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A generalized Frenkel condition is proposed for use in spin hydrodynamics to relate the spin density and
spin polarization (or spin chemical potential) tensors. It allows for independent treatment of electriclike and
magneticlike components of the spin density tensor, which helps to fulfill the stability conditions recently
derived in the literature. The generalized Frenkel condition extrapolates between the original Frenkel
condition, where only the magneticlike part of the spin tensor is present, and the case where the spin density
tensor is directly proportional to the spin polarization tensor. We also demonstrate that our approach is
supported by the result of a microscopic calculation.
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I. INTRODUCTION

One of the popular assumptions about the form of the
spin tensor Sλ;μν used in spin hydrodynamics is that Sλ;μν

can be entirely expressed by the flow vector uλ and the spin
density tensor Sμν [1,2], namely

Sλ;μν ¼ uλSμν: ð1Þ

This ansatz can be traced back to the seminal papers by
Weyssenhoff and Raabe [3,4], where the first version of
spin hydrodynamics was formulated. Nowadays, the form
(1) is often called the phenomenological expression for the
spin tensor, to contrast it with other more complex forms
resulting from microscopic classical and quantum calcu-
lations [5,6].
Recent studies of stability and causality properties of

spin hydrodynamics [7–20] have led to a somewhat
disturbing conclusion that the electriclike components
of the spin density tensor S0i and its magneticlike compo-
nents Sij should differently depend on the corresponding
components of the spin polarization tensor ωμν.1 To be
more specific, following Ref. [7], we consider the two

susceptibilities

χs ¼
∂Sij

∂ωij ; χb ¼
∂S0i

∂ω0i : ð2Þ

The stability conditions imply that [21–23]

χs > 0; χb < 0: ð3Þ

The problemwith the conditions (3) is that at the same time,
one commonly assumes a linear connection between Sμν

and ωμν [24,25],

SμνðT; μ;ωÞ ¼ SðT; μÞωμν: ð4Þ

Here T and μ denote temperature and (baryon) chemical
potential, whereas S is some function of T and μ.
Equation (4) implies the same values of χs and χb, which
contradicts the stability criterion (3). The arguments for
using (4) are twofold: (i) one assumes that T, μ, uλ, and ωμν

are fundamental variables of spin hydrodynamics, and
(ii) for small values of ωμν (commonly assumed in the
stability analyses), the expansion of Sμν should start with a
linear term in ωμν.
In this work, we argue that the paradox outlined above

can be removed by the observation that the spin polariza-
tion tensor can be expressed in terms of two spacelike four-
vectors, k and ω, and the flow vector u [26],

ωγδ ¼ kγuδ − kδuγ þ ϵγδρσuρωσ: ð5Þ

We note that k and ω are spacelike vectors satisfying
the orthogonality conditions k · u ¼ 0 and ω · u ¼ 0
(by the way, strictly speaking, k is a vector while ω is
an axial vector). Consequently, the linearity between the
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1The tensor ωμν is sometimes called the spin chemical
potential—we prefer to use the name of the chemical potential
for the productΩμν ¼ Tωμν, where T is the system’s temperature.
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components of Sμν and ωμν given by Eq. (4) can be
naturally generalized to the form

Sγδ ¼ S1ðkγuδ − kδuγÞ þ S2ϵγδρσuρωσ: ð6Þ

This expression has the correct Lorentz structure and
fulfills the condition that Sγδ → 0 for ωγδ → 0. The quan-
tities S1 and S2 are two different functions of T and μ. They
can be naturally identified with the functions χb and χs
defined in Eqs. (2). In the local rest frame of the fluid
element, where uλ ¼ ð1; 0; 0; 0Þ, we find S0i ¼ S1ω0i and
Sij ¼ S2ωij; hence S1 ¼ χb and S2 ¼ χs. Equivalent
expressions to Eq. (6) are

Sγδ ¼ S1ðωγαuαuδ − ωδαuαuγÞ −
1

2
S2ϵγδρσϵτβασuρuαωτβ;

ð7Þ

Sγδ ¼ ðS1 − S2Þðωγαuαuδ − ωδαuαuγÞ þ S2ωγδ: ð8Þ

These formulas reproduce the spin density tensor in terms
of the spin polarization tensor and the flow vector.
In the case S1 ¼ 0 ðχb ¼ 0Þ, the spin density automati-

cally fulfills the condition Sμνuν ¼ 0, known in the liter-
ature as the Frenkel (or Weyssenhoff) condition [1,27,28].
Hence, we may think of Eq. (6) as of a generalized Frenkel
condition—a formula that restricts the form of Sγδ. It was
argued in Ref. [21] that the original Frenkel condition helps
to get rid of unstable solutions. In this case, χb ¼ 0, which
corresponds to neutral stability in the electric sector.
Unfortunately, the use of the original Frenkel condition

has also some drawbacks, as it undesirably reduces the
number of independent components of the spin density
tensor. In this context, one may recall that in global
equilibrium the polarization tensor ωμν is given by thermal
vorticity ϖμν with electric and magnetic parts given by the
acceleration and vorticity vectors, respectively; see, for
instance, Refs. [29–31]. In this case, we cannot neglect the
electric component. The generalized formula (6) does not
lead to such problems. Below we show that the conditions
S1 < 0 and S2 > 0 are indeed fulfilled in certain kinetic-
theory calculations.

