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We use the quark potential model to calculate the mass spectrum of the S-wave fully heavy tetraquark
systems with different flavors, including the bcb̄c̄; bbc̄c̄; ccc̄b̄, and bbb̄c̄ systems. We employ the
Gaussian expansion method to solve the four-body Schrödinger equation, and the complex scaling method
to identify resonant states. The bcb̄c̄; bbc̄c̄; ccc̄b̄, and bbb̄c̄ resonant states are obtained in the mass regions
of (13.2, 13.5), (13.3, 13.6), (10.0, 10.3), (16.5, 16.7) GeV, respectively. Among these states, the bcb̄c̄
tetraquark states are the most promising ones to be discovered in the near future. We recommend the
experimental exploration of the 1þþ and 2þþ bcb̄c̄ states with masses near 13.3 GeV in the J=ψϒ channel.
From the root-mean-square radii, we find that all the resonant states we have identified are compact
tetraquark states.

DOI: 10.1103/PhysRevD.110.034030

I. INTRODUCTION

Hadron physics provides an excellent platform for
studying the nonperturbative properties of quantum
chromodynamics (QCD). In the past decades, tens of
exotic hadrons beyond conventional mesons and baryons
have been observed in experiments, which greatly advances
the hadron spectroscopy. Many interpretations are pro-
posed to understand these exotic states, including hadronic
molecules, compact multiquark states, hybrid states, etc.
More details can be found in recent reviews [1–11].
Among various exotic hadrons, the fully heavy tetra-

quarks QQQ̄Q̄ðQ ¼ b; cÞ have attracted great attention.
Theoretically, they stand out as relatively clean systems, less
affected by the creation and annihilation of the light quarks.
In the absence of the long-range light meson exchange
mechanism, the interactions between heavy quarks are
dominated by the short-range gluon exchange and confine-
ment. Therefore, the fully heavy tetraquark systems
might have a tendency to form compact tetraquark states.
Experimentally, great efforts and progress have beenmade in

the search for the fully heavy tetraquark states. In the fully
bottomed sector, bbb̄ b̄ candidates were searched for by the
CMS [12,13] and LHCb [14] collaborations, but no signifi-
cant signal was found. In the fully charmed sector, the LHCb
discovered the first fully charmed tetraquark candidate
Xð6900Þ [15], which was confirmed by the CMS [16] and
ATLAS [17] collaborations.Meanwhile, more fully charmed
tetraquark candidates were reported, including Xð6600Þ,
Xð7200Þ by the CMS [16] and Xð6400Þ, Xð6600Þ,
Xð7200Þ by the ATLAS [17]. Moreover, the CMS also
observed triple J=ψ production [18], which may shed light
on the future exploration of fully charmed hexaquarks.
The existence of the fully charmed tetraquark candidates

implies that similar tetraquark states may also exist in other
fully heavy tetraquark systems, including the bcb̄c̄, bbc̄c̄,
ccc̄b̄, and bbb̄c̄ systems. Among these systems, bcb̄c̄
may be the most promising for experimental observation,
since it only requires the production of two heavy quark-
antiquark pairs. Some theoretical studies have been con-
ducted on the fully heavy tetraquark systems with different
flavors [19–39]. However, few works consider both com-
pact diquark-antidiquark and molecular dimeson spatial
configurations simultaneously and perform comprehensive
dynamical calculations to identify genuine resonant states.
In our previous work [36], we incorporated both diquark-
antidiquark and dimeson spatial configurations, employing
various quark models and few-body methods to conduct
benchmark calculations for tetraquark bound states. Our
results indicate that the Gaussian expansion method [40] is
highly efficient in exploring tetraquark states, and that
there are no bound states in the fully heavy tetraquark
systems.
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In this study, we further investigate the S-wave fully
heavy tetraquark resonant states with different flavors
ðbcb̄c̄; bbc̄c̄; ccc̄ b̄; bbb̄c̄Þ. We apply the complex scaling
method [41–43] to identify genuine resonant states from
meson-meson scattering states. We employ the Gaussian
expansion method [40] to solve the four-body Schrödinger
equation, taking both diquark-antidiquark and dimeson
spatial configurations into account. This framework has
been successfully used to investigate theQsq̄q̄ andQQQ̄Q̄
(Q ¼ b, c) systems [44,45]. For consistency, we adopt the
AP1 quark potential model [46,47], which was also used in
our previous work on the fully heavy tetraquark QQQ̄Q̄
systems [45]. Moreover, we analyze the spatial structures of
the tetraquark states by calculating the root-mean-square
radii, which allow us to distinguish between the compact
and molecular tetraquark states. We also improve the
numerical stability of the rms radii results from our
previous work [45]. This study may aid experimental
exploration in the future.
This paper is organized as follows. In Sec. II, we

