼ −ð−1Þk ⇒ 3

2

−
;
5

2

þ
;…

ðA14cÞ



H−;

�
kþ 3

2

�
P
;−

1

2
1

�
with P ¼ ð−1Þk ⇒ 3

2

þ
;
5

2

−
;…

ðA14dÞ
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Here, the allowed quantum numbers JP for each state are
indicated on the right. The decomposition into canonical
states (A10) is given below, following the basis trans-
formation (A11)





Hþ; JP;
1

2
1

�
¼

ffiffiffi
2

3

r
j2kþ 1Ji þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2ð2kþ 1Þ

s
j4k − 1Ji

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2

6ð2kþ 1Þ

s
j4kþ 1Ji; ðA15aÞ





H−; JP;
1

2
1

�
¼

ffiffiffi
2

3

r
j2kJi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

6ð2kþ 3Þ

s
j4kJi

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2

2ð2kþ 3Þ

s
j4kþ 2Ji; ðA15bÞ





Hþ; JP;−
1

2
1

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 3

2ð2kþ 3Þ

s
j4kJi

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðkþ 1Þ
2ð2kþ 3Þ

s
j4kþ 2Ji; ðA15cÞ





H−; JP;−
1

2
1

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðkþ 3Þ
2ð2kþ 5Þ

s
j4kþ 1Ji

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2ð2kþ 5Þ

s
j4kþ 3Ji: ðA15dÞ

It is straightforward to verify that all these states are
orthonormal. Since canonical states are eigenstates of the
operators J2, L2 and S2, the mean values of these operators
can be computed for each of the above helicity states.
Results are presented in Table VI.
Similar calculations for the helicity states and mean

values have been performed for JC ¼ 3=2.

APPENDIX B: LAGRANGE-MESH METHOD
FOR TWO-BODY SYSTEMS

The two-body system is solved with the Lagrange-mesh
method [35] which is very easy to use and very accurate.
For two particles with spin, the method is described in [34].
For the quark core-gluon system, a general wave function is
approximated by the following expansion

jψi ¼
XNh

α¼1

XNLM

i¼1

Ciαjfi; JP; αi ðB1Þ

in the basis fjfi; JP; αig ¼ fjfiijJP; αig, with
hJP; βjJP; αi ¼ δβα. A sum runs on theNh helicity channels
fjJP; αig defining the state and another one runs on NLM
Lagrange radial functions ffig such that

hrjfi; JP; αi ¼
1ffiffiffi
h

p
r
fi

�
r
h

�
jJP; αi: ðB2Þ

These functions are associated with NLM dimensionless
mesh points fxig, are orthonormal (at the Gauss approxi-
mation), and vanish at all mesh points but one. Coefficients
Ciα are computed by diagonalizing the Hamiltonian matrix
with elements hfj; JP; βjHjfi; JP; αi, and h is the only non
linear parameter fixing the scale of the system (the method
is not very sensitive to the value of this parameter).
When only one channel is present, the computation of

the matrix elements is described in [34]. The only differ-
ence is the replacement of the mean values lðlþ 1Þ ¼ hL2i
by their helicity counterparts hJP; αjL2jJP; αi ¼ wαα (see
Sec. V B). Let us note that the computation of h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
i

first involves calculating the eigenvalues of the operator
p2 þm2 in the basis, which is easy to perform.
For some JP quantum numbers, two or more channels

must be taken into account. In (B1), the same number of
mesh points and the same value of the scale parameter are
chosen for all helicity channels. This is not compulsory but
this considerably simplifies the computation of the non dia-
gonal matrix elements thanks to the orthogonality condition
on the functions ffig. As the interaction is purely central,
the coupling of helicity channels is only due to the operator
L2 in p2. With β ≠ α, it is easy to show that

hfj; JP; βjp2 þm2jfi; JP; αi ¼
wβα

h2x2i
δji; ðB3Þ

hfj; JP; βjVðrÞjfi; JP; αi ¼ 0: ðB4Þ

TABLE VI. Mean values of different operators Q̂ for the
helicity states (A15).

Q̂ J2 L2 S2 L · S

jHþ; JP; 12 1i JðJ þ 1Þ JðJ þ 1Þ þ 5=4 7=4 −3=2
jH−; JP;

1
2
1i JðJ þ 1Þ JðJ þ 1Þ þ 5=4 7=4 −3=2

jHþ; JP;− 1
2
1i JðJ þ 1Þ JðJ þ 1Þ − 3=4 15=4 −3=2

jH−; JP;− 1
2
1i JðJ þ 1Þ JðJ þ 1Þ − 3=4 15=4 −3=2
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