II. HYDRODYNAMICS WITH CONSERVED
SPIN—MICROSCOPIC EXAMPLE

One of the popular forms of the spin tensor used in the
literature is that introduced by de Groot, van Leeuven, and
van Weert in their seminal textbook on relativistic kinetic
theory (denoted in the following with the label GLW) [32].
In the case where the spin part of the angular momentum is
separately conserved, the local equilibrium GLW spin
tensor has the structure [33]

Sα;βγGLW¼A1uαωβγþA2uαu½βkγ� þA3ðu½βωγ�αþgα½βkγ�Þ; ð9Þ

where the square brackets denote antisymmetrization
X½αβ� ¼ ðXαβ − XβαÞ=2. The coefficients A1, A2, and A3

are functions of temperature and chemical potential. In
order to obtain the corresponding spin density tensor SβγGLW,
we consider the projection uαS

α;βγ
GLW that gives

SβγGLW ¼
�
A1 −

A2

2
− A3

�
ðkβuγ − kγuβÞ þ A1ϵ

βγρσuρωσ

ð10Þ

and

Sα;βγGLW ¼ uαSβγGLW þ A3ðΔα½βkγ� þ ϵα½βλχuλωχuγ�Þ: ð11Þ

We note that the second term on the right-hand side of the
equation above is explicitly orthogonal to uα; hence, in
particular, it does not enter thermodynamic relations valid
for the spin equation of state [6,19]. Moreover, one can
show that the expression for the GLW spin density tensor
(10) is identical to the one obtained in the Hilgevoord-
Wouthuysen (HW) pseudogauge for the energy-momentum
and spin tensors [5].
In Ref. [33] the following expressions have been derived

for the coefficients A1, A2, and A3:

A1 ¼ Cðn0 − B0Þ; A2 ¼ 2Cðn0 − 3B0Þ; A3 ¼ CB0;

ð12Þ

where C ¼ coshðμ=TÞ, B0 ¼ −2ðT2=m2Þσ0, and n0 (σ0) is
the equilibrium number density (entropy density) of spin-
less classical particles with mass m at the temperature T. It
is easy to notice that S1 ¼ A1 − 1

2
A2 − A3 ¼ CB0 < 0 and

S2 ¼ A1 > 0. Hence, the properties expected from the
stability analysis are fulfilled in the considered microscopic
model. In the considered case we find2

S1 ¼ −C
T3

π2
½4K2ðxÞ þ xK1ðxÞ� ð13Þ

and

S2 ¼ C
T3

2π2
½ð8þ x2ÞK2ðxÞ þ 2xK1ðxÞ�; ð14Þ

where KnðxÞ’s are the modified Bessel functions of the
second kind and x ¼ m=T. For small values of m=T, we
obtain

S1 ¼ −
8CT5

π2m2
; S2 ¼

8CT5

π2m2
: ð15Þ

2The forms of Eqs. (13) and (14) are obtained by substituting
the forms of the equilibrium number density n0 and entropy
density σ0 [33] in the expressions for S1 ¼ CB0 and S2 ¼ A1.
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Interestingly, in this limit the two coefficients become
exactly opposite, S2 ¼ −S1.

3 On the other hand, in the large
mass limit we find

S1 ¼ −
CT3

π3=2

ffiffiffiffiffiffi
m
2T

r
e−m=T; S2 ¼

CmT2

2π3=2

ffiffiffiffiffiffi
m
2T

r
e−m=T: ð16Þ

In this case S1 ≪ S2 and the magnetic part dominates the
behavior of the spin (density) tensor. This observation
agrees with an earlier result; see Eq. (60) in Ref. [34].
The calculation presented above has been done in a

specific formulation of spin hydrodynamics. In the future,
itwouldbe interesting toanalyzeothermicroscopicapproaches
[35–38] to verify if similar features also occur there.

III. POSITIVITY OF THE CONTRACTION ωμνSμν

In thermodynamic relations used in spin thermodynam-
ics [1,6–12,19,20] one includes the term ωμνSμν. With the
ansatz (4), it gives a contribution of indefinite sign (note
that k2 < 0 and ω2 < 0)

ωμνSμν ¼ Sωμνω
μν ¼ −2Sðω2 − k2Þ: ð17Þ

Using the generalized Frenkel condition (6), we obtain

ωμνSμν ¼ 2S1k2 − 2S2ω2: ð18Þ

With S1 < 0 and S2 > 0 this is a manifestly positive
quantity. We conclude that using Eq. (6) one may
avoid some earlier problems found in the literature [26]
connected with the calculation of the expression like

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμνω

μν
p

, provided it can be suitably replaced byffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμνSμν

p
.

IV. SUMMARY

In this work, we have proposed a new form of the relation
connecting the spin density tensor Sμν with the spin polari-
zation tensorωμν. It may be considered a generalized Frenkel
condition. Alternatively, we may regard the new formula (6)
as a special form of the spin equation of state used in spin
hydrodynamics that guarantees the stability of perturbations
around the uniform background. In this way, we have solved
problems that have plagued the stability analyses of spin
hydrodynamics in recent years. Suggestions that the stability
of spin hydrodynamics may depend on the form of the spin
equation of statewere discussed earlier inRef. [23]; however,
no explicit solution to this problem was given.
We stress that our discussion refers to the calculations

based on the ansatz (1) and implies that Eq. (4) should be
replaced by Eq. (6). As our microscopic example shows,
the spin tensor may also have parts transverse to the flow
vector; see the last term in Eq. (9). The stability studies of
spin hydrodynamics with more complicated forms of the
spin tensor should definitely be done in the future to
achieve more general conclusions on stability. Finally, the
stability conditions discussed here refer to low-momentum
modes. It would be interesting to extend this study to large
momenta.
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