introduce the theoretical framework, including the tetra-
quark Hamiltonian, the calculation methods, and the
approach to analyzing the spatial structures. In Sec. III,
we present the numerical results and discuss properties of
fully heavy tetraquark states with different flavors. In
Sec. IV, we give a summary of our findings.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

The nonrelativistic tetraquark Hamiltonian in the center-
of-mass frame reads

H ¼
X4
i¼1

�
mi þ

p2
i

2mi

�
þ

X4
i<j¼1

Vij; ð1Þ

where the first two terms represent the mass and kinetic
energy of the ith (anti)quark and the last term represents the
two-body interaction. In our previous study [45], we
adopted three different quark potential models to study
the fully charmed tetraquark systems and found that they
give qualitatively consistent results. The masses of the fully
charmed tetraquark states from different models differ by
tens of MeV, and the widths differ by a fewMeV.We expect
that different quark potential models may cause uncertain-
ties of the same order for other fully heavy tetraquark
systems. In this work, without prejudice to generality, we
use the AP1 potential to study the fully heavy tetraquark

systems with different flavors. The AP1 potential includes
the one-gluon-exchange interaction and a 2=3 power quark
confinement interaction,

Vij ¼ −
3

16
λi · λj

�
−

κ

rij
þ λr2=3ij − Λ

þ 8πκ0

3mimj

exp ð−r2ij=r20Þ
π3=2r30

Si · Sj

�
; ð2Þ

where λi is the SU(3) color Gell-Mann matrix, and Si is the
spin operator. The parameters of the AP1 model were
determined by fitting the meson spectra, and we do not
introduce any new free parameters. They are taken from
Ref. [47] and listed in Table I. The theoretical masses of the
heavy mesons as well as their root-mean-square (rms) radii
are listed in Table II. It can be seen that the theoretical
masses are in accordance with the experimental ones up to
tens of MeV. We expect the errors for the tetraquark states
to be of the same order.

B. Calculation methods

To obtain possible bound and resonant states, we apply
the complex scaling method (CSM). In the CSM [41–43],
the coordinate r and its conjugate momentum p are trans-
formed as

UðθÞr ¼ reiθ; UðθÞp ¼ pe−iθ: ð3Þ

Under such a transformation, the complex-scaled
Hamiltonian is no longer Hermitian, which can bewritten as

HðθÞ ¼
X4
i¼1

�
mi þ

p2
i e

−2iθ

2mi

�
þ

X4
i<j¼1

VijðrijeiθÞ: ð4Þ

According to the ABC theorem [41,42], the eigenenergies
of the scattering states, bound states, and resonant states
can be obtained by solving the complex-scaled Schrödinger
equations. The scattering states line up along rays starting
from threshold energies with ArgðEÞ ¼ −2θ. The bound
states are located on the negative real axis in the energy
plane. The resonant states with mass MR and width ΓR can
be detected at ER ¼ MR − iΓR=2when the complex scaling
angle 2θ > jArgðERÞj. Both the bound states and the
resonant states remain stable as θ changes.
To solve the complex-scaled four-body Schrödinger

equation, we apply the Gaussian expansion method

TABLE I. The parameters in the AP1 quark potential model.

κ λ ½GeV5=3� Λ ½GeV� κ0 mc ½GeV� mb ½GeV� r0c ½GeV−1� r0b ½GeV−1�
0.4242 0.3898 1.1313 1.8025 1.8190 5.206 1.2583 0.8928
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(GEM) [40]. The wave functions of the S-wave tetraquark
states with total angular momentum J are expanded as

ΨJðθÞ ¼ A
X
jac

X
α;ni

CðjacÞ
α;ni ðθÞχJαϕn1ðrjacÞϕn2ðλjacÞϕn3ðρjacÞ;

ð5Þ

where A is the antisymmetric operator of identical par-
ticles. We consider three sets of spatial configurations
(dimeson and diquark-antidiquark), which are denoted by
ðjacÞ ¼ ðaÞ; ðbÞ; ðcÞ. In each configuration, there are three
independent Jacobian coordinates rjac; λjac; ρjac, as shown in
Fig. 1. The spatial wave function ϕniðrÞ takes the Gaussian
form,

ϕniðrÞ ¼ Nnie
−νni r

2

;

νni ¼ ν1γ
ni−1 ðni ¼ 1 ∼ nmaxÞ; ð6Þ

where Nni is the normalization factor, and nmax ¼ 12 are
used to obtain numerically stable results. We vary the
parameters of the Gaussian functions, ν1 and γ, within a
reasonable range and find that the results remain stable.

For the color-spin wave function χJα, we choose a complete
set of basis given by

χJ
3̄c⊗3c;s1;s2

¼ ½ðQ1Q2Þs13̄cðQ̄3Q̄4Þs23c �J1c ;
χJ
6c⊗6̄c;s1;s2

¼ ½ðQ1Q2Þs16cðQ̄3Q̄4Þs26̄c �
J
1c
; ð7Þ

for all possible combinations of s1; s2; J. Finally, the

expansion coefficients CðjacÞ
α;ni ðθÞ are determined by solving

the energy eigenvalue equation,

HðθÞΨJðθÞ ¼ EðθÞΨJðθÞ: ð8Þ

C. Spatial structures

The quark model does not make a priori assumptions
about the structures of multiquark states, allowing both
compact and molecular states. The root-mean-square (rms)
radius is a commonly used criterion to distinguish between
the compact and molecular tetraquark states. In our
previous works [44,45], we argued that the rms radii
calculated using the complete wave functions could be
misleading due to the antisymmetrization of identical
particles. In order to eliminate the ambiguity arising from
antisymmetrization, we proposed a new approach to
calculate the rms radii. For systems with no identical
particle (bcb̄c̄), such ambiguity does not exist and we
can calculate the rms radii using the complete wave
function directly. For systems with one pair of identical
particles (ccc̄b̄; bbb̄c̄), we decompose the complete anti-
symmetric wave function as

ΨJðθÞ ¼ ½ðQ1Q̄3Þ1cðQ2Q̄0
4Þ1c �1c ⊗ jψ1ðθÞi

þ ½ðQ2Q̄3Þ1cðQ1Q̄0
4Þ1c �1c ⊗ jψ2ðθÞi;

¼ A½ðQ1Q̄3Þ1cðQ2Q̄0
4Þ1c �1c ⊗ jψ1ðθÞi;

≡AΨJ
nAðθÞ: ð9Þ

For systems with two pairs of identical particles ðbbc̄c̄Þ, we
decompose the complete antisymmetric wave function as

ΨJðθÞ ¼
X
s1≥s2

ð½ðQ1Q̄0
3Þs11cðQ2Q̄0

4Þs21c �J1c ⊗ jψ s1s2
1 ðθÞi

þ ½ðQ1Q̄0
3Þs21cðQ2Q̄0

4Þs11c �J1c ⊗ jψ s1s2
2 ðθÞi

þ ½ðQ1Q̄0
4Þs11cðQ2Q̄0

3Þs21c �J1c ⊗ jψ s1s2
3 ðθÞi

þ ½ðQ1Q̄0
4Þs21cðQ2Q̄0

3Þs11c �J1c ⊗ jψ s1s2
4 ðθÞiÞ;

¼ A
X
s1≥s2

½ðQ1Q̄0
3Þs11cðQ2Q̄0

4Þs21c �J1c ⊗ jψ s1s2
1 ðθÞi;

≡AΨJ
nAðθÞ; ð10Þ

where s1, s2 sum over spin configurations with total angular
momentum J. Instead of using the complete wave function

FIG. 1. The Jacobian coordinates for two types of spatial
configurations: (a),(b) for the dimeson configurations, and
(c) for the diquark-antidiquark configuration.

TABLE II. The theoretical masses (in MeV) of heavy mesons,
compared with the experimental results taken from Ref. [48]. The
theoretical rms radii (in fm) are listed in the last column.

Mesons mExp mTheo rrms
Theo

ηc 2984 2982 0.35
ηcð2SÞ 3638 3605 0.78
ηcð3SÞ � � � 3986 1.15
J=ψ 3097 3102 0.40
ψð2SÞ 3686 3645 0.81
ψð3SÞ 4039 4011 1.17
ηb 9399 9401 0.20
ηbð2SÞ 9999 10000 0.48
ηbð3SÞ � � � 10326 0.73
ϒ 9460 9461 0.21
ϒð2SÞ 10023 10014 0.49
ϒð3SÞ 10355 10335 0.74
Bc 6274 6269 0.30
Bcð2SÞ 6871 6854 0.66
B�
c � � � 6338 0.32

B�
cð2SÞ � � � 6875 0.68
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ΨJðθÞ, we use the non-antisymmetric componentΨJ
nAðθÞ to

define the rms radius:

rrms
ij ≡ Re

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨJ

nAðθÞjr2ije2iθjΨJ
nAðθÞi

hΨJ
nAðθÞjΨJ

nAðθÞi

s 3
5: ð11Þ

The new definition of the rms radius is useful for
investigating the spatial structures of the tetraquark states.
For a hadronic molecular state, rrms

13 and rrms
24 are expected to

be the sizes of the constituent mesons, and much smaller
than the other rms radii. For a compact tetraquark state, all
rms radii in the four-body system should be of the same
order. More discussions of the rms radii can be found in
Refs. [44,45].
It should be emphasized that the inner products in the

CSM are defined using the c product [49],

hϕnjϕmi≡
Z
ϕnðrÞϕmðrÞd3r; ð12Þ

where the square of the wave function rather than the
square of its magnitude is used. The rms radius calculated
by the c product is generally not real, but its real part can
still reflect the internal quark clustering behavior if the
width of the resonant state is not too large, as discussed
in Ref. [50].

III. RESULTS AND DISCUSSIONS

We investigate the S-wave fully heavy tetraquark sys-
tems with different flavors, including the bcb̄c̄; bbc̄c̄; ccc̄b̄,
and bbb̄c̄ systems. With the CSM, we calculate the
complex energies of these systems. We choose varying
complex scaling angles θ to identify genuine resonant
states. The meson-meson scattering states rotate along the
continuum lines starting from the threshold energies, while
bound states and resonant states do not shift with θ.
We obtain a series of resonant states in all these systems,
but no bound state exists below the lowest threshold.
For convenience, we label the tetraquark resonant states
obtained in our calculations as TQ1Q2Q̄3Q̄4;JPðCÞ ðMÞ, where
Q1Q2Q̄3Q̄4 is the quark content and M is the mass of
the state.

A. bcb̄c̄

The bcb̄c̄ tetraquark is a neutral system with definite
charge parity. For the S-wave neutral tetraquark systems,
possible quantum numbers include JPC ¼ 0þþ; 1þ−; 2þþ;
0þ−; 1þþ; 2þ−. In Ref. [45], we introduced a method to
determine the C parity of the neutral tetraquark states by
decomposing the Hilbert space.
The complex energies of the bcb̄c̄ systems are shown in

Fig. 2. We obtain a series of resonant states, whose complex
energies, proportions of different color configurations and

(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 2. The complex energy eigenvalues of the bcb̄c̄ states with varying θ in the CSM. The solid lines represent the continuum lines
rotating along ArgðEÞ ¼ −2θ. The resonant states do not shift as θ changes and are highlighted by the orange circles.
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rms radii are summarized in Table III. The bcb̄c̄ resonant
states are located in the mass region (13.2, 13.5) GeV.
The different rms radii of these states are of the same order,
approximately matching the sizes of the corresponding 2S
mesons. This indicates that they are compact tetraquark
states.
In order to obtain good numerical convergence of the rms

radii of the resonant states, it is important to choose
appropriate complex scaling angles θ so that the continuum
lines are not too close to the resonant states, as discussed in
Ref. [50]. Otherwise, the rms radii results could be affected
by the scattering states, becoming numerically unstable and
potentially leading to false conclusions. To illustrate this,
we use different angles to calculate the rms radii of
Tbcb̄c̄;1þþð13255Þ and Tbcb̄c̄;1þ−ð13289Þ, which are, respec-
tively, denoted by rrms1 and rrms2 and shown in Fig. 3. The
values of rrms1 are numerically unstable for θ ¼ 9° ∼ 15°,

TABLE III. The complex energies (in MeV), the proportions of different color configurations and the rms radii
(in fm) of the bcb̄c̄ resonant states.

JPC M − iΓ=2 χ 3̄c⊗3c
(%) χ6c⊗6̄c

(%) rrms
bb̄

rrms
cc̄ rrms

bc̄ ¼ rrms
cb̄

rrms
bc ¼ rrms

b̄c̄

0þþ 13290 − 17i 56 44 0.58 0.73 0.46 0.57
13322 − 18i 56 44 0.38 0.63 0.65 0.48

1þ− 13289 − 5i 48 52 0.32 0.71 0.60 0.61
13311 − 15i 53 47 0.50 0.70 0.53 0.58
13328 − 16i 54 46 0.30 0.59 0.60 0.50
13364 − 1i 49 51 0.43 0.58 0.56 0.56

2þþ 13333 − 14i 53 47 0.44 0.68 0.53 0.53

0þ− 13289 − 3i 47 53 0.32 0.70 0.60 0.61
13308 − 7i 46 54 0.36 0.52 0.54 0.49
13362 − 1i 50 50 0.42 0.58 0.56 0.55
13400 − 1i 67 33 0.41 0.59 0.53 0.56
13432 − 1i 64 36 0.43 0.61 0.54 0.58

1þþ 13255 − 11i 35 65 0.32 0.70 0.60 0.60
13276 − 8i 45 55 0.31 0.70 0.59 0.60
13310 − 16i 56 44 0.50 0.71 0.52 0.57
13318 − 7i 48 52 0.41 0.55 0.55 0.53
13355 − 3i 45 55 0.41 0.56 0.54 0.54

2þ− 13289 − 9i 41 59 0.57 0.85 0.61 0.78
13364 − 2i 45 55 0.42 0.58 0.56 0.56

TABLE IV. The previous (P.) and improved (I.) results for the complex energies (in MeV) and rms radii (in fm) of
the ccc̄c̄ resonant states in Ref. [45]. The previous results are taken from Ref. [45]. The last column shows the
spatial configurations of the states, where C. and M. represent the compact tetraquark and molecular configurations,
respectively.

JPC M − iΓ=2 rrms
c1 c̄3 rrms

c2c̄4 rrms
c1 c̄4 ¼ rrms

c2 c̄3 rrms
c1c2 ¼ rrms

c̄3 c̄4 Configurations

P. 0þþ 7173 − 20i 0.89 0.89 2.31 2.28 M.
I. 7167 − 19i 0.91 0.91 0.90 0.67 C.
P. 1þ− 7191 − 32i 0.71 1.08 2.09 2.08 M.
I. 7181 − 27i 0.91 0.93 0.87 0.61 C.
P. 2þþ 7214 − 30i 0.92 0.92 1.93 1.88 M.
I. 7204 − 29i 0.94 0.94 0.85 0.62 C.

FIG. 3. The rms radii (in fm) of Tbcb̄c̄;1þþð13255Þ (solid lines)
and Tbcb̄c̄;1þ−ð13289Þ (dashed lines) calculated using different
complex scaling angles.
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since the state Tbcb̄c̄;1þþð13255Þ is located too close to the
B�þ
c ð2SÞB�−

c continuum line for these angles. Therefore, we
need to choose larger angles ðθ ¼ 21°; 24°Þ for the 1þþ
system to obtain convergent rms radii results. But for other
resonant states such as Tbcb̄c̄;1þ−ð13289Þ, we can see from
Fig. 2 that they are not located close to the continuum lines.
As a result, we can obtain good convergent values of rrms2

using θ ¼ 9° ∼ 15°.
We also use the same method to improve our previous

rms radii results of the fully charmed tetraquark states [45].
In our previous work, we suggested that three ccc̄c̄
resonant states, including two Xð7200Þ candidates, might
have a molecular configuration, but their rms radii were less
numerically accurate. By choosing larger angles, we obtain
more numerically stable results, which are compared with
the previous ones in Table IV. With the improved results,
we find that these three states actually have compact
tetraquark configuration.
Among all the fully heavy tetraquark systems with

different flavors, the bcb̄c̄ tetraquark is the most promis-
ing one to be discovered in experiments, since it only
requires the production of two heavy quark-antiquark pairs.

Moreover, the 1þþ and 2þþ bcb̄c̄ tetraquark resonant
states, including the Tbcb̄c̄;1þþð13255Þ, Tbcb̄c̄;1þþð13276Þ,
Tbcb̄c̄;1þþð13310Þ, Tbcb̄c̄;1þþð13318Þ, Tbcb̄c̄;1þþð13355Þ, and
Tbcb̄c̄;2þþð13333Þ, can decay into the J=ψϒ channel, which
can be efficiently reconstructed in experiments. Therefore,
we recommend experimental exploration of the 1þþ and
2þþbcb̄c̄ states with masses near 13.3 GeV in the J=ψϒ
channel.

B. bbc̄c̄

The complex eigenenergies of the 0þ; 1þ, and 2þ bbc̄c̄
systems are shown in Fig. 4. We obtain some resonant
states, whose complex energies, proportions of different
color configurations and rms radii are summarized in
Table V. The bbc̄c̄ resonant states are located in the mass
region (13.3, 13.6) GeV. The different rms radii of these
states are of the same order, indicating that they are
compact tetraquark states.
Unlike the ccc̄c̄ and bbb̄b̄ systems, the bbc̄c̄ system

does not have definite C parity. However, when compared
with our previous work on the fully heavy tetraquark

TABLE V. The complex energies (in MeV), the proportions of different color configurations and the rms radii
(in fm) of the bbc̄c̄ resonant states.

JP M − iΓ=2 χ 3̄c⊗3c
(%) χ6c⊗6̄c

(%) rrms
b1c̄1

rrms
b2 c̄2

rrms
b1b2

rrms
c̄1c̄2 rrms

b1 c̄2
rrms
b2 c̄1

0þ 13306 − 2i 35 65 0.50 0.50 0.53 0.65 0.56 0.56
13349 − 1i 70 30 0.51 0.51 0.50 0.64 0.55 0.55
13439 − 37i 89 11 0.68 0.68 0.28 0.61 0.65 0.65

1þ 13344 85 15 0.53 0.49 0.49 0.62 0.52 0.54
13402 − 3i 77 23 0.52 0.55 0.41 0.59 0.57 0.57
13429 − 13i 32 68 0.55 0.57 0.38 0.62 0.62 0.61
13448 − 34i 83 17 0.67 0.68 0.39 0.68 0.70 0.69

2þ 13359 86 14 0.52 0.52 0.49 0.63 0.54 0.54
13460 − 36i 82 18 0.67 0.67 0.47 0.75 0.73 0.73
13547 − 4i 80 20 0.76 0.76 0.50 0.76 0.80 0.80

FIG. 4. The complex energy eigenvalues of the bbc̄c̄ states with varying θ in the CSM. The solid lines represent the continuum lines
rotating along ArgðEÞ ¼ −2θ. The resonant states do not shift as θ changes and are highlighted by the orange circles.
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QQQ̄Q̄ ðQ ¼ b; cÞ systems [45], we still find some simi-
larities in the bbc̄c̄ system. For example, in the ccc̄c̄ system
with JP ¼ 2þ, there exist two resonant states with positive
C parity and one zero-width state with negative C parity
below the ψð3SÞJ=ψ threshold, as shown in Fig. 5.
Similarly, in the 2þ bbc̄c̄ system, we obtain two resonant
states with nonzero widths and one zero-width state below
the B�

cð3SÞB�
c threshold. Comparing Figs. 4 and 5, it is

evident that the 2þ bbc̄c̄ energy plot shares a similar
pattern with the superposition of the 2þþ and 2þ− ccc̄c̄

energy plots. Such similarities also exist in JP ¼ 0þ and 1þ
systems. In our previous work [45], we identified
two resonant states with JPC ¼ 0þþ and 2þþ as candi-
dates of Xð6900Þ. Their analogs in bbc̄c̄ systems are
Tbbc̄c̄;0þð13439Þ and Tbbc̄c̄;2þð13460Þ.

C. ccc̄b̄ and bbb̄c̄

The complex eigenenergies of the ccc̄b̄ and bbb̄c̄
systems are shown in Figs. 6 and 7, respectively. We
obtain a series of resonant states in these systems, whose
complex energies, proportions of different color configu-
rations and rms radii are summarized in Tables VI and VII.
The ccc̄b̄ resonant states lie within the mass region
(10.0, 10.3) GeV, while the bbb̄c̄ resonant states lie within
the mass region (16.5, 16.7) GeV. The different rms radii of
these states are of the same order, falling between the sizes
of the corresponding 1S and 2S mesons. This indicates that
all of these resonant states have compact tetraquark
configuration.
We observe a great resemblance between the ccc̄b̄ and

bbb̄c̄ systems. There are four resonant states with JP ¼ 0þ,
six resonant states with JP ¼ 1þ, and three resonant states
with JP ¼ 2þ in both systems. In each system, the masses
of the resonant states with the same quantum number are
very close to each other. The emergence of a large number
of resonant states (especially in the 1þ systems) may result
from the coupling between numerous near-degenerate
dimeson thresholds.
In Ref. [31], the authors adopted a different quark

potential model to investigate the ccc̄b̄ and bbb̄c̄ systems
and applied the real scaling method to identify genuine
resonant states. In each system, they found three resonant
states with different quantum numbers. It is worth mention-
ing that the CSM and the real scaling method share similar
physical principles, as the energy eigenvalues of bound and
resonant states do not change under complex or real scaling
transformations. Additionally, even with different quark
potential models, the masses and widths of the lowest

FIG. 5. The complex energy eigenvalues of the 2þ ccc̄c̄ states
with varying θ in the CSM. The solid lines represent the
continuum lines rotating along ArgðEÞ ¼ −2θ. The resonant
states do not shift as θ changes and are highlighted by the orange
circles.

FIG. 6. The complex energy eigenvalues of the ccc̄b̄ states with varying θ in the CSM. The solid lines represent the continuum lines
rotating along ArgðEÞ ¼ −2θ. The resonant states do not shift as θ changes and are highlighted by the orange circles.
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FIG. 7. The complex energy eigenvalues of the bbb̄c̄ states with varying θ in the CSM. The solid lines represent the continuum lines
rotating along ArgðEÞ ¼ −2θ. The resonant states do not shift as θ changes and are highlighted by the orange circles.

TABLE VI. The complex energies (in MeV), the proportions of different color configurations and the rms radii
(in fm) of the ccc̄b̄ resonant states.

JP M − iΓ=2 χ 3̄c⊗3c
(%) χ6c⊗6̄c

(%) rrms
c1 c̄ rrms

c2b̄
rrms
c1c2 rrms

c̄ b̄
rrms
c1b̄

rrms
c2 c̄

0þ 10059 − 2i 44 56 0.70 0.45 0.67 0.56 0.70 0.63
10130 − 11i 65 35 0.59 0.55 0.66 0.54 0.55 0.69
10144 − 4i 81 19 0.72 0.45 0.57 0.66 0.58 0.68
10180 − 4i 43 57 0.61 0.59 0.71 0.57 0.59 0.69

1þ 10068 − 0.5i 38 62 0.71 0.45 0.69 0.57 0.71 0.64
10135 − 8i 73 27 0.58 0.56 0.68 0.51 0.56 0.66
10151 − 5i 76 24 0.78 0.31 0.46 0.72 0.53 0.69
10155 − 5i 92 8 0.65 0.54 0.67 0.58 0.57 0.66
10162 − 9i 84 16 0.64 0.56 0.67 0.56 0.56 0.73
10174 − 4i 37 63 0.60 0.59 0.72 0.55 0.60 0.69

2þ 10169 − 10i 75 25 0.70 0.50 0.58 0.59 0.53 0.76
10170 − 1i 95 5 0.65 0.53 0.68 0.60 0.57 0.63
10260 − 24i 84 16 0.77 0.70 0.67 0.53 0.72 0.81

TABLE VII. The complex energies (in MeV), the proportions of different color configurations and the rms radii
(in fm) of the bbb̄c̄ resonant states.

JP M − iΓ=2 χ 3̄c⊗3c
(%) χ6c⊗6̄c

(%) rrms
b1b̄

rrms
b2 c̄

rrms
b1b2

rrms
b̄ c̄

rrms
b1 c̄

rrms
b2b̄

0þ 16511 − 5i 61 39 0.38 0.51 0.41 0.52 0.53 0.51
16521 − 2i 30 70 0.35 0.55 0.46 0.58 0.57 0.42
16546 − 6i 55 45 0.39 0.54 0.41 0.53 0.56 0.49
16563 − 2i 77 23 0.40 0.51 0.49 0.48 0.50 0.42

1þ 16515 − 1i 28 72 0.40 0.48 0.48 0.51 0.51 0.48
16530 − 3i 64 36 0.34 0.56 0.40 0.56 0.57 0.46
16542 − 8i 46 54 0.34 0.58 0.35 0.61 0.61 0.45
16550 − 1i 67 33 0.36 0.55 0.46 0.53 0.54 0.43
16554 − 12i 59 41 0.42 0.51 0.41 0.48 0.54 0.45
16564 − 7i 100 0 0.44 0.47 0.50 0.42 0.48 0.42

2þ 16554 − 7i 49 51 0.31 0.61 0.31 0.64 0.63 0.42
16574 − 6i 95 5 0.45 0.47 0.50 0.41 0.48 0.42
16647 − 16i 88 12 0.56 0.64 0.34 0.50 0.67 0.56
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resonant states obtained in our calculations are in fair
agreement with the results from Ref. [31], as shown in
Table VIII. The CSM makes it easier to identify resonant
states and calculate their widths. Our calculations have
identified more resonant states and obtained more stable
width values compared with Ref. [31].

IV. SUMMARY

In summary, we calculate the mass spectrum of the
S-wave fully heavy tetraquark systems with different
flavors ðbcb̄c̄; bbc̄c̄; ccc̄b̄; bbb̄c̄Þ using the AP1 quark
potential model, which was also adopted to study the fully
charmed and fully bottomed tetraquark systems in our
previous study [45]. We apply the complex scaling method
to identify genuine resonant states from meson-meson
scattering states, and the Gaussian expansion method to
solve the four-body Schrödinger equation.
We obtain a series of resonant states in all these systems

with different quantum numbers. Specifically, the bcb̄c̄;

bbc̄c̄; ccc̄b̄; bbb̄c̄ states are predicted to lie within the mass
regions of (13.2, 13.5), (13.3, 13.6), (10.0, 10.3), (16.5,
16.7) GeV, respectively. They all lie above the
Mð1SÞM0ð2SÞ dimeson thresholds, with two-body strong
decay widths ranging from less than 1 MeV to around
70 MeV. Among these states, the bcb̄c̄ tetraquark states
may be the most promising ones to be discovered exper-
imentally in the near future. We recommend experimental
exploration of the 1þþ and 2þþ bcb̄c̄ states in the J=ψϒ
channel, including the Tbcb̄c̄;1þþð13255Þ, Tbcb̄c̄;1þþð13276Þ,
Tbcb̄c̄;1þþð13310Þ, Tbcb̄c̄;1þþð13318Þ, Tbcb̄c̄;1þþð13355Þ,
and Tbcb̄c̄;2þþð13333Þ.
We calculate the rms radii to analyze the spatial

structures of the tetraquark states. We find that all fully
heavy tetraquark resonant states with different flavors
obtained in our calculations are compact tetraquark states.
Moreover, we improve the rms radii results of the fully
charmed tetraquark states in our previous work [45]. With
the improved results, we reidentify three fully charmed
tetraquark resonant states as compact tetraquark states. As a
result, we find that all fully heavy tetraquark states in our
calculations have compact tetraquark configuration.
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